当前位置:文档之家› BMP图像格式详解

BMP图像格式详解

BMP图像格式详解
BMP图像格式详解

BMP格式图像文件详析

首先请注意所有的数值在存储上都是按“高位放高位、低位放低位的原则”,如12345678h放在存储器中就是7856 3412)。下图是导出来的开机动画的第一张图加上文件头后的16进制数据,以此为例进行分析。T408中的图像有点怪,图像是在电脑上看是垂直翻转的。在分析中为了简化叙述,以一个字(两个字节为单位,如424D就是一个字)为序号单位进行,“h”表示是16进制数。

424D 4690 0000 0000 0000 4600 0000 2800 0000 8000 0000 9000 0000 0100*1000 0300 0000 0090 0000 A00F 0000 A00F 0000 0000 0000 0000 0000*00F8 0000 E007 0000 1F00 0000 0000 0000*02F1 84F1 04F1 84F1 84F1 06F2 84F1 06F2 04F2 86F2 06F2 86F2 86F2

......

BMP文件可分为四个部分:位图文件头、位图信息头、彩色板、图像数据阵列,在上图中已用*分隔。

一、图像文件头

1)1:图像文件头。424Dh=’BM’,表示是Windows支持的BMP 格式。

2)2-3:整个文件大小。4690 0000,为00009046h=36934。

3)4-5:保留,必须设置为0。

4)6-7:从文件开始到位图数据之间的偏移量。4600 0000,为00000046h=70,上面的文件头就是35字=70字节。

5)8-9:位图图信息头长度。

6)10-11:位图宽度,以像素为单位。8000 0000,为00000080h=128。

7)12-13:位图高度,以像素为单位。9000 0000,为00000090h=144。

8)14:位图的位面数,该值总是1。0100,为0001h=1。

二、位图信息头

9)15:每个像素的位数。有1(单色),4(16色),8(256色),16(64K色,高彩色),24(16M色,真彩色),32(4096M色,增强

型真彩色)。T408支持的是16位格式。1000为0010h=16。

10)16-17:压缩说明:有0(不压缩),1(RLE 8,8位RLE压缩),2(RLE 4,4位RLE压缩,3(Bitfields,位域存放)。RLE简单地说是采用像素数+像素值的方式进行压缩。T408采用的是位域存放方式,用两个字节表示一个像素,位域分配为r5b6g5。图中0300 0000为00000003h=3。

11)18-19:用字节数表示的位图数据的大小,该数必须是4的倍数,数值上等于位图宽度×位图高度×每个像素位数。0090 0000为00009000h=80×90×2h=36864。

12)20-21:用象素/米表示的水平分辨率。A00F 0000为0000 0FA0h=4000。

13)22-23:用象素/米表示的垂直分辨率。A00F 0000为0000 0FA0h=4000。

14)24-25:位图使用的颜色索引数。设为0的话,则说明使用所有调色板项。

15)26-27:对图象显示有重要影响的颜色索引的数目。如果是

0,表示都重要。

三、彩色板

16)28-35:彩色板规范。对于调色板中的每个表项,用下述方法来描述RGB的值:

1字节用于蓝色分量

1字节用于绿色分量

1字节用于红色分量

1字节用于填充符(设置为0)

对于24-位真彩色图像就不使用彩色表,因为位图中的RGB值就代表了每个象素的颜色。但是16位r5g6b5位域彩色图像需要彩色表,看前面的图,与上面的解释不太对得上,应以下面的解释为准。

图中彩色板为00F8 0000 E007 0000 1F00 0000 0000 0000,其中:

00FB 0000为FB00h=1111100000000000(二进制),是红色分量的掩码。

E007 0000为 07E0h=0000011111100000(二进制),是绿色分量的掩码。

1F00 0000为001Fh=0000 0000 0001 1111(二进制),是红色分量的掩码。

0000 0000总设置为0。

将掩码跟像素值进行“与”运算再进行移位操作就可以得到各色分量值。看看掩码,就可以明白事实上在每个像素值的两个字节16位中,按从高到低取5、6、5位分别就是r、g、b分量值。取出分量值后把r、g、b值分别乘以8、4、8就可以补齐第个分量为一个字节,再把这三个字节按rgb组合,放入存储器(同样要反序),就可以转换为24位标准BMP格式了。

四、图像数据阵列

17)17-...:每两个字节表示一个像素。阵列中的第一个字节表示位图左下角的象素,而最后一个字节表示位图右上角的象素。

按照前述r5g6b5彩色板规范,我们对图像最左下角手机上图像的的像素在24位模式中的rgb值进行推算(由于垂直翻转,这个像素在手机上看来实际上在左上角):

02F1 为 F102h

r=(F102 AND FB00)/ 800 × 8 h= F0h=240

g=(F102 AND 07E0)/ 20 × 4 h=20h=32

b=(F102 AND 001F)× 8 h= 10h=16

rgb=F02010h,放在存储器中为1020F0h。

在Photoshop中设一下颜色,rgb取240、32、16可以看到是近红色。

将手机中图像数据复制出来,加上前图中的文件头数据,只需要把6)、7)项位图宽、高设好就可以用ACDSEE进行查看了。但是如果要用其他的程序进行处理,其他项目一般也需要正确设置。

按照这样的原则,可以写一个简单的程序把一幅24位BMP图像转换为手机支持的16位r5g6b5图像,然后写进AXF,刷机后就可以在手机上看到自己做的6万色真彩图了。

目前52和兰色可能都在开发这样的程序,有兴趣的朋友不妨先自己动手做几张图片。

//*******************************************BY RALF

最近正在着手开发一个图片库,也就是实现对常见图片格式的度写操作。作为总结与积累,我会把这些图片格式以及加载的实现写在我的Blog上。

说到图片,位图(Bitmap)当然是最简单的,它Windows显示图片的基本格式,其文件扩展名为*.BMP。在Windows下,任何各式的图片文件(包括视频播放)都要转化为位图个时候才能显示出来,各种格式的图片文件也都是在位图格式的基础上采用不同的压缩算法生成的(Flash中使用了适量图,是按相同颜色区域存储的)。

一、下面我们来看看位图文件(*.BMP)的格式。

位图文件主要分为如下3个部分:

块名称

对应Windows结构体定义大小(Byte)

文件信息头BITMAPFILEHEADER

14

位图信息头BITMAPINFOHEADER

40

RGB颜色阵列

BYTE*

由图像长宽尺寸决定

1、文件信息头BITMAPFILEHEADER

结构体定义如下:

typedef struct tagBITMAPFILEHEADER { /* bmfh */ UINT bfType;

