当前位置:文档之家› 水电站概述及设计

水电站概述及设计

水电站概述及设计
水电站概述及设计

备用电源自投装置的二次回路

备用电源和备用设备自动投入装置,就是当工作电源因故障被断开后,能自动且迅速地将备用电源或备用设备投入工作的一种自动装置,简称备自投装置。

在电力系统中采用了备用电源自投装置,可以大大提高供电的可靠牲,简化继电保护配置,节省电力建设投资。目前普遍采用的微机型备用电源自投装置不但体积小、重量轻、接线简单、可靠性高,而且使用智能化,即能够根据设定的运行方式自动识别当前的运行方式,选择自投方式。

一、备用电源自权的一次接线方案

备用电源自投装置主要用于llOkv及以下的电网中,其一次接线方案主要有以下三种,每一种接线方案中又有几种运行方式。

(一)变压器低压侧的备自投

主变压器低压母线及分段开关伪主接线如图10—1所示。

1.低压母线分段开关自投方案

由图10—l可以看出;当1号主变压器、2号主变压器同时运行,两台主变压器各带一段母线,而断路器3QF断开作为自投开关。此接线中1号主变压器和2号主变压器互为备用电源,是暗备用的接线方案。此方案有两种运行方式。

方式一:当1号主变压器故障保护跳开断路器lQr,或者1号主变压器高压侧失压,均引起低压母线I段失压,同时I1无电流,而低压母线n 段有电压。即跳1QF合上3QF,保证了对I段母线的连续供电。自投动作的条件是,I段母线失压、I1无电流n段母线有电压、1QF确已断开。检查I1,无电流是为了防止I母TV二次断线引起的谟动。”

方式二:当发生与上述自投方式一相类似的原因,n段母线失压,I2无电流并I段母线有电压时,即跳开断路器2QF合上3QF。自投动作的条件是,Ⅱ段母线失压、I2无电流、I段母线有电压、2QF确已断开。

2.主变压器低压开关自投方案

由图10—1可以看出,当1号主变压器投人并合上母线分段开关3QF,由1号主变压器带两段母线运行,2号主变压器备用,2Qr断开作为自投开关。这是明备用的接线方案。此方案也有两种运行方式:一是1号主变压器运行,2号主变压器备用;二是2号主变压器运行,1号主变压器备用。

方式一:当1号主变压器运行,2号主变压器备用时,若1号主变压器故障保护跳开1QF,或者1号主变压器高压侧失压,均引起低压母线失压,同时I1无电流。即跳开1QF合上2QF,由2号主变压器供电,保证了对低压母线的连续供电。

方式二:当2号主变压器运行,1号主变压器备用时,若2号主变压器故障保护跳开2QF,或者2号主变压器高压侧失压,均引起低压母线失压,同时I2无电流。即跳开1QF合上2QF,由1号主变压器供电。

(二)内桥开关的备自投

内桥开关备自投方案的主接线如图10—2所示。

1.明备用的自投方案

当进线XLl带I、Ⅱ段母线运行,即断路器1QF、3QF在合位,2QF在分位时,进线XL2是备用电源,2QF是备用开关(方式一)。或者,进线XL2带I、U段母线运行,即断路器2QF、3QF在合位,2QF在分位时,进线XLl是备用电源,1QF是备用开关(方式二)。显然这两种方式都属明备用的接线方案。它们的自投条件是:I(D)母线失压,线路的I1、I2无电流,线路XL2(xu)有电压,断路器1QF(2QF)确已断开,此时合上断路器2QF(1QF)。

2.暗备用的自投方案

如果两段母线分列运行,桥开关3QF在分位,而1QF、2Qr在合位,两条进线各带一段母线运行。这时进线XLl和XL2互为备用电源,这是暗备用的接线方案。这种暗备用方案与上述的低压母线分段开关自投方案及运行方式完全相同,不再赘述。

(三)线路的备自投

线路的备自投方案接线如图10—3所示。该接线是单母线方式,一般在城网的末端变电站和农网变电站中普遍采用。

图10—3所示的备自投方案接线是明备用方案接线。接线中有两个电源向母线供电。正常运行中两条线路XLI、XL2,仅一条线路供电,另一条线路作为备用。断路器1QF和2QF只有一个在合位,另一个在分位。当母线失压,备用线路有电压,且Il(I2)无电流时,即可跳开1QF(2QF),合上2QF(1QF)。该方案的自投条件是:母线失压,线路XL2.(XLl)有电压,线路I1(I2)无电流,1QF(2Qr)确实已断开,此时合上2Qr(]Qr)。

第一节水电站厂房的任务、组成及类型

一、水电站厂房的任务

水电站厂房是将水能转为电能的综合工程设施,包括厂房建筑、水轮机、发电机、变压器、开关站等,也是运行人员进行生产和活动的场所。

水电站厂房的主要任务:

(1) 将水电站的主要机电设备集中布置在一起,使其具有良好的运行、管理、安装、检修等条件。

(2) 布置各种辅助设备,保证机组安全经济运行,保证发电质量。

(3) 布置必要的值班场所,为运行人员提供良好的工作环境。

二、水电站厂房的组成

(一) 从设备布置和运行要求的空间划分

主厂房:布置水电站的主要动力设备(水轮发电机组)和各种辅助设备,设置装配场(安装间)。

副厂房:布置控制设备,电气设备和辅助设备,是水电站运行、控制、监视、通讯、试验、管理和工作的房间。

主变压器场:装设主变压器的地方。水电站发出的电能经主变压器升压后,再经输电线路送给用户。

高压开关站:装设高压开关、高压母线、和保护措施等设备的场所,高压输电线由此送往用户。

此外厂房枢纽中还有:进水道、尾水道和交通道路等。

水电站主厂房、副厂房、主变压器场和高压开关站及厂区交通等,组成水电站厂区枢纽建筑物,一般称厂区枢纽。

(二) 从设备组成的系统划分

水电站厂房内的机械及水工建筑物共分五大系统

(1) 水流系统。水轮机及其进出水设备,包括压力管道、水轮机前的进水阀、蜗壳、水轮机、尾水管及尾水闸门等。

(2) 电流系统。即电气一次回路系统,包括发电机及其引出线、母线、发电机电压配电设备、主变压器和高压开关站等。

(3)电气控制设备系统。即电气二次回路系统,包括机旁盘、励磁设备系统、中央控制室、各种控制及操作设备如各种互感器、表计、继电器、控制电缆、自动及远动装置、通迅及调度设备等直流系统。

(4) 机械控制设备系统。包括水轮机的调速设备,如接力器及操作柜,事故阀门的控制

设备,其它各种闸门、减压阀、拦污栅等操作控制设备。

(5) 辅助设备系统。包括为了安装、检修、维护、运行所必须的各种电气及机械辅助设备,如厂用电系统(厂用变压器、厂用配电装置、直流电系统),油系统、气系统、水系统,起重设备,各种电气和机械修理室、试验室、工具间、通风采暖设备等。

水电站厂房组成(设备组成)

(三) 从水电站厂房的结构组成划分

1.平面:主机室+安装间

主机室:水轮发电机组及辅助设备布置在主机室,是运行和管理的主要场所;

安装间:是水电站机电设备卸货、拆箱、组装、检修时使用的场地。

2.垂面:上部结构+下部结构(以发电机层楼板面为界)

厂房横剖面图

上部结构:与工业厂房基本相似,基本上是板、梁、柱结构系统;

下部结构:大体积混凝土结构,布置过流系统,是厂房的基础。

三、水电站厂房的基本类型

(一) 根据厂房与挡水建筑物的相对位置及其结构特征,可分为三种基本类型:

1.引水式厂房

特征:发电用水来自较长的引水道,厂房远离挡水建筑物,一般位于河岸。如若将厂房建在地下山体内,则称为地下厂房。

我国的第一座水电站——云南昆明石龙坝引水电站2.坝后式厂房

特征:厂房位于拦河坝的下游,紧接坝后,在结构上与大坝用永久缝分开,发电用水由坝内高压管道引入厂房。

坝后厂房

有时为了解决泄水建筑物布置与厂房建筑物布置之间的矛盾,可将厂房布置成以下型式:

