当前位置:文档之家› 高炉渣干式粒化及显热回收的技术分析_张延平

高炉渣干式粒化及显热回收的技术分析_张延平

高炉渣干式粒化及显热回收的技术分析_张延平
高炉渣干式粒化及显热回收的技术分析_张延平

#炉渣利用技术 炉渣利用工艺

炉渣利用技术炉渣利用工艺 1 用于流化床锅炉的链带式排渣控制冷却器 2 高炉水碎炉渣或其粒度调整物的防凝结剂及防凝结方法 3 高炉铁水渣铁分离装置 4 烟道灰、炉渣活化剂 5 高效利用工业炉熔渣显热的新一步法矿棉技术 6 一种电炉炼钢吹氧喷粉氧燃助熔及造泡沫渣工艺 7 钢包炉用脱氧造渣剂 8 用气、水反冲高炉水渣滤层的方法 9 旋风炉炉渣生产岩棉热衔接工艺及所采用的补热炉 10 用于液体炉渣脱铬和/或脱镍的方法 11 一种电渣炉控制系统 12 用锅炉废渣灰制水硬性凝固剂方法 13 粉煤灰炉渣砼小型空心砌块 14 炼钢电弧炉泡沫渣控制方法 15 危险废弃物及医疗垃圾处理用的溶渣焚烧炉及工艺方法 16 用于氧化处理炼钢厂炉渣的方法及所得到的LD渣 17 一种控制转炉炉底上涨溅渣的方法 18 一种用镍熔炼炉渣和钢渣的混合渣炼铁的方法 19 型煤炉正块缓漏卸双向分离排渣器 20 转炉出钢用挡渣锥 21 一种冶金炉风口、渣口表面强化的方法 22 用含钛高炉渣制备光催化材料的方法 23 一种以炉渣为基料的合成材料及其生产工艺 24 轻质隔声炉渣混凝土建筑板材 25 炉渣冷却机 26 利用沸腾炉渣制造泡沫型隔热防水保温材料 27 利用电厂炉渣生产水泥的方法 28 粒化高炉矿渣水泥砂浆 29 防御液态排渣炉析铁熔蚀的金属陶瓷涂层 30 转炉溅渣护炉方法 31 造气炉渣运用煅烧石灰的方法 32 一种石灰质碳化煤球(棒)造气炉渣的新用途 33 直流电弧电渣加热钢包炉及其控制方法 34 一种利用石灰质碳化煤球造气炉渣生产的路面砖及其方法 35 用于沸腾炉的层燃式灰渣燃烬冷却床 36 用浓盐酸高温高压处理锅炉灰渣浸取其中三氧化二铝的综合利用方法 37 稀土精矿渣电弧炉冶炼稀土中间合金 38 稀土精矿球团(或块)矿热炉制备稀土精矿渣和含铌磷铁 39 低温干馏、炉渣再燃、刮板传动式锅炉 40 用喷粉方法处理熔渣生产高价值炉渣制品 41 促进粒状炉渣脱水用的混合剂和使用方法

电炉渣处理新工艺

电炉渣处理新工艺——雾化处理技术 电炉渣作为电炉炼钢副产品,其产量相当大,约占炼钢生产总量的15%~20%。用传统方法处理电炉渣的成本十分昂贵,加之因电炉渣的老化时间很长,需要大面积堆放场地,所以,传统的电炉渣处理方法受到很大限制。然而,液态渣雾化处理技术却克服了上述缺点。与传统方法相比,它具有工艺简单、成本低廉、环境友好等优点。自1997年第一座雾化处理工厂建成投产今,包括韩国、南非、马来西亚、泰国、台湾、印度、伊朗、越南和美国,电炉渣雾化处理能力已达340万t。 1.液态渣雾化处理技术 SAT技术(Slag Atomizing Technology)是一种将温度在1500~1550℃的液态电炉渣直接雾化成直径0.1~4.5mm的特殊小球的新技术。该工艺由带催化剂的高速空气喷吹系统组成,高速空气流在水的作用下形成一强有力的热交换空间,迅速而有效地将液态渣雾化成为表面透明的玻璃质小颗粒,经特制中间包进入渣坑。 液渣的75%~80%可经雾化处理,剩下部分由重材料和存在于运输罐底的可循环使用的金属组成。根据韩国经验,可回收3%的金属用于炼钢。20%~25%的液态渣倒入渣坑,冷却后用机械压碎,经磁性分离机分离出金属作为循环铁,剩余的最大尺寸为4.5mm的无铁炉渣可用作水泥混合料。 2.SAT工艺与传统炉渣处理工艺的比较 传统方法通常是液态渣经水冷后机械破碎。炉渣产品含0.1%~20%游离CaO。其含量超过1%,遇水或遭土气侵蚀都会生成Ca(OH)2,从而破坏炉渣产品的使用性能。用传统工艺加工炉渣,通常在露天渣场经6~12个月失效或用蒸汽进行老化处理,所以导致成本增加。 SAT用高速空气流和水直接冷却液态渣成为球粒,使多种不稳定元素生成CaO-Fe2O3、SiO2-Fe2O3和Mg-Fe2O3,因而炉渣产品中不存在游离CaO。炉渣球表面则成为CaO-Fe2O3、CaO-SiO2形式的尖晶石结构。 除此之外,SAT技术生产的球形颗粒渣产品(PS球)具有很大的比重(3.56)、极低的游离CaO含量(0.15%)和极低的吸水率(0.42%),而传统法炉渣产品含CaO>1%,天然砂吸水>1%,所以,PS球还可作为混凝土配料。SAT工艺优势可归纳为: ◇消除因贮存与处理对环境的污染; ◇PS球团用途广泛; ◇减少噪音、灰尘和废水排放,改善工厂环境质量; ◇生产率高、产品成本低; ◇炉渣中的金属回收率高。 3.PS球特征 因为PS球是内部不含游离CaO的尖晶石结构,表面呈玻璃质,所以,它具有使用无害,环境友好,强度高,硬度高,抗腐蚀性能优良,物理和化学性能稳定等特点,故用途十分广泛,可用作锻压屋顶、探井、研磨料、路面材料、承重材料、噪音屏蔽、辐射隔离、水泥混合料、地板、薄弱路面改良、PC梁、自来水和废水处理、过滤材料、抗滑地板、砖、预制混凝土构件、抗磨瓷砖和柏油混合料等。 以上论述可知,SAT工艺是一种处理方法简单,生产成本低廉,产品用途十分广泛,环境好、高效的炉渣处理工艺。(张化义)