DWORD bfSize;

UINT bfReserved1;

UINT bfReserved2;

DWORD bfOffBits;

} BITMAPFILEHEADER;

其中:

bfType

说明文件的类型,该值必需是0x4D42,也就是字符'BM'。bfSize

说明该位图文件的大小,用字节为单位

bfReserved1

保留,必须设置为0

bfReserved2

保留,必须设置为0

bfOffBits

说明从文件头开始到实际的图象数据之间的字节的偏移量。这个参数是非常有用的,因为位图信息头和调色板的长度会根据不同情况而变化,所以你可以用这个偏移值迅速的从文件中读取到位数据。

2、位图信息头BITMAPINFOHEADER

结构体定义如下:

typedef struct tagBITMAPINFOHEADER { /* bmih */

DWORD biSize;

LONG biWidth;

LONG biHeight;

WORD biPlanes;

WORD biBitCount;

DWORD biCompression;

DWORD biSizeImage;

LONG biXPelsPerMeter;

LONG biYPelsPerMeter;

DWORD biClrUsed;

DWORD biClrImportant;

} BITMAPINFOHEADER;

其中:

biSize

说明BITMAPINFOHEADER结构所需要的字数。

biWidth

说明图象的宽度,以象素为单位。

biHeight

说明图象的高度,以象素为单位。注:这个值除了用于描述图像的高度之外,它还有另一个用处,就是指明该图像是倒向的位图,还是正向的位图。如果该值是一个正数,说明图像是倒向的,如果该值是一个负数,则说明图像是正向的。大多数的BMP文件都是倒向的位图,也就是时,高度值是一个正数。

biPlanes

为目标设备说明位面数,其值将总是被设为1。

biBitCount

说明比特数/象素,其值为1、4、8、16、24、或32。但是由于我们平时用到的图像绝大部分是24位和32位的,所以我们讨论这两类图像。

biCompression

说明图象数据压缩的类型,同样我们只讨论没有压缩的类型:BI_RGB。

biSizeImage

说明图象的大小,以字节为单位。当用BI_RGB格式时,可设置为0。

biXPelsPerMeter

说明水平分辨率,用象素/米表示。

biYPelsPerMeter

说明垂直分辨率,用象素/米表示。

biClrUsed

说明位图实际使用的彩色表中的颜色索引数(设为0的话,则说明使用所有调色板项)。

biClrImportant

说明对图象显示有重要影响的颜色索引的数目,如果是0,表示都重要。

3、RGB颜色阵列

有关RGB三色空间我想大家都很熟悉,这里我想说的是在Windows下,RGB颜色阵列存储的格式其实BGR。也就是说,对于24位的RGB位图像素数据格式是:

蓝色B值

绿色G值

红色R值

对于32位的RGB位图像素数据格式是:

蓝色B值

绿色G值

红色R值

透明通道A值

透明通道也称Alpha通道,该值是该像素点的透明属性,取值在0(全透明)到255(不透明)之间。对于24位的图像来说,因为没有Alpha 通道,故整个图像都不透明。

二、搞清了文件格式,下一步我们要实现加载。

加载文件的目的是要得到图片属性,以及RGB数据,然后可以将其绘制在DC上(GDI),或是生成纹理对象(3D:OpenGL/Direct3D)。这两种用途在数据处理上有点区别,我们主要按前一种用法讲,在和3D有不同的地方,我们再提出来。

1、加载文件头

//Load the file header

BITMAPFILEHEADER header;

memset(&header, 0, sizeof(header));

inf.read((char*)&header, sizeof(header));

if(header.bfType != 0x4D42)

return false;

这个很简单,没有什么好说的。

2、加载位图信息头

//Load the image information header

BITMAPINFOHEADER infoheader;

memset(&infoheader, 0, sizeof(infoheader));

inf.read((char*)&infoheader,

sizeof(infoheader));

m_iImageWidth = infoheader.biWidth;

m_iImageHeight = infoheader.biHeight;

m_iBitsPerPixel = infoheader.biBitCount;

这里我们得到了3各重要的图形属性:宽,高,以及每个像素颜色所占用的位数。

3、行对齐

由于Windows在进行行扫描的时候最小的单位为4个字节,所以当

图片宽 X 每个像素的字节数!= 4的整数倍

时要在每行的后面补上缺少的字节,以0填充(一般来说当图像宽度为2的幂时不需要对齐)。位图文件里的数据在写入的时候已经进行了行对齐,也就是说加载的时候不需要再做行对齐。但是这样一来图片数据的长度就不是:宽 X 高 X 每个像素的字节数了,我们需要通过下面的方法计算正确的数据长度:

//Calculate the image data size

int iLineByteCnt = (((m_iImageWidth*m_iBitsPerPixel) + 31) >> 5) << 2;

m_iImageDataSize = iLineByteCnt * m_iImageHeight;

4、加载图片数据

对于24位和32位的位图文件,位图数据的偏移量为

sizeof(BITMAPFILEHEADER) + sizeof(BITMAPINFOHEADER),也就是说现在我们可以直接读取图像数据了。

if(m_pImageData) delete []m_pImageData;

m_pImageData = new unsigned char[m_iImageDataSize];

inf.read((char*)m_pImageData,

m_iImageDataSize);

如果你足够细心,就会发现内存m_pImageData里的数据的确是BGR 格式,可以用个纯蓝色或者是纯红色的图片测试一下。

5、绘制

好了,数据和属性我们都有了,现在就可以拿来随便用了,就和吃馒头一样,爱粘白糖粘白糖,爱粘红糖粘红糖。下面是我的GDI绘制代码,仅作参考。

void CImage::DrawImage(HDC hdc, int iLeft, int iTop, int iWidth, int iHeight)

bmp文件格式详解

b m p文件格式详解 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

BMP文件格式,又称为Bitmap(位图)或是DIB(Device-IndependentDevice,设备无关位图),是Windows系统中广泛使用的图像文件格式。由于它可以不作任何变换地保存图像像素域的数据,因此成为我们取得RAW数据的重要来源。Windows的图形用户界面(graphicaluserinterfaces)也在它的内建图像子系统GDI中对BMP格式提供了支持。 下面以Notepad++为分析工具,结合Windows的位图数据结构对BMP文件格式进行一个深度的剖析。 BMP文件的数据按照从文件头开始的先后顺序分为四个部分: bmp文件头(bmpfileheader):提供文件的格式、大小等信息 位图信息头(bitmapinformation):提供图像数据的尺寸、位平面数、压缩方式、颜色索引等信息 调色板(colorpalette):可选,如使用索引来表示图像,调色板就是索引与其对应的颜色的映射表 位图数据(bitmapdata):就是图像数据啦^_^ 下面结合Windows结构体的定义,通过一个表来分析这四个部分。 我们一般见到的图像以24位图像为主,即R、G、B三种颜色各用8 个bit来表示,这样的图像我们称为真彩色,这种情况下是不需要调色 板的,也就是所位图信息头后面紧跟的就是位图数据了。因此,我们 常常见到有这样一种说法:位图文件从文件头开始偏移54个字节就是