(1) 溢流式厂房。将厂房顶作为溢洪道,成为坝后溢流式厂房。

溢流厂房

(2) 坝内式厂房。厂房移入溢流坝体空腹内。

坝内厂房凤滩坝内厂房3.河床厂房

厂房位于河床中,成为挡水建筑物的一部分。

河床式厂房

(二) 按机组主轴的装置方式分:立式机组厂房和卧式机组厂房。

第二节水电站厂房设计程序

我国大中型水电站的设计一般分四个阶段:预可行性研究、可行性研究、招标设计、施工详图。

预可行性研究:在河流规划和地区电力负荷发展预测的基础上,对拟建电站的建设条件进行研究,该水电站在近期兴建的必要性、技术上的可行性和经济上的合理性。此阶段对厂房不进行具体设计,只选定电站的规模,初选枢纽布置和厂房型式,绘出厂房在枢纽中的位置。

可行性研究:通过方案比较选定枢纽的总体布置及其参数,决定建筑物的型式和控制尺寸,选择施工方案、进度和总布置,并编制工程投资预算,阐明工程效益。

此阶段中,对厂房设计要求是根据选定机组机型、电气主接线图及主要机电设备,初步决定厂房的型式、布置及轮廓尺寸,绘出厂区及厂房布置图,进行厂房稳定计算及必要的结构分析,提出厂房工程地质处理措施。

招标设计:对可行性研究中遗留进行必要的修改和补充,落实选定方案工程建设的技术、施工措施,提出较详细的工程图纸和分项工程的工程量,提出施工、制造与安装的工艺技

术要求以及永久设备购置清单,编制招标文件。

施工详图:陆续对各项结构进行细部设计和结构计算,并拟定具体的施工方法,绘出施工详图。在此阶段,要进行厂房每个构件的细部设计和结构计算,最终确定厂房各部分尺寸。对于招标设计中的基本决定,一般不会有重大改变。

第三节水轮发电机

一、发电机类型及传力方式

(一) 悬挂式发电机

推力轴承位于转子上方,支承在上机架上。

发电机的传力方式为:

转动部分重量(发电机转子、励磁机转子、水轮机转轮)——推力头——推力轴承——定子外壳——机座;

固定部分重量(推力轴承、上机架、发电机定子、励磁机定子)——定子外壳——机座。

悬挂式发电机

(二) 伞式发电机

推力轴承位于转子下方,设在下机架上。

1.普通伞式。有上下导轴承。

发电机的传力方式为:

机组转动部分的重量——推力头和推力轴承——下机架——机座。

上机架只支撑上导轴承和励磁机定子。

2.半伞式。有上导轴承,无下导轴承。发电机通常将上机架埋入发电机层地板以下。

3.全伞式。无上导轴承,有下导轴承。机组转动部分的重量通过推力轴承的支撑结构传到水轮机顶盖上,通过顶盖传给水轮机座环。

二、发电机的励磁系统

作用:向发电机转子供给形成磁场的直流电源。

励磁系统:励磁机、励磁盘

(1) 励磁机——直流发电机。励磁方式有采用与水轮发电机同轴的励磁机的直接励磁系统。

(2) 励磁盘——控制设备和自动调整装置的配电盘。作用是:控制和调整水轮发电机的励磁电流。每台发电机一般有3~5块励磁盘。

三、发电机的支承结构(机座或机墩)

1.机座作用:将发电机支承在预定位置上,并为机组的运行、维护、安装和检修创造条件。

2.要求:具有足够的强度和刚度,具有良好的抗振性能。

3.常见的机座形式:

(1) 圆筒式机座:结构形式为厚壁钢筋混凝土圆筒,其壁厚在1m以上。

优点:刚度较大,抗振、抗扭性能较好。

缺点:水轮机直径较小时,水轮机的安装、维修、维护不方便。

(2) 环形梁立柱式机座:由环形梁和立柱组成。

优点:混凝土需要量小,水轮机顶盖处宽敞,设备的安装、布置、维修等比较方便。

缺点:是抗振、抗扭性能较差,结构刚度小。一般用中小型机组。

环形梁立柱式机座构架式机座

(3) 构架式机座:由两个纵向刚架和两根横梁组成。

优缺点与环形梁立柱式机座相同,但其刚度更小,仅适用于小型机组。

四、发电机的布置型式

(1) 开敞式——发电机定子完全露出于发电机层地面以上。

缺点:发电机层地板显得拥挤,同时水轮机层高度小,不便其间布置夹层。采用较少。

(2) 埋入式布置——发电机定子埋入发电机层楼板下机坑内。

发电机层较宽敞,水轮机层高度大,可利用增设中间层布置发电机引出线及电气设备。目前采用较多。

注:当单机容量在100MW以上的大型机组常采用上机架埋入布置,发电机层只留有励磁机。厂房的高度增加,发电机层较宽敞,检修场地大,利于各种控制设备和辅助设备的布置,有可能减小厂房的宽度。

第四节水电站厂房内的辅助设备

辅助设备主要有:调速系统、技术供水系统、排水系统、油压系统、气系统和起重设备。

一、调速系统

作用:根据电力系统要求自动调整机组的出力,同时使机组保持一定的额定转速。

组成:调速器柜、作用筒(接力器)、油压装置。三部分之间用管路联系。

1.调速器柜。调速柜的外形尺寸一般为方形,尺寸为800mm×800mm×1900mm,它以机械的传动杆和油管与作用筒相联。

2.作用筒(接力器)。控制水轮机的引用流量,以调节机组的出力。

接力器示意图

3.油压装置。组成:压力油罐、储油槽和油泵。

油罐内油压为2.5MPa,供推动活塞用。油压靠压缩空气维持,所以油桶内上部为压缩空气。工作后的油回到储油槽,罐内油量不足时,由油泵将油槽中的油打入罐内。油泵一般为两台,一台工作,一台备用。

注:调速系统的设备相互联系紧密,油压装置一般布置在发电机的上游侧,并在调速柜旁边。

二、油系统

1.作用及分类

透平油——供给机组轴承的润滑油和操作用的压力油,作用:润滑、散热及传递能量;

绝缘油——供给变压器、油开关等电气设备的,作用:绝缘、散热及灭弧。

注:两种油的性质不同,应有两套独立的油系统,不能相混。

2.组成及布置

(1)油库。接受和贮存油地方,油库设有油罐。透平油的用油设备均在厂内,故透平油库一般布置在厂内,只有在油量很大时才在厂外另设存贮新油的油库。绝缘油用量大的主变压器和开关站都在厂外,所以绝缘油库常布置在厂外主变压器和开关站附近。

注:油库要特别注意防火,大于100吨时油库应设在厂外。

(2)油处理室。设有油泵和滤油机,有时还有油再生装置。油处理室一般设在油库旁。透平油与绝缘油常合用油处理室。相邻水电站可合用一套油处理设备。

(3)补给油箱。设在主厂房的吊车梁下。当设备中的油有消耗时,给油罐自流补给新油。

(4) 废油槽。在每台机组的最低点设废油槽,收集漏出的废油。

(5)事故油槽。当变压器、油开关、油库发生燃烧事故时迅速将油排走,以免事故扩大。油可排入事故油槽中或直接排入下游河道。事故油槽应布置在便于充油设备排油的位置,并

便于灭火。

三、供水系统和排水系统。

(一) 供水系统

1.供水对象及要求

技术供水——冷却及润滑。

发电机的空气冷却器、机组导轴承和推力轴承的油冷却器、水润滑导轴承、空气压缩机气缸冷却器、变压器的冷却设备等。耗水量最大的是发电机和变压器的冷却用水,可达技术用水的80%左右,要求水质清洁、不含对管道和设备有害的化学成分。

生活供水——生活用水根据工作人员的多少决定。

消防供水——消防用水要求水流能喷射到建筑物的最高部位。消防用水可从上游压力管道、下游尾水渠或生活用水的水塔取水,并且应设置两个水源。

2.供水系统布置及供水方式

水源:压力管道、上游水库、下游水泵、地下水源。

组成:水源、供水设备、水处理设备、管网和测量控制元件。

布置:管路应尽可能靠近机组,以缩短管线并减少水头损失。供水泵房应布置在水轮机层或以下的洞室内。为保证水质,用水管把水引向过滤设备,经过滤后再分配用水。

供水方式:

