当前位置:文档之家› SAE AS4373-2007 绝缘电线的试验方法

SAE AS4373-2007 绝缘电线的试验方法

SAE AS4373-2007  绝缘电线的试验方法
SAE AS4373-2007  绝缘电线的试验方法

__________________________________________________________________________________________________________________________________________ SAE Technical Standards Board Rules provide that: “This report is published by SAE to advance the state of technical and engineering sciences. The use of this report is entirely voluntary, and its applicability and suitability for any particular use, including any patent infringement arising therefrom, is the sole responsibility of the user.” SAE reviews each technical report at least every five years at which time it may be reaffirmed, revised, or cancelled. SAE invites your written comments and suggestions. Copyright ? 2007 SAE International

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of SAE.

TO PLACE A DOCUMENT ORDER: Tel: 877-606-7323 (inside USA and Canada)

Tel: 724-776-4970 (outside USA)

AS4373

REV. C

AEROSPACE STANDARD

Issued 1993-08 Revised 2007-07 Superseding AS4373B

(R) Test Methods for Insulated Electric Wire

RATIONALE

Addition/modification of aerospace test methods used by industry to harmonize with European methods.

FOREWORD

This document contains a series of test methods for aerospace wire which were designed for both process/quality control tests and to assist electrical design personnel in the selection of a wire for use in an individual aerospace vehicle. No one method can predict all the variables to which a wire can be exposed.

These test methods were collected from a number of aircraft manufacturers. Not all of these are needed for all applications in all vehicles. Some will be applicable for one vehicle, some for another.

It is intended that the test results from this document will be helpful to the electrical designer in making a selection based on the demonstrated performance of a wire under a variety of conditions. The designer may choose to develop additional tests for any unusual requirements of a new vehicle which are not covered in this document. As such this document should be viewed as a check list of baseline criteria for evaluation purposes. It should be supplemented to reflect requirements not contained herein.

A number of the tests contained herein are not short term procedures. As such these tests should be considered for evaluation purposes only, and not as a check on the quality conformance of a wire. This document also contains some new tests that have not been rigorously confirmed as reproducible. Such new tests are identified under the precision and bias statements in the individual test methods.

--`,,```,,,,````-`-`,,`,,`,`,,`---

TABLE OF CONTENTS

1.SCOPE (5)

1.1Contents (5)

1.2Test Method Numbering (5)

2.APPLICABLE DOCUMENTS (5)

2.1SAE Publications (6)

2.2ASTM Publications (6)

2.3ANSI Publications (7)

2.4U.S. Government Publications (7)

3.INDEX OF SECTIONS AND TEST METHODS (7)

3.1Test Methods Group 100 - Assembly, Handling, and Repair Tests (7)

3.2Test Methods Group 200 - Chemical, Biological, Radiological/Nuclear, Biological, Chemical (CBR/NBC)8 3.3Test Methods Group 300 - Physical Damage Tests (8)

3.4Test Methods Group 400 - Conductor Tests (8)

3.5Test Methods Group 500 - Electrical Tests (8)

3.6Test Methods Group 600 - Environmental Tests (8)

3.7Test Methods Group 700 - Mechanical Tests (9)

3.8Test Method Group 800 - Thermal Tests (9)

3.9Test Methods Group 900 - Weight and Dimensional Tests (9)

3.10Test Methods Group 1000 - Wire Identification Marking and Evaluation (10)

4.TEST METHODS AND TEST PROCEDURES (10)

4.1Test Methods Group 100 - Assembly, Handling and Repair Tests (10)

4.1.1Method 101, Concentricity and Wall Thickness (10)

4.1.2Method 102, Insulation Bonding to Potting Compounds (11)

4.1.3Method 103, Insulation Pull-Off Force (12)

4.1.4Method 104, Insulation Shrinkage/Expansion (12)

4.1.5Method 105, Solderability (13)

4.1.6Method 106, Thermal/Mechanical Resistance - Single Wire (14)

4.1.7Method 107, Thermal/Mechanical Resistance - Bundle (17)

4.1.8Method 108, Solder Pot Test for Insulation Shrinkage (18)

4.1.9Method 109, Percent Overlap of Insulating Tapes (18)

4.2Test Methods Group 200 - Chemical, Biological and Radiological Tests/Nuclear,

Biological and Chemical (CBR/NBC) (20)

4.3Test Methods Group 300 - Physical Damage Tests (20)

4.4Test Methods Group 400 - Conductor Tests (20)

4.4.1Method 401, Conductor Diameter (20)

4.4.2Method 402, Conductor Elongation and Tensile Breaking Strength (21)

4.4.3Method 403, Conductor Resistance (23)

4.4.4Method 404, Conductor Strand Blocking (24)

4.5Test Methods Group 500 - Electrical Tests (26)

4.5.1Method 501, Dielectric Constant (26)

4.5.2Method 502, Corona Inception and Extinction Voltages (27)

4.5.3Method 503, Impulse Dielectric (28)

4.5.4Method 504, Insulation Resistance (28)

4.5.5Method 505, Spark Test of Finished Wire Insulation (29)

4.5.6Method 506, Surface Resistance (29)

4.5.7Method 507, Time/Current to Smoke (30)

4.5.8Method 508, Dry Arc Propagation Resistance (31)

4.5.9Method 509, Wet Arc Propagation Resistance (38)

4.5.10Method 510, Voltage Withstand (Wet Dielectric) (42)

4.5.11Method 511, Wire Fusing Time (42)

4.5.12Method 512, Voltage Rating: TO BE DETERMINED (43)

4.6Test Methods Group 600 - Environmental Tests (43)

4.6.1Method 601, Fluid Immersion (43)

4.6.2Method 602, Forced Hydrolysis (45)

4.6.3Method 603, Humidity Resistance (46)

4.6.4Method 604, Weight Loss Under Temperature and Vacuum (46)

--`,,```,,,,````-`-`,,`,,`,`,,`---

4.6.5Method 605, Propellant Resistance (47)

4.6.6Method 606, Weathering Resistance (47)

4.6.7Method 607, Wicking (48)

4.7Test Methods Group 700 - Mechanical Tests (49)

4.7.1Method 701, Abrasion (49)

4.7.2Method 702, Cold Bend (49)

4.7.3Method 703, Dynamic Cut-Through (50)

4.7.4Method 704, Flex Life (51)

4.7.5Method 705, Insulation Tensile Strength and Elongation (53)

4.7.6Method 706, Notch Propagation (54)

4.7.7Method 707, Stiffness and Springback (55)

4.7.8Method 708, Mandrel and Wrapback Test (58)

4.7.9Method 709, Wrinkle Test (59)

4.7.10Method 710, Durability of Wire Manufacturer's Color and/or Identification (60)

4.7.11Method 711, Durability and Legibility of Wire Installer's Identification (61)

4.7.12Method 712, Bend Test (64)

4.8Test Methods Group 800 - Thermal Tests (65)

4.8.1Method 801, Flammability (65)

4.8.2Method 802, High Pressure/High Temperature Air Impingement (Burst Duct) (66)

4.8.3Method 803, Smoke Quantity (68)

4.8.4Method 804, Relative Thermal Life and Temperature Index (68)

4.8.5Method 805, Thermal Shock Resistance (69)

4.8.6Method 806, Property Retention After Thermal Aging (70)

4.8.7Method 807, Multi-day Heat Aging Test (Life Cycle) (71)

4.8.8Method 808, Blocking (72)

4.8.9Method 809, Lamination Sealing (73)

4.8.10Method 810, Topcoat Cure (73)

4.8.11Method 811, Cross-link Proof Test (74)

4.8.12Method 812, Flame Resistance (76)

4.8.13Method 813, Insulation State of Sinter (79)

4.9Test Methods Group 900 - Wire Diameter and Weight (80)

4.9.1Method 901, Finished Wire Diameter (80)

4.9.2Method 902, Finished Wire Weight (81)

4.10Test Methods Group 1000 - Wire Identification Marking and Evaluation (81)

4.10.1Method 1001, Wire Marking Contrast (81)

5.NOTES (86)

APPENDIX A (87)

TABLE 1 (7)

TABLE 2 (8)

TABLE 3 (8)

TABLE 4 (8)

TABLE 5 (9)

TABLE 6 (9)

TABLE 7 (9)

TABLE 8 (10)

TABLE 9 (13)

TABLE10 ELECTRICAL CONNECTION (33)

TABLE 11 CIRCUIT RESISTANCE (33)

TABLE 12 ELECTRICAL CONNECTION (40)

TABLE 13 CIRCUIT RESISTANCE (40)

TABLE 14 FLUID TABLE (44)

TABLE 15 (57)

TABLE 16 (60)

TABLE 17 (65)

TABLE 18 MAXIMUM RECOMMENDED VALUES (70)

TABLE 19 (70)

TABLE 20 ....................................................................................................................................................................72--` , , ` ` ` , , , , ` ` ` ` -` -` , , ` , , ` , ` , , ` ---

FIGURE 1 THERMAL/MECHANICAL RESISTANCE TEST SETUP...........................................................................15 FIGURE 2 TWO SUGGESTED PLACEMENTS FOR SNAP SWITCH TO START TIMER ........................................15 FIGURE 3 CONTINUITY DETECTION CIRCUIT FOR SOLDER IRON RESISTANCE TEST...................................16 FIGURE 4 FORMULA FOR CALCULATING PERCENT OVERLAP...........................................................................19 FIGURE 5 TYPICAL 7-STRAND CONDUCTOR AFTER BIRDCAGING (NO STRANDS BLOCKED).......................25 FIGURE 6 BLADE ........................................................................................................................................................34 FIGURE 7 ALUMINUM BLADE SHARPENING FIXTURE...........................................................................................35 FIGURE 8 BUNDLE CONFIGURATION......................................................................................................................35 FIGURE 9 BUNDLE TYING..........................................................................................................................................36 FIGURE 10 TEST FIXTURE...........................................................................................................................................36 FIGURE 11 ELECTRICAL CONNECTION.....................................................................................................................37 FIGURE 12 BALL SLIDE BLADE FIXTURE...................................................................................................................37 FIGURE 13 BUNDLE CONFIGURATION......................................................................................................................39 FIGURE 14 BUNDLE TYING..........................................................................................................................................40 FIGURE 15 ELECTRICAL CONNECTION.....................................................................................................................41 FIGURE 16 FLEX LIFE TEST SETUP...........................................................................................................................52 FIGURE 17 NOTCHING TOOL......................................................................................................................................55 FIGURE 18 TEST FIXTURE FOR STIFFNESS AND SPRINGBACK TEST.................................................................56 FIGURE 19 STIFFNESS AND SPRINGBACK TEST FIXTURE BASE PLATE.............................................................57 FIGURE 20 WRAP BACK TEST....................................................................................................................................59 FIGURE 21 CLAMP DEVICE FOR PRINT DURABILITY TEST....................................................................................63 FIGURE 22 ELECTRICAL CONNECTIONS FOR TEST METHOD 802.......................................................................67 FIGURE 23 TYPICAL SAMPLE ARRANGEMENT........................................................................................................71 FIGURE 24 TYPICAL SAMPLE ARRANGEMENT........................................................................................................75 FIGURE 25 FLAME RESISTANCE TEST FIXTURE.....................................................................................................77 FIGURE 26 BURNER DETAILS.....................................................................................................................................78 FIGURE 27 LIGHTING EQUIPMENT.............................................................................................................................83 FIGURE 28

CONTRAST MEASUREMENT ON WIRE SPECIMEN MARKINGS (85)

--`,,```,,,,````-`-`,,`,,`,`,,`---

1. SCOPE

This standard describes test methods for insulated, single conductor, electric wire intended for aerospace applications. Particular requirements for the wire being tested need to be specified in a procurement document or other detail specification. Suggested minimum requirements are included in the notes at the end of some of the test methods. SAE Performance Standard AS4372 uses some of the tests in this document for evaluating comparative performance of aerospace wires.