位图数据了,这其实说的是24或32位图的情况。这也就解释了我们 按照这种程序写出来的程序为什么对某些位图文件没用了。 下面针对一幅特定的图像进行分析,来看看在位图文件中这四个数据 段的排布以及组成。 我们使用的图像显示如下: 这是一幅16位的位图文件,因此它是含有调色板的。 在拉出图像数据进行分析之前,我们首先进行几个约定: 1.在BMP文件中,如果一个数据需要用几个字节来表示的话,那么该数据的存放字节顺序为“低地址村存放低位数据,高地址存放高位数据”。如数据 0x1756在内存中的存储顺序为: 这种存储方式称为小端方式(littleendian),与之相反的是大端方式(bigendian)。对两者的使用情况有兴趣的可以深究一下,其中还是有学问的。 2.以下所有分析均以字节为序号单位进行。 下面我们对从文件中拉出来的数据进行剖析: 一、bmp文件头 Windows为bmp文件头定义了如下结构体: typedef struct tagBITMAPFILEHEADER {?

BMP图像格式详解

BMP格式图像文件详析 首先请注意所有的数值在存储上都是按“高位放高位、低位放低位的原则”,如12345678h放在存储器中就是7856 3412)。下图是导出来的开机动画的第一张图加上文件头后的16进制数据,以此为例进行分析。T408中的图像有点怪,图像是在电脑上看是垂直翻转的。在分析中为了简化叙述,以一个字(两个字节为单位,如424D就是一个字)为序号单位进行,“h”表示是16进制数。 424D 4690 0000 0000 0000 4600 0000 2800 0000 8000 0000 9000 0000 0100*1000 0300 0000 0090 0000 A00F 0000 A00F 0000 0000 0000 0000 0000*00F8 0000 E007 0000 1F00 0000 0000 0000*02F1 84F1 04F1 84F1 84F1 06F2 84F1 06F2 04F2 86F2 06F2 86F2 86F2 ...... BMP文件可分为四个部分:位图文件头、位图信息头、彩色板、图像数据阵列,在上图中已用*分隔。 一、图像文件头 1)1:图像文件头。424Dh=’BM’,表示是Windows支持的BMP 格式。

2)2-3:整个文件大小。4690 0000,为00009046h=36934。 3)4-5:保留,必须设置为0。 4)6-7:从文件开始到位图数据之间的偏移量。4600 0000,为00000046h=70,上面的文件头就是35字=70字节。 5)8-9:位图图信息头长度。 6)10-11:位图宽度,以像素为单位。8000 0000,为00000080h=128。 7)12-13:位图高度,以像素为单位。9000 0000,为00000090h=144。 8)14:位图的位面数,该值总是1。0100,为0001h=1。 二、位图信息头 9)15:每个像素的位数。有1(单色),4(16色),8(256色),16(64K色,高彩色),24(16M色,真彩色),32(4096M色,增强

BMP格式结构详解

位图文件(B it m a p-File,BMP)格式是Windows采用的图像文件存储格式,在Windows环境下运行的所有图像处理软件都支持这种格式。Windows 3.0以前的BMP位图文件格式与显示设备有关,因此把它称为设备相关位图(d evice-d ependent b itmap,DDB)文件格式。Windows 3.0以后的BMP位图文件格式与显示设备无关,因此把这种BMP位图文件格式称为设备无关位图(d evice-i ndependent b itmap,DIB)格式,目的是为了让Windows能够在任何类型的显示设备上显示BMP位图文件。BMP位图文件默认的文件扩展名是BMP或者bmp。 6.1.2 文件结构 位图文件可看成由4个部分组成:位图文件头(bitmap-file header)、位图信息头(bitmap-information header)、彩色表(color table)和定义位图的字节阵列,它们的名称和符号如表6-01所示。 表6-01 BMP图像文件组成部分的名称和符号 位图文件的组成结构名称符号 位图文件头(bitmap-file header)BITMAPFILEHEADE R bmfh 位图信息头(bitmap-information header)BITMAPINFOHEADE R bmih 彩色表(color table)RGBQUAD aColors[] 图像数据阵列字节BYTE aBitmapBits[ ] 位图文件结构可综合在表6-02中。 表6-02 位图文件结构内容摘要 偏移量域的名称大小内容 图像文件头0000h标识符 (Identifie r) 2 bytes两字节的内容用来识别位图的类型: ‘BM’ : Windows 3.1x, 95, NT, linux ‘BA’ :OS/2 Bitmap Array ‘CI’ :OS/2 Color Icon ‘CP’ :OS/2 Color Pointer ‘IC’ : OS/2 Icon ‘PT’ :OS/2 Pointer 0002h File Size 1 dword用字节表示的整个文件的大小 0006h Reserved 1 dword保留,设置为0 000Ah Bitmap Data Offset 1 dword从文件开始到位图数据开始之间的数据(bitmap data)之间的偏移量 000Eh Bitmap Header Size 1 dword位图信息头(Bitmap Info Header)的长度,用来 描述位图的颜色、压缩方法等。下面的长度表示: 28h - Windows 3.1x, 95, NT, … 0Ch - OS/2 1.x F0h - OS/2 2.x 0012h Width 1 dword位图的宽度,以像素为单位 0016h Height 1 dword位图的高度,以像素为单位 001Ah Planes 1 word位图的位面数 图像001Ch Bits Per Pixel 1 word每个像素的位数 1 - Monochrome bitmap

