当前位置:文档之家› 2018版高考数学一轮复习第八章立体几何8.7利用空间向量求空间角真题演练集训理

2018版高考数学一轮复习第八章立体几何8.7利用空间向量求空间角真题演练集训理

2018版高考数学一轮复习第八章立体几何8.7利用空间向量求空间角真题演练集训理
2018版高考数学一轮复习第八章立体几何8.7利用空间向量求空间角真题演练集训理

2018版高考数学一轮复习 第八章 立体几何 8.7 利用空间向量求空

间角真题演练集训 理 新人教A 版

1.[2016·新课标全国卷Ⅱ]如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD 上,AE =CF =5

4

,EF 交BD 于点H .将△DEF 沿EF 折到△D ′EF 的位置,

OD ′=10.

(1)证明:D ′H ⊥平面ABCD ; (2)求二面角B -D ′A -C 的正弦值. (1)证明:由已知,得AC ⊥BD ,AD =CD . 又由AE =CF ,得AE AD =

CF

CD

,故AC ∥EF .

因此EF ⊥HD ,从而EF ⊥D ′H . 由AB =5,AC =6,得

DO =BO =AB 2-AO 2=4. 由EF ∥AC ,得OH DO =AE AD =1

4

.

所以OH =1,D ′H =DH =3.

于是D ′H 2

+OH 2

=32

+12

=10=D ′O 2

,故D ′H ⊥OH . 又D ′H ⊥EF ,而OH ∩EF =H , 所以D ′H ⊥平面ABCD .

(2)解:如图,以H 为坐标原点,HF →

的方向为x 轴正方向,HD →

的方向为y 轴正方向,HD →

的方向为z 轴正方向,建立空间直角坐标系H -xyz .

则H (0,0,0),A (-3,-1,0),B (0,-5,0),

C (3,-1,0),

D ′(0,0,3),AB →

=(3,-4,0),

AC →

=(6,0,0),AD ′→

=(3,1,3).

设m =(x 1,y 1,z 1)是平面ABD ′的法向量, 则????? m ·AB →=0,m ·AD ′→=0,

即????

?

3x 1-4y 1=0,3x 1+y 1+3z 1=0,

所以可取m =(4,3,-5).

设n =(x 2,y 2,z 2)是平面ACD ′的法向量, 则?????

n ·AC →

=0,n ·AD ′→=0,

即????

?

6x 2=0,3x 2+y 2+3z 2=0,

所以可取n =(0,-3,1). 于是cos 〈m ,n 〉=m ·n |m||n|

-14

50×10

=-7525,

sin 〈m ,n 〉=295

25

.

因此二面角B -D ′A -C 的正弦值是295

25

.

2.[2016·山东卷]在如图所示的圆台中,AC 是下底面圆O 的直径,EF 是上底面圆O ′的直径,FB 是圆台的一条母线.

(1)已知G ,H 分别为EC ,FB 的中点.求证:GH ∥平面ABC ;

(2)已知EF =FB =1

2AC =23,AB =BC ,求二面角F -BC -A 的余弦值.

(1)证明:设FC 的中点为I ,连接GI ,HI ,

在△CEF 中,因为点G 是CE 的中点, 所以GI ∥EF .

又EF ∥OB ,所以GI ∥OB .

在△CFB 中,因为H 是FB 的中点, 所以HI ∥BC .

又HI ∩GI =I ,OB ∩BC =B , 所以平面GHI ∥平面ABC . 因为GH ?平面GHI , 所以GH ∥平面ABC .

(2)解:解法一:连接OO ′,则OO ′⊥平面ABC . 又AB =BC ,且AC 是圆O 的直径, 所以BO ⊥AC .

以O 为坐标原点,建立如图所示的空间直角坐标系O -xyz .

由题意,得B (0,23,0),C (-23,0,0),

所以BC →

=(-23,-23,0). 过点F 作FM 垂直OB 于点M , 所以FM =FB 2

-BM 2

=3, 可得F (0,3,3). 故BF →

=(0,-3,3).

设m =(x ,y ,z )是平面BCF 的法向量, 由?????

m ·BC →=0,m ·BF →=0,

可得??

?

-23x -23y =0,

-3y +3z =0.

可得平面BCF 的一个法向量m =?

??

??-1,1,

33. 因为平面ABC 的一个法向量n =(0,0.1), 所以cos 〈m ,n 〉=

m·n |m||n |=7

7

.

所以二面角F -BC -A 的余弦值为

77

. 解法二:如图,连接OO ′.过点F 作FM 垂直OB 于点M ,

则有FM ∥OO ′. 又OO ′⊥平面ABC , 所以FM ⊥平面ABC .