炉渣的的回收与再利用分析

炉渣的回收与综合利用分析 姓名:杜国震学号: 08L0101203 学院:理工学院专业:化学工程与工艺 班级:化工L082 指导教师:刘老师 2011--11--13

炉渣的的回收与再利用分析 摘要:许多炉渣都是完全燃烧的灰烬与不完全燃烧的煤块组成的混合物。它既不能用作燃料,也不能用作水泥的填料。造成环境的污染和浪费。选矿工艺将这部分分成可燃的炉渣与不可燃的炉渣,不论可燃与不可燃的都将能回收与再利用是我的文章要论述的内容。 关键字:炉渣回收再利用 1.炉渣的产生及现状。 工业生产中的炉渣一般不经过煤洗的原煤直接作燃料产生,也有经过洗过的灰分较高的中煤。这样除了造成严重的空气和粉尘污染外,大量的煤渣也造成了,环境的污染和煤矿资源的浪费,产生了固体废弃物。有来自中国矿业大学学报,报道每一百万吨燃烧,有超过二十万吨的炉渣,由于燃烧不完全煤渣中含有一定的可燃物质。如果不经过回收再利用而是当做废渣堆弃或是填充低地,就造成里环境的严重污染和资源的巨大浪费,因此回收与利用部分炉渣也就成了挖掘潜能措施,同时也成为了保护环境的有效手段。同时,也带来了一样的经济效益。可见回收与再次利用燃烧不完全的煤渣的意义与重要性。不单单是环境的要求也是保护资源的迫切要求。 就我国煤炭工业来说,由于国内的洗选能力与技术不足,不得不烧原煤的现状真是个遗憾。 2.炉渣的成分及用途 炉渣又称为熔渣。根据冶金过程的不同,炉渣可分为熔炼渣,精炼渣,混合渣。根据炉渣性质又分为碱性渣,酸性渣和中性渣。许多炉渣有重要的作用,如高炉渣可做水泥的原料,高磷渣可做肥料,含有钒,钛的炉渣可作为提取钒,钛的原料。还有些炉渣可以制炉渣水泥,炉渣砖,炉渣玻璃等。煤在锅炉燃烧室里的熔融物,由煤灰组成,可以作为砖,瓦的原料。 3.高炉渣的产生及回收与利用 高炉渣是冶炼生铁时从高炉中排除的废物,当炉温达到1400—1600时,炉料熔融,矿石中的脉石,焦炭中的煤灰和助溶剂和其他不能进入生铁中的杂质形成以硅酸盐,铝酸盐为主的浮

无害化处理标准流程 (3)

目录 1.无害工艺流程 (1) 1.1工艺流程图 (1) 1.2工艺说明 (1) 2.无害化处理标准及方法 (1) 2.1运送 (1) 2.2销毁 (1) 2.3操作方法 (2) 2.4有机肥行业标准 (3)

无害化处理流程及标准 1.无害工艺流程 1.1工艺流程图: 1.2工艺说明: 各分场病死猪集中输入至无害化处理厂,首先投入垫料生物发酵池中,调节水分并增添生物发酵剂。经过50~70℃高温、约30~60天左右发酵,病死猪肉体可完全腐解。其中液体进无害化厌氧发酵后,沼液深灌林地,骨质及皮质物投入焚烧炉集中焚烧,残留物林中深埋。 2.无害化处理标准及方法 2.1运送: 运送动物尸体和病害动物产品应采用密闭、不渗水的容器。装前卸后必须要消毒。 2.2销毁: ①确认为口蹄疫、猪水泡病、蓝耳病、猪瘟、非洲猪瘟、猪密螺旋体痢疾、猪囊尾蝴、急性猪丹毒、钩端螺旋体病(已黄染肉尸)、布鲁氏菌病,结核病以及其他严重危害人畜健康的病害动物及其产品; ②病死、毒死或不明死因动物的尸体; ③经检验对人畜有毒有害的、需销毁的病害动物和病害动物和病害动物产品; ④从动物体割除下来的病变部分; ⑤人工接种病原微生物或进行药物试验的病害动物和病害动物产品; ⑥国家规定的其他应该销毁的,动物和动物产品。

2.3操作方法: (1)焚毁:将病害动物尸体、病害动物产品投人焚烧炉或用其他方式烧毁碳化。 (2)掩埋:本法不适用于患有炭疽等芽袍杆菌类疫病。 具体掩埋要求如下: a)掩埋地应远离学校、公共场所、居民住宅区、村庄、动物饲养和屠宰场所、饮用 水源地、河流等地区; b)掩埋前应对需掩埋的病害动物尸体和病害动物产品实施焚烧处理; c)掩埋坑底铺2 cm厚生石灰; d)掩埋后需将掩埋土夯实.病害动物尸体和病害动物产品上层应距地表1.5m以上; e)焚烧后的病害动物尸体和病害动物产品表面,以及掩埋后的地表环境应使用有效 消毒药喷、洒消毒。 (3)堆沤发酵法: 具体堆沤发酵要求如下: a)堆沤前需将辅料(猪粪与谷糠或秸秆)混合物水分调节至60%左右,碳氮比(C/N)25:1—35:1,同时添加适量的生物发酵剂; b)堆沤前先在发酵仓内垫上50 cm左右已调节好的猪粪与谷糠混合物; c)垫好发酵底物的发酵仓内,可直接将死猪投入发酵仓内:大猪每层平均一只,小猪一层大约为40 cm左右,在铺好一层死猪后,可在死猪上再铺上50 cm猪粪与谷糠混合物,如此反复直到发酵仓堆满为止; d)堆沤发酵仓内大约需1—3个月,50—70℃高温发酵,可将死猪完全腐解,此过程中无需翻堆; e)待死猪完全腐解后,将发酵底物完全从发酵仓内转出,进行堆沤二次发酵15天左右之后,制作成精制有机肥; f)以上所有操作过程都必须穿戴相应防护服。 (4)无害化处理—消毒 适用对象为除销毁适用对象规定的动物疫病以外的其他疫病的染疫动物的生皮、原