多媒体常见五种图像格式详解

多媒体常见五种图像格式详解 【摘要】:自此互联网以及PC的飞速发展,我们的日常生活已经高度的信息化了,多媒体应用技术也不断地深入到我们的生活中。图像、视频这些最直观的信息无时无刻的充斥着我们的眼球。这时我们需要在繁多的图像种类中辨别以及选择我们所要用到的图像种类来准确完整地传达信息。本文通过对多媒体常见的五种图像格式的详细介绍从而可以深刻的了解图像的格式特点及其应用。 【关键词】:多媒体互联网常见图像格式 一.引言 现在的互联网和多媒体技术的高速发展,多媒体的图形图像以其蕴含的信息量优美直观地显现于人们的视网膜中,给人们以绚丽丰富的视觉效果。但是多媒体图像又因其种类繁多而不能被人们所一一了解,甚至是最常见的图像格式也只是对其格式名略有耳闻。那么,本文将对多媒体常见的图像格式做一番简述,介绍它们的特性和不同点以及其实用性。 二.五种图像格式详解 1、BMP图像 BMP图像,即通常所说的位图(Bitmap),是最早应用于Windows操作系统,也是Windows操作系统中的标准图像文件格式,在Windows环境中运行的图形图像软件都支持BMP图像格式。因而这种格式的图像是最常见最简单的,像我们常用的桌面壁纸一般都是BMP格式图像。 BMP图像文件的文件结构一般认为包括了三部分:表头、调色板和图像像素数据,再细分的话,表头部分有分文件头和位图信息头。表头长度为54个字节,内容包括了BMP文件的类型、文件的大小、位图文件的保留字、位图数据距文件头的偏移量以及位图的尺寸等信息。调色板中有若干个表项相对应地定义一种颜色,从而说明位图中的颜色。只有全彩色BMP图像文件内没有调色板数据,其余不超过256种颜色的图像文件都必须设定调色板信息(电视节目制作中的图形图像格式)。图像像素数据每一个点代表一个像素值,它有着比较独特的记录方式:位图中的像素值是以在扫描行内从左到右、扫描行之间从下到上这样的顺序记录的。 BMP图像文件有下列3个特点:

JPEG图像格式详解

JPEG图像格式详解 JPEG压缩简介 ------------- 1.色彩模型 JPEG的图片使用的是YCrCb颜色模型,而不是计算机上最常用的RGB.关于色彩模型,这里不多阐述.只是说明,YCrCb模型更适合图形压缩.因为人眼对图片上的亮度Y的变化远比色度C的变化敏感.我们完全可以每个点保存一个8bit的亮度值,每2x2个点保存一个Cr Cb值,而图象在肉眼中的感觉不会起太大的变化.所以,原来用RGB模型,4个点需要4x3=12字节.而现在仅需要4+2=6字节;平均每个点占12bit.当然JPEG格式里允许每个点的C值都记录下来;不过MPEG里都是按12bit一个点来存放的,我们简写为YUV12. [R G B]->[Y Cb Cr]转换 ------------------------- (R,G,B都是8bit unsigned) |Y||0.2990.5870.114||R||0| |Cb|=|-0.1687-0.33130.5|*|G|+|128| |Cr||0.5-0.4187-0.0813||B||128| Y=0.299*R+0.587*G+0.114*B(亮度) Cb=-0.1687*R-0.3313*G+0.5*B+128 Cr=0.5*R-0.4187*G-0.0813*B+128 [Y,Cb,Cr]->[R,G,B]转换 ------------------------- R=Y+ 1.402*(Cr-128) G=Y-0.34414*(Cb-128)-0.71414*(Cr-128) B=Y+ 1.772*(Cb-128) 一般,C值(包括Cb Cr)应该是一个有符号的数字,但这里被处理过了,方法是加上了128.JPEG里的数据都是无符号8bit的. 2.DCT(离散余弦变换) JPEG里,要对数据压缩,先要做一次DCT变换.DCT变换的原理,涉及到数学知识,这里我们不必深究.反正和傅立叶变换(学过高数的都知道)是差不多了.经过

BMP头文件格式

bmp头文件格式 1:BMP文件组成 BMP文件由文件头、位图信息头、颜色信息和图形数据四部分组成。2:BMP文件头(14字节) BMP文件头数据结构含有BMP文件的类型、文件大小和位图起始位置等信息。 其结构定义如下: typedef struct tagBITMAPFILEHEADER { WORDbf Type; // 位图文件的类型,必须为BMP(0-1字节) DWORD bfSize; // 位图文件的大小,以字节为单位(2-5字节) WORD bfReserved1; // 位图文件保留字,必须为0(6-7字节) WORD bfReserved2; // 位图文件保留字,必须为0(8-9字节) DWORD bfOffBits; // 位图数据的起始位置,以相对于位图(10-13字节) // 文件头的偏移量表示,以字节为单位 } BITMAPFILEHEADER; 3:位图信息头(40字节) BMP位图信息头数据用于说明位图的尺寸等信息。 typedef struct tagBITMAPINFOHEADER{ DWORD biSize; // 本结构所占用字节数(14-17字节) LONG biWidth; // 位图的宽度,以像素为单位(18-21字节)

LONG biHeight; // 位图的高度,以像素为单位(22-25字节) WORD biPlanes; // 目标设备的级别,必须为1(26-27字节) WORD biBitCount;// 每个像素所需的位数,必须是1(双色),(28-29字节) // 4(16色),8(256色)或24(真彩色)之一 DWORD biCompression; // 位图压缩类型,必须是0(不压缩),(30-33字节) // 1(BI_RLE8压缩类型)或2(BI_RLE4压缩类型)之一 DWORD biSizeImage; // 位图的大小,以字节为单位(34-37字节) LONG biXPelsPerMeter; // 位图水平分辨率,每米像素数(38-41字节) LONG biYPelsPerMeter; // 位图垂直分辨率,每米像素数(42-45字节) DWORD biClrUsed;// 位图实际使用的颜色表中的颜色数(46-49字节) DWORD biClrImportant;// 位图显示过程中重要的颜色数(50-53字节) } BITMAPINFOHEADER; 4:颜色表 颜色表用于说明位图中的颜色,它有若干个表项,每一个表项是一个RGBQUAD类型的结构,定义一种颜色。RGBQUAD结构的定义如下: typedef struct tagRGBQUAD {