1.1 Contents

This document is comprised of the following Sections:

1. Scope including Contents and Numbering System

2. Applicable Documents

3. Index of Sections and Test Methods

4. Test Methods and Test Procedures

1.2 Test Method Numbering

The test methods are assigned numbers, such as 101, 102, etc., from the applicable group as follows:

a. Group 100: Assembly, Handling, and Repair Tests

b. Group 200: Chemical, Biological, Radiological (CBR) Tests

c. Group 300: Physical Damage Tests

d. Group 400: Conductor Tests

e. Group 500: Electrical Tests

f. Group 600: Environmental Tests

g. Group 700: Mechanical Tests

h. Group 800: Thermal Tests

i. Group 900: Weight and Dimensional Tests

j. Group 1000: Wire Identification Marking and Evaluation

2. APPLICABLE DOCUMENTS

The following publications form a part of this document to the extent specified herein. The latest issue of SAE publications shall apply. The applicable issue of other publications shall be the issue in effect on the date of the purchase order. In the event of conflict between the text of this document and references cited herein, the text of this document takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

--`,,```,,,,````-`-`,,`,,`,`,,`---

2.1 SAE Publications

Available from SAE International, 400 Commonwealth Drive, Warrendale, PA 15096-0001, Tel: 877-606-7323 (inside USA and Canada) or 724-776-4970 (outside USA), https://www.doczj.com/doc/3a8687339.html,.

AMS1424 Anti-Icing and Deicing-Defrosting Fluid

AS1241 Fire Resistant Phosphate Ester Hydraulic Fluid for Aircraft

AS3320 Stud - Straight, Ring Locked, CRES AMS 5731, .250-20UNJC X .250-28UNJF

AS4372 Performance Requirements for Wire, Electric, Insulated Copper or Copper Alloy

AS4851 Relative Thermal Life and Temperature Index for Insulated Electric Wire

AS5649 Wire and Cable Marking Process, UV Laser

AS22759/35 Wire, Electrical, Fluoropolymer-Insulated, Crosslinked Modified ETFE, Normal Weight, Silver-Coated, High-Strength Copper Alloy, 200°C, 600 Volt

AS25244 Circuit Breaker, Trip-Free, Push-Pull, 5 Thru 50 Amp, Type I

AS25281 Clamp, Loop, Plastic, Wire Support

AS58091 Circuit Breaker, Trip Free, Aircraft, General Specification for

AS50881 Wiring, Aerospace Vehicle

J1966 Lubricating Oils, Aircraft Piston Engines (Non-Dispersant Mineral Oil)

2.2 ASTM Publications

Available from ASTM International, 100 Barr Harbor Drive, P.O. Box C700, West Conshohocken, PA 19428-2959, Tel: 610-832-9585, https://www.doczj.com/doc/3a8687339.html,.

ASTM D 412 Rubber Properties in Tension, Standard Test Method for

ASTM D 471 Standard Test Fluids

ASTM D 638 Tensile Properties of Plastics, Test Method for

ASTM D 910 Aviation Gasoline, Standard Specification for

ASTM D 1153 Methyl Isobutyl Ketone, Standard Specification for

ASTM D 1868 Detection and Measurement of Partial Discharge (Corona) Pulse in Evaluation of Insulation Systems, Standard Test Method for

ASTM D 3032 Hookup Wire Insulation, Standard Test Method for

ASTM D 4814 Gasoline, Automotive, Combat

ASTM F 814 Specific Optical Density of Smoke Generated by Solid Materials for Aerospace Applications Standard Test Method for

ASTM G 53 Operating Light- and Water-Exposure Apparatus (Fluorescent UV-Condensation Type) for Exposure of Non-metallic Materials, Standard Practice for

--`,,```,,,,````-`-`,,`,,`,`,,`---

2.3 ANSI Publications

Available from American National Standards Institute, 25 West 43rd Street, New York, NY 10036-8002, Tel: 212-642-4900, https://www.doczj.com/doc/3a8687339.html,.

TT-I-735 Isopropyl

Alcohol

2.4 U.S. Government Publications

Available from the Document Automation and Production Service (DAPS), Building 4/D, 700 Robbins Avenue, Philadelphia, PA 19111-5094, Tel: 215-697-6257, https://www.doczj.com/doc/3a8687339.html,/quicksearch/.

MIL-C-43616 Cleaning Compound, Aircraft Surface

MIL-DTL-5624 Turbine Fuel, Aviation Grades JP-4, JP-5 and JP-5/JP-8 ST

MIL-DTL-83133 Turbine Fuels, Aviation, Kerosene Types, NATO F-34(JP-8) and NATO F-35

MIL-PRF-5606 (Inactive for New Design) Hydraulic Fluid, Petroleum Base, Aircraft, Missile and Ordnance Hydrocarbon Base, Aircraft, Metric, NATO Code Number H-537

MIL-PRF-7808 Lubricating Oil, Aircraft Turbine Engine, Synthetic Base, NATO Code Number 0-148

MIL-PRF-23699 Lubricating Oil, Aircraft Turbine Engine, Synthetic Base, NATO Code Number 0-156

MIL-PRF-87252 Coolant Fluid, Hydrolytically Stable, Dielectric

MIL-PRF-87937 Cleaning Compounds, Aircraft Exterior Surfaces, Water Dilutable

MIL-STD-202 Test Methods for Electronic and Electrical Component Parts

MIL-STD-704 Aircraft Electric Power Characteristics

3. INDEX OF SECTIONS AND TEST METHODS

3.1 Test Methods Group 100 - Assembly, Handling, and Repair Tests

TABLE 1

Method

No. Title

101 Concentricity and Wall Thickness

102 Insulation Bonding to Potting Compounds

103 Insulation Pull-off Force

104 Insulation

Shrinkage/Expansion

105 Solderability

106 Thermal/Mechanical Resistance - Single Wire

107 Thermal/Mechanical Resistance - Bundle

108 Solder Pot Test for Insulation Shrinkage

109 Percent Overlap of Insulating Tapes --` , , ` ` ` , , , , ` ` ` ` -` -` , , ` , , ` , ` , , ` ---

3.2 Test Methods Group 200 - Chemical, Biological, Radiological/Nuclear, Biological, Chemical (CBR/NBC)

No test methods have been adopted for Group 200 - CBR/NBC. The United States military have done extensive testing on materials in a CBR/NBC environment. This information remains classified but is available to prime contractors. This section is reserved for industry CBR/NBC tests that may be developed or instituted in the future.

3.3 Test Methods Group 300 - Physical Damage Tests

No test methods have been adopted for Group 300 – Physical Damage Tests. This section is reserved for physical and/or in-service damage tests that may be developed or instituted in the future.

3.4 Test Methods Group 400 - Conductor Tests

TABLE 2

Method

No. Title

401 Conductor

Diameter

402 Conductor Elongation and Tensile Breaking Strength

403 Conductor

Resistance

404 Conductor Strand Blocking

3.5 Test Methods Group 500 - Electrical Tests

TABLE 3

Method

No. Title

501 Dielectric

Constant

502 Corona Inception and Extinction Voltages

503 Impulse

Dielectric

504 Insulation

Resistance

505 Spark Test of Finished Wire Insulation

506 Surface

Resistance

507 Time/Current to Smoke

508 Dry Arc Propagation Resistance

509 Wet Arc Propagation Resistance

510 Voltage Withstand (Wet Dielectric)

511 Wire Fusing Time

512 Voltage

Rating

3.6 Test Methods Group 600 - Environmental Tests

TABLE 4

Method

No. Title

601 Fluid

Immersion

602 Forced

Hydrolysis

603 Humidity

Resistance

604 Weight Loss Under Temperature and Vacuum

605 Propellant

Resistance

606 Weathering

Resistance

607 Wicking --` , , ` ` ` , , , , ` ` ` ` -` -` , , ` , , ` , ` , , ` ---

3.7 Test Methods Group 700 - Mechanical Tests

TABLE 5

Method

No. Title

701 Abrasion

702 Cold

Bend

703 Dynamic Cut Through

704 Flex

Life

705 Insulation Tensile Strength and Elongation

706 Notch

Propagation

707 Stiffness and Springback

708 Mandrel and Wrapback Test

709 Wrinkle

Test

710 Durability of Wire Manufacturer's Color/Identification

711 Durability of Wire Installer's Identification

712 Bend

Test

3.8 Test Method Group 800 - Thermal Tests

TABLE 6

Method

No. Title

801 Flammability

802 High Pressure/High Temperature Air Impingement (Burst Duct)

803 Smoke

Quantity

804 Relative Thermal Life and Temperature Index

805 Thermal Shock Resistance

806 Property Retention After Thermal Aging

807 Multi-day Heat Aging Test (Life Cycle)

808 Blocking

809 Lamination

Sealing

810 Topcoat

Cure

811 Cross-link Proof Test

812 Flame

Resistance

813 Insulation State of Sinter

3.9 Test Methods Group 900 - Weight and Dimensional Tests

TABLE 7

Method

No. Title

901 Finished Wire Diameter

902 Finished Wire Weight --` , , ` ` ` , , , , ` ` ` ` -` -` , , ` , , ` , ` , , ` ---

3.10 Test Methods Group 1000 - Wire Identification Marking and Evaluation

TABLE 8

Method No. Title 1001 Wire Marking Contrast

4. TEST METHODS AND TEST PROCEDURES 4.1 Test Methods Group 100 - Assembly, Handling and Repair Tests 4.1.1

Method 101, Concentricity and Wall Thickness

4.1.1.1 Scope

This test is to be used to determine the wall thickness and concentricity of an insulated wire. 4.1.1.2 Specimen

A wire specimen of not less than 6 in (152 mm) shall be tested. 4.1.1.3 Test Equipment 4.1.1.3.1 Magnifying Device

A microscope or optical comparator equipped with devices capable of making measurements reproducible to at least

0.0005 in (0.013 mm) shall be used. 4.1.1.4 Test Procedure 4.1.1.4.1

Wholly Tape Wrapped Constructions

Measurements of wall thickness shall be by measuring the finished wire insulation at its thinnest point. The wall thickness measurement shall be the shortest distance between the outermost rim of the finished wire and the outer rim of the outermost strand of the conductor. 4.1.1.4.2 Other Constructions

All other constructions shall have wall thickness measurements performed in accordance with section 16 of ASTM D 3032.

