当前位置:文档之家› 数学建模垃圾运输问题论文(1)

数学建模垃圾运输问题论文(1)

数学建模垃圾运输问题论文(1)
数学建模垃圾运输问题论文(1)

垃圾运输问题

100801161 李梦 100801158 石小君 100801177 周森

垃圾运输问题

摘要

本文对于垃圾运输问题的优化,通过运用目标规划的有关知识对题目给出的坐标数据进行了处理,根据从最远点开始运载垃圾运输费用最低的原则,以及不走回路的前提,采用规划的理论建立了运输车和铲车的调度优化模型,运用MATLAB软件得到了全局最优解,对此类问题的求解提供了一种较优的方案,以达到最少运输费用。

问题(1)包含着垃圾量和运输费用的累积计算问题,因此,文中以运输车所花费用最少为目标函数,以运输车载重量的大小、当天必须将所有垃圾清理完等为约束条件,以运输车是否从一个垃圾站点到达另一个垃圾站点为决策变量,建

立了使得运输费用最小的单目标的非线性规划模型。运用MATLAB求解,得出了

最优的运输路线为10条,此时运输所花费用为2335.05元。通过分析,发现只需6辆运输车(载重量为6吨)即可完成所有任务,且每辆运输车的工作时间均在4个小时左右。具体结果见文中表3。

问题(2),建立了以运行路径最短为目标的单目标非线性规划模型。从而求出了使铲车费用最少的3条运行路线,且各条路线的工作时间较均衡。因此,处理站需投入3台铲车才能完成所有装载任务,且求得铲车所花费用为142.8元,三辆铲车的具体运行路线见文中表4。文中,我们假定垃圾处理站的运输工作从凌晨0:00开始,根据各铲车的运输路线和所花时间的大小,将铲车和运输车相互配合进行工作的时间做出了详细的安排见表5。

问题(3),要求给出当有载重量为6吨、10吨两种运输车时的最优的调度方案。基于第(1)问中的模型,修改载重量的约束条件,用MATLAB分别求解,得出两种调度方案,但总的运输费用不变,均为2508.63元;对于方案一,有9条路径,分别需要6吨的运输车2辆;10吨的运输车5辆,各运输车具体的运输线路见文中表8。对于方案二,有10条路径,分别需要6吨的运输车1辆;10吨的运输车4辆,各运输车具体的运输线路见文中表10。

问题(4),基于问题(1)、问题(2)、问题(3),修改每个站点的垃圾量,用MATLAB分别求解,得到最优的调整方案

最后,对模型的优缺点进行了分析,并给出了模型的改进意见,对解决实际问题具有一定的指导意义。

关键词:目标规划;最优解; MATLAB;调度优化模型

一.问题的重述

某城区有36个垃圾站,每天都要从垃圾处理厂(第37号节点)出发将垃圾运回。现有一种载重6吨的运输车。每个垃圾点需要用10分钟的时间装车,运输车平均速度为40公里/小时(夜里运输,不考虑堵车现象);每台车每日平均工作4小时(0:00-4:00,5:00前必须结束)。运输车重载运费1.8元/吨公里;运输车和装垃圾用的铲车空载费用0.4元/公里;并且假定街道方向均平行于坐标轴,请你给出满意的运输调度方案以及计算程序。

问题:

1)运输车应如何调度(需要投入多少台运输车,每台车的调度方案,运营费用)

2)铲车应如何调度(需要多少台铲车,每台铲车的行走路线,运营费用)3)如果有载重量为6吨、10吨两种运输车,又如何调度?

(垃圾点地理坐标数据表见附录一)

4)如果每个垃圾站点的垃圾量是随机数,标准差为该站点平均垃圾量的10%,该如何调整?

二.问题的分析

这是图论中的一个遍历问题,此问题的困难之处在于确定铲车的行走路线,并使得运输车工作时尽量不要等待铲车,才能使得运输车的工作时间满足题目的要求——每日平均工作四小时,为此,应该使铲车跟着运输车跑完一条线路,也就是说,应该使铲车铲完一条线路后再接着铲下一条线路。

第(1)问,对于运输车调度方案的设计,不能仅仅考虑使运输车的行走路线最短,因为此处还存在着垃圾的累积运输的花费问题,因此,我们的目标函数应该是使得所有运输的花费最少。在建模过程中,我们无需考虑投入的运输车台数,只需对各条路径所花费的时间进行和各运输车载重量约束即可,至于投入的车辆数,在各条路径确定后,计算出各路径运输所花费的时间,再根据题目中要求的每辆车平均工作时间为4小时左右进行计算即可。

第(2)问,对于铲车的调度方案,因其无累积计算问题,因此只需要在已确定的各运输路径的基础上,使得铲车的行驶路径为最短。在此方案中,我们将已确定的各条路径看作为节点,建立使铲车运费最少(亦即路径最短)的非线性规划模型,在此需注意的是,由于垃圾运输为夜间运输,所以每辆铲车的工作时间也受到一定的限制,文中,我们假定铲车的工作时间为从(零晨0:00~早4:00),因此每辆铲车的工作时间最多为5个小时,再由所有运输车完成任务所需的总时间判定所需铲车的台数,之后可以根据具体情况进行调整。同时应注意,由于运输车有工作时间的限制,而铲车没有严格的限制(除工作时间不能超过9

小时以外),所以,在确定铲车出行的时间时,应保证只可让铲车等待运输车,而不能让运输车等待铲车。

第(3)问,是在第一问的基础上将对运输车载重的约束条件从不大于6吨改为不大于10吨,在求得各条路线中,对于垃圾量不大于6吨的路线,调用6吨的运输车;对于垃圾量在(6~10吨)之间的路线,调用10吨的运输车。

第(4)问,是在前三问的基础上将对每个站点的垃圾量进行随机调整,使得其标准差为该点平均垃圾量的10%。

三.模型的假设与符号说明

1模型假设

(1)假设各站点每天的垃圾量基本相同;

(2)假设各站点的垃圾都必须在当天清理完,不允许滞留;

(3)不考虑运输车和铲车在行驶过程中出现的堵车、抛锚等耽误时间的情况; (4)不允许运输车有超载现象;

(5)每个垃圾站点均位于街道路口,便于垃圾的集中、运输;

(6)垃圾只在晚上运输,基本保证运完后,当天不会再有新的垃圾产生; (7)假设卸垃圾及倒车均在10分钟内完成; (8)车在装的足够多的情况下应该直接返回原点 2 符号说明

j i x , 第i 个垃圾站点向第j 个垃圾站点运输的垃圾量;

j i u ,

运输车是否从第i 个垃圾站点向第j 个垃圾站点运输的0-1变量;

k j i u ,,~第k 辆铲车是否从第i 条路径向第j 条路径运输的0-1变量;

N 假设所需要的铲车的台数 L :垃圾运输路线总条数;

i C :第i 条路线上垃圾集中点的个数,L i ,,2,1 =;

ij X :第i 条路线上的第j 个垃圾集中点的横坐标,i C j L i ,2,1,,,2,1 ==;

ij Y :i 条路线上的第j 个垃圾集中点的纵坐标

ij T :第i 条路线上的第j 个垃圾集中点的垃圾量,i C j L i ,2,1,,,2,1 ==;

i t :第i 条路线所需要的总时间; n H :第n 辆车的运输总时间;

1W :运输车空载的总费用; 2W :运输车重载的总费用; W :运输车的总费用;

Q :铲车空载的总费用

四.模型的建立与求解

模型的建立

4.1 运输车调度方案的模型

由于最远的垃圾集中点的运输时间不超过运输车每天平均工作时间,所以可以先不考虑时间的约束。从而建立如下算法:

1) 确定重载起点

由于每个垃圾集中点的垃圾量及其坐标是不变,重载运输的费用是不变的,所以为了使总运输费用W 最少,只要使空载的费用最少,即尽量安排较远的垃圾集中点在同一路线上,从而确定重载起点1i X .

2)确定运输车路线走向

要求运输时走最短的路线,以及运输费用最低,而且由于运输车的重载费用1.8元/吨是空载费用0.4元/吨的4.5倍,为了使运输总费用W 最少,那只能从最远的点(1=j )开始运载垃圾,下一个点编号为1+j ,走一条路线,向垃圾处理站(坐标原点)方向运回。顺次经过的点遵循满足条件:

????

?≥≥++11

ij ij

ij ij Y Y X X 即其横坐标以及纵坐标均不超过前一点的横、纵坐标,并且各点横、纵坐标递减进行搭配,由若干个点组成一条路线。 3)确定运输车路线垃圾集中点数

根据每个垃圾集中点的垃圾量,每条路线上的垃圾总量不超过运输车的最大运输量:L i T i

C j ij ,,2,1,61 =≤∑=

根据上面算法,建立运输车费用优化模型:

L i T Y Y X X t s X W i

C j ij ij ij ij ij L

i i ,,2,1,6..*4.0min 1

11

11

1 =?????