可得FM =FB 2-BM 2

=3.

过点M 作MN 垂直BC 于点N ,连接FN . 可得FN ⊥BC ,

从而∠FNM 为二面角F -BC -A 的平面角. 又AB =BC ,AC 是圆O 的直径, 所以MN =BM sin 45°=62

, 从而FN =

422,可得cos ∠FNM =77

. 所以二面角F -BC -A 的余弦值为

7

7

. 3.[2016·新课标全国卷Ⅲ]如图,四棱锥P -ABCD 中,PA ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,PA =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点.

(1)证明:MN ∥平面PAB ;

(2)求直线AN 与平面PMN 所成角的正弦值. (1)证明:由已知,得AM =2

3AD =2.

如图,取BP 的中点T ,连接AT ,TN . 由N 为PC 的中点知,TN ∥BC ,TN =1

2

BC =2.

又AD ∥BC ,故TN 綊AM ,四边形AMNT 为平行四边形,于是MN ∥AT . 因为AT ?平面PAB ,MN ?平面PAB , 所以MN ∥平面PAB .

(2)解:取BC 的中点E ,连接AE . 由AB =AC ,得AE ⊥BC , 从而AE ⊥AD ,

且AE =AB 2-BE 2

AB 2-? ??

??BC 2

2= 5. 以A 为坐标原点,AE →

的方向为x 轴正方向,建立如图所示的空间直角坐标系A -xyz . 由题意知,

P (0,0,4),M (0,2,0),C (5,2,0),N ?

??

??

52,1,2, PM →

=(0,2,-4),PN →

=?

??

??

52,1,-2, AN →

=?

??

??

52,1,2. 设n =(x ,y ,z )为平面PMN 的法向量, 则?????

n ·PM →=0,n ·PN →=0,

即????

?

2y -4z =0,5

2

x +y -2z =0,

可取n =(0,2,1).

于是|cos 〈n ,AN →

〉|=|n ·AN →

||n ||AN →|

=85

25

则直线AN 与平面PMN 所成角的正弦值为85

25

.

4.[2015·新课标全国卷Ⅰ]如图,四边形ABCD 为菱形,∠ABC =120°,E ,F 是平面

ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE =2DF ,AE ⊥EC .

(1)证明:平面AEC ⊥平面AFC ;

(2)求直线AE 与直线CF 所成角的余弦值.

(1)证明:如图,连接BD ,设BD ∩AC =G ,连接EG ,FG ,EF . 在菱形ABCD 中,不妨设GB =1. 由∠ABC =120°,可得AG =GC = 3.

由BE ⊥平面ABCD ,AB =BC 可知,AE =EC . 又AE ⊥EC ,所以EG =3,且EG ⊥AC . 在Rt △EBG 中,可得BE =2,故DF =22

. 在Rt△FDG 中,可得FG =

62

. 在直角梯形BDFE 中,由BD =2,BE =2,DF =22,可得EF =322

. 从而EG 2

+FG 2

=EF 2

,所以EG ⊥FG . 又AC ∩FG =G ,所以EG ⊥平面AFC . 因为EG ?平面AEC

, 所以平面AEC ⊥平面AFC .

(2)解:如图,以G 为坐标原点,分别以GB →

,GC →

的方向为x 轴,y 轴正方向,|GB →

|为单位

长度,建立空间直角坐标系G -xyz .

由(1)可得A (0,-3,0),E (1,0,2),

F ? ??

??

-1,0,

22,C (0,3,0), 所以AE →

=(1,3,2),CF →

=? ??

??-1,-3,

22. 故cos 〈AE →

,CF →

〉=

AE →·CF

|AE →||CF →

|

=-

33

. 所以直线AE 与直线CF 所成角的余弦值为

33

. 5.[2015·新课标全国卷Ⅱ]如图,长方体ABCD -A 1B 1C 1D 1中,AB =16,BC =10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E =D 1F =4.过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.

(1)在图中画出这个正方形(不必说明画法和理由); (2)求直线AF 与平面α所成角的正弦值. 解:(1)交线围成的正方形EHGF 如图所示.

(2)作EM ⊥AB ,垂足为M , 则AM =A 1E =4,EM =AA 1=8. 因为四边形EHGF 为正方形, 所以EH =EF =BC =10. 于是MH =EH 2

-EM 2

=6, 所以AH =10.

以D 为坐标原点,DA →

的方向为x 轴正方向, 建立如图所示的空间直角坐标系D -xyz ,

则A (10,0,0),H (10,10,0),E (10,4,8),F (0,4,8), FE →

=(10,0,0),HE →

=(0,-6,8).

设n =(x ,y ,z )是平面α的法向量, 则?????

n ·FE →=0,n ·HE →=0,

即?????