JPEG图像格式详解

JPEG图像格式详解 JPEG 压缩简介 ------------- 1. 色彩模型 JPEG 的图片使用的是 YCrCb 颜色模型, 而不是计算机上最常用的 RGB. 关于色彩模型, 这里不多阐述. 只是说明, YCrCb 模型更适合图形压缩. 因为人眼对图片上的亮度 Y 的变化远比色度 C 的变化敏感. 我们完全可以每个点保存一个 8bit 的亮度值, 每 2x2 个点保存一个 Cr Cb 值, 而图象在肉眼中的感觉不会起太大的变化. 所以, 原来用 RGB 模型, 4 个点需要 4x3=12 字节. 而现在仅需要 4+2=6 字节; 平均每个点占 12bit. 当然 JPEG 格式里允许每个点的 C 值都记录下来; 不过 MPEG 里都是按 12bit 一个点来存放的, 我们简写为 YUV12. [R G B] -> [Y Cb Cr] 转换 ------------------------- (R,G,B 都是 8bit unsigned) | Y | | 0.299 0.587 0.114 | | R | | 0 | | Cb | = |- 0.1687 - 0.3313 0.5 | * | G | + |128| | Cr | | 0.5 - 0.4187 - 0.0813| | B | |128| Y = 0.299*R + 0.587*G + 0.114*B (亮度) Cb = - 0.1687*R - 0.3313*G + 0.5 *B + 128 Cr = 0.5 *R - 0.4187*G - 0.0813*B + 128 [Y,Cb,Cr] -> [R,G,B] 转换 ------------------------- R = Y + 1.402 *(Cr-128) G = Y - 0.34414*(Cb-128) - 0.71414*(Cr-128) B = Y + 1.772 *(Cb-128) 一般, C 值 (包括 Cb Cr) 应该是一个有符号的数字, 但这里被处理过了, 方法是加上了 128. JPEG 里的数据都是无符号 8bit 的. 2. DCT (离散余弦变换) JPEG 里, 要对数据压缩, 先要做一次 DCT 变换. DCT 变换的原理, 涉及到数学知识, 这里我们不必深究. 反正和傅立叶变换(学过高数的都知道) 是差不多了. 经过这个变换, 就把图片里点和点间的规律呈现出来了, 更方便压缩.JPEG 里是对每 8x8

BMP文件格式

BMP文件格式 简介 BMP(Bitmap-File)图形文件是Windows采用的图形文件格式,在Windows环境下运行的所有图象处理软件都支持BMP图象文件格式。Wi ndows系统内部各图像绘制操作都是以BMP为基础的。Windows 3.0以前的BMP图文件格式与显示设备有关,因此把这种BMP图象文件格式称为设备相关位图DDB(device-dependent bitmap)文件格式。Windows 3.0以后的BMP图象文件与显示设备无关,因此把这种BM P图象文件格式称为设备无关位图DIB(device-independent bitmap)格式(注:Windows 3.0以后,在系统中仍然存在DDB位图,象BitBl t()这种函数就是基于DDB位图的,只不过如果你想将图像以BMP格式保存到磁盘文件中时,微软极力推荐你以DIB格式保存),目的是为了让Windows能够在任何类型的显示设备上显示所存储的图象。BMP位图文件默认的文件扩展名是BMP或者bmp(有时它也会以.DIB 或.RLE作扩展名)。 此图用WinHex软件打开后结果如下:(在介绍完bmp文件格式后会具体分析这些数字,最后也有matlab对此图的分析)注:此图是24位真彩色图。 文件结构 位图文件可看成由4个部分组成:位图文件头(bitmap-file header)、位图信息头(bitmap-information header)、彩色表(color table)和定义位图的字节阵列,它具有如下所示的形式。

位图文件结构可综合在表6-01中。表01 位图文件结构内容摘要

构件详解 1. 位图文件头 位图文件头包含有关于文件类型、文件大小、存放位置等信息,在Windows 3.0以上版本的位图文件中用BITMAPFILEHEADER结构来定义: typedef struct tagBITMAPFILEHEADER { /* bmfh */ UINT bfType; DWORD bfSize; UINT bfReserved1; UINT bfReserved2; DWORD bfOffBits; } BITMAPFILEHEADER; 其中: bfType 说明文件的类型.(该值必需是0x4D42,也就是字符'BM'。我们不需要判断OS/2的位图标识,这么做现在来看似乎已经没有什么意义了,而且如果要支持OS/2的位图,程序将变得很繁琐。所以,在此只建议你检察'BM'标识) bfSize 说明文件的大小,用字节为单位bfReserved1 保留,必须设置为0

bmp图像的读取

BMP图像文件由三部分组成:位图文件头数据结构,它包含BMP图像文件的类型、显示内容等信息;位图信息数据结构,它包含有BMP图像的宽、高、压缩方法,以及定义颜色等信息。 位图文件主要分为如下3个部分: 1、文件信息头BITMAPFILEHEADER 结构体定义如下: typedef struct tagBITMAPFILEHEADER { WORD bfType; DWORD bfSize; WORD bfReserved1; WORD bfReserved2; DWORD bfOffBits; } BITMAPFILEHEADER; 其中: 2、位图信息头BITMAPINFOHEADER

结构体定义如下: typedef struct tagBITMAPINFOHEADER { DWORD biSize; LONG biWidth; LONG biHeight; WORD biPlanes; WORD biBitCount; DWORD biCompression; DWORD biSizeImage; LONG biXPelsPerMeter; LONG biYPelsPerMeter; DWORD biClrUsed; DWORD biClrImportant; } BITMAPINFOHEADER; 其中:

BMP头文件格式以及C语言读取头文件(二) 具体数据举例: 如某BMP文件开头: 424D 4690 0000 0000 0000 4600 0000 2800 0000 8000 0000 9000 0000 0100*1000 0300 0000 0090 0000 A00F 0000 A00F 0000 0000 0000 0000 0000*00F8 0000 E007 0000 1F00 0000 0000 0000*02F1 84F1 04F1 84F1 84F1 06F2 84F1 06F2 04F2 86F2 06F2 86F2 86F2 .... .... BMP文件可分为四个部分:位图文件头、位图信息头、彩色板、图像数据阵列,在上图中已用*分隔。 一、图像文件头 1)1:(这里的数字代表的是"字",即两个字节,下同)图像文件头。424Dh=’BM’,表示是Windows支持的BMP格式。 2)2-3:整个文件大小。4690 0000,为00009046h=36934。 3)4-5:保留,必须设置为0。 4)6-7:从文件开始到位图数据之间的偏移量。4600 0000,为00000046h=70,上面的文件头就是35字=70字节。 5)8-9:位图图信息头长度。 6)10-11:位图宽度,以像素为单位。8000 0000,为00000080h=128。 7)12-13:位图高度,以像素为单位。9000 0000,为00000090h=144。 8)14:位图的位面数,该值总是1。0100,为0001h=1。 二、位图信息头 9)15:每个像素的位数。有1(单色),4(16色),8(256色),16(64K 色,高彩色),24(16M色,真彩色),32(4096M色,增强型真彩色)。1000为0010h=16。 10)16-17:压缩说明:有0(不压缩),1(RLE 8,8位RLE压缩),2(RLE 4,4位RLE压缩,3(Bitfields,位域存放)。RLE简单地说是采用像素数+像素值的方式进行压缩。T408采用的是位域存放方式,用两个字节表示一个像素,位域分配为r5b6g5。图中0300 0000为00000003h=3。 11)18-19:用字节数表示的位图数据的大小,该数必须是4的倍数,数值上等于位图宽度×位图高度×每个像素位数。0090 0000为 00009000h=80×90×2h=36864。