4.1.1.4.2.1 Concentricity

Of other than wholly tape wrapped constructions shall be calculated from the wall thickness as shown below: a. Size 30 through 10:

thickness

wall Maximum 100

thickness wall Minimum ity Concentric %×=

(Eq. 1)

--`,,```,,,,````-`-`,,`,,`,`,,`---

b. Size 8 through 0000:

apart

90taken ts measuremen 4of thickness wall Average 100

thickness wall Minimum ity Concentric %°×=

(Eq. 2)

4.1.1.5 Results

Report wall thickness measurements for all constructions. Report concentricity for those constructions that are not wholly tape wrapped. 4.1.1.6

Information Required in Detail Specification

Number and wire size of specimens to be tested and number of measurements. 4.1.1.7 Precision Bias

A minimum concentricity of 70% is usually desirable. 4.1.2

Method 102, Insulation Bonding to Potting Compounds

4.1.2.1 Scope

This test is to be used to measure the bonding between potting compounds and wire insulation. 4.1.2.2 Specimen

See section 19.3 of ASTM D 3032 for specimen preparation. 4.1.2.3 Test Equipment

See section 19.2 of ASTM D 3032 for test apparatus. 4.1.2.4 Test Procedure

See section 19.4 of ASTM D 3032 for the test procedure and section 19.5 of ASTM D 3032 for the calculation of the pull-out strength. 4.1.2.5 Results

Report the average pull-out strength, specific identification of the potting compound, and surface preparation of the wire insulation.

4.1.2.6 Information Required in the Detail Specification

Description of the potting compound, primer (if applicable), surface preparation, and number of specimens to be tested. 4.1.2.7 Precision Bias

See section 19.7 of ASTM D 3032 for precision bias. Potting compounds can vary in property between manufacturer's and location of testing facilities. Care should be taken in drawing conclusion from single test results

--`,,```,,,,````-`-`,,`,,`,`,,`---

4.1.3 Method 103, Insulation Pull-Off Force

4.1.3.1 Scope

This test method is to be used to determine the force required to remove the insulation material from the conductor of a finished wire.

4.1.3.2 Specimen

See section 27.4 of ASTM D 3032.

4.1.3.3 Test

Equipment

See ASTM D 638 and section 27.3 of ASTM D 3032.

4.1.3.4 Test

Procedure

4.1.3.4.1 Perform sections 27.

5.1 through 27.5.5 of ASTM D 3032.

4.1.3.5 Results

Report results of pull test in pounds-force (Newton).

4.1.3.6 Information Required in Detail Specification

Number of specimens to be tested.

4.1.3.7 Precision

Bias

This test method of ASTM D 3032 has not had the benefit of round-robin testing to determine precision.

4.1.4 Method 104, Insulation Shrinkage/Expansion

4.1.4.1 Scope

This test is to determine the longitudinal shrinkage or expansion experienced by a wire insulation after brief heat aging.

4.1.4.2 Specimen

The specimen shall be a 13 in (330 mm) length of wire cut flush on both ends.

4.1.4.3 Test

Equipment

4.1.4.3.1 A razor blade or equivalent device to remove an insulation slug from conductor.

4.1.4.3.2 A device capable of measurement to 0.001 in (0.025 mm).

4.1.4.3.3 An air oven capable of maintaining the specified temperatures and tolerances. --` , , ` ` ` , , , , ` ` ` ` -` -` , , ` , , ` , ` , , ` ---

4.1.4.4 Test

Procedure

Strip 1/2 in (12.7 mm) of insulation shall be from each end of the finished wire specimen. Use a razor blade (or equivalent) held perpendicular to the axis of the wire to remove the insulation. The length of the exposed conductor at each end of the specimen shall be measured to the nearest 0.005 in (0.13 mm). The specimen shall be exposed for 6 h to a minimum temperature of 30 °C ± 3 °C (86 °F ± 5 °F) above the rated temperature of the specimen. An air circulating oven shall be used for this exposure. At the end of 6 h, remove the specimen from the oven and allow it to return to room temperature. Each end of the specimen shall be measured to the nearest 0.005 in (0.13 mm). The longitudinal shrinkage or expansion of the insulation shall be the greatest distance any layer of insulation has moved on either end of the specimen.

4.1.4.5 Results

Report oven temperature and greatest shrinkage or expansion of insulation.

4.1.4.6 Information Required in Detail Specification

Number and wire size of specimens to be tested, temperature rating of the insulated wire and limit of allowable shrinkage or expansion.

Bias

4.1.4.7 Precision

A maximum longitudinal shrinkage or expansion of 0.125 in (3.13 mm) is usually desirable for sizes 12 and smaller. A maximum shrinkage or expansion requirement of 0.250 in (6.25 mm) is usually desirable for sizes 10 and larger. --`,,```,,,,````-`-`,,`,,`,`,,`---

4.1.5 Method 105, Solderability

4.1.

5.1 Scope

This test is to be used to determine the solderability of tin coated copper conductor. At present, the solderability of wires with other coatings has not been validated to this or other test methods.

4.1.

5.2 Specimen

A wire specimen of not less than 10 in (254 mm) shall be used.

4.1.

5.3 Test

Equipment

See Sections 2 and 3 of Method 208, MIL-STD-202.

Procedure

4.1.

5.4 Test

See Section 4 of Method 208, MIL-STD-202. One of the three test conditions listed in Table 9 shall be used.

TABLE 9

Hours

of

Aging Flux

Condition Steam

A 8

R

B 1

R

R

C 0

4.1.

5.5 Results

Report the actual and average results of the solderability test and the condition used.

4.1.

5.6 Information Required in Detail Specification

Number and wire size of specimens to be tested, test condition required, and soldering pot or soldering iron method.

Bias

4.1.

5.7 Precision

This is a new method that has not had the benefit of any round-robin testing to determine precision.

4.1.6 Method 106, Thermal/Mechanical Resistance - Single Wire

4.1.6.1 Scope

This test is to be used to determine the combined thermal/mechanical cut-through resistance of an individual insulated wire and to simulate possible wire damage during removal of overbraids from wire bundles.

4.1.6.2 Specimen

A wire specimen of not less than 12 in (305 mm) shall be tested.

Equipment

4.1.6.3 Test

4.1.6.3.1 A solder iron or system capable of controlling tip temperatures to 398 °C ± 3 °C (750 °F ± 5 °F), 343 °C ±

3 °C (650 °F ± 5 °F), and 288 °C ± 3 °C (550 °F ± 5 °F). The solder iron is to be equipped with a screwdriver

tip approximately 0.105 in (2.67 mm) wide by 0.05 in (1.27 mm) thick.

4.1.6.3.2 A temperature-measuring device capable of providing an accurate measurement of the solder iron tip

described in 4.1.6.3.1.

4.1.6.3.3 A scale capable of measuring a 5 lb (2.27 kg) ±3%, weight.

4.1.6.3.4 Moment external limit switch.

4.1.6.3.5 60 min standard timer.

4.1.6.3.6 Continuity detector box.

fixture, and procedure.

setup,

4.1.6.3.7 Test

Procedure

4.1.6.4 Test

Setup

4.1.6.4.1 Test

A recommended test setup is shown in Figure 1 and described in the following paragraphs. Use of equivalent, alternate fixtures to hold the soldering iron or boxes to detect continuity are acceptable.

4.1.6.4.1.1 Build a test fixture to hold the soldering iron in a vertical position. Figure 1 shows a clamp attached to a

lever arm with no friction. The solder iron shall be weighted via the lever arm to provide a 5 lb (2.27 kg)

load to the soldering iron tip. A 1 in (25.4 mm) minimum thickness PTFE sheet will provide a non-heat-

conducting surface for the wire to rest on and a small groove in the PTFE sheet will help to keep the wire

specimen in place during test. The limit switch used to start the timer shall be placed in either of the two

locations shown in Figure 2. The first location is attached to the vertical stand so that the limit switch is

activated by the lever arm as it is lowered onto the wire. The second location is beneath the PTFE sheet so

that the force associated with the soldering iron resting on the wire activates the switch.

--`,,```,,,,````-`-`,,`,,`,`,,`---

SAE AS4373 Revision C - 15 -

FIGURE 1 - THERMAL/MECHANICAL RESISTANCE TEST SETUP

FIGURE 2 - TWO SUGGESTED PLACEMENTS FOR SNAP SWITCH TO START TIMER

--`,,```,,,,````-`-`,,`,,`,`,,`---

4.1.6.4.1.2

The schematic for a suggested continuity tester box with a timer circuit is shown in Figure 3.

4.1.6.4.1.3

Check for the 5 lb (2.27 kg) load at solder iron tip by lowering the solder iron tip onto the scale and adding weights to the control arm until scale registers 5 lb (2.27 kg).

4.1.6.4.2 Test Procedure 4.1.6.4.2.1

Place wire specimen in groove of 1 in (25.4 mm) PTFE sheet and secure with tape.

4.1.6.4.2.2 Connect iron-constantan thermocouple to solder iron tip, and temperature measuring device described in

4.1.6.3.2. Measure the exact temperature of the solder iron tip and adjust solder iron to obtain required initial temperature of 398 °C ± 3 °C (750 °F ± 5 °F). 4.1.6.4.2.3

Connect continuity detector circuit using size 20 lead wire with alligator clips to solder iron and to the end of

the wire specimen.

FIGURE 3 - CONTINUITY DETECTION CIRCUIT FOR SOLDER IRON RESISTANCE TEST

--`,,```,,,,````-`-`,,`,,`,`,,`---

4.1.6.4.2.4 Lower the solder iron onto the wire specimen. Record the time it takes the solder iron to penetrate through

the wire insulation as measured by the timer. Repeat test four times on each wire specimen. Rotate the

specimen 90 degrees and index 0.5 in (12.7 mm) along specimen length for each repeat test. If penetration

does not occur within 1 min, stop the test. Continue with next specimen.

4.1.6.4.2.5 Clean solder iron tip by lightly buffing with emery paper to remove residues after each test.

4.1.6.4.2.6 If failure occurs at 398 °C (750 °F), repeat same test at 343 °C (650 °F) on same wire specimen. If failure

occurs at 343 °C (650 °F), repeat same test at 288 °C (550 °F) on same wire specimen.

4.1.6.5 Results

The time recorded as the time required for penetration of the solder iron to the inner conductor shall be the average time of the measurements taken.

4.1.6.6 Information Required in Detail Specification

Number and wire size of specimens to be tested.