10x =0,

-6y +8z =0,

所以可取n =(0,4,3).

又AF →

=(-10,4,8),

故|cos 〈n ,AF →

〉|=|n ·AF →

||n ||AF →|

=45

15

.

所以AF 与平面α所成角的正弦值为

45

15

.

课外拓展阅读

巧用向量法求立体几何中的探索性问题

立体几何中的探索性问题立意新颖,形式多样,近年来在高考中频频出现,而空间向量在解决立体几何的探索性问题中扮演着举足轻重的角色,它是研究立体几何中的探索性问题的一个有力工具,应用空间向量这一工具,为分析和解决立体几何中的探索性问题提供了新的视角、新的方法.下面借“题”发挥,透视有关立体几何中的探索性问题的常见类型及其求解策略.

1.条件追溯型

解决立体几何中的条件追溯型问题的基本策略是执果索因.其结论明确,需要求出使结论成立的充分条件,可将题设和结论都视为已知条件,即可迅速找到切入点.这类题目要求考生变换思维方向,有利于培养考生的逆向思维能力.

[典例1] 如图所示,在四棱锥S -ABCD 中,SA ⊥平面ABCD ,底面ABCD 为直角梯形,

AD ∥BC ,∠BAD =90°,且AB =4,SA =3.E ,F 分别为线段BC ,SB 上的一点(端点除外),满

足SF BF =CE BE

=λ,当实数λ

的值为________时,∠AFE 为直角.

[思路分析]

[解析] 因为SA ⊥平面ABCD ,∠BAD =90°, 故可建立如图所示的空间直角坐标系A -xyz .

因为AB =4,SA =3, 所以B (0,4,0),S (0,0,3). 设BC =m ,则C (m,4,0), 因为SF BF =CE BE

=λ,

所以SF →=λFB →

.

所以AF →-AS →=λ(AB →

-AF →

).

所以AF →

=11+λ(AS →+λAB →)=1

1+λ(0,4λ,3).

所以F ? ????0,4λ1+λ,31+λ. 同理可得E ?

??

?

?m 1+λ,4,0,

所以FE →

=?

??

?

?m 1+λ,41+λ,-31+λ.

因为FA →

=? ??

??0,

-4λ1+λ,-3

1+λ

, 要使∠AFE 为直角,即FA →

·FE →

=0, 则0·

m

1+λ+-4λ1+λ·41+λ+-31+λ·-31+λ

=0, 所以16λ=9, 解得λ=916.

[答案]

916

2.存在判断型

以“平行、垂直、距离和角”为背景的存在判断型问题是近年来高考数学中创新型命题的一个重要类型,它以较高的新颖性、开放性、探索性和创造性深受命题者的青睐,此类问题的基本特征是:要判断在某些确定条件下的某一数学对象(数值、图形等)是否存在或某一结论是否成立.“是否存在”的问题的命题形式有两种情况:如果存在,找出一个来;如果不存在,需要说明理由.这类问题常用“肯定顺推”的方法.求解此类问题的难点在于涉及的点具有运动性和不确定性,所以用传统的方法解决起来难度较大,若用空间向量方法来处理,通过待定系数法求解其存在性问题,则思路简单、解法固定、操作方便.

[典例2] 如图所示,四边形ABCD 是边长为1的正方形,MD ⊥平面ABCD ,NB ⊥平面ABCD ,且MD =NB =1,E 为BC 的中点.

(1)求异面直线NE 与AM 所成角的余弦值;

(2)在线段AN 上是否存在点S ,使得ES ⊥平面AMN ?若存在,求线段AS 的长;若不存在,请说明理由.

[思路分析]

[解] (1)如图所示,以D 为坐标原点,建立空间直角坐标系D -xyz . 依题意,得D (0,0,0),A (1,0,0),M (0,0,1),

C (0,1,0),B (1,1,0),N (1,1,1),E ? ??

??12

,1,0,

所以NE →

=? ??

??-12,0,-1,AM →

=(-1,0,1),

因为|cos 〈NE →,AM →

〉|=|NE →

·AM →

|

|NE →||AM →

|

12

5

2

×2=

1010. 所以异面直线NE 与AM 所成角的余弦值为

1010

.

(2)假设在线段AN 上存在点S ,使得ES ⊥平面AMN . 连接AE ,如图所示.

因为AN →=(0,1,1),可设AS →

=λAN →

=(0,λ,λ),

又EA →

=? ????12,-1,0, 所以ES →

=EA →+AS →

=? ??

??1

2

,λ-1,λ

.

由ES ⊥平面AMN ,得 ?????

ES →·AM →=0,ES →·AN →=0,

即?????