煤气化灰渣资源化利用策略研究

煤气化灰渣资源化利用策略研究 摘要:煤炭是我国社会经济发展重要的产业,为国民经济发展提供物质基础。 煤化工行业作为其中重要的一个环节,为国计民生提供甲醇、合成氨、天然气、 乙二醇等化工原材料。煤炭具有成分复杂、生产工艺繁琐、原料提纯困难等特点,因此煤化工也是高能耗、高污染的行业。随着人们对环保、绿色、健康理念的重视,我国煤化工行业面临巨大的机遇与挑战,能否解决好行业发展中的环境污染 问题成为制约煤化工加速发展的重要影响因素。基于此,本文就煤气化灰渣资源 化利用策略进行简要阐述。 关键词:煤气化;资源化;利用 近年来,国家提出了科学可持续发展煤化工的理念。而煤气化灰渣占煤化工 固废很大比例,对其进行综合利用是整个煤化工实现绿色可持续发展的重要因素。对煤气化灰渣进行高效合理利用,既可以消除灰渣引带来的环境危害,又可以实 现“化害为利、变废为宝”,节约资源。因此,研究煤气化灰渣资源化途径、开发 灰渣综合利用策略,有益于提高我国自主供应水平,对我国今后合理开发利用资源、保护生态环境、建设资源节约型、环境友好型社会具有重要的意义。 1 煤气化灰渣的特性 随着现代煤化工的发展,气流床气化技术逐渐成为煤气化技术的主流,主要 包括干煤粉加压气化技术和水煤浆加压气化技术两种。气流床气化技术根据煤质 的灰熔点不同,气化操作温度高达1400℃-1600℃,高温合成气夹带着灰渣经过 水浴激冷至220℃左右。灰渣分为细灰和粗渣两种,它们随着气化炉运行条件的 不同而呈现不同的外观形态。细灰为不完全反应的细颗粒,含有20%-40%残碳成分,颜色成灰黑色,比表面积15m3/g,空隙发达。粗渣的残碳含量比较低,一般在1%以下,颜色呈现棕色、灰色、黄褐色的颗粒物质。灰渣成分与气化原料煤 灰分含量、组成以及生产工艺相关,主要取决于煤中的无机矿物质、有机物成分。灰渣成分复杂,主要成分为二氧化硅,大约占39.67%;三氧化二铝大约占 26.77%;四氧化三铁大约占12.80%;氧化钙大约占9.96%;氧化镁大约占2.43%;还要一些残余碳等大约占8.37%。灰渣的化学元素除含有大量的硅、铁、铝、钙、镁、碳外,还含有少量铜、铅、汞、砷、铬、镍、锰、钡、锶等以及微量的有害 元素。另外,煤气化灰渣中还含有少量的放射性元素,比如:铀、钍等。 2 煤气化灰渣的资源化途径 灰渣的利用可以分为多种形式,包括回填结构、填筑路基等低值化形式;制 造水泥等中值化形式和土壤改良、分选化合物等高值化形式,具体形式如下: 2.1 热利用 气化细灰中含有20%-40%残碳,热值较高。在国内有很多工厂尝试将气化细 灰掺烧到锅炉中再次燃烧,但是效果不理想,主要原因为气化细灰的空隙发达, 经过普通脱水处理后,水分仍然高达50%,很难实现气化细灰的输送。宁夏神耀 科技有限责任公司开发的气化细灰脱水干化一体化成套技术是将脱水和干化过程 有机结合,可将气化细灰脱水至20%以下,既提高了细灰的热值,又可解决气化 细灰的输送问题,为气化细灰的燃烧再利用提供技术保证。气化细灰经过再次燃 烧脱碳后,碳含量可降至1%左右,为气化细灰的进一步资源化利用打开了通道。 2.2 回收多种金属 目前,欧美等国家已经成功的采用磁选和筛分等技术从煤气化灰渣中提取出 金属。还有一些工厂采用涡电流成功的分离出有色金属。

高炉炉渣处理方法

编号:SM-ZD-70391 高炉炉渣处理方法 Organize enterprise safety management planning, guidance, inspection and decision-making, ensure the safety status, and unify the overall plan objectives 编制:____________________ 审核:____________________ 时间:____________________ 本文档下载后可任意修改

高炉炉渣处理方法 简介:该安全管理资料适用于安全管理工作中组织实施企业安全管理规划、指导、检查和决策等事项,保证生产中的人、物、环境因素处于最佳安全状态,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 1. 概述: 高炉熔渣处理方法主要分为出干渣和水淬渣,由于干渣处理环境污染较为严重,且资源利用率低,现在已很少使用,一般只在事故处理时,设置干渣坑或渣罐出渣;目前,高炉熔渣处理主要采用水淬渣工艺,水渣可以作为水泥原料,或用于制造渣砖、轻质混凝土砌块,使资源得到合理的利用。 1.1水淬渣的按其形成过程,可以分为两大类: A:高炉熔渣直接水淬工艺。脱水方法主要有渣池法或底滤法、因巴法、拉萨法及笼法等。其主要工艺过程是高炉熔渣渣流被高压水水淬,然后进行渣水输送和渣水分离。 B :高炉熔渣先机械破碎后水淬工艺。主要代表为图拉法和HK法等。其主要工艺过程是高炉熔渣流首先被机械破碎,在抛射到空中时进行水淬粒化,然后进行渣水分离和输送。 1.2 按水渣的脱水方式可分为:

高炉渣与转炉渣综合利用

高炉渣与转炉渣综合利用 摘要:转炉炼钢过程中的主要副产品是转炉渣,目前我国转炉渣的利用率仅为10%。为提高转炉渣的利用率,应按照分析成分、制定利用方案、综合处理、分级利用 4 个主要步骤,根据当地的实际情况,建立不同适应性的阶梯利用方式,以实现最好的社会效益、环境效益和经济效益。介绍了当前国内外高炉渣综合回收与利用现状,对比分析了高炉渣各种处理工艺的优点和不足,展望了高炉渣回收与利用的发展趋势。 关键词:普通高炉渣;含钛高炉渣;综合利用转炉渣;综合处理;利用;分析 1高炉渣处理工艺与综合利用 高炉渣是冶炼生铁过程中从高炉中排出的副产品,是我国现阶段最主要的冶炼废渣。在20世纪70年代以前,一直作为工业废弃物堆放。随着钢铁工业的发展,各种高炉渣的堆积量日益增大,高炉渣的堆积不仅对环境造成了严重污染,也是一种资源的严重浪费,随着世界范围资源的日益贫乏,对高炉渣进行综合利用,变废为宝已刻不容缓。 1.1高炉渣的化学成分 高炉渣有普通高炉渣和含钛高炉渣。普通高炉渣的化学成分与普通硅酸盐水泥类似,主要为CaO、MgO、SiO2、Al2O3和MnO。含钛高炉渣中除含有上述物质外,还含有大量的TiO2。见表1 表 1 高炉渣的化学成分 高炉渣的处理工艺可分为水淬粒化工艺、干式粒化工艺和化学粒化工艺。在我国工业生产中,主要以水淬粒化工艺作为高炉渣的处理工艺,但水渣处理工艺存在以下问题 : 新水消耗量大、熔渣余热没有回收、系统维护工作量大、冲渣产生的二氧化硫和硫化氢等气态硫化物带来空气污染。粉磨时,水渣必须烘干,要消耗大量能源。因此,利用干法将高炉渣粒化作为水泥原料,同时高效利用炉渣显热,减少对环境的污染,是高炉渣处理的发展趋势。 1.2国内外高炉渣处理工艺概况 1.2.1 水淬粒化工艺 水淬粒化工艺就是将熔融状态的高炉渣置于水中急速冷却,限制其结晶,并使其在热应力作用下发生粒化。水淬后得到沙粒状的粒化渣,绝大部分为非晶态。其主要方法有:底滤法、因巴法、图拉法、拉萨法等。水淬粒化工艺处理的高炉渣,玻璃质(非晶体)含量超过95%,可以用作硅酸盐水泥的部分替代品,生产普通酸盐水泥。但此法不可避免地释放出大