??

??≤≥≥=∑∑=++=

4.1.1 运输车调度方案

在运输过程中假设没有运输车等待的情况,在四个小时的工作时间里,根据垃圾运输费用优化模型,得到垃圾集中点分配的路线及其时间i h ,为了达到安排运输车最少,把所有的路线分成N (L N ≤)类,每类配置一辆运输车,每辆运输

车的工作时间n H :

4

,2,1,,1,00,,2,1,1≤=???===∑=n i L

i i i n H N n n i n i E L

i E h H 类条路线在第类条路线不在第

4.2 铲车调度方案的模型

此模型的建立基于上问模型的结果,从以上运输车的调度方案得出共有10条路径,在此模型中,我们将10条路径分别看作10个节点,而把垃圾处理站看作为第11个节点(以下将各路径均称作节点),建立了使铲车行驶所需费用最小的模型。在此需要说明的是,由于运输车的路径已经确定,我们只能让铲车跟随着运输车,而不能让运输车在垃圾站点等待铲车。由此可以确定,铲车必须跟随着运输车行走完一条路径,才能转到其他路径继续工作。而对于各路径,其行走方案已定,所以各路径内的费用已经确定。因此,我们需要做的是,找出一种调度方案使铲车在各路径之间的行走所需的费用为最小。

4.2.1目标函数的建立

各路径内的费用已定,因此我们建立以下使铲车在各路径之间行走所需费用最小的目标函数如下:

11

11

21,,,111:()N

i j i j k k i j Min F W Q Y u

====+??∑∑∑

2.2.2 约束条件的确立:

(1)对于1到10号的每个节点,只允许一辆铲车通过,且只通过一次:

∑∑====N k j k

j t t u

111

1,,)

10,2,1(1~

∑∑====N

k i k

t i t u

111

1

,,)

10,2,1(1~

(2)所有的铲车必须从第11号节点(垃圾处理站)出发,并最终回到11号节点,即从11号节点发出的铲车数和最终返回11号节点的铲车数均为N :

N

u u N

k t k t N

k t k t ==∑∑∑∑====110

1

,11,110

1

,,11~~

(3)为保证每辆铲车均从11号节点出发最终回到11号节点,且不重复已走的路径,则需控制铲车所走路径均为一个环,即对于每个节点,只要有铲车进入则必有铲车出,不进则无出,进与出的状态保持一致:

)

,2,1;11,2,1(~

~11

1

,,11

1

,,N k t u u i k

i t i k t i ===∑∑==

(4)对于每个节点,不允许出现铲车向自己节点运行的路径:

)

,2,1;11,2,1(0~,,N k i u k i i ===

(5)不允许出现铲车的路径为,除11号节点以外,在其他节点相互运行的路径:

)

,2,1;10,2,1,(1~~,,,,N k t i u u k i t k t i ==≤+

(6)由于垃圾的运输均在夜间进行,则每辆铲车的工作时间不能大于5个小时(即假定工作时间为(凌晨0:00~早4:00),另外,由于题目中给定铲车的运行速度,均速度与运输车的平均速度相同,为40公里/小时,的约束条件为:

1111

1111

,,,,,11

11

(/40)5(1,2,)i j

i j k i i j k i j i j Y

u

t u k N ====?+?≤=∑∑∑∑

4.2.3铲车规划模型

在给出了目标函数和约束条件后,即可得到一个使得铲车运行费用最小的单目标规划模型如下:

11

11

21,,,111:()N

i j i j k k i j Min F W Q Y u

====+??∑∑∑

4.3 载重量不同的运输车调度方案模型

此问在第一问的基础上,通过改变垃圾运输车载重量的大小,从而得到垃圾处理厂在拥有不同载重量的运输车时,采用怎样的运输方案使得所花运输费用最少。此模型的目标函数与第一问中的运输车调度方案模型相同,只是在约束条件上将第(6)个约束条件中的载重最多为6吨变成最多为10吨,

Min :36

37

37

3137,37,2,,111

()()t t i j i j t i j F W Q X u W x X ====++∑∑∑

37

,137

,1

37

,,,1

,37,36

,371

,1(1,2,36)1(1,2,36)()(1,2,36)..0(,1,237)

0(1,2,36)5110(1,2,36;1,2,37)i t i t i i t k t k t k t k i j j i i i j

u t u t x u s x t s t u i j x j x x i j ====?==???==???

=+=???==?

==???=??≤==?∑∑∑∑ 从而可求出在拥有不同载重量运输车的情况下,各运输车的调度方案。 模型的求解

运输车调度方案模型的求解

在不考虑铲车的情况下,利用SPSS,首先据题画出散点图:

利用MATLAB编程(见附录二),对运输车调度方案的模型(1)进行求解,求得各垃圾站点的运输方案如表2所示,此时,求得将所有垃圾运回到37号站点运输车所需费用为2335.05元。

表2:各运输路径所包含的垃圾站点、运输量及所需时间

从上表可以看出,对于这10条路径上的垃圾总量,有8条都超过了5吨,另两条也超过了载重量的一半,运输车得到了充分地利用,结果非常好。

各运输路径以图示表示如下:

由题目可知,每台运输车的平均工作时间为4小时,根据此条件对以上10条路径进行规划,发现用6台运输车即可按要求行走完10条路径,所以,处理站只需投入6台垃圾运输车即可完成任务。各运输车行走的路径分别表示如下:表3:各运输车的行走路径、具体路线及所需时间

由上表可发现,每辆运输车的运输时间均在4个小时左右,相差很少,很好地达到了时间上的要求,且结果很理想。

3.1铲车调度方案模型的求解

利用LINGO10编程,对铲车调度方案模型(2)进行求解,得到了使铲车运费最少的行走路线。此时,需要投入的铲车数为3台,且所有铲车完成任务所需费用为202.0元,各铲车的具体行驶路线及所花费的时间如下表.

表4:各铲车的具体行驶路线及所花费的时间

由上表可以看出3台铲车的工作时间均为4个多小时,相差不大,工作分配地非常合理。

铲车及运输车调度方案的具体时间安排

在问题的分析中,我们知道,运输车及铲车的工作时间从凌晨0:00~早4:00,对于运输车调度方案,由于第三辆~第六辆都要运输两条路径上的垃圾,因此,需要确定这4辆运输车具体先行驶哪条路径,而此方案的确定依赖于铲车的行走方案。根据以上求得的各铲车和运输车工作所需时间的多少及铲车应配合运

输车进行工作的原则,对他们的工作时间进行安排如下表所示。

表5:铲车及运输车相互配合的具体时间安排

以上时间安排均是基于工作时间从凌晨0:00开始,从上表3和表4可以看出,每辆运输车和每台铲车的工作时间都不超过5个小时,因此,垃圾处理站可

根据实际情况将工作开始的时间向前或向后推相应的时间即可。

由表5的时间安排可以确定出各运输车的具体行驶路线及出发、返回时间如表6所示.

3.3 载重量不同的运输车的调度方案

3.3.1 方案一

运用LINGO对模型(3)进行求解可以得到以下7条运输路径,以问题分析中运输车选择的原则即:对于垃圾量不大于6吨的路线,调用6吨的运输车;对于垃圾量在(6~10吨)之间的路线,调用10吨的运输车;,具体数据如表7所示。此情况下求得的运输费用为2326.17元。

表7:方案一的各运输各路径、运输的总垃圾量及运输所需时间

由以上各条路径上的垃圾总量的大小来对运输车辆进行选择,根据各路径运输所需时间的大小,对各辆运输车的行驶方案进行规划,得到结果如下表。

根据以上数据可得,当有载重量为6吨、10吨二种运输车时,需要各类载重的运输车辆分别为:对于6吨的运输车,需要3辆;对于10吨的运输车,需要4

辆。

3.3.2方案二

运用MATLAB编程对模型(3)求解(见附录三),可以得到另外一种调度方案,共有8条运输路径,所花费用为2326.17元。各路径的垃圾总量、运输所需时间分别表示如下:

同方案一,可根据各路径的垃圾总量选择运输车辆,根据各路径运输所花时间对运输车的行走路径进行安排。

对于方案二,由以上数据可得:当有载重量为6吨、10吨三种运输车时,需要各类载重的运输车辆分别为:对于6吨的运输车,需要6辆;对于10吨的运输车,需要2辆。相比较来说,对于两种方案,方案二的结果较好。

3.4 每个垃圾站点的垃圾量是随机数,标准差为该站点平均垃圾量的10%模型

五.模型结果的分析与检验

由于题目中没有给出司机的工资额,因此文中只考虑了垃圾的运输费用。但实际生活中,对于垃圾处理站来说,垃圾的运输所需花费不仅包括运输费用还包括付给司机的工资。运输路径越长,运输所需要的时间就越长,所需要的运输车辆越多,从而需要更多的司机,因而花费更大。因此,在给出了司机工资额的情况下,目标函数中还包括付给司机的工资。另外,此时目标函数不再是单目标函数,而是双目标函数。第二个目标函数是使得运输车行驶的路径最短。

六.模型的推广与改进方向

该模型可以应用在很多方面,比如说货物运输、车辆分配等。

七.模型的优缺点

然而,该问题在站点众多,运输路径较大的前提下,缺点就会显得尤为突出。首先是运输车载重的不足,当运输车的载重不能满足其中任一点的垃圾量时,模型就可能不能适用了,该模型优点是算法简单容易实现,精度特别是后两个模型的精度不是很高.前两问只要进行穷举就能得出最优解.第三问的处理原则不算很精确,有待改进

参考文献

【1】全国大学生数学建模竞赛优秀论文汇编。中国物价出版社,2002

【2】宋兆基,徐流美等。MATLAB6.5在科学计算中的应用。清华大学出版社,2005

【3】耿素云.集合论与图论(离散数学二分册)[M].北京:北京大学出版社,1997. 【4】赵可培.运筹学[M].上海:上海财经大学出版社,2000.