-12+λ=0, λ-1 +λ=0,

解得λ=1

2

此时AS →=? ????0,12,12,|AS →

|=22.

经检验,当|AS |=

2

2

时,ES ⊥平面AMN . 故在线段AN 上存在点S ,使得ES ⊥平面AMN ,此时|AS |=22

. 3.结论探索型

立体几何中的结论探索型问题的基本特征是:给出一定的条件与设计方案,判断设计的方案是否符合条件要求.此类问题的难点是“阅读理解”和“整体设计”两个环节,因此,应做到审得仔细、找得有法、推得有理、证得有力,整合过程无可辩驳.

[典例3] 某设计部门承接一产品包装盒的设计(如图所示),客户除了要求AB ,BE 边的长分别为20 cm,30 cm 外,还特别要求包装盒必须满足:①平面ADE ⊥平面ADC ;②平面ADE 与平面ABC 所成的二面角不小于60 °;③包装盒的体积尽可能大.若设计出的样品满足:∠

ACB 与∠ACD 均为直角且AB 长20 cm ,矩形DCBE 的边长BE =30 cm ,请你判断该包装盒的设

计是否符合客户的要求,并说明理由.

[思路分析]

建立空间直角坐标系→验证所给样品是否满足条件①②③→得出结论 [解] 该包装盒的样品设计符合客户的要求.理由如下: 因为四边形DCBE 为矩形,∠ACB 与∠ACD 均为直角,

所以以C 为原点,分别以直线CA ,CB ,CD 为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系C -xyz .

因为BE =30 cm ,AB =20 cm , 设BC =t cm ,则AC =400-t 2

cm ,

则A (400-t 2

,0,0),B (0,t,0),D (0,0,30),

E (0,t,30),

设平面ADE 的法向量为n 1=(x ,y ,z ), DA →

=(400-t 2,0,-30),DE →

=(0,t,0),

因为n 1·DA →

=0且n 1·DE →

=0,

所以??

?

400-t 2x -30z =0,ty =0,

取x =1,则n 1=? ?

?

??1,0,400-t 2

30.

又平面ADC 的一个法向量CB →

=(0,t,0), 所以n 1·CB →

=1×0+0×t +400-t

2

30

×0=0,

所以n 1⊥CB →

所以平面ADE ⊥平面ADC ,所以满足条件①. 因为平面ABC 的一个法向量为n 2=(0,0,1),

设平面ADE 与平面ABC 所成二面角的平面角为θ,则cos θ≤1

2

所以cos θ=|cos 〈n 1,n 2〉|=

400-t 2

30

1+

400-t 2

900

≤12,

所以10≤t ≤20,即当10≤t <20时,平面ADE 与平面ABC 所成的二面角不小于60°. 由∠ACB 与∠ACD 均为直角知,

AC ⊥平面DCBE ,

该包装盒可视为四棱锥A -BCDE , 所以V A -BCDE =1

3

S 矩形BCDE ·AC

=13·30t ·400-t 2=10·t 2 400-t 2

≤10

? ??

??t 2+400-t 2

22=2 000, 当且仅当t 2

=400-t 2

,即t =10 2 cm 时,V A -BCDE 的体积最大,最大值为2 000 cm 3

. 而10

解决立体几何中的结论探索型问题的策略是:先把题目读懂,全面、准确地把握题目所提供的所有信息和题目提出的所有要求,分析题目的整体结构,找好解题的切入点,对解题的主要过程有一个初步的设计,在此基础上建立空间直角坐标系,把所求的问题转化为空间几何体中的证明线面位置关系、角与最值等问题.

空间向量和立体几何练习题及答案.

1.如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,PA=PD=,AB=4. (1)求证:M为PB的中点; (2)求二面角B﹣PD﹣A的大小; (3)求直线MC与平面BDP所成角的正弦值. 【分析】(1)设AC∩BD=O,则O为BD的中点,连接OM,利用线面平行的性质证明OM∥PD,再由平行线截线段成比例可得M为PB的中点; (2)取AD中点G,可得PG⊥AD,再由面面垂直的性质可得PG⊥平面ABCD,则PG⊥AD,连接OG,则PG⊥OG,再证明OG⊥AD.以G为坐标原点,分别以GD、GO、GP所在直线为x、y、z轴距离空间直角坐标系,求出平面PBD与平面PAD的一个法向量,由两法向量所成角的大小可得二面角B﹣PD﹣A的大小;(3)求出的坐标,由与平面PBD的法向量所成角的余弦值的绝对值可得直线MC与平面BDP所成角的正弦值. 【解答】(1)证明:如图,设AC∩BD=O, ∵ABCD为正方形,∴O为BD的中点,连接OM, ∵PD∥平面MAC,PD?平面PBD,平面PBD∩平面AMC=OM, ∴PD∥OM,则,即M为PB的中点; (2)解:取AD中点G, ∵PA=PD,∴PG⊥AD, ∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD, ∴PG⊥平面ABCD,则PG⊥AD,连接OG,则PG⊥OG, 由G是AD的中点,O是AC的中点,可得OG∥DC,则OG⊥AD. 以G为坐标原点,分别以GD、GO、GP所在直线为x、y、z轴距离空间直角坐标系, 由PA=PD=,AB=4,得D(2,0,0),A(﹣2,0,0),P(0,0,),C(2,