35种废气处理工艺流程图要点

35种废气处理工艺流程图 简介 废气处理设备,主要是运用不同工艺技术,通过回收或去除减少排放尾气的有害成分,达到保护环境、净化空气的一种环保设备。 处理原理:

稀释扩散法 原理:将有臭味地气体通过烟囱排至大气,或用无臭空气稀释,降低恶臭物质浓度以减少臭味。适用范围:适用于处理中、低浓度的有组织排放的恶臭气体。优点:费用低、设备简单。缺点:易受气象条件限制,恶臭物质依然存在。 水吸收法 原理:利用臭气中某些物质易溶于水的特性,使臭气成分直接与水接触,从而溶解于水达到脱臭目的。适用范围:水溶性、有组织排放源的恶臭气体。优点:工艺简单,管理方便,设备运转费用低产生二次污染,需对洗涤液进行处理。缺点:净化效率低,应与其他技术联合使用,对硫醇,脂肪酸等处理效果差。 曝气式活性污泥脱臭法 原理:将恶臭物质以曝气形式分散到含活性污泥的混和液中,通过悬浮生长的微生物降解恶臭物质适用范围广。适用范围:截至2013年,日本已用于粪便处理场、污水处理厂的臭气处理。优点:活性污泥经过驯化后,对不超过极限负荷量的恶臭成分,去除率可达99.5%以上。缺点:受到曝气强度的限制,该法的应用还有一定局限。

多介质催化氧化工艺 原理:反应塔内装填特制的固态填料,填料内部复配多介质催化剂。当恶臭气体在引风机的作用下穿过填料层,与通过特制喷嘴呈发散雾状喷出的液相复配氧化剂在固相填料表面充分接触,并在多介质催化剂的催化作用下,恶臭气体中的污染因子被充分分解。适用范围:适用范围广,尤其适用于处理大气量、中高浓度的废气,对疏水性污染物质有很好的去除率。优点:占地小,投资低,运行成本低;管理方便,即开即用。缺点:耐冲击负荷,不易污染物浓度及温度变化影响,需消耗一定量的药剂。 低温等离子体 低温等离子体是继固态、液态、气态之后的物质第四态,当外加电压达到气体的着火电压时,气体分子被击穿,产生包括电子、各种离子、原子和自由基在内的混合体。放电过程中虽然电子温度很高,但重粒子温度很低,整个体系呈现低温状态,所以称为低温等离子体。低温等离子体降解污染物是利用这些高能电子、自由基等活性粒子和废气中的污染物作用,使污染物分子在极短的时间内发生分解,并发生后续的各种反应以达到降解污染物的目的。

(完整word版)生活垃圾焚烧炉渣性质及处置技术

1、生活垃圾焚烧炉渣性质 (1)炉渣的物理性能 生活垃圾焚烧炉渣是生活垃圾焚烧的副产物,包括炉排上残留的焚烧残渣和从炉排间掉落的颗粒物,呈黑褐色,原炉渣有刺激性气味,经过处理后气味减弱。未经处理的焚烧炉渣主要由灰渣、碎玻璃和砖块、陶瓷碎片、木屑,以及少量碎布条、塑料、金属制品等物质组成。碎玻璃、陶瓷碎片等主要来自于工程中的建筑垃圾,但只要其粒径大小不超过5mm,就不会影响炉渣多孔砖的整体性能。金属制品主要来自于人们的生活用品,如易拉罐、钉子、铁罐等,并且其中的单质铁会氧化,产生锈蚀,影响砖的性能。布条、塑料等物质是由于生活垃圾在焚烧过程中燃烧不够充分而未能去除。 炉渣中还含有极少量的有色金属,在公路基层应用过程中可能会由于和碱反应产生H2而破坏路面,大颗粒金属可能会损坏施工设备,对施工的危害较大,应尽可能地除去;炉渣中的可燃物含量较低,5mm以上颗粒中的可燃物含量在0.06~1.34%。可燃物的存在不利于资源化利用,如影响应用时路面的长期稳定性,影响无机结合料与炉渣的结合,而降低材料强度。因此,该将这些物质尽量去除。经过预处理的炉渣只含有少量的碎玻璃、砖块和陶瓷碎片,布条、塑料等有机物几乎全部去除。由于炉渣主要物理组分质地坚硬,因而作为集料使用时能保证一定的强度。 (2)炉渣的含水率、热灼减率、堆积密度、吸水率 由于水淬降温排渣作用,炉渣的含水率约为12.0%~18.9%,随着堆积时间、天气等因素上下波动;炉渣热灼减率反映垃圾的焚烧效果,一般较低,为1.57%~3.16%;炉渣堆积密度在1150kg/m3~1350kg/m3之间,吸水率为37%左右。说明炉渣是一种多孔的轻质材料,强度不高。 (3)炉渣的粒径分布 炉渣粒径分布较均匀,主要集中在2~50mm的范围内(占60.8%~7.68%),小于0.074mm的颗粒含量在0.06%~1.36%。基本符合道路建材中集料的级配要求。