(1) 水泵供水。当水电站的水头太低(水压力不够)或太高(需要减压设备)时。

(2) 自流供水。适用于水头在12~60m之间的水电站,但当水头大于40m时需要减压设

备。坝后式厂房从水库引水,引水式厂房从压力水管引水。

(3) 混合式供水。水电站水头变化较大时采用,高水头用自流方式,低水头时用水泵。

(二) 排水系统

渗漏排水系统——厂房内的生活用水、技术用水、阀门或建筑物及其他设备的渗漏水。

发电机冷却用水等均自流排往下游。不能自流排除的用水和渗水,则集中到集水井,再用水泵排到下游,这个系统称为渗漏排水系统。

检修排水系统——机组检修时常需要排空蜗壳和尾水管,为此需设检修排水系统。

检修时将检修机组前蝴蝶阀或进水闸门关闭,将蜗壳及尾水管中的水自流经尾水管排往下游。当蜗壳和尾水管中的水位等于下游尾水时,关闭尾水闸门,利用检修排水泵将余水排走。

排水系统的布置要求

水泵集中在水泵房内,集水井设在水泵房的下层。集水井通常布置在安装间下层、厂房一端、尾水管之间或厂房上游侧。集水井的底部高程要足够低,以便自流集水。每个集水井至少设两台水泵,一台工作,一台备用。

注:一般要求渗漏排水和检修排水分开设置。

四、气系统

1.压气系统的用途

压缩空气分为低压压缩空气和高压压缩空气。

(1) 低压压缩空气系统。机组制动;调相运行压水;蝶阀关闭时,将压缩空气通入阀

上的空气围带,使其膨胀而减少漏水;检修时清扫设备,供风动工具使用;通向拦污栅,防冻清污。额定气压为0.5~0.8MPa。

(2) 高压压缩空气系统。给油压装置的压力油箱充气。

调速器压力油箱中约有2/3的体积为压缩空气,以保证调速器用油时无过大的压力波动,额定气压为2.5MPa及4MPa。

配电装置如空气断路器的灭弧和操作的用气,以及开关和少油断路器的操作用气,额定气压为2~5MPa。

2.压气系统的组成及布置

组成:空压机、储气罐、输气管、测量控制元件。

厂房内高低压系统均要设置。空气压缩机室一般布置在水轮机层,安装间的下面,其噪声很大,要远离中央控制室,并满足防火防爆要求。

五、水电站厂房的起重设备

为了安装和检修机组及其辅助设备,厂房内要装设专门的起重设备。最常见的起重设备是桥式起重机(桥吊)。

桥吊由横跨厂房的桥吊大梁及其上部的小车组成,桥吊大梁可在吊车梁顶上沿主厂房纵向行驶,桥吊大梁上的小车可沿该大梁在厂房横向移动。

起重设备的型式和吊运方式对厂房上部结构和尺寸影响较大,正确选择起重设备和吊运方式,可减小其宽度或高度。

(一) 桥式起重机的工作范围

起重机可以在厂房纵向移动,吊车大梁上的小车可以在横向移动。桥式起重机的主钩和副钩所能到达的范围称为桥式起重机的工作范围。

吊车在上下移动时也有极限位置。

在吊运过程中,起吊部件和其他设备及墙壁之间应留有一定的安全距离。

桥式起重机的工作范围

注:厂房内所有被起吊的设备起吊中心均应在起重机的工作范围之内。

(二) 桥式起重机的选择

选择依据:最大起重量和跨度。

最大起重量:发电机转子带轴、水轮机转轮带轴、主变压器(主变需要在厂内检修)。

跨度:应满足下部块体结构中的设备布置和发电机层内设备起吊的要求。尽量选用标准跨度。

第五节主厂房的布置

葛洲坝河床水电站厂房

安康坝后水电站厂房

盐锅峡水电站厂房

鹅颈项水电站初步设计报告

7.1工程概况 鹅颈项水电站位于峨边县金岩乡、大堡镇境内,为官料河干流梯级开发的第五级电站。电站开发任务主要为发电,电站为低闸、右岸长引水隧洞、地面式厂房,装机36MW,闸址位于金岩乡黑竹沟温泉山庄下游520m,厂址位于大堡镇关庙河索桥下游侧右岸河边缘坡地段(杨村尾水电站库尾)。 7.2气象特征 官料河流域地处四川盆地至大凉山的过渡带,属亚热带季风气候区。受西南暖湿气流的影响,四季分明,气候温热,雨量较丰沛。具有春迟、夏短、秋早、冬长的季节特点。河源地区海拔在2000m以上,具有高山气候性质,寒冷潮湿,下游夏热,潮湿多雨。据峨边县气象站资料统计,多年平均气温15.6℃,历年最高气温37.0℃(1992年8月31日),最低气温-3.2℃(1976年12月29日);多年平均降水量831.9mm,蒸发量在697.5~847.7mm;多年平均相对湿度77.0%;多年平均无霜期280d;多年平均日照时数964.8h;多年平均风速2.2m/s,最大风速17.0m/s。 峨边县气象站主要气象要素特征值见表(7-1)。 峨边县气象站主要气象要素特征值表 7.3设计原则和设计依据

鹅颈项水电站工程的消防设计贯彻“预防为主、消防结合”、“自防自救”的设计原则。考虑各建筑物、构筑物在厂区规划,厂房布置上的防火间距,安全疏散通道,消防车道,事故排油,事故排烟、自动报警,化学灭火、人工灭火等要求及按火灾危险级别及耐火等级进行设计。对可能发生火灾的场所,在建筑物和设备的布置、安装、建筑物内装修、电缆敷设上采取有效的预防措施,以减少火灾发生。设置消火栓,水喷雾头,灭火器,沙袋等设备,以及必要的消防通道,疏散通道,以达到一旦发生火灾,则能迅速灭火或限制其范围,疏散工作人员,将人员伤亡和财产损失减小到最小。 鹅颈项电站以下列规范作为设计、安装、调试依据: 1、《水利水电工程设计防火规范》(SDJ278-90); 2、《建筑设计防火规范》(GBJ16-87)(2001版); 3、《建筑设计防火规范》(GBJ16-87)局部修订条文; 4、《火灾自动报警系统设计规范》(GBJ116-88); 5、《火灾自动报警系统施工及验收规范》(GB50166-92); 6、《水喷雾灭火系统设计规范》(GB50219-95); 7、《石油库设计规范》(GBJ74-84); 8、《建筑灭火器配置设计规范》(GBJ140-90); 9、《电力设计典型防火规程》。 7.4建筑物的耐火等级及火灾危险性类别 7.4.1为了保证电站防火安全,对电站各建筑物的耐火等级要有严格要求。根据《水利水电工程设计防火规范》(SDJ278-90)规定,对本电站的耐火等级提出以下要求:7.4.1.1主要生产建筑物和构筑物 1、主、副厂房及安装间二级; 2、中控室二级; 3、厂用配电室二级; 4、空压机室二级;

安砂水电站工程简介

安砂水电站工程简介 1、概况 安砂水电站地处福建省永安市境内,位于闽江沙溪支流九龙溪中上游,是沙溪梯级的龙头水电站。水电站距下游永安市45公里,距三明市95公里。 安砂坝址以上控制流域面积5184km2,水库设计正常蓄水位为265.00m,设计洪水位265.74m,校核洪水位267.53m,防汛限制水位263.50m,总库容7.4亿m3,属季调节水库。电站共安装三台水轮发电机组,总装机容量115MW。 安砂水电站于1971年初动工兴建,1978年12月全面竣工,经过验收组验收,工程施工质量合格。 2、自然条件 沙溪为闽江上游西溪的两大支流之一,为闽江主流,地处福建省中西部,地理位置界处东经116°23′至于118°05′,北纬25°32′至此26°39′之间,发源于福建省宁化县与江西省交界的杉岭山,由西向东流经宁化、清流、永安、三明、沙县,至沙溪口与富屯溪汇合后注入西溪,至南平与建溪汇合后称闽江。沙溪干流全长328km,河道平均坡降0.8‰,流域面积11793km2,占闽江流域总面积的19.4%。 沙溪流域四周环山,境内山峦迭嶂,总的地势由西北向东南倾斜。其东北以低山丘陵与富屯溪分界;武夷山脉中部成为沙溪和金溪的分水岭,最高峰陇西山和仙水岩海拔为1620m和1561m;西临赣江水系,分水岭为高程700~1500m的杉岭山脉南延部分;西南部多为中