(三)立体几何与空间向量

(三)立体几何与空间向量 1.如图,在四棱锥P-ABCD中,四边形ABCD为正方形,P A⊥平面ABCD,P A=AB,M是PC上一点,且BM⊥PC. (1)求证:PC⊥平面MBD; (2)求直线PB与平面MBD所成角的正弦值. (1)证明连接AC,由P A⊥平面ABCD, BD?平面ABCD,得BD⊥P A, 又BD⊥AC,P A∩AC=A, P A,AC?平面P AC, ∴BD⊥平面P AC,又PC?平面P AC,∴PC⊥BD. 又PC⊥BM,BD∩BM=B, BD,BM?平面MBD, ∴PC⊥平面MBD. (2)解方法一由(1)知PC⊥平面MBD, 即∠PBM是直线PB与平面MBD所成的角. 不妨设P A=1,则BC=1,PC=3,PB= 2. ∴PC2=PB2+BC2,∴PB⊥BC,又BM⊥PC, ∴sin∠PBM=cos∠BPC=PB PC=2 3 = 6 3, 故直线PB与平面MBD所成角的正弦值为 6 3. 方法二以A为原点,AB,AD,AP所在直线分别为x,y,z轴,建立空间直角坐标系A-xyz(如图所示),

不妨设P A =AB =1, 则P (0,0,1),B (1,0,0),C (1,1,0). 由(1)知平面MBD 的一个法向量为PC → =(1,1,-1), 而PB → =(1,0,-1). ∴cos 〈PB →,PC → 〉=(1,0,-1)·(1,1,-1)2×3=63, 故直线PB 与平面MBD 所成角的正弦值为 63 . 2.如图,已知△DEF 与△ABC 分别是边长为1与2的正三角形,AC ∥DF ,四边形BCDE 为直角梯形,且DE ∥BC ,BC ⊥CD ,点G 为△ABC 的重心,N 为AB 的中点,AG ⊥平面BCDE ,M 为线段AF 上靠近点F 的三等分点. (1)求证:GM ∥平面DFN ; (2)若二面角M -BC -D 的余弦值为 7 4 ,试求异面直线MN 与CD 所成角的余弦值. (1)证明 延长AG 交BC 于点O ,连接ON ,OF . 因为点G 为△ABC 的重心, 所以AG AO =2 3,且O 为BC 的中点. 又由题意知,AM →=23AF → , 所以AG AO =AM AF =23, 所以GM ∥OF . 因为点N 为AB 的中点,

空间向量与立体几何知识总结

已知两异面直线 b a,,,,, A B a C D b ∈∈,则异面直线所成的角θ为:cos AB CD AB CD θ? = u u u r u u u r u u u r u u u r 例题 【空间向量基本定理】 例1.已知矩形ABCD,P为平面ABCD外一点,且PA⊥平面ABCD,M、N分别为PC、PD上的点,且M分成定比2,N分PD成定比1,求满足的实数x、y、z的值。 分析;结合图形,从向量出发,利用向量运算法则不断进行分解,直到全部向量都用、、表示出来,即可求出x、y、z的值。 如图所示,取PC的中点E,连接NE,则。 点评:选定空间不共面的三个向量作基向量,并用它们表示出指定的向量,是用向量解决立体几何问题的一项基本功,要结合已知和所求,观察图形,联想相关的运算法则和公式等,就近表示所需向量。再对照目标,将不符合目标要求的向量当作新的所需向量,如此继续下去,直到所有向量都符合目标要求为止,这就是向量的分解。有分解才有组合,组合是分解的表现形式。空间向量基本定理恰好说明,用空间三个不共面的向量组可以表示出空间任意一个向量,而且a,b,c的系数是惟一的。 【利用空间向量证明平行、垂直问题】 例2.如图,在四棱锥P—ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB于点F。 (1)证明:PA方形ABCD—中,E、F分别是,的中点,求:(1)异面直线AE与CF所成角的余弦值; (2)二面角C—AE—F的余弦值的大小。