炉渣处置与应用

垃圾焚烧发电炉渣处置与应用 ●垃圾焚烧灰渣的现状 目前,随着政府对生活垃圾处理减量化、无害化和资源化的加强管理,生活垃圾处理已经成为城市管理和公共服务的重要组成部分,根据中国国情和相关技术,生活垃圾焚烧处理无疑成为目前最好的垃圾处理方式。焚烧灰渣是城市垃圾焚烧过程中一种必然的副产物,如何处理好灰渣,是当前生活垃圾焚烧处理的一大问题。 垃圾焚烧产生的灰渣包括从焚烧炉的底灰(Bottom Ash,BA),由烟气净化产生的空气污染控制残渣(Air Pollution Control Residues,APCR)两种。主要是不可燃的无机物以及部分未燃尽的可燃有机物。根据垃圾组成的不同,灰渣的数量一般为垃圾焚烧前总重量的5%-20%。灰渣特别是飞灰中含有一定量的有害物质,若重金属未经处理直接排放,将会污染土壤和地下水,对环境造成危害。另一方面,由于灰渣中含有一定数量的铁、铜、锌、铬等重金属物质,有回收利用价值,故又可作为一种资源开发利用。因此,焚烧灰渣既有它的污染性,又有其资源特性。焚烧灰渣的处理是城市垃圾焚烧工艺的一个必不可少的组成部分。 ●炉渣 1.炉渣的组成 底灰(即炉渣)是灰渣的主要部分,呈黑褐色,大约占灰渣总质量的80%-90%。炉渣含水率10.5%~19.0%,热灼减率1.4%~3.5%,低热灼减率反映出其良好的焚烧效果。底灰是由熔渣、玻璃、陶瓷类物

质碎片、铁和其他金属、及其他一些不可燃物质,以及没有燃烧完全的有机物所组成的不均匀混合物。大颗粒炉渣(>20mm)以陶瓷/砖块和铁为主,两种物质的质量百分比随着粒径的减小而减小;小颗粒炉渣(<20mm)则主要为熔渣和玻璃其含量随着粒径的减小而增多,这主要是由于这些物质的物理性质和在炉排中移动时所受的撞击力不同而造成的。 因焚烧 1t生活垃圾约产生 200~250kg 炉渣,以日处理量为1200t的重庆同兴垃圾焚烧发电2厂为例,1年约产生8~11万t 左右的炉渣。 2.炉渣的分拣工艺 炉渣中铁的总含量在5%~8%,目前国内的炉渣分拣主要是分拣炉渣中的铁。 炉排中燃尽的炉渣掉落到除渣机中,通过水的降温,液压式除渣机将冷却后的炉渣沥干后送入皮带输送机,在皮带输送机的转换端头加装多级除铁器,利用磁铁将金属铁分拣出来,为进一步提高分拣效果,工厂中一般在炉渣输送过程中配置振动装置和破碎装置,加大分拣力度。 3.炉渣的资源化利用 3.1炉渣的性质 炉渣粒径分布主要集中在 2~ 50mm的范围内(占61.1%~77.2%),基本符合道路建材(骨料、级配碎石或级配砾石等)的级配要求。炉渣溶解盐量较低,仅为 0.8%~1.0%,因此炉渣处理处置时因溶解盐污染地下水的可能性较小。炉渣pH 缓冲能力较强,初始 pH 值(蒸馏水浸出,液固比为5:1)在11.5以上,能有效抑制重金属的浸出[2]。

35种废气处理工艺流程图

35种废气处理工艺流程图简介 废气处理设备,主要是运用不同工艺技术,通过回收或去除减少排放尾气的有害成分, 达到保护环境、净化空气的一种环保设备。 处理原理: GAGGAGAGGAFFFFAFAF

稀释扩散法 GAGGAGAGGAFFFFAFAF

原理:将有臭味地气体通过烟囱排至大气,或用无臭空气稀释,降低恶臭物质浓度以减少臭味。适用范围:适用于处理中、低浓度的有组织排放的恶臭气体。优点:费用低、设备简单。缺点:易受气象条件限制,恶臭物质依然存在。 水吸收法 原理:利用臭气中某些物质易溶于水的特性,使臭气成分直接与水接触,从而溶解于水达到脱臭目的。适用范围:水溶性、有组织排放源的恶臭气体。优点:工艺简单,管理方便,设备运转费用低产生二次污染,需对洗涤液进行处理。缺点:净化效率低,应与其他技术联合使用,对硫醇,脂肪酸等处理效果差。 曝气式活性污泥脱臭法 原理:将恶臭物质以曝气形式分散到含活性污泥的混和液中,通过悬浮生长的微生物降解恶臭物质适用范围广。适用范围:截至2013年,日本已用于粪便处理场、污水处理厂的臭气处理。优点:活性污 GAGGAGAGGAFFFFAFAF

泥经过驯化后,对不超过极限负荷量的恶臭成分,去除率可达99.5%以上。缺点:受到曝气强度的限制,该法的应用还有一定局限。 多介质催化氧化工艺 GAGGAGAGGAFFFFAFAF

原理:反应塔内装填特制的固态填料,填料内部复配多介质催化剂。当恶臭气体在引风机的作用下穿过填料层,与通过特制喷嘴呈发散雾状喷出的液相复配氧化剂在固相填料表面充分接触,并在多介质催化剂的催化作用下,恶臭气体中的污染因子被充分分解。适用范围:适用范围广,尤其适用于处理大气量、中高浓度的废气,对疏水性污染物质有很好的去除率。优点:占地小,投资低,运行成本低;管理方便,即开即用。缺点:耐冲击负荷,不易污染物浓度及温度变化影响,需消耗一定量的药剂。 低温等离子体 低温等离子体是继固态、液态、气态之后的物质第四态,当外加电压达到气体的着火电压时,气体分子被击穿,产生包括电子、各种离子、原子和自由基在内的混合体。放电过程中虽然电子温度很高,但重粒子温度很低,整个体系呈现低温状态,所以称为低温等离子体。低温等离子体降解污染物是利用这些高能电子、自由基等活性粒子和废气中的污染物作用,使污染物分子在极短的时间内发生分解,并发生后续的各种反应以达到降解污染物的目的。 GAGGAGAGGAFFFFAFAF