图像格式详细解析

YUV格式详解 1.什么是RGB? RGB是红绿蓝三原色的意思,R=Red、G=Green、B=Blue。 2.什么是YUV/YCbCr/YPbPr? 亮度信号经常被称作Y,色度信号是由两个互相独立的信号组成。视颜色系统和格式不同,两种色度信号经常被称作U和V或Pb和Pr或Cb和Cr。这些都是由不同的编码格式所产生的,但是实际上,他们的概念基本相同。在DVD中,色度信号被存储成Cb和Cr (C代表颜色,b代表蓝色,r代表红色)。 3.什么是4:4:4、4:2:2、4:2:0? 在最近十年中,视频工程师发现人眼对色度的敏感程度要低于对亮度的敏感程度。在生理学中,有一条规律,那就是人类视网膜上的视网膜杆细胞要多于视网膜锥细胞,说得通俗一些,视网膜杆细胞的作用就是识别亮度,而视网膜锥细胞的作用就是识别色度。所以,你的眼睛对于亮和暗的分辨要比对颜色的分辨精细一些。正是因为这个,在我们的视频存储中,没有必要存储全部颜色信号。既然眼睛看不见,那为什么要浪费存储空间(或者说是金钱)来存储它们呢? 像Beta或VHS之类的消费用录像带就得益于将录像带上的更多带宽留给黑—白信号(被称作“亮度”),将稍少的带宽留给彩色信号(被称作“色度”)。 在MPEG2(也就是DVD使用的压缩格式)当中,Y、Cb、Cr信号是分开储存的(这就是为什么分量视频传输需要三条电缆)。其中Y信号是黑白信号,是以全分辨率存储的。但是,由于人眼对于彩色信息的敏感度较低,色度信号并不是用全分辨率存储的。 色度信号分辨率最高的格式是4:4:4,也就是说,每4点Y采样,就有相对应的4点Cb和4点Cr。换句话说,在这种格式中,色度信号的分辨率和亮度信号的分辨率是相同的。这种格式主要应用在视频处理设备内部,避免画面质量在处理过程中降低。当图像被存储到Master Tape,比如D1或者D5,的时候,颜色信号通常被削减为4:2:2。

BMP图像格式分析

BMP图像格式分析 BMP图像文件格式是微软公司为其Windows环境设置的标准图像格式,而且 Windows系统软件中还同时内含了一系列支持BMP图像处理的API函数,随着Windows 在世界范围内的不断普及,BMP文件格式无疑也已经成为PC机上的流行图像文件格式。它的主要特点可以概括为:文件结构与PCX文件格式类似,每个文件只能存放一幅图像;图像数据是否采用压缩方式存放,取决于文件的大小与格式,即压缩处理成为图像文件的一个选项,用户可以根据需要进行选择。其中,非压缩格式是BMP图像文件所采用的一种通用格式。但是,如果用户确定将BMP文件格式压缩处理,则Windows设计了两种压缩方式:如果图像为16色模式,则采用RLE4压缩方式,若图像为256色模式,则采用RLE8压缩方式。同时,BMP 图像文件格式可以存储单色、16色、256色以及真彩色四种图像数据,,其数据的排列顺序与一般文件不同,它以图像的左下角为起点存储图像,而不是以图像的左上角为起点;而且BMP图像文件格式中还存在另外一个与众不同的特点,即其调色板数据所采用的数据结构中,红、绿、蓝三种基色数据的排列顺序也恰好与其它图像文件格式相反。总之,BMP图像文件格式拥有许多适合于Windows环境的新特色,而且随着Windows版本的不断更新,微软公司也在不断改进其BMP 图像文件格式,例如:当前BMP图像文件版本中允许采用32位颜色表,而且针对32位Windows 的产生,相应的API 函数也在不断地报陈出新,这些无疑都同时促成了BMP文件格式的不断风靡。但由于BMP文件格式只适合于Windows上的应用软件,而对于DOS环境中的各种应用软件则无法提供相应的支持手段,因此这无疑是阻碍BMP文件格式的流通程度超过PCX文件格式的一个重要因素。 Windows中定义了两种位图文件类型,即一般位图文件格式与设备无关位图文件格式。其中,由于设备无关位图(DIB)文件格式具有更强的灵活性与完整的图像数据、压缩方式等定义。BMP图像文件的结构可以分为如下三个部分:文件头、调色板数据以及图像数据。其中文件头的长度为固定值54个字节;调色板数据对所有不超过256色的图像模式都需要进行设置,即使是单色图像模式也不例外,但是对于真彩色图像模式,其对应的BMP文件结构中却不存在相应调色板数据的设置信息;图像数据既可以采用一定的压缩算法进行处理,也可以不必对图像数据进行压缩处理,这不仅与图像文件的大小相关,而且也与对应的图像处理软件是否支持经过压缩处理的BMP图像文件相关。以下将分别介绍BMP图像文件结构中的这三个重要组成部分。特别值得注意的是:BMP 图像文件结构设计得相当简单,这无疑有利于图像文件的处理速度,但是同时也使得 BMP图像文件格式具有一定的局限性,即一个BMP图像文件只能存储一幅图像。 BMP图像文件的文件头定义 Windows中将BMP图像文件的文件头分成两个数据结构,其中一个数据结构中包含BMP文件的类型、大小和打印格式等信息,称为BITMAPFILEHEADERl另外一个数据结构中则包含BMP文件的尺寸定义等信息,称为BITMAPINFOHEADERl 如果图像文件还需要调色板数据,则将其存放在文件头信息之后。 BITMAPFIlEHEADER数据结构在Windows.h中的定义为: typedef struCttagBITMAPFIlEHEADER { WORD bftype; DWORD bfsiZe: WORD bfReservedl; WORD bgReserved2: DWORD bfoffBits: }BITMAPFILEHEADER; 其中,bfrype在图像文件存储空间中的数据地址为0,数据类型为unsignedchar,内容为固定值“BM”,用于标志文件格式,表示该图像文件为BMP文件。 bfsize的数据地址为2,类型为unsignedlong,它以字节为单位,定义位图文件的大小。 bfReservedl与bfReserved2的数据地址分别为6和8,数据类型则都为unsignedint,二者都是BMP文件的保留字,没有任何意义,其值必须为0. bfoffBits的数据地址为10,数据类型为unsignedlong,它以字节为单位,指示图像数据在文件内的起始地址,即图像数