点评:(1)两条异面直线所成的角可以借助这两条直线的方向向量的夹角求得,即。 (2)直线与平面所成的角主要可以通过直线的方向向量与平面的法向量的夹角求得,即 或 (3)二面角的大小可以通过该二面角的两个面的法向量的夹角求得,它等于两法向量的夹角或其补角。 【用空间向量求距离】 例4.长方体ABCD —中,AB=4,AD=6,,M 是A 1C 1的中点,P 在线段BC 上,且|CP|=2,Q 是DD 1的中点, 求: (1)异面直线AM 与PQ 所成角的余弦值; (2)M 到直线PQ 的距离; (3)M 到平面AB 1P 的距离。 本题用纯几何方法求解有一定难度,因此考虑建立空间直角坐标系,运用向量坐标法来解决。利用向量的模和夹角求空间的线段长和两直线的夹角,在新高考试题中已多次出现,但是利用向量的数量积来求空间的线与线之间的夹角和距离,线与面、面与面之间所成的角和距离还涉及不深,随着新教材的推广使用,这一系列问题必将成为高考命题的一个新的热点。现列出几类问题的解决方法。 (1)平面的法向量的求法:设,利用n 与平面内的两个向量a ,b 垂直,其数量积为零,列出两个三元 一次方程,联立后取其一组解。 (2)线面角的求法:设n 是平面的一个法向量,AB 是平面 的斜线l 的一个方向向量,则直线与平面 所成 角为n AB n AB ??= θθsin 则 (3)二面角的求法:①AB,CD 分别是二面角 的两个面内与棱l 垂直的异面直线,则二面角的大小为

高中数学必背公式——立体几何与空间向量(供参考)

高中数学必背公式——立体几何与空间向量 知识点复习: 1. 空间几何体的三视图“长对正、高平齐、宽相等”的规律。 2. 在计算空间几何体体积时注意割补法的应用。 3. 空间平行与垂直关系的关系的证明要注意转化: 线线平行 线面平行 面面平行,线线垂直 线面垂直 面面垂直。 4.求角:(1)异面直线所成的角: 可平移至同一平面;也可利用空间向量:cos |cos ,|a b θ=<>= 1212122 222 2 2 1 1 1 222 |||||| a b a b x y z x y z ?= ?++?++(其中θ(090θ<≤)为异面直线a b ,所成角,,a b 分别表示异面直线a b ,的方向向量)。 (2)直线与平面所成的角: 在斜线上找到任意一点,过该点向平面作垂线,找到斜线在该平面上的射影,则斜线和射影所成的角便是直线与平面所成的角;也可利用空间向量,直线AB 与平面所成角sin |||| AB m AB m β?= (m 为平面α的法向量). (3)二面角: 方法一:常见的方法有三垂线定理法和垂面法; 方法二:向量法:二面角l αβ--的平面角cos |||| m n arc m n θ?=或cos ||||m n arc m n π?- (m ,n 为平面α,β 的法向量). 5. 求空间距离: (1)点与点的距离、点到直线的距离,一般用三垂线定理“定性”; (2)两条异面直线的距离:|| || AB n d n ?= (n 同时垂直于两直线,A 、B 分别在两直线上); (3)求点面距: || || AB n d n ?= (n 为平面α的法向量,AB 是经过面α的一条斜线,A α∈); (3)线面距、面面距都转化为点面距。 题型一:空间几何体的三视图、体积与表面积 例1:已知一个几何体是由上下两部分构成的组合体,

(完整版)空间向量与立体几何题型归纳

空间向量与立体几何 1, 如图,在四棱锥V-ABCD中,底面ABCD是正方形,侧面VAD是正三角形,平面VADL底面ABC (1)证明AB丄平面VAD (2)求面VAD与面VDB所成的二面角的大小 2, 如图所示,在四棱锥P—ABCD中,底面ABCD为矩形,侧棱PA丄底面ABCD AB骑, BC=1 , PA=2, E为PD的中点. (1)求直线AC与PB所成角的余弦值; (2)在侧面PAB内找一点N使NE!平面PAC并求出N点到AB和AP的距 离.(易错点,建系后,关于N点的坐标的设法,也是自己的弱项)