附录

附录一:

垃圾站地理坐标数据表

序号站点编号垃圾量T 坐标x(km) 坐标y (km)

1 1 1.50 3 2

2 2 1.80 1 5

3 3 2.55 5 4

4 4 1.20 4 7

5 6 0.85 0 8

6 5 1.30 3 11

7 7 3.20 7 9

8 8 2.30 9 6

9 9 1.40 10 2

10 10 1.50 14 0

11 11 1.10 17 3

12 12 2.70 14 6

13 13 1.80 12 9

14 14 2.80 10 12

15 20 0.60 7 14

16 16 1.50 2 16

17 17 0.80 6 18

18 18 1.50 11 17

19 19 0.80 15 12

20

21 15

32

1.40

1.20

19

22

9

5

22 22 1.80 21 0

23 23 1.40 27 9

24 24 1.60 15 19

25 25 2.60 15 14

27 27 2.00 21 13

28 28 1.00 24 20

29 29 2.10 25 16

30 30 1.20 28 18

31 31 1.90 5 12

32 21 1.30 17 16

33 33 3.20 25 7

34 34 1.20 9 20

35 35 2.50 9 15

36 36 1.30 30 12

附录二:

[code]

clear

x=[3 1 5 4 0 3 7 9 10 14 17 14 12 10 7 2 6 11 15 19 22 21 27 15 15 20 21 24 25 28 5 17 25 9 9 30 0];

y=[2 5 4 7 8 11 9 6 2 0 3 6 9 12 14 16 18 17 12 9 5 0 9 19 14 17 13 20 16 18 12 16 7 20 15 12 0];

t=[1.50 1.50 0.55 1.20 0.85 1.30 1.20 2.30 1.40 1.50 1.10 2.70 1.80 1.80

0.60 1.50 0.80 1.50 0.80 1.40 1.20 1.80 1.40 1.60 1.60 1.00 2.00 1.00 2.10

1.20 1.90 1.30 1.60 1.20 1.50 1.30 0.00];

i=1:37;

a=1:37;

plot(x,y,'*r')

for ii=1:37

k=int2str(ii);

k=strcat('P',k);

text(x(ii),y(ii),k);

end

w=[i;x;y;t;a];

w(5,:)=0;

jg=zeros(11,11);

for i=1:20

sum=0;

j1=1;

s=0;

m=37;

i3=37;

for j=1:36

if(w(2,j)+w(3,j)>s&w(5,j)==0)

s=w(2,j)+w(3,j);

jg(i,j1)=w(1,j);

sum=w(4,j);

m=j;

else continue;

end

end

w(5,m)=1;

j1=j1+1;

while 1

js=0;

q=40;

for k=1:36

if(q>w(2,m)-w(2,k)+w(3,m)-w(3,k))&w(2,m)>w(2,k)&w(3,m)>w(3,k)&(6-sum) >w(4,k)&w(5,k)==0

q=w(2,m)+w(3,m)-w(2,k)-w(3,k);

js=1;

jg(i,j1)=w(1,k);

i3=k;

else continue;

end

end

w(5,i3)=1;

sum=sum+w(4,i3);

j1=j1+1;

m=i3;

if(w(2,i3)==0&w(3,i3)==0|js==0)

break

end

end

end

kcost=0;

zcost=0;

allcost=0;

n=0;

for u1=1:11

for u2=1:11

if jg(u1,u2)~=0

n=jg(u1,u2);

else continue

end

zcost=zcost+w(4,n)*1.8*(w(2,n)+w(3,n));

end

n=jg(u1,1);

kcost=kcost+0.4*(w(2,n)+w(3,n));

end

allcost=zcost+kcost

zcost

kcost

i=1:11;

time=[i];

time(1,:)=0;

n1=0;

n2=0;

n3=0;

for u4=1:11

for u5=1:11

if jg(u4,u5)~=0

n1=jg(u4,u5);

n2=n2+1;

else continue

end

end

n3=jg(u4,1);

time(1,u4)=((w(2,n3)+w(3,n3))*2)/40;

end

n2

time

附录三

clear

x=[3 1 5 4 0 3 7 9 10 14 17 14 12 10 7 2 6 11 15 19 22 21 27 15 15 20 21 24 25 28 5 17 25 9 9 30 0];

y=[2 5 4 7 8 11 9 6 2 0 3 6 9 12 14 16 18 17 12 9 5 0 9 19 14 17 13 20 16 18 12 16 7 20 15 12 0];

t=[1.50 1.50 0.55 1.20 0.85 1.30 1.20 2.30 1.40 1.50 1.10 2.70 1.80 1.80

0.60 1.50 0.80 1.50 0.80 1.40 1.20 1.80 1.40 1.60 1.60 1.00 2.00 1.00 2.10

1.20 1.90 1.30 1.60 1.20 1.50 1.30 0.00];

i=1:37;

a=1:37;

plot(x,y,'*r')

for ii=1:37

k=int2str(ii);

k=strcat('P',k);

text(x(ii),y(ii),k);

end

w=[i;x;y;t;a];

w(5,:)=0;

jg=zeros(10,10);%′?·?11ì??·??

for i=1:20

sum=0;

j1=1;

s=0;

m=37;

i3=37;

for j=1:36

if(w(2,j)+w(3,j)>=s&w(5,j)==0)

s=w(2,j)+w(3,j);

jg(i,j1)=w(1,j);

sum=w(4,j);

m=j;

else continue;

end

end

w(5,m)=1;

j1=j1+1;

while 1

js=0;

q=40;

for k=1:36

if(q>=w(2,m)-w(2,k)+w(3,m)-w(3,k))&w(2,m)>w(2,k)&w(3,m)>w(3,k)&(8-sum )>=w(4,k)&w(5,k)==0

q=w(2,m)+w(3,m)-w(2,k)-w(3,k);

js=1;

jg(i,j1)=w(1,k);

i3=k;

else continue;

end

end

数学建模 学校选址问题模型

学校选址问题 摘 要 本文针对某地新开发的20个小区建设配套小学问题建立了0-1规划模型和优化模型。为问题一和问题二的求解,提供了理论依据。 模型一: 首先:根据目标要求,要建立最少学校的方案列出了目标函数: ∑==16 1i i x s 然后:根据每个小区至少能被一所学校所覆盖,列出了20个约束条件; 最后:由列出的目标函数和约束函数,用matlab 进行编程求解,从而得到,在每个小区至少被一所学校所覆盖时,建立学校最少的个数是四所,并且一共有22种方案。 模型二: 首先:从建校个数最少开始考虑建校总费用,在整个费用里面,主要是固定费用,由此在问题一以求解的条件下,进行初步筛选,得到方案1,4,8的固定成本最少。 然后:在初步得出成本费用最少时,对每个这三个方案进一步的求解,求出这三个方案的具体的总费用,并记下这三套方案中的最小费用。 其次:对这三套方案进行调整,调整的原则是:在保证每个小区有学校覆盖的条件下,用多个固定成本费用低的备选校址替换固定成本费用高的备选校址。在替换后,进行具体求解。 再次:比较各种方案的计算结果,从而的出了如下结论: 选用10,11,13,15,16号备选校址的选址方案,花费最少,最少花费为13378000元。 最后:对该模型做了灵敏度分析,模型的评价和推广。 关键字:最少建校个数 最小花费 固定成本 规模成本 灵敏度分析