--`,,```,,,,````-`-`,,`,,`,`,,`---

4.1.6.7 Precision

Bias

This is a new method that has not had the benefit of any round-robin testing to determine precision.

4.1.7 Method 107, Thermal/Mechanical Resistance - Bundle

4.1.7.1 Scope

This test is to be used to determine the ability of a bundle of insulated wire specimens to withstand the heat of a soldering iron when the iron rests on the bundle.

4.1.7.2 Specimen

Ten 12 in (305 mm) insulated wire specimens of the same size shall be used for each bundle to be tested. The bundle shall be formed by string-tying the grouped wires every 3 in (76 mm) from either end.

Equipment

4.1.7.3 Test

The test equipment used, including monitoring/timing circuitry and excluding the test fixture, shall be as described in Method 106 of this document.

Procedure

4.1.7.4 Test

Connect the stripped end of all wires to a common lead and use this lead to detect continuity between the iron and any conductor. See Figure 3 of Method 106 for a continuity detection circuit. Limit switch location similar to the second location of the limit switch shown in Figure 2 of Method 106 may be used. Lay the barrel of the soldering iron perpendicularly across the bundle so that it does not touch any string tie. If necessary, elevate the bundle to achieve contact. Measure the time for the iron to make contact with any conductor in the bundle. The test may be terminated if no penetration occurs within 5 min. Test with the soldering iron at 398 °C (750 °F), 343 °C (650 °F), and 288 °C (550 °F). Test three locations for each temperature, making sure that each point of contact is at least 0.5 in (13 mm) from any previous contact. It is not necessary to test at lower temperatures if no penetration occurs at 398 °C (750 °F).

4.1.7.5 Results

Report the time to penetration at all test temperatures.

4.1.7.6 Information Required in Detail Specification

Number and wire size of specimens to be tested.

Bias

4.1.7.7 Precision

This is a new method that has not had the benefit of any round-robin testing to determine precision.

4.1.8 Method 108, Solder Pot Test for Insulation Shrinkage

4.1.8.1 Scope

--`,,```,,,,````-`-`,,`,,`,`,,`---

This test is to be used to assess the insulation shrinkage of a wire after exposure to hot solder.

4.1.8.2 Specimen

The specimen shall be a length of insulated wire not less than 6 in (152 mm).

4.1.8.3 Test

Equipment

4.1.8.3.1 A suitable container of molten (63/37 tin/lead) solder maintained at a temperature of approximately 320 °C

(608 °F).

4.1.8.3.2 Mandrels of the sizes needed in 4.1.8.4.

Procedure

4.1.8.4 Test

The specimen shall be taken from a point at least 6 in from the end of an inspection unit and shall be prepared for testing by removing 0.5 in of insulation from one end. At a point 0.5 in from the end of the insulation on the stripped end, the specimen shall be given a 90 degree bend over a mandrel of its own diameter. This end shall then be immersed in the solder for 5 s, to within 1/8 in of the insulation. There shall be no flux used in preparing the specimen. The insulation shall not flare away from the conductor nor open up over the bent portion. The shrinkage shall be measured as the greatest distance any layer of insulation has moved.

4.1.8.5 Results

Record the amount of shrinkage to the nearest 1 mm (1/32 in).

4.1.8.6 Information Required in Detail Specification

Number and wire size of specimens to be tested and limit of allowable shrinkage.

4.1.8.7 Precision

Bias

This is a process control test.

4.1.9 Method 109, Percent Overlap of Insulating Tapes

4.1.9.1 Scope

This test determines the percent overlap of the insulating tape or tapes used in a finished wire.

4.1.9.2 Specimen

The specimen shall be not less than a 6 in (152 mm) length of wire cut flush on both ends. 4.1.9.3 Test Equipment 4.1.9.3.1 Insulation stripping tool with precision blades. 4.1.9.3.2 A single edged razor blade or equivalent cutting tool.

4.1.9.3.3

A microscope or equivalent optical device providing a magnification of 15 diameters minimum (preferably one

with an eyepeice of similar means to measure angles).

4.1.9.4 Test Procedure

The test sample shall consist of at least three specimens. Specimens shall be prepared by stripping an insulation slug approximately 0.50 inch in length using the precision stripping tool. With the razor blade or cutting tool, cut the edge of each insulation slug to be examined. The cut faces of the specimen must be smooth, perpendicular to the slug axis, and perpendicular to each other. The cut edge of the insulation slug to be examined shall be positioned under the microscope or suitable optical device. Inspect the cut cross section under the microscope or suitable device at a magnification of 15 diameters, minimum. Measure, in degrees of rotation, the total length of the spiral edge displayed by the innermost insulation tape (wrap 1) in the cross section. Using the formula noted in Figure 4, convert the degrees of rotation to percent overlap of the tape in the insulation. Repeat the determination for any additional tape (wrap 2, etc.) in the cross section.

100))360/x (N (1))360/x (N (overlap %×???

?

????+?+=

N = number of complete 360° overlaps x = additional degrees of overlap past 360°

FIGURE 4 - FORMULA FOR CALCULATING PERCENT OVERLAP

4.1.9.5 Results

Report the degrees of rotation observed and the percent tape overlap of each tape in the insulation of each specimen 4.1.9.6

Information Required in Detail Specification

Specifications for wires with tape wrapped insulation shall list the minimum tape overlap of each insulating tape used in

the finished wire.

4.1.9.7 Precision Bias

This test is only applicable to tape wrapped wire to provide verification of insulation overlap and is typically performed as an in-process test.

--`,,```,,,,````-`-`,,`,,`,`,,`---

EXAMPLE:

Example: If x = 25 degree in the above picture the results would be: =×????

????+?+=100))360/25(2(1))360/25(2(overlap %

%7.51100069

.2069

.1overlap %=×=

4.2 Test Methods Group 200 - Chemical, Biological and Radiological Tests/Nuclear, Biological and Chemical

(CBR/NBC) 4.2.1

When required by a user, specimens of insulation material shall be tested to the CBR/NBC requirements. Note that the Air Force has established an extensive data base on the chemical compatibility of materials for use in aerospace vehicles. While this database as a whole is classified information, it has been made available to prime aerospace contractors. Current contact for this database is at WL-MLSA, Wright Patterson AFB, Ohio. In addition, the Army has done extensive testing of a number of materials and should be consulted before testing to determine if a candidate insulation material has already been tested. Contact for this is NBC Survivability Office, Army CR&D, Edgewood, MD.

The intent of this material testing is to assure inertness of a material to the CBR/NBC exposure. The Air Force and the Army has established over a dozen qualified laboratories to do this type of CBR/NBC testing. However, these laboratories are not empowered to determine the suitability of an item, such as a wire, after exposure, but only to determine if there is an effect on the materials used for insulation. It is not recommended that handling of items after exposure be done outside of these qualified labs due to personnel safety considerations.

4.3 Test Methods Group 300 - Physical Damage Tests

This section is reserved for physical and/or in-service damage tests that may be developed or instituted in the future. 4.4 Test Methods Group 400 - Conductor Tests 4.4.1

Method 401, Conductor Diameter

4.4.1.1 Scope

This test is to be used to determine the diameter of conductors.

--`,,```,,,,````-`-`,,`,,`,`,,`---

转帖电线电缆绝缘材料的选择PVC胶粒1基本配方PVC粉主体一般

转帖]电线电缆绝缘材料的选择 PVC胶粒 1 基本配方 PVC粉:主体一般常用 S60、S65、S70﹔ 可塑剂:主要目的在调整软硬度,提高耐寒绝缘等作用﹔ 填充剂:目的在增强加热,光之安全性,及绝缘性﹔ 改质剂:依特性要求添加﹔ 安定剂:抑制PVC内之少量游离Cl-分解﹔ 防火剂:增强耐烧性﹔ 染颜料:颜色调配。 2 硬度 国际上常以shore A表示之,而国内软硬度常以P%表示,例如:50kg之PVC料,可塑剂40kg时是以80P,50gPVC 料,可塑剂55kg时是以110P表示即可塑剂愈多P数愈大,PVC胶粒愈软而萧氏硬度(shore A)度数愈大,PVC胶粒愈硬。 3 移行说明 电气用品之外壳……等常用的塑料材质大部份为PS,ABS,HIPS,电线为PVC塑材料时,由于含有可塑剂(软化剂),而有此可塑剂会移行者,会将PS,ABS,HIPS塑料壳侵蚀,因此有非移行的要求,也就是PVC材料不能移。 3.1 移行的试验方法 将试片(ABS,或PS或HIPS)两片(长50x宽50x厚20mm),中间夹PVC电线,再上下两层用玻璃盖住并用500±5g砝码压住,施以不同时间(24,48,72小时)不同温度(50℃,60℃,70±2℃)之条件下,测试(条件由客户设定),测试后取出试片,用肉眼观察,试片上不能很轻易的看出痕迹,亦即需极费眼力才能看出来。 ABS = Acrylonitrile Butadiene Styrene Terpolymer 苯乙烯,丁二烯,丙烯,参聚合体 PS = POLYSTRRENE 聚苯乙烯 HIPS = High Impact Polystyrene 高冲击聚苯乙烯 3.2 PVC胶粒应具下列性质 耐热性 ( Thermal Stability ) ﹔ 硬度 ( Hardness )﹔ 安全性 ( Safety )﹔ 老化性 ( Aging Properties ) ﹔ 机械性质 ( Mechanical Properties )﹔ 耐燃性 ( non-flammability )﹔ 电气特性 ( Electrical Properties )﹔ 耐候性 ( Weather ability )﹔ 光安定性 ( Light Stability )﹔ 低温特性 ( Low Temperature Properties )。 二塑料常用特性名词解释 1 抗张强度:(Tensile Strength) 将试样(如哑铃片……等)拉断时所需要之应力,用之单位为PSI或kg/mm2。 2 热变形(Heat Distortion) 将材料适当的取样后,将其加热至一定之温度后,试验该材料之外形改变情况。其计算公式如下: 3 热冲击(Heat Shock)——试验材料稳定性方法之一,将材料在特定的时间内卷绕于规定之圆棒上,暴露于高温中,不得有龟裂现象发生。 4 冷弯(Cold Bend)——将电缆之试样绕在规定之圆棒(Mandrel)上,而置于特定温度之冷室中,通常为零下之温度。再将试样取出作弯曲试验,则可试验出材料之破坏程度或有无缺点。 5 延伸(Elongation)——试样拉断时的伸长情形 6 焊接性(日文:半田性)——PVC芯线等在焊接或热镀时其塑料部份后缩收,所以其材质要经X—RAY处理成架桥,或改其塑料本身性质,如:SR—PVC。 7 老化(Aging)——仿真电缆经长时间的使用后,其物理性(抗张延伸)改变的情形。 8 额定温度(Temperature Rating)——绝缘材料在连续使用之情况下,其基本特性不会发生变化或损失时,所能容许之最高温度。如交连PE为90℃,PVC有60℃,75℃,90℃,105℃,PE为75℃等。 9 额定电压(Voltage Rating)——依照规定或标准可连续实施于各种电缆电缆之最高允许电压。 10 绝缘阻抗(Insulation Resistance)——加于绝缘体两极间之电压与电流之比,以公式表示为R=E/I,其单位一般用M?(百万欧姆表示之)。 11 耐电压(介质强度)(DielectricStrength)——绝缘材质在破坏之前所能承受之电压,介质强度在材料中是一个非常重要特性,在同一种耐电压情况下,介质强度好的材质,其绝缘厚度可以较薄。 三塑料之耐燃测试 依UL规定 UL Standard 94 分为水平燃烧(94—HB)及垂直燃烧