3. 如图,在长方体 ABCD-ABCD 中,AD=AA=1, AB=2,点E 在棱 AB 上移动. 证明:DE 丄AD; 当E 为AB 的中点时,求点 A 到面ECD 的距离; 7T AE 等于何值时,二面角 D — EC- D 的大小为-(易错点:在找平面DEC 的法向量的时候,本 来法向量就己经存在了 ,就不必要再去找,但是我认为去找应该没有错吧 ,但法向量找出来了 , 和 那个己经存在的法向量有很大的差别 ,而且,计算结果很得杂,到底问题出在哪里?) 4. 如图,直四棱柱 ABCD — A I B I C I D I 中,底面ABCD 是等腰梯形,AB // CD , AB = 2DC =2, E 为BD i 的中点,F 为AB 的中点,/ DAB = 60° (1)求证:EF //平面 ADD 1A 1; ⑵若BB 1 ~2-,求A 1F 与平面DEF 所成角的正弦值. N : 5 题到 11 题都是运用基底思想解题 5. 空间四边形 ABCD 中, AB=BC=CD AB 丄BC, BC 丄CD , AB 与CD 成60度角,求AD 与BC 所 成角的大小。 (1) (2) (3) A B

立体几何与空间向量

中档大题规范练2 立体几何与空间向量 1.如图,在四棱锥P —ABCD 中,侧面P AD ⊥底面ABCD ,侧棱P A =PD =2,P A ⊥PD ,底面ABCD 为直角梯形,其中BC ∥AD ,AB ⊥AD ,AB =BC =1,O 为AD 的中点. (1)求证:PO ⊥平面ABCD ; (2)求B 点到平面PCD 的距离; (3)线段PD 上是否存在一点Q ,使得二面角Q —AC —D 的余弦值为 63?若存在,求出PQ QD 的值;若不存在,请说明理由. (1)证明 因为P A =PD =2,O 为AD 的中点, 所以PO ⊥AD ,因为侧面P AD ⊥底面ABCD , 所以PO ⊥平面ABCD . (2)解 以O 为原点,OC ,OD ,OP 分别为x 轴,y 轴,z 轴,建立空间直角坐标系O -xyz ,则B (1,-1,0),C (1,0,0),D (0,1,0),P (0,0,1). PB →=(1,-1,-1),设平面PDC 的法向量为u =(x ,y ,z ),CP →=(-1,0,1),PD →=(0,1,- 1). 则????? u · CP →=-x +z =0,u · PD →=y -z =0,取z =1,得u =(1,1,1), B 点到平面PDC 的距离d =|BP →·u ||u |=33 . (3)解 假设存在,则设PQ →=λPD → (0<λ<1), 因为PD →=(0,1,-1),所以Q (0,λ,1-λ), 设平面CAQ 的法向量为m =(a ,b ,c ),

则????? m ·AC →=0,m ·AQ →=0,即????? a + b =0, (λ+1)b +(1-λ)c =0, 所以取m =(1-λ,λ-1,λ+1), 平面CAD 的法向量n =(0,0,1), 因为二面角Q —AC —D 的余弦值为 63 , 所以|m·n||m||n |=63 , 所以3λ2-10λ+3=0, 所以λ=13或λ=3(舍去),所以PQ QD =12 . 2.如图,在长方体ABCD —A 1B 1C 1D 1中,AA 1=AB =2AD =2,E 为AB 的中点,F 为D 1E 上的一点,D 1F =2FE . (1)证明:平面DFC ⊥平面D 1EC ; (2)求二面角A —DF —C 的大小. (1)证明 以D 为原点,分别以DA 、DC 、DD 1所在直线为x 轴、y 轴、z 轴建立如图所示空间直角坐标系, 则A (1,0,0),B (1,2,0),C (0,2,0),D 1(0,0,2). ∵E 为AB 的中点, ∴E 点坐标为(1,1,0), ∵D 1F =2FE , ∴D 1F →=23D 1E →=23 (1,1,-2) =(23,23,-43 ), DF →=DD 1→+D 1F →=(0,0,2)+(23,23,-43 )

空间向量与立体几何教案(强烈推荐)

空间向量与立体几何 一、知识网络: 二.考纲要求: (1)空间向量及其运算 ① 经历向量及其运算由平面向空间推广的过程; ② 了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示; ③ 掌握空间向量的线性运算及其坐标表示; ④ 掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直。 (2)空间向量的应用 ① 理解直线的方向向量与平面的法向量; ② 能用向量语言表述线线、线面、面面的垂直、平行关系; ③ 能用向量方法证明有关线、面位置关系的一些定理(包括三垂线定理); ④ 能用向量方法解决线线、线面、面面的夹角的计算问题,体会向量方法在研究几何问题中的作用。 三、命题走向 本章内容主要涉及空间向量的坐标及运算、空间向量的应用。本章是立体几何的核心内容,高考对本章的考查形式为:以客观题形式考查空间向量的概念和运算,结合主观题借助空间向量求夹角和距离。 预测10年高考对本章内容的考查将侧重于向量的应用,尤其是求夹角、求距离,教材上淡化了利用空间关系找角、找距离这方面的讲解,加大了向量的应用,因此作为立体几何解答题,用向量法处