1. 问题重述 1.1问题背景: 某地新开发的20个小区内需要建设配套的小学,以方便小区内居民的的孩子上学。但是为了节省开支,建造的学校要求尽量的少,为此,设备选定的16个校址提供参考,各校址覆盖的小区情况如表1所示: 表1-1备选校址表 备选校址 1 2 3 4 5 6 7 8 覆盖小区 1,2,3, 4,6 2,3,5,8, 11,20 3,5,11,20 1,4,6,7, 12 1,4,7,8,9,11,13, 14 5,8,9,10 11,16,20 10,11,1516,19, 20 6,7,12, 13,17, 18 备选校址 9 10 11 12 13 14 15 16 覆盖小区 7,9,13, 14,15, 17,18, 19 9,10,14,15,16, 18,19 1,2,4,6, 7 5,10,11, 16,20, 12,13,14,17, 18 9,10,14, 15 2,3,,5, 11,20 2,3,4,5,8 1.2 问题提出: 问题一、求学校个数最少的建校方案,并用数学软件求解(说明你所使用的软件并写出输入指令)。 问题二、设每建一所小学的成本由固定成本和规模成本两部分组成,固定成本由学校所在地域以及基本规模学校基础设施成本构成,规模成本指学校规模超过基本规模时额外的建设成本,它与该学校学生数有关,同时与学校所处地域有关。设第i 个备选校址的建校成本i c 可表示为 ?? ???-??+=, 否则, 若学生人数超过学生人数0600 )600(50 1002000i i i c βα 其中i α和i β由表1-2给出: 表1-2 学校建设成本参数表(单位:百万元) 备选校址 1 2 3 4 5 6 7 8 i α 5 5 5 5 5 5 5 3.5 i β 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.1 备选校址 9 10 11 12 13 14 15 16 i α 3.5 3.5 3.5 3.5 2 2 2 2 i β 0.1 0.1 0.1 0.1 0.05 0.05 0.05 0.05 考虑到每一小区的学龄儿童数会随住户的迁移和时间发生变化,当前的精确数据并不能作为我们确定学校规模的唯一标准,于是我们根据小区规模大小用统计方法给出每个小区的学龄儿童数的估计值,见表1-3: 表1-3.各小区1到6年级学龄儿童数平均值(样本均值) 小区 1 2 3 4 5 6 7 8 9 10 学龄儿童数 120 180 230 120 150 180 180 150 100 160

数学建模飞机运输问题

多变量有约束最优化问题 摘要 本文以一家运输航空公司的一架飞机运载能力100吨和运载货物的容量50000立方英尺有限的情况下,有三种货物(即x1、x2、x3)需要运输,公司规定每吨货物收取一定的费用,而要运输的每种货物的吨数都有规定的上限(最多不超过30吨、40吨、50吨),并且公司规定由于飞机需要保养与维护,飞机须停飞115天,因此每年只有250天的工作时间。在此情况下每天怎样安排运输三种货物使公司每年获得最大利润w。对于此问题只用线性规划的一般方法建立相应的数学模型,在用数学软件求出在给定限行区域内的最优解(w、x1、x2、x3),在对这些最优解进行分析与讨论,确定其为有效最优解。并以此作为公司对三种货物运输安排方式。 对于问题一,求使得运输航空公司获得最大利润w的x1、x2、x3三种货物的吨数,建立相应的数学模型。再根据运输能力最多100吨和运载货物容积的最大50000立方英尺,还有每天公司规定的每种货物的运输上限即x1种货物最多运输30吨,x2种货物最多运输40吨,x3种货物最多50吨,建立约束条件。并用数学软件mathematica进行求解,即为所求的最优解(也就是w=21875,x1=30,x2=7.5,x3=50)。

对于问题二中,要求计算每个约束的影子价格。我们将利用问题一中建立的目标函数和约束条件,将其编写成源程序输入到Lindo软件中进行求解。再将得到的界进行讨论与和模型的稳健性分析并且通过其在题意的理解,解释其含义。 问题三中,对于公司将耗资改装飞机以扩大运货区来增加运输能力,且旧飞机使用寿命为5年,每架飞机的改造要花费200000美元,可以增加2000立方英尺的容积。重量限制仍保持不变。假设飞机每年飞行250天,这些旧飞机剩余的使用寿命约为5年。根据此问题我们将建立数学规划模型,利用Lindo软件计算其影子价格和利润并且与前面进行比较,进行分析。 关键词:线性规划、mathematica软件的应用、Lindo的软件应用。

数学建模大赛货物运输问题

数学建模大赛货物运输 问题 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

货物配送问题 【摘要】 本文是针对解决某港口对某地区8个公司所需原材料A、B、C的运输调度问题 提出的方案。我们首先考虑在满足各个公司的需求的情况下,所需要的运输的 最小运输次数,然后根据卸载顺序的约束以及载重费用尽量小的原则,提出了 较为合理的优化模型,求出较为优化的调配方案。 针对问题一,我们在两个大的方面进行分析与优化。第一方面是对车次安排的优化分析,得出①~④公司顺时针送货,⑤~⑧公司逆时针送货为最佳方案。第二方面我们根据车载重相对最大化思想使方案分为两个步骤,第一步先是使每个车次满载并运往同一个公司,第二步采用分批次运输的方案,即在第一批次运输中,我们使A材料有优先运输权;在第二批次运输中,我们使B材料有优先运输权;在第三批次中运输剩下所需的货物。最后得出耗时最少、费用最少的方案。 耗时为小时,费用为元。 针对问题二,加上两个定理及其推论数学模型与问题一几乎相同,只是空载路径不同。我们采取与问题一相同的算法,得出耗时最少,费用最少的方 案。耗时为小时,费用为元。 针对问题三的第一小问,我们知道货车有4吨、6吨和8吨三种型号。我们经过简单的论证,排除了4吨货车的使用。题目没有规定车子不能变向,所 以认为车辆可以掉头。然后我们仍旧采取①~④公司顺时针送货,⑤~⑧公司逆 时针送货的方案。最后在满足公司需求量的条件下,采用不同吨位满载运输方案,此方案分为三个步骤:第一,使8吨车次满载并运往同一公司;第二,6 吨位车次满载并运往同一公司;第三,剩下的货物若在1~6吨内,则用6吨货 车运输,若在7~8吨内用8吨货车运输。最后得出耗时最少、费用最省的方 案。耗时为小时,费用为。 一、问题重述 某地区有8个公司(如图一编号①至⑧),某天某货运公司要派车将各公司 所需的三种原材料A,B,C从某港口(编号⑨)分别运往各个公司。路线是唯一的 双向道路(如图1)。货运公司现有一种载重 6吨的运输车,派车有固定成本20元/辆,从港口出车有固定成本为10元/车次(车辆每出动一次为一车次)。每辆车平均需要用15分钟的时间装车,到每个公司卸车时间平均为10分钟,运输 车平均速度为60公里/小时(不考虑塞车现象),每日工作不超过8小时。运输车载重运费元/吨公里,运输车空载费用元/公里。一个单位的原材料A,B,C分 别毛重4吨、3吨、1吨,原材料不能拆分,为了安全,大小件同车时必须小件在上,大件在下。卸货时必须先卸小件,而且不允许卸下来的材料再装上车, 另外必须要满足各公司当天的需求量(见表1)。问题: 1、货运公司派出运输车6辆,每辆车从港口出发(不定方向)后运输途中不允许掉头,应如何调度(每辆车的运载方案,运输成本)使得运费最小。 2、每辆车在运输途中可随时掉头,若要使得成本最小,货运公司怎么安排车辆数应如何调度

数学建模大赛货物运输问题

货物配送问题 【摘要】 本文是针对解决某港口对某地区8个公司所需原材料A、B、C的运输调度问题提出的方案。我们首先考虑在满足各个公司的需求的情况下,所需要的运输的最小运输次数,然后根据卸载顺序的约束以及载重费用尽量小的原则,提出了较为合理的优化模型,求出较为优化的调配方案。 针对问题一,我们在两个大的方面进行分析与优化。第一方面是对车次安排的优化分析,得出①~④公司顺时针送货,⑤~⑧公司逆时针送货为最佳方案。第二方面我们根据车载重相对最大化思想使方案分为两个步骤,第一步先是使每个车次满载并运往同一个公司,第二步采用分批次运输的方案,即在第一批次运输中,我们使A材料有优先运输权;在第二批次运输中,我们使B材料有优先运输权;在第三批次中运输剩下所需的货物。最后得出耗时最少、费用最少的方案。耗时为小时,费用为元。 针对问题二,加上两个定理及其推论数学模型与问题一几乎相同,只是空载路径不同。我们采取与问题一相同的算法,得出耗时最少,费用最少的方案。耗时为小时,费用为元。 针对问题三的第一小问,我们知道货车有4吨、6吨和8吨三种型号。我们经过简单的论证,排除了4吨货车的使用。题目没有规定车子不能变向,所以认为车辆可以掉头。然后我们仍旧采取①~④公司顺时针送货,⑤~⑧公司逆时针送货的方案。最后在满足公司需求量的条件下,采用不同吨位满载运输方案,此方案分为三个步骤:第一,使8吨车次满载并运往同一公司;第二,6吨位车次满载并运往同一公司;第三,剩下的货物若在1~6吨内,则用6吨货车运输,若在7~8吨内用8吨货车运输。最后得出耗时最少、费用最省的方案。耗时为小时,费用为。 一、问题重述 某地区有8个公司(如图一编号①至⑧),某天某货运公司要派车将各公司所需的三种原材料A,B,C从某港口(编号⑨)分别运往各个公司。路线是唯一的双向道路(如图1)。货运公司现有一种载重 6吨的运输车,派车有固定成本20元/辆,从港口出车有固定成本为10元/车次(车辆每出动一次为一车次)。每辆车平均需要用15分钟的时间装车,到每个公司卸车时间平均为10分钟,运输车平均速度为60公里/小时(不考虑塞车现象),每日工作不超过8小时。运输车载重运费元/吨公里,运输车空载费用元/公里。一个单位的原材料A,B,C分别毛重4吨、3吨、1吨,原材料不能拆分,为了安全,大小件同车时必须小件在上,大件在下。卸货时必须先卸小件,而且不允许卸下来的材料再装上车,另外必须要满足各公司当天的需求量(见表1)。问题:

机场选址问题数学建模优秀论文

机场选址问题 摘要 针对机场选址问题,文章共建立了三个模型用以解决该类问题。为了计算出任意两城市之间的距离,我们利用公式(1)将利用题目中所给的大地坐标得出了任意两点之间的距离,见附录2。 对于问题1,我们主要利用0-1变量法,从而对问题进行了简化。我们设了第i个 y以及第i个城市是否是以第j个支线机场为最近机场的()j i x,。城市是否建支线机场的 i 然后将任意两点之间的距离与该城市的总人数之积,再乘以0-1变量()j i x,,最后得出每一个所有城市到最近机场的距离与该城市人口的乘积,然后利用LINGO进行编写程序,进行最优化求解,最后得出的结果见表1和表2,各大城市以及支线机场的分布见图2。 对于问题2,该问题是属于多目标规划的问题,目标一是居民距离最近机场的距离最短,目标二是每个机场覆盖人口数尽可能相等。我们在第一题的基础上,又假设了一些正、负偏差变量,对多个目标函数设立优先级,把目标函数转化为约束条件,进而求得满足题目要求的结果。 对于问题3,我们分析到影响客流量的因素是GDP跟居民人数,所以通过所搜集的资料分析我们给予这两个因素以不同的权重。然后同样采取问题2中所给的反求机场覆盖的方法,求的各个机场所覆盖的客流量,再让其在平均客流量水平上下浮动。通过LINGO程序的运行得到的六个机场的坐标见表6,六个机场的分布见图7。 针对论文的实际情况,对论文的优缺点做了评价,文章最后还给出了其他的改进方向,以用于指导实际应用。 关键词:选址问题;多目标规划;LINGO;0-1变量法;加权

1.问题的重述 近年来,随着我国经济社会的迅猛发展,公共交通基础设施日趋需要进一步完善与提高。支线机场作为我国交通运输体系的有机组成部分,对促进欠发达地区经济社会的发展具有基础性的作用。现某区域有30个城市,本区域计划在未来的五年里拟建6个支线机场。 任务1,确定6个支线机场的所在城市,建立居民到最近机场之间的平均距离最小的数学模型。 任务2,在任务一基础上,确定6个支线机场的所在城市,建立使得每个支线机场所覆盖的居民人数尽可能均衡的数学模型。 任务3,在任务一基础上,根据近一年每个城市的GDP 情况,确定6个支线机场的所在城市,建立使得每个支线机场的客流量尽量均衡的数学模型。 2.问题的分析 2.1 问题1 题目要求是建立居民到最近机场之间的平均距离最小的数学模型,该问题其实就是利用的0-1变量建立的模型。首先我们设两个0-1变量,一个是控制某个城市是否为支线机场的i y ,一个是控制某个城市的最近机场是哪一个的ij x 。针对于上述两个0-1变量,我们分别设立了约束条件。同时又为了满足问题所要求的使局面平均距离最小,我们将某一个城市到离它最近的机场的距离与该城市的人口乘积作为目标函数,在LINGO 软件中,通过设立一约束条件,最后将目标函数进行最优化求解。 2.2 问题2 该问题可以归结为多元目标线性规划的问题,所以我们在第一问的基础上又增加了一个目标函数,最后利用加权的方法将两个目标函数转化成了一个目标函数,将另一个目标函数作为约束条件。同时我们又引入了正负偏差变量,通过控制该变量达到覆盖居民人数均衡以及居民到城市之间的平均距离尽量小。 2.3 问题3 该问题要求的是客流量尽量均衡,经过分析可以知道,城市的GDP 越高,说明该城市经济越繁荣,货币流通越快,从而反映出客流量越大。另一方面城市越大、人口越多,也在一定程度上反映出了该城市客流量越大。基于上述两点,我们对GDP 跟城市人口分别给予了不同的权重来反映其对客流量的影响大小。按照第二问的方法,我们依然利用多元目标线性规划的只是进行求解。通过LINGO 编写程序,最中求得可行解。

#蔬菜运输问题--数学建模

蔬菜运输问题 2012年8月22日 摘要 本文运用floyd算法求出各蔬菜采购点到每个菜市场的最短运输距离,然后用lingo软件计算蔬菜调运费用及预期短缺损失最小的调运方案,紧接着根据题目要求对算法加以修改得出每个市场短缺率都小于20%的最优调运方案,并求出了最佳的供应改进方案。 关键词 最短路问题 floyd算法运输问题 一、问题重述 光明市是一个人口不到15万人的小城市。根据该市的蔬菜种植情况,分别在花市(A),城乡路口(B)和下塘街(C)设三个收购点,再由各收购点分送到全市的8个菜市场,该市道路情况,各路段距离(单位:100m)及各收购点,菜市场①L⑧的具体位置见图1,按常年情况,A,B,C三个收购点每天收购量分别为200,170和160(单位:100 kg),各菜市场的每天需求量及发生供应短缺时带来的损失(元/100kg)见表 1.设从收购点至各菜市场蔬菜调运费为1元/(100kg.100m). ①7 ② 5 4 8 3 7 A 7 ⑼ 6 B ⑥ 6 8 5 5 4 7 11 7 ⑾ 4 ③ 7 5 6 6 ⑤ 3 ⑿ 5 ④ ⑽ 8 6 6 10 C 10 ⑧ 5 11 ⑦图1 表1 菜市场每天需求(100 kg)短缺损失(元/100kg) ①75 10 ②60 8 ③80 5 ④70 10 ⑤100 10 ⑥55 8 ⑦90 5 ⑧80 8 (a)为该市设计一个从收购点至个菜市场的定点供应方案,使用于蔬菜调运及预

期的短缺损失为最小; (b)若规定各菜市场短缺量一律不超过需求量的20%,重新设计定点供应方案 (c)为满足城市居民的蔬菜供应,光明市的领导规划增加蔬菜种植面积,试问增 产的蔬菜每天应分别向A,B,C三个采购点供应多少最经济合理。 二、问题分析 求总的运费最低,可以先求出各采购点到菜市场的最小运费,由于单位重量运费和距离成正比,题目所给的图1里包含了部分菜市场、中转点以及收购点之间的距离,(a)题可以用求最短路的方法求出各采购点到菜市场的最短路径,乘上单位重量单位距离费用就是单位重量各运输线路的费用,然后用线性方法即可解得相应的最小调运费用及预期短缺损失。 第二问规定各菜市场短缺量一律不超过需求量的20%,只需要在上题基础上加上新的限制条件,即可得出新的调运方案。 第三问可以在第二问的基础上用灵敏度分析进行求解,也可以建立新的线性问题进行求解。 三、模型假设 1、各个菜市场、中转点以及收购点都可以作为中转点; 2、各个菜市场、中转点以及收购点都可以的最大容纳量为610吨; 3、假设只考虑运输费用和短缺费用,不考虑装卸等其它费用; 4、假设运输的蔬菜路途中没有损耗; 5、忽略从种菜场地到收购点的运输费用。 四、符号说明 A收购点分送到全市的8个菜市场的供应量分别为a1,b1,c1,d1,e1,f1,g1,h1, B收购点分送到全市的8个菜市场的供应量分别为a2,b2,c2,d2,e2,f2,g2,h2, C收购点分送到全市的8个菜市场的供应量分别为a3,b3,c3,d3,e3,f3,g3,h3, 8个菜市场的短缺损失量分别为a,b,c,d,e,f,g,h(单位均为100kg)。 五、模型的建立和求解 按照问题的分析,首先就要求解各采购点到菜市场的最短距离,在图论里面关于最短路问题比较常用的是Dijkstra算法,Dijkstra算法提供了从网络图中某一点到其他点的最短距离。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。但由于它遍历计算的节点很多,所以效率较低,实际问题中往往要求网络中任意两点之间的最短路距离。如果仍然采用Dijkstra算法对各点分别计算,就显得很麻烦。所以就可以使用网络各点之间的矩阵计算法,即Floyd 算法。 Floyd算法的基本是:从任意节点i到任意节点j的最短路径不外乎2种可能,1是直接从i到j,2是从i经过若干个节点k到j。i到j的最短距离不外乎存在经过i和j之间的k和不经过k两种可能,所以可以令k=1,2,3,...,n(n是城市的数目),在检查d(i,j)和d(i,k)+d(k,j)的值;在此d(i,k)和d(k,j)分别是目前为止所知道的i到k和k到j的最短距离。因此d(i,k)+d(k,j)就是i到j经过k的最短距离。所以,若有d(i,j)>d(i,k)+d(k,j),就表示从i出发经过k再到j的距离要比原来的i到j距离短,自然把i到j的d(i,j)重写为