电缆绝缘电阻的测量方法

电缆绝缘电阻的测量方法 1、电缆测量应在光线充足,空气干燥的条件下进行,测量推荐温度20±5℃。 2、电缆绝缘测量的工作负责人必须有三年及以上高压电气作业经验。 3、高压电缆测量前,应办理“两票”。 4、低压电缆测量前,应办理低压柜停送电工作票。 5、电缆绝缘电阻测量之前,应首先断开电缆的电源及负荷,并经充分放电之后方可进行。 6、按照电缆的额定电压选择合适的兆欧表,详见表1。 表1 兆欧表选择标准 序号电缆额定电压等级兆欧表电压等级 1 500V以下电缆500V兆欧表 2 500V<U≤1kV电缆1000V兆欧表 3 1kV以上电缆2500V兆欧表 7、测量前应对兆欧表进行开路实验和短路试验。测量时要先将摇表放平,摇动手把到额定转速此时指针应指向∞,再减低转速,用导线短接正负极,指针应指向零,证明摇表正常。 8、测量时应先测量A、B、C三相对地绝缘电阻,然后测量A、B、C相间绝缘,最后测量地线对绝缘皮的绝缘。测量时另一端安排专人看守,防止电缆相间接触或者接地。 9、遥测时摇表手把的转动速度约120r/min,待仪表指针稳定后,并记录电缆电阻值。停止遥测前,应将表线与电缆的连接断开,以免电缆向摇表反充电。 10、测量完毕后,对电缆芯线进行充分放电的以防触电。 11、1千米电缆的绝缘值应满足表2要求。 表2:电缆绝缘值合格标准 序号电缆电压等级新电缆旧电缆 1 1kv及以下不低于50MΩ不低于2MΩ 2 1kv以上不低于100MΩ不低于50MΩ12、1千米长度的绝缘电阻值=电缆的实际长度(km)×电缆绝缘电阻实测值。对于不足1千米的电缆绝缘测量时,其合格值参考1千米电缆的绝缘合格值。

常用的几种电线电缆绝缘材料

常用的几种电线电缆绝 缘材料 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

常用的几种电线电缆绝缘材料 绝缘层与保护层、屏蔽层、护套层、导体线芯一样,是构成电线电缆必须的基本构件。它确保导体线芯传输的电流或电磁波、光波只沿着导线行进而不流向外面,同时也确保外界物体和人身的安全。今天的电线电缆绝缘材料中,塑料和橡胶两大类有面高分子材料已占主导材料,衍生出类型繁多的适用于不同用途和环境要求的电线电缆产品。 下面介绍生产生活中最常用的几类电线电缆绝缘材料 第一类聚氯乙烯(PVC)料 聚氯乙烯塑料价格便宜,特理机械性能较好,挤出工艺简单,比重轻,耐油和耐腐蚀好。同时,氯乙烯(PVC)性能参数一般,多用来制造1KV及以下的低压电线电缆。采用添加了电压稳定剂的聚氯乙烯(PVC)绝缘料,允许生产6KV级电缆。 聚氯乙烯(PVC)有一定阻燃料,但燃烧时会释放一毒烟气,不宜用于着火燃烧时需要满足低烟、低毒要求的场合。同时聚氯乙烯(PVC)线缆也不适用在含有苯及苯胺类、酮类、吡啶、甲醇、乙醇、乙醛化学剂土质中,不宜用在含有三氯乙烯、三氯甲烷、四氯化碳、二硫化碳、冰醋酸环境中。 第二类:交联聚乙烯(XLPE) 交联聚乙烯(XLPE)电绝缘性能优越,经过高分子交联后成为热固性材料,机械性能和耐热性好。已成为中、高压电力电缆的主导品种。交联聚乙烯(XLPE)也具有结构简单,制造方便,比重轻,敷设方便、耐腐蚀、做终端和中间接头简单。 交联聚乙烯(XLPE)不含卤素,不阻燃,燃烧时不会产生大量毒气及烟雾,若添加阻燃剂,会使机械性能及电气性能下降。交联聚乙烯(XLPE)对紫外线照射敏感。 第三类氟塑料 氟塑料突出特点是电绝缘性能优异,适合高频信号传输,耐高温,可提高载流量,阻燃性好,氧指数高,燃烧时火焰扩散范围小,产生的烟雾量少,还具有优良的耐气候老化性能和机械强度,不受各种酸、碱和有机溶剂影响。但其比重大,价格昂贵,氟塑料主要用于耐高温场合。 第四类橡皮料

电线绝缘电阻测试记录讲解

电线绝缘电阻测试记录 编号: 16-04-001 单位工程名称万达公馆12号楼3楼装修工程分部工程名称建筑电气分项工程名称电气照明安装工程施工图号电施-16 施工执行标准名称及编号《建筑电气工程施工质量验收规 范》GB50303-2002 项目经理史护明 测试仪器型号、精度ZC25-3型绝缘电阻表(0~500MΩ)试验日期2016.04.20 回路编号线路型号、规格、敷设方法 绝缘电阻(MΩ) A-N B-N C-N A-PE B-PE C-PE N-PE -1ATPE-1 变配 电所配电箱 WP1风机控制箱 变配电所送风电源BV-4*2.5+PE2.5导线穿管125 120 130 130 130 125 135 WP2风机控制箱变配电所排放电源BV-4*2.5+PE2.5导线穿管125 135 130 125 125 130 130 WEL1应急照明应急照明电源BV-3*2.5+PE2.5导线穿管130 135 125 WX1插座插座电源BV-2*2.5+PE2.5导线穿管135 130 135 -1A TRD弱电机房 配电箱 WP1 空调 空调电源BV-4*2.5+PE2.5导线穿管130 125 120 125 125 130 120 WEL1应急照明应急照明电源BV-3*2.5+PE2.5导线穿管120 130 125 WX1插座插座电源BV-2*4+PE4导线穿管135 120 130 -1ATP-1生活水 泵控制柜 WEL1应急照明 应急照明电源NHBV-3*2.5+PE2.5导线穿管125 130 135 WX1插座插座电源BV-2*2.5+PE2.5导线穿管125 130 135 1A TXK消控中心 配电箱 WP1 空调 空调电源BV-4*2.5+PE2.5导线穿管120 125 130 125 130 135 120 WEL1应急照明应急照明电源NHBV-3*2.5+PE2.5导线穿管120 135 125 WX1插座插座电源BV-2*4+PE4导线穿管135 120 130 验收结论施工单位 项目专业质量检查员(签名): 项目专业技术负责人(签名): 年月日 专业监理工程师(签名): (建设单位项目专业技术负责人) 年月日

各类绝缘电缆、电线的最高运行温度

各类绝缘电缆、电线的最高运行温度?? 各类绝缘电缆、电线的最高运行温度 绝?缘?类?型?温度限值(℃) 聚氯乙烯(PVC)?70(导体) 交联聚乙烯(XLPE)?90(导体) 乙丙橡胶(EPR)?90(导体) 矿物绝缘(PVC护套或可触及的裸护套)电缆?70(护套) 矿物绝缘(不允许触及和不与可燃物相接触的裸护套电缆)?105(护套) 表中列出的是额定电压不超过交流1KV或直流无铠装电缆和绝缘导线的最高运行温度。对电线的最高运行温度,是指导体的温度,不是绝缘材料表面的温度,绝缘材料表面的温度低于导体的温度,而且和通风条 件有关,通风越好,绝缘材料表面的温度越低。 电缆的最高运行温度与电线不同,是指护套的温度,护套主要是起保护绝缘作用,因此电缆绝缘护套材料 的最高运行温度比电线的绝缘材料高。 电线电缆的温升与施加在电线电缆上的电压无关,只与通过的电流有关。在相同的截面下,通过的电流越 大,电线电缆的温升越高。 电缆制造厂只提供电缆截面的数据,不提供电缆的额定电流数据,是正确的。因为电缆的额定电流与环境、负载的工作持续率、电缆绝缘材料的允许工作温度、电缆的允许压降等参数有关,所以应该由电气设计人 员做全面考虑后,选用合适的电缆截面。 电缆的温升和电流密度有关,电流密度越大,则温升越高。绝缘材料的寿命又与绝缘材料的工作温度有关。 绝缘材料的工作温度越高,则其寿命越短。 用多并方式增加电缆容量的方法不可取。 工程中经常发现,由于受到电缆截面的限制,为了增加容量。电缆采用双并、甚至三并的做法。这种方法不可取,因为多并电缆连接时,连接处存在接触电阻不同而此接触电阻又往往与电缆本身的电阻可比拟,其结果会造成多并电缆的电流分配不平衡。因此上海、北京等发达城市,对大容量的配电干线都采用母线槽。虽然母线槽的价格比电缆高,但从性价比出发比较,母线槽以越来越受到设计人员和业主的青睐。 铜排的最高允许温度 标准规定:

最新教你如何填“绝缘电阻测试记录”资料

该记录适用于单相、单相三线、三相四线、三相五线制的照明、动力线路及电缆线路、电机等绝缘电阻的测试。表中A代表第一相、B代表第二相、C代表第三相、N代表零线(中性线) 接地线。施工单位应在导线敷设完成后和电气设备安装完成后分别进行一次绝缘电阻测试记录。楼宇总配电室、楼层配电箱、户内配电盘,都需要进行测试的。