山山地,最高峰鸡公岽海拔1390m系沙溪和汀江的分水岭;玳瑁山脉绵亘于流域的南部和东南缘,形成与九龙江、尤溪的分水岭,最高峰大丰山1706m。 九龙溪为沙溪上游的主要干流,九龙溪流域内植物茂盛,覆盖良好,森林面积占68%,耕地仅占8%,具有良好的水土保持条件。 安砂流域属中亚热带湿润气候,雨量丰沛,暴雨频繁。近年因上游植被遭受一定程度的破坏,洪水特征有所改变。4月1日至6月10日为主汛期,这期间主要受西南暖湿气流的影响,7月至8月主要受台风影响较多。安砂流域多年平均降水量为1723.4mm,降水量年内分配不均匀,其中3~6月份降水量约占全年降水量的58.7%,年内以12月份最小,仅占全年降水量的2.8%。全年平均降水日数为170天。多年平均水面蒸发量为1067.5mm,最大年蒸发量1978年为1515.6mm,最小年蒸发量1969年为761.7mm。 安砂大坝位于峡谷地段,河流自西向东,横切岩层走向,两岸岸坡陡峻。坝基由中、厚层石英砾岩、石英砂岩、石英岩、顺层发育的千枚状(或糜棱岩化的)粉砂岩软弱夹层组成。坝基防渗采用混凝土防渗墙处理方案,嵌入岸坡岩体60余米,底部连接灌浆帷幕。 安砂水库建厂初期就设有水文测站。上世纪90年代初开始建立水情自动测报系统,1997年经过改造后已具备完善的功能,主要有雨水情收集、洪水预度和洪水调度,预报精度能满足应用要求。电站对内外所用的报汛方式主要是电话,电报和传真三种方式,配备了卫星电话。 3、工程任务和规模

水电站项目基本情况

1工程概况 1.1工程建设必要性 花坪河水库坝址位于巴东县大支坪镇,距离野三河汇合口12.56km,坝址以上流域面积172.4km2,占支井河流域面积的71.1%。 巴东县电网以水电为主,自八十年代后期开始,陆续建成了多座小型水电站,大大改善了巴东县电网的组成结构。但随着国民经济的高速发展,电力供需矛盾仍很严重,枯水期调峰容量依然不足。每年需从州网购电,为此,兴建花坪河水电站,对提高巴东县用电的保证率有重要作用。 花坪河水电站的兴建,是合理开发利用河流水能资源的需要,工程建成后不仅可增加巴东县电网的电力供应,缓解电力供需矛盾,而且还可带动和促进本地区经济发展,节省煤耗,保护环境,其兴建有很好的经济和社会效益,工程建设是十分必要的。1.2初步设计审查意见 2012年5月14湖北省水利厅印发《关于巴东县花坪河水电站工程初步设计报告的审查意见》,鄂水利电函[2012]334号文。部分内容如下: 四、同意工程开发任务为发电 同意发电死水位640.00米,同意设置极限死水位636.00米。 同意电站装机容量30兆瓦。 基本同意洪水调节计算方法及成果。同意采用敞泄方式进行洪水调节,水库50年一遇设计洪水位为670.00米,1000年一遇校核洪水位为672.80米;厂房50年一遇设计洪水位为402.07米,200年一遇校核洪水位为404.82米。 五、电站水库总库容2238万立方米、总装机30兆瓦,属三等中型工程。大坝、溢洪道、引水发电系统、电站厂房等主要建筑物为3级建筑物,由于大坝最大坝高97米(坝高超过70米),按2级建筑物设计,但洪水标准不予提高。同意钢筋砼面板堆石坝、溢洪道、发电隧洞进口按50年一遇洪水设计、1000年一遇洪水校核,电站厂房按50 1

二滩水电站简介概要

二滩水电站简介 位于中国四川省西南攀枝花市境内的雅砻江下游、距雅砻江与金沙江的交汇口33km,是雅砻江干流上规划建设的21座梯级电站中的第一座。 二滩水电站是一座以发电为主的大型水力发电枢纽。水库控制流域面积11.64万km2,正常蓄水位1200.0m,发电最低运行水位1155.0m,总库容58.0亿m3,调节库容33.7亿m3,属季调节水库。电站内装6台550MW的水轮发电机组,总装机容量3300MW,多年平均发电量170亿kW·h,保证出力1000MW,是中国20世纪末建成投产的最大水电站。枢纽主要建筑物有混凝土双曲拱坝、左岸引水发电地下厂房系统、右岸两条泄洪洞等,双曲拱坝最大坝高240.0m,为中国已建成的最高坝。 二滩水电站1991年9月14日开工,1993年11月大江截流,1998年8月18日第一台机组投产,11月第二台机组投入运行,1999年4月拱坝工程基本完工,其余4台机组在1999年内投产。二滩水电站自工程正式开工历时8年零3个月全部建成投产。

坝址地形地质条件 二滩水电站坝址两岸谷坡陡峻、临江坡高300m~400m,左岸谷坡坡度25°~45°、右岸谷坡30°~45°,呈大致对称的“V”型河谷。河床枯期水位1011m~1012m,水面宽80m~100m,河床覆盖层厚20m~28m.枢纽区基岩由二迭系玄武岩和后期侵入的正长岩以及因侵入活动形成的变质玄武岩组成,均为高强度的岩浆岩、湿抗压强度在170~210MPa之间。坝区岩体完整性较好,构造破坏微弱,断层不发育,无大的构造断裂及顺河断裂,小断层仅4条,延伸不长、以中高倾角与河床正交或斜交,破碎带宽0.1m~0.6m,结构紧密。此外,右坝肩中部存在一条因热液蚀变和构造综合作用形成的绿泥石——阳起石化玄武岩软弱岩带,带宽10m左右。坝址属较高地应力区,河床下部左岸高程954m至976m部位,实测最大应力50.0~65.9MPa,高程1040m附近18.8~38.4MPa.坝区岩石抗风化能力较强,风化作用主要沿结构面进行和扩展,总体风化微弱。拱坝建基面主要为弱偏微风化或微风化至新鲜的正长岩、变质玄武岩、微粒隐晶玄武岩和细粒杏仁状玄武岩,岩体多为块状至整体结构、局部为镶嵌至碎裂结构,结构面闭合。 坝基水文地质条件简单、无集中涌水和渗水,基础岩体渗透性微弱、具有随深度增加而减弱的垂直分布特征,但不均一,相对不透水层的埋深变化较大。 枢纽处在川滇南北向构造带的中段西部相结稳定的共和断块上,断块内不存在发震构造,历史上无强震记载、坝址区地震基本裂度为Ⅶ度。拱坝及枢纽主要

抽水蓄能电站拦污栅相关问题的研究

https://www.doczj.com/doc/327372900.html, 抽水蓄能电站拦污栅相关问题的研究 司鸿颖,郭彬 河海大学水利水电工程学院,江苏南京(210098) E-mail:shy349@https://www.doczj.com/doc/327372900.html, 摘要:拦污栅设计合理与否直接影响着水电站的运行及其经济效益,因拦污栅而引起的电站事故时有发生。本文论述了抽水蓄能电站中的拦污栅在使用中出现的上下游水压差及振动问题,并指出了相应的措施。 关键词:抽水蓄能电站;拦污栅;水压差;振动 中图分类号:TV7 1 引言 拦污设备的功用是防止漂木、树枝、树叶、杂草、垃圾、浮冰等漂浮物随水流带入进水口,同时不让这些漂浮物堵塞进水口,影响进水能力。水电站拦污问题在水电站运行中是一项不容忽视的问题,拦污设计的合理与否,直接影响着电站运行状况的好坏及经济效益。拦污栅作为主要的拦污设备,在确保电站的安全运行方面起到了重要的作用。抽水蓄能电站因进出水口具有双向水流的水力特性,发电时上游进口为收缩流,水流经过栅面,流速不高,分布较均匀,栅体起拦污作用;下游出口为扩散流,水流需经过喇叭口扩散段抵达栅面,流速分布不均匀,使达到栅面的水流可能出现局部高流速区。抽水时则反之,所以进出水口均要满足正反向水流的要求,从而使得过栅水流条件较为复杂,可见,抽水蓄能电站拦污栅的运行条件比常规水电站要恶劣得多,拦污栅破坏的机率也更高。因此,抽水蓄能电站的拦污栅问题引起了工程技术界和学术界的极大关注,现在本人就水电站的拦污问题进行多方面的探讨,并提出改良意见,供有关设计和管理人员参考。 2 电站运行时拦污栅易发生的问题及对策 2.1 关于拦污栅上下游水压差 2.1.1 拦污栅前后水压差的发生 水流通过拦污栅时产生的水头损失即为拦污栅的压差。拦污栅的水头损失由两部分组成:一是固有水头损失——水流在通过拦污栅时,栅条对水流有局部的阻碍作用,产生局部水头损失,这是不可避免的。影响这种水头损失的因素有:栅条的几何形状、过栅水流的 1

白鹤滩水电站简介精选.