数学建模城市垃圾运输问题概论

货运公司运输问题 数信学院14级信计班魏琮 【摘要】 本文是针对解决某港口对某地区8个公司所需原材料A、B、C的运输调度问题提出的方案。首先考虑在满足各个公司的需求的情况下,所需要的运输的最小运输次数,然后根据卸载顺序的约束以及载重费用尽量小的原则,提出了较为合理的优化模型,求出较为优化的调配方案。 针对问题一,在两个大的方面进行分析与优化。第一方面是对车次安排的优化分析,得出①~④公司顺时针送货,⑤~⑧公司逆时针送货为最佳方案。第二方面根据车载重相对最大化思 想使方案分为两个步骤,第一步先是使每个车次满载并运往同一个公司,第二步采用分批次运输的方案,即在第一批次运输中,我们使A材料有优先运输权;在第二批次运输中,我们使B材料有优先运输权;在第三批次中运输剩下所需的货物。最后得出耗时最少、费用最少的方案。耗时为40.3333小时,费用为4864.0元。 针对问题二,加上两个定理及其推论数学模型与问题一几乎相同,只是空载路径不同。采取与问题一相同的算法,得出耗时最少,费用最少的方案。耗时为26.3小时,费用为4487.2元。 针对问题三的第一小问,知道货车有4吨、6吨和8吨三种型号。经过简单的论证,排除了4吨货车的使用。题目没有规定车

子不能变向,所以认为车辆可以掉头。然后仍旧采取①~④公司 顺时针送货,⑤~⑧公司逆时针送货的方案。最后在满足公司需 求量的条件下,采用不同吨位满载运输方案,此方案分为三个步骤:第一,使8吨车次满载并运往同一公司;第二,6吨位车次 满载并运往同一公司;第三,剩下的货物若在1~6吨内,则用6 吨货车运输,若在7~8吨内用8吨货车运输。最后得出耗时最少、费用最省的方案。耗时为19.6833小时,费用为4403.2元。 一、问题重述 某地区有8个公司(如图一编号①至⑧),某天某货运公司要派车将各公司所需的三种原材料A,B,C从某港口(编号⑨)分别运往各个公司。路线是唯一的双向道路(如图1)。货运公司现有一种载重6吨的运输车,派车有固定成本20元/辆,从港口出车有固定成本为10元/车次(车辆每出动一次为一车次)。每辆车平均需要用15分钟的时间装车,到每个公司卸车时间平均为10分钟,运输车平均速度为60公里/小时(不考虑塞车现象),每日工作不超过8小时。运输车载重运费1.8元/吨公里,运输车空载费用0.4元/公里。一个单位的原材料A,B,C分别毛重4吨、3吨、1吨,原材料不能拆分,为了安全,大小件同车时必须小件在上,大件在下。卸货时必须先卸小件,而且不允许卸下来的材料再装上车,另外必须要满足各公司当天的需求量(见表1)。问题: 1、货运公司派出运输车6辆,每辆车从港口出发(不定方向)后运输途中不允许掉头,应如何调度(每辆车的运载方案,运输成本)使得运费最小。

数学建模学校选址问题

学校选址问题 摘要 本文为解决学校选址问题,建立了相应的数学模型。 针对模型一 首先,根据已知信息,对题目中给出的数据进行处理分析。在保证每个小区,学生至少有一个校址可供选择的情况下,运用整数规划中的0-1规划法,列出建校方案的目标函数与其约束条件,通过LINGO软件,使用计算机搜索算法进行求解。得出建立校址的最少数目为4个。再运用MATLAB软件编程,运行得到当建校的个数为4个时,学 首先,对文中给出的学校建设成本参数表和各校区1到6年级学龄儿童的平均值(样本均值)进行分析,可知20个小区估计共有4320个学龄儿童,当每个学校的平均人数都小于600时,至少需要建设8个学校;其次,模型一得到最少的建校数目为4个,运用MATLAB软件编程,依次列出学校个数为4、5、6、7、8时的最优建校方案,分别算出其最优建校方案下的总成本;最后,通过对比得出,最低的建校总成本为1650万,即选取校址10、11、13、14、15、16建设学校。 最后,我们不但对模型进行了灵敏度分析,,保证了模型的有效可行。 关键词:MATLAB灵敏度 0-1规划总成本选址 1 问题重述

当代教育的普及,使得学校的建设已成为不得不认真考虑的问题。 1.1已知信息 1、某地新开发的20个小区需要建设配套的小学,备选的校址共有16个,各校址覆盖的小区情况如表1所示: 2、在问题二中,每建一所小学的成本由固定成本和规模成本两部分组成,固定成本由学校所在地域以及基本规模学校基础设施成本构成,规模成本指学校规模超过基本规模时额外的建设成本,它与该学校学生数有关,同时与学校所处地域有关。设第i 个备选校址的建校成本i c 可表示为 (单元:元)学生人数)600-(50100200010? ?? ???+=i i i c βα,若学生人数超过600人,其中 i α和i β由表2给出: 并且考虑到每一小区的学龄儿童数会随住户的迁移和时间发生变化,当前的精确数据并不能作为我们确定学校规模的唯一标准,于是我们根据小区规模大小用统计方法给出每个小区的学龄儿童数的估计值,见表3: 1.2提出问题 1、要求建立数学模型并利用数学软件求解出学校个数最少的建校方案。 2、求出总成本最低的建校方案。 2 问题假设与符号说明

数学建模--运输问题

数学建模--运输问题

运输问题 摘要 本文主要研究的是货物运输的最短路径问题,利用图论中的Floyd算法、Kruskal算法,以及整数规划的方法建立相关问题的模型,通过matlab,lingo 编程求解出最终结果。 关于问题一,是一个两客户间最短路程的问题,因此本文利用Floyd算法对其进行分析。考虑到计算的方便性,首先,我们将两客户之间的距离输入到网络权矩阵中;然后,逐步分析出两客户间的最短距离;最后,利用Matlab软件对其进行编程求解,运行得到结果:2-3-8-9-10总路程为85公里。 关于问题二,运输公司分别要对10个客户供货,必须访问每个客户,实际上是一个旅行商问题。首先,不考虑送货员返回提货点的情形,本文利用最小生成树问题中的Kruskal算法,结合题中所给的邻接矩阵,很快可以得到回路的最短路线:1-5-7-6-3-4-8-9-10-2;然后利用问题一的Floyd算法编程,能求得从客户2到客户1(提货点)的最短路线是:2-1,路程为50公里。即最短路线为:1-5-7-6-3-4-8-9-10-2-1。但考虑到最小生成树法局限于顶点数较少的情形,不宜进一步推广,因此本文建立以路程最短为目标函数的整数规划模型;最后,利用LINGO软件对其进行编程求解,求解出的回路与Kruskal算法求出的回路一致。 关于问题三,是在每个客户所需固定货物量的情况下,使得行程之和最短。这样只要找出两条尽可能短的回路,并保证每条线路客户总需求量在50个单位以内即可。因此我们在问题二模型的基础上进行改进,以货车容量为限定条件,建立相应的规划模型并设计一个简单的寻路算法,对于模型求解出来的结果,本文利用Kruskal算法结合题中所给的邻接矩阵进行优化。得到优化结果为:第 一辆车:1-5-2-3-4-8-9-1,第二辆车:1-7-6-9-10-1,总路程为280公里。 关于问题四,在问题一的基础上我们首先用Matlab软件编程确定提货点到每个客户点间的最短路线,然后结合一些限定条件建立一个目标模型,设计一个较好的解决方案进行求解可得到一种很理想的运输方案。根据matlab运行结果分析得出4条最优路线分别为:1-5-2,1-4-3-8,1-7-6,1-9-10。最短总路线为245公里,最小总费用为645。 关键词: Floyd算法 Kruskal算法整数规划旅行商问题