绝缘电阻测试 1.要求:电气线路安装后,在送电前应对所有的电气线路(包括明敷和暗敷、电缆)进行线路的绝缘电阻测试,达不到绝缘要求的严禁送电。 2.目的:通过绝缘电阻测试,检查和掌握线路敷设和电气安装的施工质量,避免发生漏电、短路等用电安全事故。 3.方法: (1)电气线路敷设中的明配线,暗配线及低压电缆均应作绝缘测试。 (2)用500V兆欧表(摇表)进行测试,测试工具应有计量检测(型号、编 号、有效期)。 (3)48V以下线路及设备应与单相220V线路测试相同。 (4)测试数量必须符合设计图的回路数,即对每一个用电回路均应测试。 (5)线路测试时导线间,导线对地的绝缘电阻应大于0.5MΩ。 (6)电动机绝缘测试值应≥1MΩ。 (7)大型电气设备、开关、动力、照明配电箱等绝缘测试值应大于0.5MΩ。 (8)认真填写绝缘电阻测试单,并请有关部门或业主验收签证。 回路编号:通过电缆、电线的系统图(注意要系统图,上有对应的回路编号,比如:+1AA1-1) 线路型号、规格、敷设方法:规格型号系统图上也有比如:4*2.5mm2 敷设方法:直埋、桥架、穿管等。 绝缘电阻:A、B、C表示三相电A相B相C相。 如果是单相的A-C、A-B什么的就不用填,N是零线、PE是接地保护线。 如果是三相五线电就得填满,不过阻值基本大同小异,复制+改改就OK了 电缆的绝缘电阻值与电缆的种类、电压等级、电缆绝缘的温度、空气湿度有关,额定电压6KV 及以上的应不小于100MΩ,额定电压1~3KV时应不小于50MΩ。1KV一下三四十兆欧就满足要求了。一般零线与地线都是从同一个接地点引出的,正常情况下他们之间的电阻值应该为0,但有特殊情况,所有把开关拉开,这样零对地电阻应该要很大,否则说明没有正常正确安装接地线,表格中所填应该是特殊情况下的阻值(本人也不是很确定),所以应该填大阻值。 填这个表很麻烦的,要一一对照图纸,总之,电压高的话阻值就填大点,电压低的话阻值就填小点,祝LZ圆满完成任务 功率损耗PX 绝缘电阻测试记录在普通的建筑施工中有二种: 1.线路设备绝缘电阻测试记录 回路编号(例M1-N1), 规格及敷设方式 (例BV-4x10+BVR-1x10/SC32/FC) (例BV-2x4+BVR-1x4/SC25/WC) 电阻值:三相五线全填满, 单相填对应的格子 (如B相,插座回路填B-N:30,B-PE:31,N-PE:31) 数值要基本接近. 2.电缆敷设及绝缘电阻测试记录 电缆编号(例P2-M1), 规格:YJV-4x25+1x16 起点:P2箱

电缆绝缘电阻值!测量绝缘电阻

1、测量10kV电力电缆,选用何种兆欧表?使用前应作哪些检查? 测量10KV电力电缆接线 选择2500V兆欧表一只(带有测试线),将兆欧表水平放置,未接线前先做仪表外观检查及开路、短路试验,确认兆欧表完好。(兆欧表的检查方法见前题)摇测的接线方法应正确(接线前应先放电)。 摇测项目是相间及对地的绝缘电阻值,即U—V、W、地; V—U、W、地; W—U、V、地。共三次。 2、对10kV电力电缆的绝缘电阻有何要求? 答:判断合格的标准规定如下: (1)长度在500m及以下的10kV电力电缆,用2500V兆欧表摇测,在电缆温度为+20℃时,其绝缘电阻值不应低于400MΩ。 (2)三相之间,绝缘电阻值比较一致;若不一致,则不平衡系数不得大于2.5。 (3)本次测定值与上次测定的数值,换算到同一温度下。其值不得下降30%以上。1KV及以下电力电缆的绝缘电阻值,在电缆温度为20摄氏度时,不应低于1MΩ。 3、试述对一条运行中的10kV电力电缆测量的全过程(按操作顺序回答、包括判断该电缆是否可继续运行。安全措施应足够)。 答:摇测方法及步骤如下: 首先执行有关的安全措施: 组织准备: 1)要求签发工作票; 2)填写操作票并经模拟板试操作准确无误; 3)确定工作负责人和监护人; 4)如须减轻负荷,应提前通知受影响的用户。 物质准备: 1)准备安全用具(绝缘杆、绝缘手套、临时接地线、绝缘靴、标示牌); 2) 2500V兆欧表一只(带有测试线)(经检查良好); 3)其他用具及材料(电工工具等); 材料准备: 按操作票步骤,将变压器推出运行,达到“检修状态”:1)停电 2)验电 3)挂临时接地线 4)悬挂标示牌 过程: (1)被遥测电缆必须停电、验电后,再进行逐相放电,放电时间不得小于1min,电缆较长电容量较大的不少于2min;

浅谈电线电缆绝缘电阻的测试

浅谈电线电缆绝缘电阻的测试绝缘电阻是反映电线电缆产品绝缘特征的主要指标,它反映了线缆产品承受电击穿或热击穿能力的大小,与绝缘的介质损耗以及绝缘材料在工作状态下的逐步劣化等均存在着极为密切的关系。产品的绝缘电阻主要取决于所选用的绝缘材料,但工艺水平对绝缘电阻的影响很大,因此测定绝缘电阻是监督材料质量和工艺水平的一种方法。测定绝缘电阻可以发现工艺的缺陷,同时也是研究绝缘材料的品质和特性,研究绝缘结构以及产品在各种运行条件下的使用性能等各方面的重要手段,对于已投入运行的产品,绝缘电阻是判断产品品质变化的重要依据之一。绝缘电阻测量准确与否直接影响产品品质的判定,因此要注意绝缘电阻的测量问题。 一、试验现象 影响电线电缆绝缘电阻测量的因素有仪器准确度、环境条件和人员素质等几个方面,下面以GB5023.3-2008中一般用途单芯硬导体无护套电缆(型号227IEC01(BV))为例,谈谈绝缘电阻测量中应注意的几个问题。按GB5023.3之规定:试验应在5m长的绝缘线芯上进行,水温为(70±2)℃,仲裁试验时为(70±1)℃,侵水时间不小于2h,绝缘电阻应在施加电压1分钟后测量。如何理解标准中的这些要求,它们对测量结果有何影响下面举例说明。

本试验共进行了四次: 第1次:5m长、70℃绝缘电阻、1分钟读数测量值为:6.80×106Ω 第2次:5m长、70℃绝缘电阻、1.5分钟读数测量值为:7.01×106Ω 第3次:5m长、70℃绝缘电阻、1分钟读数测量值为:109.6×106Ω 第4次:5m长、70℃绝缘电阻、1分钟读数测量值为: 3.40×106Ω 二、原因分析 同样一组电线的绝缘电阻在不同温度、不同长度、不同读数时间为什么会有如此大的差别现分析如下: 绝缘电阻是指绝缘上所加的直流电压U与泄漏电流I是之间的比值 R=U/I 当绝缘层加上直流电压时,沿绝缘表面和绝缘内部均有微弱电流通过,对应于这两种电流的电阻分别称为表面绝缘电阻和体积绝缘电阻,一般不加特别说明的绝缘电阻均指体积绝缘电阻,只有极少数的产品有表面绝缘电阻的要求(如

电缆绝缘测试作业指导

电缆绝缘测试作业指导(总5 页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

Q/NDYJ 南京地铁运营有限责任公司企业标准 Q/NDYJ XXXXX—2013 电缆绝缘测试作业指导书 2013-XX-XX发布2013-XX-XX 南京地铁运营有限责任公司发布

目次 前言 (2) 1 范围 (3) 2 规范性引用文件 (3) 3 术语与定义 (3) 4 作业方法和内容 (3) 4.1 作业方法 (3) 4.2 作业内容 (3) 4.2.1 工器具准备 (3) 4.2.2 登记请点 (4) 4.2.3 兆欧表校准 (4) 4.2.4 断开终端电缆 (4) 4.2.5 对地绝缘测试 (5) 4.2.6 线间绝缘测试 (6) 4.2.7 数据填写 (7) 4.2.8 试验设备并消点 (7)

前言 本标准是根据南京地铁运营有限责任公司标准化工作的需要,为规范运营公司三号线电缆绝缘测试工作而制定。 本标准由南京地铁运营有限责任公司标准化委员会提出。 本标准起草部门:南京地铁运营有限责任公司通号中心。 本标准主要起草人:王青华、李宣、冯丽娟、常鑫、高丰军、王旸 审核:李济坤 批准:张建平 本标准委托南京地铁运营有限责任公司通号中心负责解释。

电缆绝缘测试作业指导书 1 范围 本标准规定了运营公司三号线信号电缆绝缘测试的作业原则、方法及内容。 本标准适用于运营公司三号线信号电缆绝缘测试的检修工作。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 无 3 术语与定义 电缆:通常是由几根或几组导线绞合而成的类似绳索的电缆,每组导线之间相互绝缘,并常围绕着一根中心扭成,整个外面包有高度绝缘的覆盖层。 4 作业方法和内容 4.1 作业方法 根据作业内容和时间,电缆绝缘测试的保养工作为一年一次。 4.2 作业内容 4.2.1 工器具准备 工具包括:对讲机,兆欧表,各种型号的套筒,内六角,小一字起(拆电缆用),笔纸。 4.2.2 登记请点 到调度室登记请点,填写登记表、施工作业物料清单。作业点批准后到达作业地点,开始检修作业。 4.2.3 兆欧表校准 对于机械摇表,采用以下过程检测: 1、不摇,表针可以自由摆动; 2、输出端分开,用力摇,表针指最大; 3、短路输出端,用力摇,表针指零。 4.2.4 断开终端电缆 将被测设备电缆的终端设备断开连接,以ZD6道岔为例