白鹤滩水电站简介 白鹤滩水电站位于四川省凉山彝族自治州宁南县与云南省巧家县交界的金沙江峡谷上游与乌东德梯级电站相接下游尾水与溪洛渡梯级电站相连是金沙江下游(雅砻江口~宜宾)河段4个梯级开发的第二级距宁南县城75公里。工程以发电为主兼有拦沙、防洪、航运、灌溉等综合效益。工程筹建期3年零6个月总工期12年静态投资424.6亿动态投资567.7亿。工程完全竣工后将淹没耕地6006.01Km2搬迁人口6.9万人。 电站坝址处控制流域面积430308万km2多年平均来水量4140m3/s。水库正常蓄水位820m相应库容179亿m3死水位760m以下库容79亿m3总库容188亿m3。汛限水位790m预留防洪库容56亿m3。调节库容达100亿m3具有季调节能力可增加下游溪洛渡、向家坝、三峡、葛洲坝4级电站枯水期保证出力220万kW增加枯期电量55亿kW h。上游回水180km 接乌东德水电站。水库正常蓄水位与乌东德水电站尾水位(805.5m)重叠14.5m是本河段水头重叠最大的水库。 工程枢纽由拦河坝、泄洪消洪设施、引水发电系统等组成。拦河坝为双曲拱坝高277m坝顶高程827m顶宽13m最大底宽72m。地下房装有16台75万kW的混流式机组总装机容量1200万kW年发电量515亿kW h保证出力355万kW。在上游虎跳峡龙头水库建成后可扩机至1500万kW年发电量568.7亿kWh保证出力492.6万kW。最大水头228.8m。以4回750kV 送出。

工程于1992年开始由国家水电部华东勘测设计院勘测设计已进行了库区勘测、大坝初设、水位定位、实物指标调查等工作2003年底预可研已基本完成目前已进入坝址勘选关键期预计2007年全面完成可研工作2008年正式开工建设。 最新文件仅供参考已改成word文本。方便更改

水电站作业题答案汇总

《水电站》课程思考练习题 一.绪论 1.水电站课的研究对象是什么? 2.我国有哪些水电开发基地? 3.水电站由哪三部分内容构成? 4.水电站系统由哪几个系统构成?各系统的主要作用是什么? 二.水力发电原理 1.试阐述水能利用原理。 2.什么是水电站的出力和保证出力? 3.按照集中落差方式的不同,水电站的开发可分为几种基本方式?何为坝式水电站、引水式水电站和混合式水电站? 4.坝式水电站水利枢纽和引水式水电站水利枢纽各有哪些主要特点? 5.坝后式和河床式水电站枢纽的特点是什么?其组成建筑物有哪些? 6.无压引水式和有压引水式水电站枢纽的特点是什么?其组成建筑物有哪些? 7.水电站有哪些组成建筑物? *8.规划设计阶段如何简单估算水电站的出力及年发电量?什么是设计保证率、年平均发电量?用什么方法确定N 保和ē年? *9.小型水电站装机容量的组成、确定Ny 的简化方法有哪些? 三.水力机械 1. 什么是反击式水轮机?什么是冲击式水轮机? 2. 反击式水轮机分为哪几种?冲击式水轮机分为哪几种? ()()()()()()()()()()()()()()????????????????????????????????????????????? 双击式 斜击式 切击式水斗式冲击式贯流调桨式贯流定桨式贯流转桨式贯流式 斜流式 轴流调桨式 轴流定桨式 轴流转桨式轴流式 混流式反击式水轮机SJ XJ CJ GT GD GZ GL XL ZT ZD ZZ ZL HL

水斗式 ?特点是由喷嘴出来的射流沿圆周切线方向冲击转轮上的水斗作功。 ?水斗式水轮机是冲击式水轮机中目前应用最广泛的一种机型。 ?斜击式:射流中心线与转轮转动平面呈斜射角度。 ?双击式:水流穿过转轮两次作用到转轮叶片上。 ?斜击、双击水轮机构造简单,效率低,用于小型电站。 3.解释下列水轮机型号的含义? (1)HL220-WJ-71 (2)ZZ560-LH-1130 (3)GD600-WP-250 (4)2CJ22-W-120/2×10 (5)SJ40-W-50/40 (1)HL220-WJ-71 (2)ZZ560-LH-1130 (3)GD600-WP-250 (4)2CJ22-W-120/2×10 (5)SJ40-W-50/40 ? 1.混流式水轮机,转轮型号是220,卧轴,金属蜗壳,转轮直径为71cm ? 2.表示轴流转浆式水轮机,转轮型号560,立轴,混凝土蜗壳,转轮标称直径为1130cm ? 3.贯流定桨式水轮机,转轮型号为600,卧轴,灯泡式水轮机室,转轮标称直径250cm ? 4.表示水斗式(冲击式)水轮机,同一轴上装有2个转轮,卧轴布置,转轮标称直径为120cm,每个转轮有2个喷嘴,喷嘴设计射流直径为10cm ? 5.表示双击式水轮机,转轮型号40,卧轴布置,转轮标称直径为50cm,转轮轴向长度为40cm。 4.反击式水轮机引水道由哪四部分构成?其作用各是什么? 反击式水轮机的过流部件 (1) 进水(引水)部件—蜗壳:将水流均匀、旋转,以最小水头损失送入转轮。作用:引导水流均匀、平顺、轴对称地进入水轮机的导水机构,并使水流在进入导叶前形成一定的环流,以提高水轮机的效率和运行稳定性。 ?(2) 导水机构(导叶及控制设备):控制工况作用:引导水流以一定的方向进入转轮,形成一定的速度矩,并根据机组负荷的变化调节水轮机的流量以达到改变水轮机功率的目的。 (3) 工作机构:转轮(工作核心):能量转换,决定水轮机的尺寸、性能、结构。 (4) 泄水部件(尾水管):回收能量、排水至下游。尾水管的作用是引导水流进入下游河道,并回收部分动能和势能。

清水水电站工程概况2

1.1工程概况 清水电站位于甘肃岷县县城以西15km的挑河干流上,该电站为河床式无调节电站,主要由挡水、泄水建筑物(泄冲闸、溢流坝)、电站厂房、左右岸副坝及开关站等设施组成.电站坝顶总长206.96 m,自河道左岸向右岸布置有左岸副坝段、厂房段、泄冲闸段、溢流坝段及右岸副坝段.泄洪段采用闸坝集中布置型式,设3孔泄冲闸和3孔溢流坝.3孔泄冲闸为潜孔式闸,闸孔尺寸为7.5 mx5.0 m(宽x高),弧形闸门,下游采用底流式消能;3孔溢流坝为实体混凝土重力结构,剖面为WES堰型,堰顶设有平板式工作闸门和检修闸门,闸孔尺寸7.6 mx5.5 m(宽x高),下游采用底流式消能. 经过实侧,从刘家浪水电厂的尾水至清水乡的沟里堡村(即待建的清水电站厂址),该段河道全长6300m,自然水头为18.1m,比降为2.89‰.其中刘家浪电站至待建的引水枢纽河道长3500m,自然水头为10.783m,比降为3.08‰,清水电站引水枢纽至该站厂房处,河道长2800 m,自然水头为7.317m,比降为2.6‰,可满足开发径流式电站的水能需要. 1.2.水文 刘家浪电站至待建的清水电站,两站衔接相连,该段河道没有明显的补给水源和支流汇入,因此水文资料可借用刘家浪电站的设计计算成果.