《铜冶炼炉渣回收铜》国家标准

《铜冶炼炉渣回收铜》国家标准 编制说明 铜陵有色金属集团控股有限公司 2010年8月

《铜冶炼炉渣回收铜》国家标准编制说明 1、任务来源 根据中色协综字[2010]015号文件,关于下达2009年第二批有色金属国家、行业标准制(修)订项目计划通知,《铜冶炼炉渣回收铜》由铜陵有色金属集团控股有限公司负责起草,参加起草单位大冶有色金属集团控股有限公司。负责起草单位接到通知后立即成立标准编制小组。经过半年的相关准备,制定出本讨论稿。 2、铜冶炼炉渣回收铜产品简介 目前国内铜冶炼所采用的主要是熔炼和吹炼二道炼铜工艺,以往第一道工艺所产生的熔炼渣由于含铜量较低基本上作为废料丢弃,也有部分作为建筑行业添加剂销售。第二道工艺所产生的吹炼渣由于含铜量相对较高,有的厂家返回上道工序使用,有的采用选矿富集再利用。 由于近年来铜价较高,不少厂家对含铜量较低熔炼渣在投入和产出比进行了测算;同时,随着选矿回收技术的提高,各冶炼厂纷纷上马选矿厂回收熔炼渣中铜金属。 无论是熔炼渣还是吹炼渣所回收的铜,与井下和地表开采的铜矿物所选的铜精矿相比除含硫品位较低和粒度较细外,其性质基本相同,各冶炼厂都是把该产品与铜精矿配料使用。 3、标准编制前期工作 在编制标准期间,首先,进行了相关信息和资料的搜集。标准编制小组于今年6月至7月,先后前往云南铜业公司、大冶有色金属控

股公司、江西铜业公司、金川有色金属公司、中条山有色金属集团公司、祥光铜业公司、铜陵有色稀贵金属公司、铜陵有色金口岭矿业公司、铜陵有色天马山矿业公司进行实地考察调研,收集了大量的相关数据和资料,并取样进行了分析。 通过调研,基本掌握国内铜冶炼炉渣回收铜的生产和需求厂家的情况,覆盖面达到90%以上,应当说具有广泛的代表性。具体收集和分析的相关数据见附表。 4、标准编制原则 4.1本标准格式按照GB/T1.1-2009最新版本要求编写。 4.2本标准参考YS/T 318-2007《铜精矿》标准进行编写。 4.3本标准编制遵循“先进性、实用性、统一性、规范性”的原则,使标准制定具有可操作性。 4.4本标准充分考虑了使用单位的意见和建议。 5、标准中主要内容确定 5.1关于标准名称 标准的名称有三个可采用:“铜冶炼炉渣回收铜”、“铜冶炼炉渣回收铜精矿”、“铜冶炼炉渣渣精矿”,我们建议采用“铜冶炼炉渣回收铜”作为该产品的标准名称。该产品名称确定是为了区别于井下或地表开采铜矿物所选的铜精矿,来源于铜冶炼中。 5.2关于产品分类 根据调研所收集和取样分析的资料,按照精矿含铜品位高低不同确定为三个品级,三级品含铜品位不小于15%,一级品含铜品位不小

畜禽养殖无害化处理方案和工艺流程

畜禽养殖无害化处理设备 工艺原理:原料通过斗式提升至二次平台的高温熟化罐内,对设备进行加温加压,使物料充分搅拌,分解成粉状物料,此时的物料湿度约30%~35%,熟化完毕;熟化后的物料通过螺旋输送机进行新型预榨机内压榨脱脂;压榨后的渣饼成为有机肥,榨汁进一步处理变成生物制柴油。废气处理系统采用真空干燥冷却装置,对废气冷却成废水,节省资源,减少水浪费,残余气体再通过水式喷淋,达到零放标准。配置冷却塔,对其热水冷却,重复利用。 性能特点:该机组针对畜禽养殖场(病残动物尸体、内脏等)进行无害化处理,产生废气采用真空除臭法,将废气冷凝成水,二次废气经过喷淋,达到排放标准。 工艺流程说明: 原料输送线:运输车将原料至原料库,原料通过胶带输送机输送至破碎机喂料斗。 1.破碎处理线:物料输送至喂料斗,直接进入破碎机进行破碎处理;破碎物料颗粒度 20~30mm之间。设置喷雾消毒口和废气收集口。 2.化制处理线:破碎处理过的物料通过密闭输送机至化制机内,加温加压使骨头、皮毛等 分解成粉状物料,使物料层压力达到0.4mpa,温度≥140℃,均匀搅拌灭菌,保持压力30min;开启泄压门,排气泄压,当罐内压力显示为0时,开启废气冷凝装置,加速物料干燥;配置物料层温度仪,测定物料的温度;运行时间40min,开启出料口卸料,设置废气收集口。 3.干燥处理线:熟化物料从化制机内卸出,进入搅拌输送机;物料通过密闭输送机输送至 蒸汽干燥机内干燥,配置物料层温度仪和湿度仪,测定物料的温度和湿度;当物料水分≤12%时,开启出料口卸料。 4.压榨处理线:干燥后的物料通过密闭输送机输送至YZYX140型榨油机内,对物料压榨 脱脂处理;榨汁通过离心泵输送至沉淀罐;榨饼通过螺旋输送机输送至成品仓库。 5.成品成分含量固形物CP≤58%,水份≤12%,脂肪≤10%,用于有机肥发酵原料; 6.油脂分离线:压榨后的榨汁进入沉淀罐,榨汁通过板框过滤处理,提取后的油脂输送至 油脂储罐;残渣送入蒸汽干燥机内,与化制机内卸出物料混合搅拌,干燥处理。 7.油脂成分含量:≤1%,酸价≤3%,杂质≤1.5%-2%,用于化工用油及生物柴油的原料; 8.废气处理线:废气采用集中负压引流,进行间接冷凝处理,将废气冷凝成污水,剩余微 量废气通过药剂洗涤吸收处理,达到排放标准,配置冷却塔,对其热水冷却,循环利用。 9.废气排放达到国家?恶臭污染物排放标准(ɡB14554-93)中有关规定,硫化氢≤0.58kɡ/h, 二硫化碳≤2.7kɡ/h,臭气浓度≤6000; 10.污水处理线:冷凝后的污水,通过管道输送至收集池,进行污水处理,污水运行成本分 析:污水处理系统设计处理水量为10m3/d; 1)电费0.9元/m3 2)人工费:污水处理系统自动化程度高,系统运行按1人管理计算,则人工费为:2000元/月/人÷30÷86×1=0.78元/ m3 3)药剂费:废水处理系统每吨水需要药剂费0.4元; 每吨水运行费用:0.9+0.78+0.4=2.08元/m3 污水排放达到国家?污水综合排放标准?(ɡB8978-1996)中有关规定;PH6.9,悬浮物SS≤150mɡ/L,五日生化需氧量BOD5≤50mɡ/L,化学需氧量COD≤150mɡ/L,硫化物≤1.0mɡ/L,氨氮≤25mɡ/L。