电线电缆绝缘材料的选择

电线电缆绝缘材料的选择 10.0 PVC胶粒
10.1 基本配方
VC粉:主体一般常用S60、S65、S70﹔
可塑剂:主要目的在调整软硬度,提高耐寒绝缘等作用﹔
填充剂:目的在增强加热,光之安全性,及绝缘性﹔
改质剂:依特性要求添加﹔
安定剂:抑制PVC内之少量游离Cl-分解﹔
防火剂:增强耐烧性﹔
染颜料:颜色调配。
10.2 硬度
国际上常以shore A表示之,而国内软硬度常以P%表示,例如:50kg之PVC料,可塑剂40kg时是以80P,50gPVC料,可塑剂55kg时是以110P表示即可塑剂愈多P数愈大,PVC 胶粒愈软而萧氏硬度(shore A)度数愈大,PVC胶粒愈硬。
10.3 移行说明
电气用品之外壳……等常用的塑料材质大部份为PS,ABS,HIPS,电线为PVC塑材料时,由于含有可塑剂(软化剂),而有此可塑剂会移行者,会将PS,ABS,HIPS塑料壳侵蚀,因此有非移行的要求,也就是PVC材料不能移。
10.3.1 移行的试验方法
将试片(ABS,或PS或HIPS)两片(长50x宽50x厚20mm),中间夹PVC电线,再上下两层用玻璃盖住并用500±5g砝码压住,施以不同时间(24,48,72小时)不同温度(50℃,60℃,70±2℃)之条件下,测试(条件由客户设定),测试后取出试片,用肉眼观察,试片上不能很轻易的看出痕迹,亦即需极费眼力才能看出来。
ABS = Acrylonitrile Butadiene Styrene Terpolymer
苯乙烯,丁二烯,丙烯,参聚合体
S = POL YSTRRENE 聚苯乙烯
HIPS = High Impact Polystyrene 高冲击聚苯乙烯
10.3.2 PVC胶粒应具下列性质
耐热性( Thermal Stability ) ﹔
硬度( Hardness )﹔
安全性( Safety )﹔
老化性( Aging Properties ) ﹔
机械性质( Mechanical Properties )﹔
耐燃性( non-flammability )﹔
电气特性( Electrical Properties )﹔
耐候性( Weather ability )﹔
光安定性( Light Stability )﹔
低温特性( Low Temperature Properties )。
11.0 塑料常用特性名词解释
11.1 抗张强度:(Tensile Strength)
将试样(如哑铃片……等)拉断时所需要之应力,用之单位为PSI或kg/mm2。
11.2 热变形(Heat Distortion)
将材料适当的取样后,将其加热至一定之温度后,试验该材料之外形改变情况。其计算公式如下:
11.3 热冲击(Heat Shock)——试验材料稳定性方法之一,将材料在特定的时间内卷绕于规定之圆棒上,暴露于高温中,不得有龟裂现象发生。
11.4 冷弯(Cold Bend)——将电缆之试样绕在规定之圆棒(Mandrel)上,而置于特定温度之冷室中,通常为零下之温度。再将试样取出作弯曲试验,则可试验出材料之破坏程度或有无缺点。
11.5 延伸(Elongation)——试样拉断时的伸长情形
11.6 焊接性(日文:半田性)——PVC芯线等在焊接或热镀时其塑料部份后缩收,所以其材质要经X—RAY处理成架桥,或改其塑料本身性质,如:SR—PVC。
11.7 老化(Aging)——仿真电缆经长时间的使用后,其物理性(抗张延伸)改变的情形。
11.8 额定温度(Temperature Rating)——绝缘材料在连续使用之情况下,其基本特性不会发生变化或损失时,所能容许之最高温度。如交连PE 为90℃,PVC有60℃,75℃,90℃,105℃,PE为75℃等。
11.9 额定电压(V oltage Rating)——依照规定或标准可连续实施于各种电缆电缆之最高允许电压。
11.10 绝缘阻抗(Insulation Resistance)——加于绝缘体两极间之电压与电流之比,以公式表示为R=E/I,其单位一般用MΩ(百万欧姆表示之)。
11.11 耐电压(介质强度)(DielectricStrength)——绝缘材质在破坏之前所能承受之电压,介质强度在材料中是一个非常重要特性,在同一种耐电压情况下,介质强度好的材质,其绝缘厚度可以较薄。
12.0 塑料之耐燃测试
依UL规定UL Standard 94 分为水平燃烧(94—HB)及垂直燃烧
94V-0,94V-1,94V-2。
13.0 发泡
目的:在改变或降低成品的电容(介电常数)并使成品轻量化,小型化,进而节省材料,达到提高品质与降低成本的最终目的,一般常用方法
(a) 物理发泡
(b) 化学发泡,化学发泡在加热过程中,发泡剂分解

电线电缆绝缘电阻试验----GB

电线电缆绝缘电阻试验GB/T 3048.6-94 1.本标准适用于测量电线电缆绝缘电阻,其测量范围为104~1016Ω,测量电压为100,250,500,1000V。(产品标准应规定测试电压,如不规定,产品标准规定的耐压试验的电压值低于500V的产品测试电压执行耐压试验的电压值,产品标准规定的耐压试验的电压值不低于500V的产品一般选取500V。) 除电线电缆产品标准中另有规定者外,抽样试验时,测量应在环境温度为15~25℃和空气湿度不大于80%的室内或水中进行。 2.试样准备 1.除产品标准中另有规定者外,试样有效长度应不小于10m,试样两端绝缘外的覆盖物应小心地剥除,注意不得损伤绝缘表面。 2.试样应在试验环境中放置足够的时间,使试样温度与试验温度平衡,并保持稳定。 3.浸入水中试验时,试样两个端头露出水面的长度应不下于250 mm,绝缘部分露出的长度应不下于150 mm。 4.在空气中试验时,试样端部绝缘部分露出护套的长度应不下于100 mm。露出的绝缘表面应保持干燥和洁净。 3.试验步骤 1.金属护套电缆、屏蔽型电缆或铠装电缆试样,单芯者,应测量导体对金属套或屏蔽层或铠装层之间的绝缘电阻;多芯者,应分别就每个导体对其余线芯与金属或屏蔽 层或铠装层连接进行测量。 非金属护套电缆,非屏蔽电缆或无铠装的电缆试样,应浸入水中,单芯者测量导体对水之间的绝缘电阻;多芯者应分别就每个导体对其余线芯与水连接进行测量。也可将试样紧密地绕在金属棒上,单芯电缆测量导体对试棒之间的绝缘电阻;多芯电缆测量每个导体对其余线芯与试棒连接的绝缘电阻。试棒外径按产品标准规定。 2.测量时充电时间应充分,以达到测量基本稳定。除在产品标准中另有规定者外,充电时间为1min。 3.重复试验时,在加电压前,使试样短路放电,放电时间应不小于试样充电时间的4倍。 4.试验结果及计算 每公里长度的绝缘电阻按下式计算: R L=R X L (1) 式中:R L=每公里长度绝缘电阻,MΩ.km L=试样有效测量长度, km R X=试样绝缘电阻,MΩ。 20℃时每公里长度的绝缘电阻,按下式计算: R20=KR L (2) 式中:R20-20℃时每公里长度绝缘电阻,MΩ.km K=绝缘电阻温度校正系数,由专门的文件规定。 (注:温度大于20℃时,测量的绝缘电阻值小于R20,温度小于20℃时,测量的绝缘电阻值大于R20) 5.电缆绝缘电阻测试仪器的使用 (1)在对电缆进行绝缘测试时,经常会用到兆欧表,但有的人可能不了解其机理,往往接错线或使用不正确造成误差很大,有时甚至会引起人身或设备事故。兆欧表在工作时,自身产生高电压,而测量对象又是电气设备,所以必须正确使用,否则就会造成人身事故或设

电线电缆绝缘材料及护套材料的老化分析耿绍雄

电线电缆绝缘材料及护套材料的老化分析耿绍雄 摘要:电线电缆产品需求量的不断增加,进一步加剧了市场竞争的激烈程度。 各企业为在电线电缆行业中获得更大的市场份额,开始加大了对产品材料成本以 及生产工艺等内容的研究力度。电线电缆绝缘材料以及护套材料性能直接影响了 电线电缆的质量问题、应用范围以及应用时间。文章便结合电线电缆绝缘材料及 护套材料常出现的质量问题,特别是针对于电线电缆绝缘材料及护套材料的老化 问题进行探讨与分析。 关键词:电线电缆;绝缘材料;护套材料;老化;质量 为了妥善解决市场产品同质化严重问题,保证企业自身竞争实力,电线电缆 生产企业开始加大了对产品自身加工材料以及加工工艺的研究力度,期望通过合 理研究,及时发现传统产品生产弊端,进而对其展开针对性的调整,为企业获取 到更加可观的经济收益。在正式展开产品绝缘与护套材料研究之前,首先应对电 线电缆基本情况展开研究,以为后续分析工作开展奠定良好基础[1]。 1电线电缆绝缘材料及护套材料的重要性 在电线电缆企业的实际生产过程当中,由于电线电缆绝缘材料以及护套材料 在整个材料的总成本不到20%,因此很多电线电缆企业往往都忽视了绝缘材料以 及护套材料的重要性,那么质量也极其容易被忽视,从而便导致了在供应商的选 择上,材料型号的选择以及检验标准方面存在着很大的漏洞。实际上,绝缘材料 以及护套材料质量决定了电线电缆的绝缘性能,耐环境条件性能以及抗老化性能。因此,在电信电缆的产品检验标准中,70%的检验应在电线电缆绝缘材料以及护 套材料的质量检验相关。而绝缘材料以及护套材料的质量不易控制。电线电缆绝 缘材料以及护套材料的检验需要用专门的设备来进行,而样品的制备过程也相当 复杂,而且部分的性能测试检验长达十天左右。因此,绝缘材料以及护套材料的 质量问题不易控制。而实际上若是能够做好成品的检验以及供应商的管理工作后,绝缘材料以及护套材料的质量问题是可以得到有效的控制的。所以有效的提高绝 缘材料以及护套材料的质量问题是提高电线电缆质量的重要基础[2]。 2电线电缆绝缘材料老化分析 2.1绝缘材料需要经受的考验 在电线电缆传导电流主要是铜蕊线,起隔垫作用的主要是包在电线电缆外的 绝缘材料。绝缘材料的作用便是将两个带电体或是将带电体与导电的物体以及地 面隔开,包裹住带电部位,防止被人体接触发生触电意外。因此,绝缘材料一方 面传导电流方向,防止了电流的外泄,另一方面则是对金属带电体起到了保护作用。因此在电出现之后,首先便是要寻找不导电的绝缘材料。在电线电缆当中, 绝缘材料含长时间连续性的进行散热冷却来支撑和固定电线电缆的正常运作。在 电线电缆的制造过程当中,绝缘材料便是第一道考验。由于一些客观上的因素, 例如电工安装电线电缆的过程当中进行粗暴的对待,胡乱的拉扯,挤压,便可造 成电线电缆的绝缘材料的磨损。这边要求电线电缆的绝缘材料具有较强的抗扭拉 抗磨损能力[3]。 2.2绝缘材料的热老化 绝缘材料的化学结构长期在热的环境作用下而产生变化,使节原材料的绝缘 性能有所降低现象是热老化。电线电缆的热老化产生的原因就是绝缘材料长期在 高热的温度下自身产生了化学变化。通常温度越高,其化学反应便越快。长期高 温下,绝缘材料的高分子会发生热降解。热老化是绝缘材料由于长期高温发生了

第七章 电缆绝缘材料

第七章电缆绝缘材料 一、概述 高聚物是制造电线电缆极为重要的绝缘材料和护套材料。电线电缆的特性主要决定于电线电缆材料的性能。但应指出,电线电缆的使用要求、结构和特点与电线电缆所用材料的性能既有密切的相关性,又有一定的矛盾性。电缆技术的任务就在于解决这个问题。一方面要深入了解电线电缆的具体用途、使用要求、敷设环境条件,设计性能好,尺寸小、寿命长,价格低的最佳电线电缆结构。深入研究各种结构电线电缆在使用过程中各种性能的变化规律。一方面要从电线电缆材料的分子结构出发研究材料结构与性能的关系,探讨改进材料性能的方向,研究电线电缆用各种材料在各种客观因素作用下的变化规律,为正确设计电线电缆结构,正确选择材料、合理使用材料提供可靠的理论和实际根据。电线电缆因其用途不同、敷设条件不同,基本性能是不同的。因此对制造电线电缆用材料提出不同要求。概括起来作为电线电缆绝缘和护套材料用高聚物应具有下列基本性能: 1.电绝缘性能; 2.物理–机械性能; 3.化学性能; 4.工艺性能; 5.特殊性能。 前四种性能是具有普遍性的,必须符合共性要求,后一种特性是针对特殊环境使用条件下提出的特殊要求。 应当说明,对于某一种电线电缆可以而且必须具有几项主要性能,具有各种特性,用于各种条件下的通用的电线电缆是不存在的。一种电缆可能具有某一种特长,也会有某种特短。 对于电线电缆所用高聚物材料也要具体分析,高聚物的化学组成、物理结构不同,可能使其具有千差万别的性能,有时一种分子结构往往决定两种完全矛盾的使用性能,我们在选用材料时要充分把微观结构与宏观性能密切结合起来。利用其特长,改进其特短。