1.3.年径流 刘家浪电站水文资料采用洮河龙王台资料,引用龙王台多年流量实侧资料,用面积比法推算到清水电站引水枢纽以上河段,多年平均流量Q=111m3/s当P =85%,枯水流量23m3/s. 1.4.洪水 设计洪水分析是以岷县、李家村水文站的实侧洪水资料加入历史洪水调查资料为主要依据,进行频率分析计算.现将清水电站渠首、尾水各种频率洪峰流量列于下表. 1.5.泥沙 悬移质输沙量系根据龙王台站与下巴沟站1964年至1973年10年同期沙量、径流资料,按区间沙量模数法推算而得,并以龙王台站同期年内分配求得清水电站渠首断面逐日悬移质特征值:悬移质平均年输沙量为262万t,其中7月至9月占84.4%,4月至6月和10月占14.8%,其余5个月为清水期,占0.6%,多年平均月含沙t以7 ~ 9月较大,为1.1~1.4kg/m3.1.4.4冰情 挑河属北方河流,历年中均有不同径度的冰情发生,如结冰、流

高坝洲水电站优化后的施工方案

高坝洲水电站优化后的施工方案 1 高坝洲工程的施工概况 高坝洲水电站是清江流域开发的最下游一座梯级电站,距入长江的清江河口12 km。工程为河床式电站,前缘总长439 m,坝顶高程83.0 m,最大坝高57 m,装机3×84 MW,机组安装高程35.9 m。工程分两期施工。一期先围左河床,右岸河床明渠导流,设高、低两个土石围堰,在低土石围堰保护下修筑高土石围堰,基坑全年施工。二期围右河床,中、枯水期利用一期大坝深孔导流,汛期基坑过水,汛后利用上游土石围堰和下游RCC围堰挡水。施工中共设9条围堰,其中2条RCC围堰,7条土石围堰。1996年10月26日一期工程截流,1999年7月具备首台机组发电条件,工期33个月,比招标文件要求提前了3个月。至200 0年4月底,项目全部完工(升船机除外),工期41个月。 2 充分发挥技术优势,实现最优方案中标 招标文件明确提出了缩短工期、提前发电的要求,承建单位制定了切实可行的网络计划。在厂房和进水口之间,建基面高差大,为了改善受力条件,厂房主机段与进水口之间设置纵缝和宽槽。宽槽回填必须满足两侧混凝土冷却至稳定温度和在低温季节施工两个条件才能进行。这就只有提前完成宽槽回填,实现厂房进口段与主机段联合挡水,才能如期发电,因此厂房宽槽回填是问题的核心。 按正常程序和招标文件的进度计划,1998年10月回填宽槽,再浇筑蜗壳顶板、发电机层混凝土及厂房封顶,然后进行装修和机组安装。这样的安排很难实现1999年10月26日首台机组发电的目标。 为了确保按期发电,我们将宽槽回填时间提前到1998年3月,按照这个目标,倒排施工计划。考虑到宽槽冷却与回填历时3个月,1997年底必须形成宽槽。从安Ⅱ集水井开始施工到宽槽形成,其中包括安Ⅱ集水井混凝土、底板混凝土、固结灌浆、尾水管安装和混凝土浇筑、直锥段混凝土、蜗壳侧墙混凝土,工期至少8个月,即1997年4月必须完成开挖。若考虑4个月的开挖工期,1996年12月前必须完成基坑抽水。 按照提前回填宽槽的计划,制定了压缩土石方开挖、防渗处理和混凝土浇筑的施工方案。主要措施有: (1)截流前完成左右岸陆上边坡开挖,并浇筑1号和22号坝段基础混凝土,形成上、下游连通道路,创造大开挖条件。 (2)利用河中沙滩相对较高的地形,提前进行纵向低堰防渗处理。 (3)在厂房上游布置两台高架门机,覆盖一期工程上游全部浇筑范围,代替推荐的高栈桥方案。 (4)在安装场进口架设混凝土预应力梁,安装坝顶门机承担后期主厂房浇筑任务。

水电站大坝除险加固工程初步设计报告

水电站大坝除险加固工程初步设计报告

目录 工程特性表........................................................................ I 1 综合说明.. (1) 1.1工程概况 (1) 1.2工程前期工作概况 (1) 1.3工程现状简述 (3) 1.4大坝安全评价结论 (4) 2 水文 (11) 2.1水文及复核 (11) 2.2洪水复核 (20) 2.3调洪计算 (29) 2.4泥沙 (33) 2.5下游河道安全性评价 (34) 3 工程地质 (35) 3.1区域地质概况 (35) 3.3水库工程地质条件 (38) 3.4建筑物区工程地质条件 (39) 3.5坝基(肩)渗漏分析 (44) 3.6天然建筑材料 (47) 4 除险加固设计 (49) 4.1工程等别、建筑物级别及洪水标准 (49) 4.2设计依据 (49) 4.3坝体安全复核 (51) 4.4泄水建筑安全复核 (69) 4.5大坝渗漏处理设计 (72) 4.6大坝下游护岸处理设计 (80)

4.7除险加固处理工程量 (82) 5 施工组织设计 (87) 5.1施工总布置 (87) 5.2施工导流 (90) 5.3施工工艺 (91) 5.4安全文明施工 (91) 5.5施工进度与工期 (91) 6 建设征地与移民安置 (93) 7 环境保护设计 (94) 7.1项目区环境状况 (94) 7.2环境影响分析和预测 (95) 7.3环境保护设计 (100) 7.4投资概算 (104) 7.5环境影响评价结论 (106) 8 水土保持设计 (106) 9 设计概算 (107) 9.1工程概况 (107) 9.2投资主要指标 (107) 9.3编制依据 (108) 9.4基础价格 (108) 9.5费率计算标准 (110) 9.6工程部分概算 (110) 9.7总概算表 (112) 10 经济评价 (115) 10.1社会效益分析 (115) 10.2生态效益分析 (115)

最新桃源水电站施工测量方案修改(1)

目录 1、编制依据 (2) 2、工程概况 (2) 3 施工部署 (3) 3.1施测程序 (3) 3.2施工测量组织工作 (3) 4 施工测量的基本要求 (3) 4.1施测原则 (3) 4.2准备工作 (3) 4.3测量的基本要求 (4) 5 控制测量 (4) 5.1控制网测设 (4) 5.2加密控制 (4) 5.3高程控制 (5) 6 施工放样 (6) 6.1施工放样精度要求 (6) 6.2基础开挖放样 (7) 6.3混凝土浇筑放样 (7) 6.4金属结构及机组安装放样 (7) 7 验收测量 (9) 7.1验收测量的内容 (9) 7.2验收测量工艺流程图 (9) 7.3验收测量方法及要求 (10) 8、质量保证措施 (12) 8.1施工过程测量质量措施计划。 (12) 8.2仪器设备及人员组织 (12)

1、编制依据 1.1中国水利水电顾问集团中南勘测设计研究院设计的《桃源水电站工程施工图》; 1.2《桃源水电站工程施工组织设计》; 1.3中国水利水电顾问集团中南勘测设计研究院提供的《测量成果报告书》; 1.4土建工程涉及的有效国家建筑工程施工质量验收规范和规程:《工程测量规范》(GB50026- 2007); 1.5《水利水电工程施工测量规范》(DL/T5173-2003); 1.6《混凝土坝安全监测技术规范》(DL/T5178-2003); 1.7《精密工程测量规范》(GB/T15314-94); 1.8《国家三、四等水准测量规范》(GB 12898-91); 1.9《光电测距高程导线测量规范》(DZ/T 0034-92); 1.10《测绘产品检查验收规定》(CH1002-95); 为满足施工测量需要,根据桃源水电站主要水工建筑物的设计平均高程确定投影面高程为:35m。 控制网坐标系统采用与前期规划一致的1954北京平面坐标系和1956黄海高程系。 2、工程概况 桃源水电站位于湖南省常德市桃源县城附近的沅水干流上,是沅水干流最末一个水电开发梯级。 桃源水电站为低水头径流式电站,二等大(2)型工程。电站枢纽主要由泄洪闸、发电厂房、船闸等水工建筑物组成。泄洪闸共25孔,孔口净宽20m,堰顶高程26.00m,左侧河道布置14孔,长度326.60m,右侧河道布置11孔,长度257.00m,闸坝顶部高程50.70m,最大坝高30.20m;厂房轴线长271.2m,顺水流向长91.45m,最大高度45.20m,安装9台灯泡贯流式发电机组,单机容量20MW,总装机容量180MW;通航建筑物含上下游引航道、上、下闸首、闸室等部分。 本工程采用分期导流方式,利用双洲岛作为纵向围堰,一期围右岸汊河,二期围左岸主河床。 本工程控制性施工工期为: 根据DL/T5397-2007《水电工程施工组织设计规范》的规定,本工程施工工期按工程筹建期、工程准备期、主体工程施工期和工程完建期四个阶段安排。根据枢纽布置特点、工程规模及工程量。本工程的施工总工期52个月,其中准备工期3个月,主体工程施工期33个月,工程完建工期16个月,第1台机组发电工期36个月。 桃源水电站控制性工期为: 2010年10月中旬一期工程截流; 2012年03月31日前厂房形成全年施工条件,2012年2月底具备桥机安装条件; 2012年09月底二期工程截流; 2012年10月31日永久船闸具备临时通航条件;