冶炼炉渣干法粒化余热回收技术

★新型高温炉渣余热回收技术研究分析及对策建议 2012年7月,国务院正式发布《“十二五”国家战略性新兴产业发展规划》,在重点发展方向和主要任务中明确提出“积极开发和推广用能系统优化技术,促进能源的梯次利用和高效利用”,确定了“中低品位余热余压回收利用技术”作为高效节能产业发展的重大行动之一。为了贯彻落实国家节约能源,保护环境的政策,建设资源节约型社会和环境友好型社会,实现可持续发展的战略目标,六院自筹资金积极开展冶炼炉渣余热回收利用技术研究。 目前我国主要采用水淬工艺处理高温炉渣。水冲渣之后产生大量蒸汽,同时生成污染性酸性气体。蒸汽直接排入大气无法进行热量回收,酸性气体造成大气的污染。由于冲渣后的水温度较低,是一种很难高效利用的低品位热源,使用热泵等技术进行利用效率低、污染大且很难在短期内回收投资。冶炼炉渣显热为高品位余热资源,有很高的回收价值,随着国际竞争的日益加剧和能源的持续紧缺,冶金行业面临着多项维系可持续发展战略的问题,其中如何高效地回收冶炼炉渣显热是其中的重要问题之一,因此有必要转变思路采用环保高效的余热利用工艺进行余热回收。 六院十一所成功开发出一种新型高温炉渣余热回收技术——离心空气粒化结合两级流化床余热回收工艺,该工艺能够高效环保地进行炉渣的余热回收,代表了国际上最为先进的高温炉渣余热吸收工艺。 一、国内外相关研究开展情况 高温炉渣余热回收的工艺主要有湿法工艺和干法工艺两种。湿法工艺是指用水或水与空气的混合物使熔融渣冷却,然后再运输的方案,一

般也称为水淬工艺。干法工艺即依靠高压空气或其他方法实现熔融金属冷却、粒化的工艺。湿法处理工艺是将高炉渣作为一种材料来加以利用,并没有对其余热量进行充分的利用。从节能和环保的角度来看,湿法工艺都无法避免处理渣耗水量大的问题。干式粒化工艺是在不消耗新水的情况下,利用高炉渣与传热介质直接或间接接触进行的高炉渣粒化和显热回收的工艺,几乎没有有害气体排出,是一种环境友好的新式处理工艺。 (一)国外研究状况 20 世纪70年代,国外就已开始研究干式粒化炉渣的方法。前苏联、英国、瑞典、德国、日本、澳大利亚等国都开展过高温炉渣(包括高炉渣、钢渣等) 干式粒化技术的研究。日本钢管公司(NKK)开发的转炉钢渣风淬粒化工艺和双内冷却转筒粒化工艺因为处理能力不高、运行不稳定、粒度不均匀等缺点不适合在现场大规模连续处理高炉渣。英国克凡纳金属公司(KvaernerMetals)提出转杯离心粒化气流化床热能回收技术,该法因为热量回收效率高,粒化后渣质量较好,粒度均匀,强度较高,粒径小于2mm等优势具有较好的发展前景。该法曾经于20世纪80年代初期在英国钢铁公司年产1万吨的高炉上进行了为期数年的工业试验,未实现大范围的工业化应用。澳大利亚也对该法的粒化和传热过程进行过一些数值计算和实验研究工作。对高炉渣中显热的回收目前在国际上仍然处于工业试验性阶段,还没有任何一种干式处理工艺实现了工业应用,但已有的各类技术研究积累了很多相关的理论知识和实践经验。 (二)国内研究状况 目前,国内冶金企业对于高温炉渣全部采用水淬工艺进行处理。高

煤气化灰渣处理方法 Microsoft Word 文档

求助水煤浆气化对煤质的要求? 1、煤质要有较高的挥发分,以便成浆 灰熔点不能太高,太高要加助熔剂 灰分要有限制,降低氧耗 2、挥发份高容易改性,成浆性好对内水有要求,灰熔点不能太高对灰分含量及组分有要求。 3、主要是灰熔点不能太高,再就是灰渣的流动性好,否则的加入大量的助溶剂,使灰水处理系统的水硬度提高,系统结垢严重,是水煤浆加压气化装置的顽疾,另外高挥发性和低的内水含量是决定煤种成浆性的主要条件,一般内水越低成浆性越好。 4、1灰融点低,有利与气化在较低的温度下进行,有利于设备寿命的延长。2较好的粘温特性,粘温特性好,有利于气化的排渣,稳定操作。3反应活性,反应活性好,则反应速度快,气化效率好。4发热量,发热量高的煤,气化效率高。5可磨性,可磨指数高易于制浆,成浆性能好,灰分,灰分含量高,则比氧耗高,且灰渣对耐火砖的冲蚀加大,同时增大合成气的水汽比和灰水处理的负荷 几种常见的煤气化方式对煤质的要求 煤的主要品质灰熔点、挥发分、含水量、热稳定性、强度及硫、磷、砷、氯的含量是煤的固有特性,不同的煤其主要品质不同。目前常用的几种煤气化方式----固定层间歇式气化、鲁奇(Lurgi)的粒煤气化、壳牌(Shell)

的干煤粉气化和德士古(Texaco)的水煤浆气化对煤质各有适应性,现论述如下。下表列出了几种常见的煤气化方式对煤质的要求: 表2-1 几种常见的煤气化方式对煤质的要求

指标间歇式固定层气化 Lurgi固体排渣 Shell Texaco含多喷嘴内水(AR;%) 3--4 越低越好越低越好﹤6% 灰分(%:MF)﹤20% 越低越好越低越好﹤12% 挥发分(%:MF)﹤8% ﹤16% 越高越好越高越好 总硫(%:MF)﹤1% 越低越好越低越好越低越好 磷(%:MF)越低越好越低越好越低越好越低越好 砷(%:MF)越低越好越低越好越低越好越低越好 氯(%:MF)越低越好越低越好越低越好越低越好 热值(MG/Kg:MF 越高越好越高越好越高越好越高越好 灰熔点(FT;℃)﹥1300 ﹥1350 ﹤1400 ﹤1300 强度越高越好高越好 热稳定性﹥85 越高越好 可磨指数越高越好