浅谈生活垃圾的处理论文

浅谈生活垃圾的处理论文 XXXXXX大学 专业: [化学] 学生姓名: [X X] 学号: [X X] 完成时间: 2021年5月31日 [摘要] : 随着生活条件的改善,生活垃圾产量激增。但由于处理不当,生活垃圾严重危害环境。为了提高人们对生活垃圾问题危害的重视,本文将从生活垃圾的认识、分类、危害、处理 方法等几个方面进行相关的论述,以提高人们对这一问题的认识,自觉加入环保活动,保 护我们共同的家园。 [关键词]: 生活垃圾处理危害 随着科技的发展,人类步入信息化时代。科技的进步促进了全球经济的增长,而随着 经济的增长人类的生活质量也迈上了一个前所未有的的台阶。可是在生活条件改善的同时,却产生了大量的生活垃圾。而人们忙于对物质生活改善的享受?有意无意的忽略了生活垃 圾对我们生存环境造成的危害。在这种悲剧下要人们正确的去面对生活垃圾问题并合理的 处理生活垃圾,已成为一个亟待解决的社会问题。 (一)生活垃圾的认识 我们谈生活垃圾的危害,首先就必须知道什么是生活垃圾。那么什么是生活垃圾呢? 在社会百科上是这样定义的:生活垃圾是指在日常生活中或者为日常生活提供服务的活动 中产生的固体废物以及法律、行政法规规定视为生活垃圾的固体废物。 (二)生活垃圾的分类 生活垃圾一般可分为四大类:可回收垃圾、厨房垃圾、有害垃圾以及其他垃圾。 1、可回收垃圾包括纸类、金属、塑料、玻璃等,通过综合处理可以回收利用,减少 污染,节省资源。 2、厨房垃圾包括剩菜剩饭、骨头、菜根菜叶等食品类废物。

3、有害垃圾包括废电池、废日光灯管、废水银温度计、过期药品等,这些垃圾需要 特殊安全处理。 4、其他垃圾包括除上述几类垃圾之外的砖瓦陶瓷、渣土、卫生间废纸等难以回收的 废弃物 (三)生活垃圾的危害 改革开放以来,随着经济的发展,人民的生活水平日益提高。而生活垃圾也随着人们 生活水平的提高,产量日增。据报道,目前我国城市垃圾人均年产量达到440公斤,在 2021年我国城市生活垃圾量达到了3、52亿吨,居世界第一,而且每年以8%至10%的速度增长。如此大规模的垃圾如果处理不当,将会对我们的生活产生巨大的危害,那么它 到底有什么危害呢?下面我们将向大家介绍几类生活垃圾的危害: 1、塑料:主要是塑料袋、塑料包装、快餐饭盒、塑料杯瓶、电器包装、冷饮皮等等。塑料难以分解, 会破坏土质, 使植物生长减少30%;填埋后可能污染地下水;焚烧会产生 有害气体。 2、电池主要是钮扣电池、充电电池、干电池。钮扣电池含有有毒重金属汞;充电电 池含有有害重金属镉;干电池含汞、铅和酸碱类物质等对环境有害的物质。 3、剩餐:如与垃圾或快餐盒倒在一起的剩饭,可能大量滋生蚊蝇;促使垃圾中的’ 细菌大量繁殖, 产生有毒气体和沼气, 甚至引起垃圾爆炸。 4、油漆和颜料:如建筑、家庭装修后的废弃物等。不同成分的油漆或油料产生不同 的危害,如含有有机溶剂的油漆可引起头痛、过敏、昏迷或致癌;某些油料是危险的易燃品;而颜料中如含重金属过多,将会对人的健康不利。 5、清洁类化学药品主要是去油、除垢、光洁地面、清洗地毯、通管道等化学药剂, 空气清新剂、杀虫剂、化学地板打蜡剂等。含有机溶剂或大自然难降解的石油化工产品具 有腐蚀性;含氯元素的如漂白剂, 地板洗剂等,会造成人体中毒;药品含破坏臭氧层物质;杀虫剂中, 约有50%含致癌物质, 有些可损伤动物肝脏。 人们对生活垃圾对我们的危害的认识还不够深入,但总的来说,其危害有: (1)占用耕地,特别是堆放在城市郊区的垃圾,侵占了大量农田;(2)污染空气, 垃圾是一种成份复杂的混合物。在运输和露天堆放过程中,有机物分解产生恶臭,并向大 气释放出大量的氨、硫化物等污染物;(3)污染水体,垃圾中的有害成份易经雨水冲入 地面水体,在垃圾堆放或填坑过程中还会产生大量的酸性和碱性有机污染物,同时将垃圾 中的重金属溶解出来。垃圾直接弃入河流、湖泊或海洋,则会引起更严重的污染;(4) 火灾隐患,垃圾中含有大量可燃物,在天然堆放过程中会产生甲烷等可燃气,遇明火或自 燃易引起火灾、垃圾爆炸事故不断发生,造成重大损失;(5)有害生物的巢穴,垃圾不

数学建模运输问题

数学建模运输问题公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

运输问题 摘要 本文主要研究的是货物运输的最短路径问题,利用图论中的Floyd 算法、Kruskal算法,以及整数规划的方法建立相关问题的模型,通过matlab,lingo编程求解出最终结果。 关于问题一,是一个两客户间最短路程的问题,因此本文利用Floyd 算法对其进行分析。考虑到计算的方便性,首先,我们将两客户之间的距离输入到网络权矩阵中;然后,逐步分析出两客户间的最短距离;最后,利用Matlab软件对其进行编程求解,运行得到结果:2-3-8-9-10总路程为85公里。 关于问题二,运输公司分别要对10个客户供货,必须访问每个客户,实际上是一个旅行商问题。首先,不考虑送货员返回提货点的情形,本文利用最小生成树问题中的Kruskal算法,结合题中所给的邻接矩阵,很快可以得到回路的最短路线:-9-10-2;然后利用问题一的Floyd算法编程,能求得从客户2到客户1(提货点)的最短路线是:2-1,路程为50公里。即最短路线为:-9-10-2-1。但考虑到最小生成树法局限于顶点数较少的情形,不宜进一步推广,因此本文建立以路程最短为目标函数的整数规划模型;最后,利用LINGO软件对其进行编程求解,求解出的回路与Kruskal算法求出的回路一致。 关于问题三,是在每个客户所需固定货物量的情况下,使得行程之和最短。这样只要找出两条尽可能短的回路,并保证每条线路客户总需

求量在50个单位以内即可。因此我们在问题二模型的基础上进行改进,以货车容量为限定条件,建立相应的规划模型并设计一个简单的寻路算法,对于模型求解出来的结果,本文利用Kruskal算法结合题中所给的邻接矩阵进行优化。得到优化结果为:第一辆车:-1,第二辆车:,总路程为280公里。 关于问题四,在问题一的基础上我们首先用Matlab软件编程确定提货点到每个客户点间的最短路线,然后结合一些限定条件建立一个目标模型,设计一个较好的解决方案进行求解可得到一种很理想的运输方案。根据matlab运行结果分析得出4条最优路线分别为:1-5-2,1-4-3-8,1-7-6,1-9-10。最短总路线为245公里,最小总费用为645。 关键词: Floyd算法 Kruskal算法整数规划旅行商问题 一、问题重述 某运输公司为10个客户配送货物,假定提货点就在客户1所在的位置,从第i个客户到第j个客户的路线距离(单位公里)用下面矩阵中的(,) i j=位置上的数表示(其中∞表示两个客户之间无直接的 i j(,1,,10) 路线到达)。 1、运送员在给第二个客户卸货完成的时候,临时接到新的调度通知,让 他先给客户10送货,已知送给客户10的货已在运送员的车上,请帮运送员设计一个到客户10的尽可能短的行使路线(假定上述矩阵中给出了所有可能的路线选择)。 2、现运输公司派了一辆大的货车为这10个客户配送货物,假定这辆货车 一次能装满10个客户所需要的全部货物,请问货车从提货点出发给

数学建模论文__物流与选址问题

物流预选址问题 (2) 摘要 .............................................................................................. 错误!未定义书签。 一、问题重述 (3) 二、问题的分析 (3) 2.1 问题一:分析确定合理的模型确定工厂选址和建造规模 (4) 2.2 问题二:建立合理的仓库选址和建造规模模型 (4) 2.3 问题三:工厂向中心仓库供货的最佳方案问题 (5) 2.4 问题四:根据一组数据对自己的模型进行评价 (5) 三、模型假设与符号说明 (5) 3.1条件假设 (5) 3.2模型的符号说明 (5) 四、模型的建立与求解 (6) 4.1 问题一:分析确定合理的模型为两个工厂合理选址并确定建造规模 (6) 4.1.1模型的建立 (7) 4.2 问题二:建立合理模型确定中心仓库的位置及建造规模 (10) 4.2.1 基于重心法选址模型 (10) 4.2.2 基于多元线性回归法确定中心仓库的建造规模 (12) 4.3 问题三:工厂向中心仓库供货方案 (13)

4.4 问题四:选用一组数据进行计算 (14) 五、模型评价 (21) 5.1模型的优缺点 (21) 5.1.1 模型的优点 (21) 5.1.2 模型的缺点 (21) 六参考文献 (21) 物流预选址问题 摘要 在物流网络中,工厂对中心仓库和城市进行供货,起到生产者的作用,而中心仓库连接着工厂和城市,是两者之间的桥梁,在物流系统中有着举足轻重的作用,因此搞好工厂和中心仓库的选址将对物流系统作用的发挥乃至物流经济效益的提高产生重要的影响。 本论文在综述工厂和中心仓库选址问题研究现状的基础上,对二者选址的模型和算法进行了研究。对于问题一二,通过合理的分析,我们采用了重心法选址模型找到了工厂和中心仓库的大致位置并给出了确定工厂和中心仓库建造规模的参数和公式,通过用