从电线电缆使用要求出发,我们将着重研究高聚物的电绝缘性能,力学性能、耐热性、耐燃性、耐油性、化学性能、耐湿性,耐光性,耐老化性和工艺性能。 电绝缘性能是电线电缆用高聚物的最重要的最基本的性能。所谓电绝缘性能就是在高电场作用下由高分子运动所表现出来的介电现象和电导现氛。可以把高聚物的介电性、导电性击穿作为高聚物在电压作用下的宏观特性。 一般说来,在绝缘体和半导体中的载沉子密度是极少的。对于大多数极纯的高聚物多属于绝缘体,他们的微弱导电性来自导电性杂质的存在。 图1 各种材料电导率的大致范围 二、电缆结构 电力电缆的品种很多,其具体结构会因运用场合不同而有所差异。现以超高220KV 超高压输电电缆结构为例,如图2所示。 图2 高压输电电缆护套结构示意图

如何测量电缆的绝缘电阻

如何测量电缆的绝缘电阻 关键词:绝缘电阻绝缘电阻仪 绝缘电阻的目的和重要性 电缆的绝缘电阻试验是电力预防性试验项目中不可缺少试验项目,其试验目的可以有效的发现设备绝缘材料遗留或运行中产生的局部缺陷,便于掌握电气设备的运行状况及绝缘的完好性,提高运行设备可靠性,判断电气设备能否继续投入运行,使设备始终保持较高的绝缘水平,绝缘电阻的测量是保证电气设备绝缘可靠工作和安全运行的重要工作之一。 绝缘电阻选型 目前,对于绝缘预防性试验一般使用DC2010智能双显绝缘电阻测试仪,能测量大容量变压器、互感器、发电机、高压电动机及避雷器等绝缘电阻,根据DL/T911-2004绝缘试验标准研发,输出电压等级500V、1000V、2500V、5000V,并自动计算吸收比和极化指数。 绝缘电阻的电压选择 1、测量电缆的主绝缘电阻(0.6/1kV电缆用1000V兆欧表;0.6/1kV以上电缆用2500V兆欧表(6/6kV及以上电缆也可用5000V兆欧表); 2、测量电缆外护套绝缘电阻(采用500V兆欧表。每千米绝缘电阻值不应低于0.5MΩ,本项试验只适用于三芯电缆的外护套) 3、测量电缆内衬层绝缘电阻(每千米绝缘电阻值不应低于0.5MΩ)

绝缘电阻测量方法 准备过程 注意:当第一次使用仪表时,需充电6小时。电量不足可能影响您的使用。(1)试验前应拆除被试设备电源及一切对外连线,并将被试物短接后接地放电1min,电容量较大的应至少放电2min以免触电和影响测量结果。 (2)校验仪表指针是否在无穷大上,否则需调整机械调零螺丝,(数字显示不需要调节) (3)用干燥清洁的柔软布擦去被试物的表面污垢,必要时先用洗净套管的表面积垢,(可用汽油代替)以消除表面漏电电流影响测试结果。 (4)将带高压测试线(红色)插入绝缘电阻仪LINE端,另一端探针或探钩接于被试设备的高压导体上,将测试线(绿色)插入GUARD端,另一端接于被试 设备的高压护环上,以消除表面泄漏电流的影响,将另外一根黑色测试线插入地端(EARTH)端,另一头接于被试设备的外壳或地上。 注意:使用时,严禁将LINE与GUARD短路,以免发生过载现象! 开始测试 (1)转动波段开关选择需要的测试电压,这时如果电源正常,则电源指示灯应发绿光,如欠压则发红光,此时,应将仪器充电后再使用。 (2)仪器开始自检,液晶屏幕上出现操作提示。 (3)按动上键或下键可选择测试编号。(编号反黑)如不选择编号可进入下一步操作,编号在该次测试完成后自动累加。 (4)按下或锁定测试键,开始测试,注意,此时高压状态指示灯发亮并且仪表内置蜂鸣器每隔1秒钟响一声,代表LINE端有高压输出。 警告:测试过程中,严禁触模探棒前端裸露部分以免发生触电危险! (5)测试完成通过指针或者数字读取绝缘电阻值即可。

测量10kV电力电缆绝缘电阻

山东省电力行业职业技能鉴定 配电线路工(技师)实操试题:测量10kV电缆绝缘电阻一、现场环境 所测电缆为跌落式熔断器受电测与变压器高压接线柱之间的连接电缆,跌落式熔断器送电侧已停电并装设好接地线,跌落式熔断器已拉开,电缆受电测端头与变压器的连接已解除,变压器低压侧总断路器与刀闸已拉开。工作负责人:考评员,监护人:辅助人员。 二、测试前的准备工作 1.穿工作服、绝缘鞋,戴安全帽、线手套。 2.根据电缆电压等级选择兆欧表。 3.检查工器具外观整洁无破损,有试验合格证。 4.正确填写测量记录表个人及设备信息,不得漏填、错填、涂改。 5.用放电棒对电缆逐相充分放电,所有放电过程必须带绝缘手套。用干净的棉纱(擦机布)将电缆测试点及附近擦拭干净。 6. 兆欧表放在水平位置,检查兆欧表,指针应指向刻度盘中央位置。 7.将测试线分别接在兆欧表“E”“L”接线柱上,末端开路,进行开路试验。左手按住兆欧表,右手顺时针摇动摇柄,缓慢启动并逐渐加快到120r/min,待指针稳定后读取并记录电阻值,指针应指向“∞”或附近; 8.将测试线分别接在兆欧表“E”“L”接线柱上,末端短接,进行短路试验。左手按住兆欧表,右手顺时针摇动摇柄,缓慢启动不得加速,指针应指向“0”。

若检查不合格需处理再使用。 三、测试进行时 (一)相对地 1. 将兆欧表“E”端可靠接“地”,“G”端接屏蔽层或不接。测试线不得缠绕或打结。用短路线将V(B)、W(C)两相电缆线短接并可靠接地。 2.操作人员左手按住兆欧表,右手顺时针缓慢摇动摇柄,辅助人员在操作人员的指令下,带绝缘手套将“L“端测试线(鳄鱼夹)夹在电缆U(A)相线芯上,(指针若回零,应立即停止摇动),逐渐加快到120r/min,充电时间不少于1 min。待指针稳定后读取电阻值。右手摇动速度逐渐降低,取下接在电缆线芯上的测试线后停止摇动。 3.操作人员带绝缘手套用放电棒对电缆被测试相充分放电。放电方法为:第一次碰触电缆线后迅速移开,第二次碰触电缆线后等待一定时间在移开,等待时间与电缆施加的电压和电缆长度成正比,500m 及以上长度的电缆线路放电时间一般不少于2min,100m及以下电缆线路放电时间一般为5~30s。 (B)、W(C)两相测试步骤与此相同。 5.记录测试结果。 (二)相对相 1.将兆欧表,“G”端接屏蔽层或不接。测试线不得缠绕或打结。用短路线将C相电缆线可靠接地。 2.操作人员左手按住兆欧表,右手顺时针缓慢摇动摇柄。辅助人

绝缘电阻测试记录填写

绝缘电阻测试记录填写 该记录适用于单相、单相三线、三相四线、三相五线制的照明、动力线路及电缆线路、电机等绝缘电阻的测试。表中A代表第一相、B代表第二相、C代表第三相、N代表零线(中性线)、PE代表接地线。施工单位应在导线敷设完成后和电气设备安装完成后分别进行一次绝缘电阻测试记录。楼宇总配电室、楼层配电箱、户内配电盘,都需要进行测试的。 绝缘电阻测试 1.要求:电气线路安装后,在送电前应对所有的电气线路(包括明敷和暗敷、电缆)进行线路的绝缘电阻测试,达不到绝缘要求的严禁送电。 2.目的:通过绝缘电阻测试,检查和掌握线路敷设和电气安装的施工质量,避免发生漏电、短路等用电安全事故。 3.方法: (1)电气线路敷设中的明配线,暗配线及低压电缆均应作绝缘测试。 (2)用500V兆欧表(摇表)进行测试,测试工具应有计量检测(型号、编号、有效期)。 (3)48V以下线路及设备应与单相220V线路测试相同。 (4)测试数量必须符合设计图的回路数,即对每一个用电回路均应测试。 (5)线路测试时导线间,导线对地的绝缘电阻应大于0.5MΩ。 (6)电动机绝缘测试值应≥1MΩ。 (7)大型电气设备、开关、动力、照明配电箱等绝缘测试值应大于0.5MΩ。 (8)认真填写绝缘电阻测试单,并请有关部门或业主验收签证。 回路编号:通过电缆、电线的系统图(注意要系统图,上有对应的回路编号,比如:+1AA1-1)线路型号、规格、敷设方法:规格型号系统图上也有比如:4*2.5mm2 敷设方法:直埋、桥架、穿管等。 绝缘电阻:A、B、C表示三相电A相B相C相。 如果是单相的 A-C、A-B什么的就不用填,N是零线、PE是接地保护线。如果是三相五线电就得填满,不过阻值基本大同小异,复制+改改就OK了 电缆的绝缘电阻值与电缆的种类、电压等级、电缆绝缘的温度、空气湿度有关,额定电压6KV及以上的应不小于100MΩ,额定电压1~3KV时应不小于50MΩ。1KV一下三四十兆欧就满足要求了。一般零线与地线都是从同一个接地点引出的,正常情况下他们之间的电阻值应该为0,但有特殊情况,所有把开关拉开,这样零对地电阻应该要很大,否则说明没有正常正确安装接地线,表格中所填应该是特殊情况下的阻值(本人也不是很确定),所以应该填大阻值。 填这个表很麻烦的,要一一对照图纸,总之,电压高的话阻值就填大点,电压低的话阻值就填小点,祝LZ圆满完成任务功率损耗PX 绝缘电阻测试记录在普通的建筑施工中有二种: 1.线路设备绝缘电阻测试记录 回路编号(例M1-N1), 规格及敷设方式 (例BV-4x10+BVR-1x10/SC32/FC) (例BV-2x4+BVR-1x4/SC25/WC) 电阻值:三相五线全填满, 单相填对应的格子 (如B相,插座回路填B-N:30,B-PE:31,N-PE:31) 数值要基本接近. 2.电缆敷设及绝缘电阻测试记录电缆编号(例P2-M1), 规格:YJV-4x25+1x16 起点:P2箱终点:M1箱 敷设方式:穿管或敷桥架

相关主题
文本预览
相关文档 最新文档