炉渣废物处理与应用

炉渣废物处理与应用 关键词:炉渣城市生活垃圾炉渣的处理与综合利用 摘要:焚烧法处理城市生活垃圾的特点是减量化效果显著,体积可减少90%,但仍有20%~30%的质量留在了焚烧灰渣中。焚烧灰渣主要包括飞灰和炉渣,飞灰因其可浸出重金属含量高,且含有二噁英等有机污染物,属于危险废物。炉渣是灰渣的主要部分,占80%左右,在我国是属于没有毒性的一般废物,可直接进行填埋或作建筑材料加以利用。随着垃圾焚烧工艺在我国应用越来越广泛和对污染控制的愈加严格,焚烧炉渣内重金属的活性及在资源化利用过程中的环境安全性应引起足够重视。近年来,我国在垃圾焚烧处理方面已积累了一定的经验,对焚烧工艺和焚烧过程产生的二次污染物也做了大量的研究工作. 正文:炉渣与飞灰这两种焚烧灰渣,不仅在数量上差别很大,而且性质也有显著差异,炉渣中可浸出的重金属的量明显低于飞灰,且在标准范围之内。因此,城市生活垃圾焚烧炉渣不在欧盟委员会规定的有害废物之列,而城市生活垃圾焚烧飞灰被欧盟委员会列为19.01.03号和19.01.07号废物(R.bI么efizetal.,2000)。日本1992年修订《废物处置和公共清扫法》规定新建的垃圾焚烧炉须分别收集飞灰和炉渣(KyUng一JinHong,加oo)。生活垃圾焚烧飞灰在比利时也被认为是有害物质(.P、傲nHeerk,2000)。因此,应该将炉渣从飞灰中分离出来以便于利用炉渣和处理飞灰;将余热回收灰和控制空气污染残余物一起来管理。目前,英国、德国、法国、荷兰、丹麦、

加拿大以及日本等国大部分的生活垃圾焚烧厂,其炉渣和飞灰都是分别收集、处理和处置的:而在美国,炉渣和飞灰是混合收集、处理和处置的,因此被称作混合灰渣。我国《生活垃圾焚烧污染控制标准》(GB18485一2001)明确规定“焚烧炉渣与除尘设备收集的焚烧飞灰应分别收集、贮存和运输,焚烧炉渣按一般固体物处理,焚烧飞灰应按危险废物处理”。生活垃圾焚烧炉渣的处理是一个重要的环境生态问题。我国,炉渣属于一般废物,可直接填埋或作建材利用。但是,由于焚烧的垃圾组成复杂,炉渣中可能含有多种重金属、无机盐类物质,如铅、锡、铬、锌、铜、汞、镍、硒、砷等,在炉渣填埋或利用过程中有害成分会浸出而污染环境(0.Hjelm,ar1996)。因为包括土壤酸性、酸雨、充满COZ的水等都会把不可溶的重金属氢氧化物转化成为易溶的碳酸盐,甚至是含水碳酸盐。Dugenest等人(1999)的研究发现焚烧炉渣的TCLP浸出毒性测试中Pb、Cd超出有害废弃物限定标准。Pb、Zn、Cu的浸出成为炉渣资源化利用的潜在威胁(J.M.Chimenosetal,2000)。欧盟标准委员会第12920条法规规定城市生活垃圾焚烧灰渣如果不进行前处理,将不能填埋或资源化利用(H.A.确nderSlootetal.,2001)。欧美等发达国家早己开始采用卫生填埋方式来处理焚烧炉渣,以避免其中含有的可溶有害成分进入土壤。然而,由于卫生填埋的维护费用极高,这样进而增加了整个焚烧过程的费用,因此这种方法在我国现阶段是不可行的。炉渣引起的环境污染问题是其不能直接填埋的主要原因。另外,填埋场地急剧减少的客观现实也限制了焚烧炉渣的填埋处理。焚烧炉渣成分复杂,且含

锅炉炉渣物理热能及回收

造纸企业锅炉炉渣物理热能的回收 循环流化床锅炉,锅炉燃烧后的锅炉炉渣含有大量的物理热能(一般在800~950℃),其物理热损失数值的大小直接关系到锅炉的经济运行性。下面就如何回收这部分高温炉渣的物理热能作一论述。 1 锅炉运行现场分析 锅炉在燃烧运行中排放的高温炉渣(800~950℃)(俗称排放红渣),以底渣形式直接排放,在渣场自然冷却或用水冲洗到室温状态,造成物理热能的损失,同时极大恶化了锅炉运行现场的生产环境;高温炉渣中残留的S和N仍可在炉外自燃释放出大量SO2和NOX,造成大气环境二次污染。 另一方面,由于锅炉采用底渣直接排放形式,直接影响到锅炉料床内料层厚度和炉膛床压的稳定性,当任何一个条件稳定性较差时,会出现大块炉渣沉积现象(俗称炉膛结焦),致使排渣不畅,严重时可堵塞排渣管道,造成锅炉停炉检修。因此防止和避免炉膛结焦,必须保持炉膛内燃煤具有良好的流化条件,即保证锅炉内料层厚度和炉膛床压的稳定。锅炉运行现场较常采用的方法是对放渣时间和放渣数量进行人工控制,这一方法存在许多不确定因素: (1)采用人工控制,要求有多工种人员配合,对工人操作技能要求较高;实际在运行现场,较多工人是以工作经验为基础去进行控制的。工人操作技能的高低直接影响到控制精度的要求。 (2)采用人工控制排渣,必然造成锅炉内料层厚度和炉膛床压的不稳定,影响锅炉的稳定运行,降低锅炉的运行效率。 (3)许多燃煤在人工排渣过程中不能在炉膛内很好地流化燃烧,被以底渣方式排到炉外,发生炉外二次燃烧,产生环境污染,浪费燃煤。 (4)由于炉渣为高温流体,排放过程会产生热水蒸气,同时炉渣内积聚了大量灰分,受热水蒸气影响向四周扩散,恶化了工作现场环境,影响工人身体健康。 (5)由于炉渣的高温流体性,工人现场人工排渣存在较多安全隐患,同时工人的劳动强度大,时常会发生烧伤、烫伤等安全事故,特别在夏天排渣时周围温度可达45℃以上。 2 高温炉渣物理热能回收 该技术采用循环水逆向热交换方式对高温炉渣的物理热能进行回收利用。其原理为高温炉渣在低温循环水作用下,热量被循环水吸收加热形成高温循环水,高温循环水被回收到锅炉除氧器经除氧后进入锅炉,达到热能的循环再利用。该技术具有如下特点: (1)有效降低对锅炉产生同一单位体积蒸汽所需燃煤量,年可节约燃煤成本几十万元以上。

相关主题
文本预览
相关文档 最新文档