水布垭水电站简介概要

水布垭水电站简介 水布垭水电站是清江梯级水电开发的龙头工程,位于湖北省巴东县境内,上距恩施市117km,下距隔河岩水电站92km,距高坝洲水电站142km水布垭水电站是以发电、防洪为主,兼顾航运及其他的水电工程。正常蓄水位高程400m,汛期限制水位高程397m,总库容45.8亿m3,有效库容24.8亿m3,是一座多年调节水库,并为长江中下游预留防洪库容7.68亿m3。电站总装机容量1600MW,保证出力310MW,多年平均发电量39.2亿kW·h。电站建成后,与隔河岩同步调峰,并承担系统事故备用。据测算,2010年~2015年将承担华中电网调峰容量的7%~9%;同时,与下游水库联合调度,可根治清江中下游洪水灾害并有效提高长江荆江河段的防洪标准,遇长江1954年和1998年洪水,可推迟荆江分洪时间约19h,减少分洪量10多亿m3。水库形成后,干、支流深水航道长约200km,可促进地方航运和旅游事业的发展,同时为发展水产养殖业提供良好的条件。 水布垭水电站坝址区地壳稳定,区内无孕震和地震构造,工程按基本裂度6度设防。水库封闭条件好,无绕坝渗漏问题,水库固体径流问题不明显。 大坝地基岩体为二叠系马鞍组(P1ma)砂页岩夹煤层,栖霞组(P1q)灰岩层有大量的软弱夹层,其厚度不等,最厚可达10余米。软层是含炭泥质较重的薄~极薄层生物碎屑灰岩、灰质泥岩及页岩、炭质页岩,并受到不同程度的层间剪切

破坏,风化较强,性状较差仅适应修筑当地材料坝(经过综合比较选定为混凝土面板堆石坝)。 河谷形态在高程400m以下呈阶梯状高陡谷坡,属“U”形谷,其中在高程350m 以下两岸地形陡峻,基本对称;350~400m高程则左陡右缓,两岸不对称,谷底宽度100~110m。 水布垭水电站工程属一等大(1)型工程,永久主要建筑物为1级,次要建筑物为3级。拦河大坝、溢洪道、地下厂房采用千年一遇洪水标准设计,万年一遇洪水标准校核;电站尾水平均按五百年一遇洪水标准设计,千年一遇洪水标准校核。设计洪水Q=20800m3/s,下泄流量Q=12804m3/s,相应上游水位402.1m,下游水位223.4m;校核洪水Q=26700m3/s,下泄流量Q=15243m3/s,相应上游水位404.5m,下游水位227.4m; 水布垭枢纽由左岸开敞式溢洪道、混凝土面板堆石坝、右岸地下厂房等主要建筑物组成。

水电站简介

天全县青元水电站简介 概况:青元水电站位于雅安市天全县鱼泉乡藏渔河中游,距离天全县10公里,从G8京昆高速天全县出口下高速30分钟左右可达,对外交通条件较便利。本地年降水量近2000毫米,径流量大、水量稳定、落差大、冬季不结冰,非常适合小水电开发。国家目前推行的削减火力发电,支持水电和新能源建设的大政方针不会改变。如:今年出台的《2016年农村小水电扶贫试点工程实施办法》明确此类电站可以享有适当的财政补贴。 一、具体情况 1、电站设计单位:雅安市水利水电勘察设计院设计,于2006年9 月开工建设,于2008年5月正式并网发电。电站法定代表人:杨殿军;营运负责人:郑述涛。 2、本电站为底格栅坝引水式无调节径流电站,集雨面积:32.3平 方公里,设计流量:2.5立方/s,设计水头:231米,前池容量200立方,2台发电机组,单机2015千瓦,总发电功率4000千瓦,上网电压3万伏特。工程主要由渠首、前水池,引水发电隧洞、高压管道、电站厂房及开关站、办公生活楼等建筑物组成,引水线路总长5.4 Km。渠首有进水前池;引水隧洞长5.4km,厂房为地面式厂房,有独立办公楼。 3、发电厂房布置在藏渔河中游左岸,上游没有其他电站,尾水正 对下游主河道,主变电站、开关站均布置在厂房上侧,厂区临河

布置防洪堤,办公楼邻厂房,经受历次地震检验,建设牢固、安全可靠, 4、各种批复文件正规合法,厂房及办公楼均办理产权,使用期限 为70年。 二、收益情况: 1、工程总投入: 工程建设费用2100万元【不一一列举,行业内都清楚】其他隐形投入未计算. 2、收入:根据多年测算:年利用4465小时;多年平均发电量:1786万千瓦;上网电价:每千瓦0.195元;结算单位:天全县电力局; 结算时间:按月结算;年均营业总收入:340万元。 3、支出: (1)9名员工:站长1名,管理员6名,前池维护人员1名,杂工兼厨师1名,人均月工资2600元,加上社保等月支出3万元以下;(2)税率按6%计算,年均缴纳20万元左右;开具有增值税票,可查验。 (3)维修保养费用:因为电站刚刚运行几年,设备完好。没有多少维修支出,年均在3万元以下; (4)财产保险费用5-8万元,(根据投保额度计算)其他费用2万元以内;如果购买方不负债,几乎再无其他支出。 年均纯利润在340万-60万﹦280万元左右。如果购买方有关系能进入国家电网,电价可以增加0.10元每千瓦,年均纯收入增加150万

水电站引水系统设计

某水电站引水系统设计 该水电站所在河流中下游地段侧向侵蚀作用十分强烈,形成迂回曲折的蛇形地貌,为修建引水式水电站提供了有利的地形条件。某水电站的引水隧洞和厂房位于南天门岭,此处分水岭宽约800m ,而两端河水位差达13m ,本区地层主要是前震旦系的黑云母混合片麻岩通过,沿洞线未发现断层,且洞线顶上部新鲜岩体厚达80~160m ,深部裂隙已趋闭合因此工程地质条件较好,洞线前部通过两条较大岩脉均大致与洞线正交,一条为石英斑岩,宽30~40m ,另一条为正常闪岩,宽26~30m ,岩脉与围岩接触良好,厂房后山坡地形坡度约50o~60o,坡高40m 左右,后山坡边坡基本稳定。 7.1隧洞洞径及洞线选择 布置考虑了地质条件、地形条件、施工条件与水力条件,由于施工技术条件的限制,引水洞径不宜大于12m ,因此,选择两条引水隧洞,四条压力管道分别给每台机组供水,供水方式为单元供水(即单管单机),钢管轴线与厂房轴线相垂直,这样可以使水流平顺,减小水头损失。 7.1.1有压引水隧洞洞径计算 由于水轮机选型部分已知单机最大引用流量:3max 124.91/Q m s = 隧洞断面面积:max 2e Q A V = 24 A D π= 式中: 4.2/e V m s = 由上式得:2max 22124.9159.484.2e Q A m V ?= == 则洞径8.7D m === 本设计中取9.0D m =。 7.1.2洞线选择原则 1)地质条件:尽可能位于完整坚硬的岩石中,避开岩体软弱、山岩压力大、地下水充沛及岩石破碎带、地震区。必须穿越软弱夹层或断层时尽可能正交布置。隧洞通过层状岩体时洞线与岩层走向夹角尽可能大,以利于围岩稳定,提高承载

2018年修订版水电站增效扩容改造工程初步设计

水电站增效扩容改造工程初步设计 【Word版,可自由编辑!】

项目名称:XX市XXX水力发电站增效扩容改造工程审定: 审查: 校核: 编写: 设计人员:

目录 设计依据 (5) 1 综合说明 (6) 1.1 概述 (6) 1.2 工程现状及历年运行情况 (7) 1.2.1 工程现状 (7) 1.2.2 历年运行情况 (8) 2 现状分析及改造必要性评价 (8) 2.1 现状分析 (8) 2.1.1 水资源问题 (8) 2.1.2 水工建筑物问题 (9) 2.1.2.1 引水建筑物 (9) 2.1.2.2 厂区建筑物问题 (9) 2.1.3 机电设备问题 (9) 2.1.3.1 水力机械 (9) 2.1.3.2 电气部分 (9) 2.1.3.3 金属结构及其它 (10) 2.2 增效改造的必要性 (10) 3 水文分析及水能复核 (11) 3.1 流域概况 (11) 3.2 气象 (12) 3.3 水文基本资料 (12) 3.4 径流 (12) 3.4.1 年降水量 (12) 3.4.2 设计泾流 (13) 3.4 .3 流量历时曲线 (16) 3.5 洪水 (18) 3.5.1 洪水标准及计算原则 (18) 3.5.2 设计洪水 (19) 3.6 水能复核计算 (19)