[城市,垃圾处理,其他论文文档]城市垃圾处理的对策

城市垃圾处理的对策 简介:我国改革开放以来,城市数目和城市人口有了很大的发展,人民的生活水平也有 了很大提高,因此,作为城市公害的生活垃圾发生量及其组成也有了很大变化。处理城市生活垃圾,实现无害化、减量化和再资源化,消除城市生活垃圾的污染已成为我国必须解决的重大问题。 关键字:城市垃圾处理对策 一、前言 我国改革开放以来,城市数目和城市人口有了很大的发展,人民的生活水平也有了很大提高,因此,作为城市公害的生活垃圾发生量及其组成也有了很大变化。处理城市生活垃圾,实现无害化、减量化和再资源化,消除城市生活垃圾的污染已成为我国必须解决的重大问题。 随着政府对城市垃圾处理的重视和科学技术的发展,坑填焚烧和堆肥等技术已经得到普遍采用。80年代以来,垃圾生产能源和回收再生技术也得到发展。 上海市的土地面积约为全国土地面积的0.06%,人口约为全国人口总数的1%,但上海市每 年生产的垃圾量约占全国城市垃圾总量的5%,全年产垃圾量约为600万吨,每年人均垃圾 发生量还以10%的速度增长。这就给垃圾的收集、清运和最终处理带来了巨大压力。 上海市是一座现代化的特大城市,浦东是我国对外开放的重点。上海市人民政府历来重视城市的环卫工作,曾先后提出了有关上海市垃圾处理措施。“八五”开始试行垃圾全量焚烧技术,2000年以后重点发展垃圾全量焚烧。在此同时,努力稳妥地发展堆肥资源。上海市有计划、有重点地依靠科技进步实现城市生活垃圾的处理。 二、填埋、焚烧和堆肥处理垃圾的利弊 1.填埋处理 填埋是大量消纳城市生活垃圾的有效方法,也是所有垃圾处理工艺剩余物的最终处理方法,目前,我国普遍采用直接填埋法。 所谓直接填埋法是将垃圾填入已预备好的坑中盖上压实,使其发生生物、物理、化学变化,分解有机物,达到减量化和无害化的目的。 天津市在水上公园南侧用垃圾堆山,营造人工环境,变害为利,工程占地近80万平方米,以垃圾与工程废土按1:1配合后作为堆山土源,对于渗滤液和发酵产生的沼气和山坡的稳 定性等,都采取了必要的措施。

数学建模运输问题

运输问题 摘要 本文主要研究的是货物运输的最短路径问题,利用图论中的Floyd算法、Kruskal算法,以及整数规划的方法建立相关问题的模型,通过matlab,lingo 编程求解出最终结果。 关于问题一,是一个两客户间最短路程的问题,因此本文利用Floyd算法对其进行分析。考虑到计算的方便性,首先,我们将两客户之间的距离输入到网络权矩阵中;然后,逐步分析出两客户间的最短距离;最后,利用Matlab软件对其进行编程求解,运行得到结果:2-3-8-9-10总路程为85公里。 关于问题二,运输公司分别要对10个客户供货,必须访问每个客户,实际上是一个旅行商问题。首先,不考虑送货员返回提货点的情形,本文利用最小生成树问题中的Kruskal算法,结合题中所给的邻接矩阵,很快可以得到回路的最短路线:1-5-7-6-3-4-8-9-10-2;然后利用问题一的Floyd算法编程,能求得从客户2到客户1(提货点)的最短路线是:2-1,路程为50公里。即最短路线为:1-5-7-6-3-4-8-9-10-2-1。但考虑到最小生成树法局限于顶点数较少的情形,不宜进一步推广,因此本文建立以路程最短为目标函数的整数规划模型;最后,利用LINGO软件对其进行编程求解,求解出的回路与Kruskal算法求出的回路一致。 关于问题三,是在每个客户所需固定货物量的情况下,使得行程之和最短。这样只要找出两条尽可能短的回路,并保证每条线路客户总需求量在50个单位以内即可。因此我们在问题二模型的基础上进行改进,以货车容量为限定条件,建立相应的规划模型并设计一个简单的寻路算法,对于模型求解出来的结果,本文利用Kruskal算法结合题中所给的邻接矩阵进行优化。得到优化结果为:第一辆车:1-5-2-3-4-8-9-1,第二辆车:1-7-6-9-10-1,总路程为280公里。 关于问题四,在问题一的基础上我们首先用Matlab软件编程确定提货点到每个客户点间的最短路线,然后结合一些限定条件建立一个目标模型,设计一个较好的解决方案进行求解可得到一种很理想的运输方案。根据matlab运行结果分析得出4条最优路线分别为:1-5-2,1-4-3-8,1-7-6,1-9-10。最短总路线为245公里,最小总费用为645。 关键词: Floyd算法 Kruskal算法整数规划旅行商问题 一、问题重述 某运输公司为10个客户配送货物,假定提货点就在客户1所在的位置,从第i个客户到第j个客户的路线距离(单位公里)用下面矩阵中的 i j=L位置上的数表示(其中∞表示两个客户之间无直接的路线到i j(,1,,10) (,) 达)。 1、运送员在给第二个客户卸货完成的时候,临时接到新的调度通知,让他先给 客户10送货,已知送给客户10的货已在运送员的车上,请帮运送员设计一个到客户10的尽可能短的行使路线(假定上述矩阵中给出了所有可能的路线选择)。 2、现运输公司派了一辆大的货车为这10个客户配送货物,假定这辆货车一次能 装满10个客户所需要的全部货物,请问货车从提货点出发给10个客户配送

城市垃圾处理论文

北京市物业管理小区垃圾分类责任制度一.城市垃圾现状分析及发展前景 城市垃圾的增加随之而来的是垃圾堆放点和堆放面积扩大化,垃圾与人争地的现象相当严重。 大多数郊区垃圾堆放场多以露天堆放为主,经历长期的日晒雨淋后,垃圾中的有害物质通过垃圾渗滤液渗入土壤中,从而发生一系列物理、化学和生物反应,如过滤、吸附、沉淀,或为植物根系吸收或被微生物合成吸收,造成郊区土壤的污染,从而降低了土壤质量。此外,露天堆放的垃圾在种种外力作用下,较小的碎石块也会进入附近的土壤,改变土壤的物质组成,破坏土壤的结构,降低土壤的生产力。面对如此严重的环境问题,中国政府开始探索与实践,通过颁布法律来控制垃圾数量,如2003年实施的《清洁生产促进法》鼓励建筑工程采用节能、节水等有利于环境与资源保护的建筑设计方案、建筑和装修材料、建筑构配件及设备,强调建筑和装修材料必须符合国家标准,禁止生产、销售和使用有毒、有害物质超过国家标准的建筑和装修材料。二.现存问题 在法律控制和各方共同努力下,北京城市垃圾处理工作取得了长足的进展。但是发展速度较慢,垃圾包围城市、垃圾污染城市的现象仍然十分普遍。同时,建筑垃圾分类收集工作刚刚起步,建筑垃圾回收尚处在原始的粗放阶段,与垃圾处理减量化、资源化的要求不相适

应。社会、公众和单位对垃圾的危害及处理过程中应负的责任认识不清,垃圾处理的巨大压力和费用都由政府独自承担。垃圾管理更是还不够完善,对于垃圾处置缺乏长远的规划。就目前我国建筑垃圾处理情况而看,主要存在的问题有:处理方式落后, 征收垃圾处理费治标不治本, 缺乏相应的法律法规。 1 垃圾综合利用率不高, 处理方式落后 2 征收处理费, 难以控制浪费源头 3 相关的法律法规不完善 四、发展前景 1 采用全生命周期管理模式。 2 加强垃圾循环利用的立法工作 3 开展垃圾循环利用的科研工作 4 鼓励筑产品生产企业形成物流自营模式 在国家法律规定和优惠政策指导下,企业投入一定的资金和人力对建筑垃圾实施管理。企业自身应当强化其内部物流管理职能,对建筑废弃产品进行逆向物流。短期来看,企业逆向物流自营可以降低企业物流交易成本、避免企业商业机密的泄露以及提高企业的品牌价值等方面。从企业长期发展上看,企业逆向物流自营还可以加强企业产品信息的反馈,促进生产工艺的改进,回收处理过程以及与正向网络的结合。 5 加强垃圾资源化的宣传教育工作 广泛宣传垃圾是一种可利用的资源,提高建筑工人的环保意识,

相关主题
文本预览
相关文档 最新文档