医学图像格式分析与转换

医学图像格式分析与转换 本文分为三个部分——医学图像及其组成、医学图像格式和医学图像的格式转换。本文希望通过对深度学习的相关知识的介绍,最终达到医学图像分析的目的。 医学图像及其组成 由Michele Larobina和Loredana Murino发表的论文,对本文即将展开的讨论来说是一个很好的信息参考。Michele Larobina和Loredana Murino二人是意大利“生物架构和生物成像协会”(IBB)的成员。IBB是意大利“国家研究委员会”的组成部分,同时也是意大利最大的公共研究机构。我们的另一个参考信息资源是一篇题为《Working with the DICOM and NIfTI data standards in R》的论文。 ?什么是医学图像? 医学图像是反映解剖区域内部结构或内部功能的图像,它是由一组图像元素——像素(2D)或立体像素(3D)——组成的。医学图像是由采样或重建产生的离散性图像表征,它能将数值映射到不同的空间位置上。像素的数量是用来描述某一成像设备下的医学成像的,同时也是描述解剖及其功能细节的一种表达方式。像素所表达的具体数值是由成像设备、成像协议、影像重建以及后期加工所决定的。 ?医学图像的组成

医学图像组成医学图像有四个关键成分——像素深度、光度表示、元数据和像素数据。这些成分与图像大小和图像分辨率有关。 图像深度(又称比特深度或颜色深度)是用来编码每个像素信息的比特数。比如说,一个8比特的光栅可以有256个从0到255数值不等的图像深度。 “光度表示”解释了像素数据如何以正确的图像格式(单色或彩色图片)显示。为了说明像素数值中是否存在色彩信息,我们将引入“每像素采样数”的概念。单色图像只有一个“每像素采样”,而且图像中没有色彩信息。图像是依靠由黑到白的灰阶来显示的,灰阶的数目很明显取决于用来储存样本的比特数。在这里,灰阶数与像素深度是一致的。医疗放射图像,比如CT 图像和磁共振(MR)图像,是一个灰阶的“光度表示”。而核医学图像,比如正电子发射断层图像(PET)和单光子发射断层图像(SPECT),通常都是以彩色映射或调色板来显示的。 “元数据”是用于描述图形象的信息。它可能看起来会比较奇怪,但是在任何一个文件格式中,除了像素数据之外,图像还有一些其他的相关信息。这样的图像信息被称为“元数据”,它通常以“数据头”的格式被储存在文件的开头,涵盖了图像矩阵维度、空间分辨率、像素深度和光度表示等信息。

Bmp图像存储格式

摘要:本文简单介绍了位图文件的两种存储格式,并且在VC++6.0下实现了读取位图文件中的数据,用SetPixel()函数在窗口中重现图像,最后在 程序中实现了一种存储格式到另一种存储格式的转换。 关键字:BMP、灰度位图、24位真彩色位图、存储格式 一、前言 BMP(Bitmap的缩写)图像是指文件名后缀为BMP的位图图像。位图图像在计算机中使用很广泛,例如在windows中,记事本、写字板中的文字就是用位图图像表示出来的。许多以其它格式存储的图像,就是在位图图像的基础上,进行优化处理后得到的,例如JPEG图像等。 在数字图像处理中,许多算法就是针对24位真彩色位图或灰度位图设计的。因此,很有必要介绍一下位图文件的这两种存储格式。 二、24位真彩色图像存储格式 把下图的24位真彩色图像格式在16位编辑器(例如VC编辑器)中打开,可以看到图像的二进制数据。 24位真彩色的二进制数据为: 这是24位真彩色位图文件数据一部分。这一部分数据包括位图文件头、位图信息头和位图阵列三部分。 (一)位图文件头 位图文件头用来记录标志文件大小的一些信息,在文件中占14个字节,存储的内容如下: 字节 1 2 3 4 5 6 7 8 9 10 11 12 13 14 000000 42 4D CC B4 02 00 00 00 00 00 36 00 00 00 其中: 42 4D 为位图的标志,即ASCII码为BM CC B4 02 表示位图文件的总字节数,换算成十进制为 (02B4CC)H=(177356)10,即这副图像的大小为177356字节。 00 00 00 00 00 为保留字节,用来存储文件大小的数据。 36 00 00 00 00 表示位图阵列的起始位置,(36)H=(54)10即54字节开始为位 图阵列。 (二) 位图信息头 位图信息头记录和位图相关的一些信息,在文件中占40个字节,存储的内容如下: 字节 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 00000 0 2 8 00001 6 0 2 C 1 C 5 1 1 8 00003 2 0 1 2 B 1 2 B 00004 8 0 其中:

BMP图片格式详解

BMP图像格式详解 一.简介 BMP(Bitmap-File)图形文件是Windows采用的图形文件格式,在Windows环境下运行的所有图象处理软件都支持BMP图象文件格式。Windows系统内部各图像绘制操作都是以BMP为基础的。Windows 3.0以前的BMP图文件格式与显示设备有关,因此把这种BMP图象文件格式称为设备相关位图DDB(device-dependent bitmap)文件格式。Windows 3.0以后的BMP图象文件与显示设备无关,因此把这种BMP图象文件格式称为设备无关位图DIB(device-independent bitmap)格式(注:Windows 3.0以后,在系统中仍然存在DDB位图,象BitBlt()这种函数就是基于DDB位图的,只不过如果你想将图像以BMP格式保存到磁盘文件中时,微软极力推荐你以DIB格式保存),目的是为了让Windows能够在任何类型的显示设备上显示所存储的图象。BMP位图文件默认的文件扩展名是BMP或者bmp(有时它也会以.DIB或.RLE作扩展名)。 二.BMP格式结构 BMP文件的数据按照从文件头开始的先后顺序分为四个部分: ◆位图文件头(bmp file header):提供文件的格式、大小等信息 ◆位图信息头(bitmap information):提供图像数据的尺寸、位平面数、压缩方式、颜色索 引等信息 ◆调色板(color palette):可选,如使用索引来表示图像,调色板就是索引与其对应的颜色 的映射表 ◆位图数据(bitmap data):图像数据区 BMP图片文件数据表如下:

三.BMP文件头 BMP文件头结构体定义如下: typedef struct tagBITMAPFILEHEADER { UINT16 bfType; //2Bytes,必须为"BM",即0x424D 才是Windows位 图文件 DWORD bfSize; //4Bytes,整个BMP文件的大小 UINT16 bfReserved1; //2Bytes,保留,为0 UINT16 bfReserved2; //2Bytes,保留,为0 DWORD bfOffBits; //4Bytes,文件起始位置到图像像素数据的字节偏移量} BITMAPFILEHEADER; BMP文件头数据表如下:

BMP文件的编码方式

BMP文件的编码方式 BMP是一种与硬件设备无关的图像文件格式,也是我们最常在PC机上的Windows系统下见到的标准位图格式,使用范围很广泛。它采用位映射存储格式,除了图像深度可选以外,不采用其他任何压缩,因此,BMP文件所占用的空间很大。它最大的好处就是能被大多数软件“接受”,可称为通用格式。 BMP在过去是比较普及的图像格式,现在BMP(Window位图)图像主要被用在PC机运行Window时的墙纸。BMP可以提供无损压缩,压缩方式叫RLE(游程长度编码的编写),在创建墙纸图像文件时是一个极好的选项。Window有时在查找以RLE压缩文件方式保存的墙纸图像时也会出现识别错误。,因此使用时最好先关闭RLE压缩功能。 BMP文件由文件头、位图信息头、颜色信息和图形数据四部分组成。 1、BMP文件头:BMP文件头数据结构含有BMP文件的类型、文件大小和位图起始位置等信息。 typedef struct tagBITMAPFILEHEADER{ WORD bfType; // 位图文件的类型,必须为BM DWORD bfSize; // 位图文件的大小,以为单位 WORD bfReserved1; // 位图文件保留字,必须为0 WORD bfReserved2; // 位图文件保留字,必须为0 DWORD bfOffBits; // 位图数据的起始位置,以相对于位图文件头的偏移量表示,以为单位 } BITMAPFILEHEADER; 2、位图信息头:BMP位图信息头数据用于说明位图的尺寸等信息。 typedef struct tagBITMAPINFOHEADER{ DWORD biSize; // 本结构所占用数 LONGbiWidth; // 位图的宽度,以像素为单位 LONGbiHeight; // 位图的高度,以像素为单位 WORD biPlanes; // 目标设备的级别,必须为1 WORD biBitCount// 每个像素所需的位数,必须是1(双色),4(16色),8(256色)或24(真彩色)之一 DWORD biCompression; // 位图压缩类型,必须是0(不压缩),1(BI_RLE8压缩类型)或2(BI_RLE4压缩类型)之一 DWORD biSizeImage; // 位图的大小,以为单位 LONG biXPelsPerMeter; // 位图水平分辨率,每米像素数 LONG biYPelsPerMeter; // 位图垂直分辨率,每米像素数 DWORD biClrUsed;// 位图实际使用的颜色表中的颜色数 DWORD biClrImportant;// 位图显示过程中重要的颜色数 } BITMAPINFOHEADER; 3、颜色表:颜色表用于说明位图中的颜色,它有若干个表项,每一个表项是一个RGBQUAD 类型的结构,定义一种颜色。 typedef struct tagRGBQUAD { BYTE rgbBlue;// 蓝色的亮度(值范围为0-255) BYTE rgbGreen; // 绿色的亮度(值范围为0-255) BYTE rgbRed; // 红色的亮度(值范围为0-255)

图像数据格式基础知识

所谓位映像,即是指一个二维的像素矩阵,而位图就是采用位映像方法显示和存储图像。一幅图像的显示就是将图像的像素映射到屏幕的像素上并显示一定的颜色。当一幅图形的像素由彩色表示时就是我们通常所说的彩色图像了。 由于数字图像可以表示为矩阵的形式,所以在计算机数字图像处理程序中,通常用二维数组来存放图像数据。二维数组的行对应图像的高,二维数组的列对应图像的宽,二维数组的元素对应图像的像素,二维数组元素的值就是像素的灰度值。采用二维数组来存储数字图像,符合二维图像的行列特性,同时也便于程序的寻址操作,使得计算机图像编程十分方便。 图像的问题数据是一个二维数组(矩阵),矩阵的每一个元素对应了图像的一个像素,当保存一幅图像时,不但要保存图像的位图数据矩阵,还要将每个像素的颜色保存下来,颜色的记录是利用颜色表来完成的。 颜色表,也叫颜色查找表,是图像像素数据的颜色索引表。 对于真彩色图像,每个像素占存储空间3个字节(24位),分别对应R, G, B三个分量,每个像素的值已经将该像素的颜色记录下来了,不再需要颜色表,因此24位真彩色位图没有颜色表。 彩色图像可以由RGB彩色空间表示。彩色空间是用来表示彩色的数学模型,又被称为彩色模型。 计算计算上显示的图像经常有二值图像、灰度图像、伪彩色图像及真彩色图像等不同格式类型。而灰度和彩色格式是数字图像处理中最常用到的类型。 灰度图像是数字图像的最基本形式,灰度图像可以由黑白照片数字化得到,或从彩色图像进行去色处理得到。灰度图像只表达图像的亮度信息而没有彩色信息,因此,灰度图像的每个像素点上只包含一个量化的灰度级(即灰度值),用来表示该点的亮度水平,并且通常用1个字节(8个二进制位)来存储灰度值。 彩色图像数据不仅包含亮度信息,还包含颜色信息。 BMP文件结构及其存取: 数字图像在外存储器设备中的存储形式是图像文件,图像必须按照某个已知的、公认的数据存储顺序和结构进行存储,才能使不同的程序对图像文件顺利进行打开或存盘操作,实现数据共享。 图像数据子啊文件中的存储顺序和结构称为图像文件格式。 目前广为流传的图像文件格式有许多种,常见的格式包括BMP, GIF, JPEG, TIFF, PSD, DICOM, MPEG等。在各种图像文件格式中,一部分时由某个软硬件厂商提出并广泛接受和采用的格式,如BMP, GIF和PSD格式。另一部分是由各种国际标准组织提出的形式,例如JPEG/ TIFF和DICOM,其中JEPG是国际静止图像压缩标准组织提出的格式,TIFF是由部分厂商组织提出的格式,DICOM是医学图像国际标准组织提取的医学图像专用格式。 BMP文件是Windows操作系统所推荐和支持的图像文件格式,是一种将内存或显示器的图像数据不经过压缩而直接按位存盘的文件格式,所以称为位图(bitmap)文件,因其文件扩展名为BMP,故称为BMP文件格式,简称BMP文件。 BMP文件结构: BMP文件图像被分成4部分:位图文件头、位图信息头、颜色表和位图数据。

相关主题
文本预览
相关文档 最新文档