3.6.3 求出出力保证率曲线 (57) 3.7 装机容量选择 (57) 4 工程地质 (58) 4.1 地质概述 (59) 4.1.1 地形地貌 (59) 4.1.2 地质构造 (59) 4.1.3 水文地质工程地质特征: (59) 4.2 各项工程地质条件的评述 (60) 4.2.1 电站厂房工程 (60) 4.2.2压力管道 (60) 4.2.3 压力前池工程 (60) 5 改造方案 (60) 5.1 水工建筑物改造 (60) 5.1.1 水工建筑物改造设计 (60) 5.1.2 发电厂房改造设计 (60) 5.2 机电设备改造 (61) 5.2.1 机电设备改造依据 (61) 5.2.2 机电设备改造项目 (61) 5.2.2.1 水轮发电机及辅助设备 (61) 5.2.2.2 电气 (62) 5.2.3 水轮发电机及其辅助设备参数 (62) 5.2.3.1 电站基本参数 (62) 5.2.3.2 水轮机型式选择 (62) 5.2.3.3 水轮发电机组主要参数 (63) 5.2.3.4 其它辅助设备改造 (64) 5.2.4 电气工程 (64) 5.2.4.1 本电站在电网中主接线设计 (64) 5.2.4.2 主要电气设备选择 (65) 5.2.4.3 过电压保护及接地 (67) 5.2.4.4 电站自动化系统 (68) 5.2.4.5 继电保护及安全自动装置 (69) 5.2.4.6 二次接线 (70) 5.2.4.7 通信 (71) 5.2.4.8 电气设备布置 (71) 5.2.4.9 电气工程主要设备 (71) 5.3 金属结构改造 (72) 5.4 消防设计 (72) 5.4.1 工程概况 (72) 5.4.2 消防总体设计 (72) 5.4.3 工程消防设计 (73) 5.5 征地和移民 (75) 5.6 环境保护设计及水土保持 (75) 5.6.1 环境保护设计 (75) 5.6.1.1 环境影响评价 (75)

高坝洲水电站大坝安全首次定期检查报告的审查意见

高坝洲水电站大坝安全首次定期检查报告的审查意见 高坝洲水电站位于湖北省宜都市境内,距上游隔河岩水电站50km,是清江干流开发3个梯级最下游的电站,工程主要任务是发电和航运。坝址以上控制流域面积15650km2,水库正常蓄水位80.00m,死水位78.00m,设计洪水位78.50m,校核洪水位82.90m,总库容4.863亿m3。大坝为混凝土重力坝,最大坝高57.00m,坝顶高程83.00m,坝顶长439.50m,从左至右依次为左岸非溢流坝段、电站厂房坝段、深孔泄洪坝段、纵向围堰坝段、表孔泄洪坝段、升船机坝段、右岸非溢流坝段。3个泄洪深孔进口底板高程为45m,尺寸为9.0m×9.4m(宽×高),最大泄量102m3/s;6个泄洪表孔堰顶高程为62m,由14.0m×19.6m(宽×高)的弧形工作闸门控制,最大总泄量16810m3/s。通航建筑物布置在右岸,为300t级垂直升船机,设计总提升高度40m,设计年最大单向通过能力173.3万t。厂房坝段安装3台单机容量84MW的发电机组,总装机容量为270MW。工程于1999年6月初期蓄水,2000年4月30日正式蓄水,2008年3月25日通过竣工验收。 高坝洲水电站工程竣工安全鉴定于2001年8月完成。根据《水电站大坝运行安全管理规定》和《水电站大坝安全定期检查办法》,国家电力监管委员会大坝安全监察中心委托湖北清江开发有限责任公司组织高坝洲水电站大坝安全首次定期检查,聘请了以徐麟祥为组长的专家组开展工作,定检于2007年6月开始,2008年9月结束。湖北清江开发有限责任公司以“鄂清发字[2008]38号”文《关于报送“清江高坝洲水电站大坝安全定期检查报告”的请示》,报国家电力监管委员会大坝安全监察中心审查。我们的审查意见如下: 一、大坝安全评价 (一) 本工程规模为二等,大坝为2级建筑物,按100年一遇洪水设计,1000年一遇洪水校核,符合现行规范要求。 (二)工程区基本地震烈度经国家地震烈度评定委员会审查确定为6度,大坝抗震按6度设防。 (二) 高坝洲坝址洪水由隔河岩的下泄洪水和隔河岩至高坝洲区间的天然洪水组成。由于隔~高区间流域面积只占高坝洲坝址控制流域面积的8%,因此高坝洲的坝址洪水主要取决于隔河岩的下泄洪水。2003年隔河岩大坝定检时,洪水复核结果与原初设审定成果接近;高坝洲水电站运行以来,清江未出现过异

嘉陵江流域概况与电站简介

2嘉陵江流域概况及基本资料 2.1嘉陵江流域概况 嘉陵江是长江上游左岸的主要支流,发源于陕西凤县东北的秦岭山脉,流经陕西、甘肃、四川、重庆四省(直辖市),干流全长1120km,落差有2300m,平均比降2.05‰,全流域面积为15.98万平方千米,占长江流域面积的9%。嘉陵江按照流域及河道特征,将干流分为上、中、下游,广元以上河道长为380km,为上游;广元至合川长约645km,为中游,合川至河口长约95km。嘉陵江水系发育,自上而下主要支流有西汉水、白龙江、东江、西河、渠江、涪江等。 2.2嘉陵江流域基本资料 嘉陵江流域大部分属亚热带湿润季风气候。在中下段的盆地区,冬季温暖多雾,霜雪少见,上游段山区则冬季寒冷,霜雪较多,又多风暴,往往一雨成灾。春夏时节,流域内降雨自东向西移动,若遇季风弱而迟,则西部常形成春旱和初夏干旱天气。流域内年降水量在1000毫米以上,其中50%集中在7~9月。而且降雨在区域上分布上很不均匀,一般聚集在盆地边缘的降水大于盆地中部。 流域年径流量分布于降雨分布趋势相同。中游南充至合川的年径流量为300~400mm;下游合川至重庆为400~500mm;而南充至苍溪为川中径流量深低值区,仅300mm;中游苍溪以上至广元的大滩场,由300mm递增到600mm。

流域多年平均径流量为698.8亿立方米,主要集中在汛期5~10月,汛期干流水量占全年径流量的75%~83%,非汛期在11月到次年的4月,占17%~25%。 2006年嘉陵江流域总人口4332万,耕地面积5534亩,地区生产总值3582亿元,工业总产值3025亿元,粮食总产量为2206万吨。 嘉陵江水力资源丰富,干支流经济可开发装机容量10915MW,广元以下目前已建、在建装机容量1376MW,流域水电资源开发仍具有较大的潜力。 3重庆电力发展概况与水电站简介 3.1重庆电力现状 重庆市是西南重镇,国家刚成立得直辖市。重庆电网由统调电网、从属于各县级电力公司的独立县级地方小网及企业自备电源组成。“八五”至“九五”期间缺电严重,电力需求增长迅速,1990年到2000年社会用电量平均增长率为8.86%。近几年来,随着城镇化的不断推进,科技的不断发展,重庆市的电力负荷增长一直保持较高的速度。2001年重庆市统调电网共完成发购电量161.5亿kW.h,最大负荷341.2万kW,较2000年增长了9.73%、14.5%,2002年,重庆市统调电网共完成发购电量176.9亿kW.h,最大负荷374万kW,较2001年增长了9.17%、9.61%,拉闸限电严重,特别是在夏天用电高峰时间段。在2010年,电量需求达到465亿kW.h,最大负荷达到992万kW。近几年来,重庆市电力负荷一直保持较高的增长速度,随着重庆的不断发展,特别是很多电子加工企业相继落户重庆,重庆的电力负荷仍会保持较高的增长速度,所以如何利用现有的发电站发出更多的电将会带了丰厚的经济价值和社会价值。

相关主题
文本预览
相关文档 最新文档