理角和距离将是主要方法,在复习时应加大这方面的训练力度。 第一课时 空间向量及其运算 一、复习目标:1.理解空间向量的概念;掌握空间向量的加法、减法和数乘; 2.了解空间向量的基本定理; 3.掌握空间向量的数量积的定义及其性质;理解空间向量的夹角的概念;掌握空间向量的数量积的概念、性质和运算律;了解空间向量的数量积的几何意义;能用向量的数量积判断向量的共线与垂直。 二、重难点:理解空间向量的概念;掌握空间向量的运算方法 三、教学方法:探析类比归纳,讲练结合 四、教学过程 (一)、谈最新考纲要求及新课标高考命题考查情况,促使积极参与。 学生阅读复资P128页,教师点评,增强目标和参与意识。 (二)、知识梳理,方法定位。(学生完成复资P128页填空题,教师准对问题讲评)。 1.空间向量的概念 向量:在空间,我们把具有大小和方向的量叫做向量。如位移、速度、力等。 相等向量:长度相等且方向相同的向量叫做相等向量。 表示方法:用有向线段表示,并且同向且等长的有向线段表示同一向量或相等的向量。 说明:①由相等向量的概念可知,一个向量在空间平移到任何位置,仍与原来的向量相等,用同向且等长的有向线段表示;②平面向量仅限于研究同一平面内的平移,而空间向量研究的是空间的平移。 2.向量运算和运算率 说明:①引导学生利用右图验证加法交换率,然后推广到首尾相接的若干向量之和;②向量加法的平行四边形法则在空间仍成立。 3.平行向量(共线向量):如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量 叫做共线向量或平行向量。a 平行于b 记作a ∥b 。 注意:当我们说a 、b 共线时,对应的有向线段所在直线可能是同一直线,也可能是平行直线;当 我们说a 、b 平行时,也具有同样的意义。 共线向量定理:对空间任意两个向量a (a ≠)、b ,a ∥b 的充要条件是存在实数λ使b =λa (1)对于确定的λ和a ,b =λa 表示空间与a 平行或共线,长度为 |λa |,当λ>0时与a 同向, 当λ<0时与a 反向的所有向量。 (3)若直线l ∥a ,l A ∈,P 为l 上任一点,O 为空间任一点,下面根据上述定理来推导的表达式。

立体几何空间向量练习

立体几何空间向量练习 1.在边长是2的正方体ABCD﹣A1B1C1D1中,E,F分别为AB,A1C的中点.应用空间向量方法求解下列问题. (1)求EF的长 (2)证明:EF∥平面AA1D1D; (3)证明:EF⊥平面A1CD. 2.如图,在直三棱柱A1B1C1﹣ABC中,AB⊥AC,AB=AC=2,AA1=4,点D是BC的中点.(1)求异面直线A 1B与C1D所成角的余弦值; (2)求平面ADC1与平面A1BA所成的锐二面角(是指不超过90°的 角)的余弦值.

3.如图所示,在四棱锥P﹣ABCD中,底面ABCD为矩形,P A⊥平面ABCD,点E在线段PC上,PC⊥平面BDE,设P A=1,AD=2. (1)求平面BPC的法向量; (2)求二面角B﹣PC﹣A的正切值. 4.如图,在长方体ABCD﹣A1B1C1D1中,M为BB1上一点,已知 BM=2,CD=3,AD=4,AA1=5. (1)求直线A1C和平面ABCD的夹角; (2)求点A到平面A1MC的距离.

5.如图,在四棱锥P﹣ABCD中,PC⊥底面ABCD,底面ABCD是直角梯形,AB⊥AD,AB ∥CD,AB=2,AD=CD=1,E是PB的中点. (1)求证:平面EAC⊥平面PBC; (2)若二面角P﹣AC﹣E的余弦值为, 求直线P A与平面EAC所成角的正弦值. 6.如图,在正三棱柱ABC﹣A1B1C1中,D为AC的中点. (1)证明:AB1∥平面BC1D; (2)证明:BD⊥平面AA1C1C; (3)若AA1=AB,求直线BC1与平面AA1C1C所成角的正弦值.

7.如图,四棱锥P﹣ABCD的底面为正方形,PD⊥底面ABCD.设平面P AD与平面PBC的交线为l. (1)证明:l⊥平面PDC; (2)已知PD=AD=1,Q为l上的点,QB=, 求PB与平面QCD所成角的正弦值. 8.如图,在正方体ABCD﹣A1B1C1D1中,E为BB1的中点. (Ⅰ)求证:BC1∥平面AD1E; (Ⅱ)求直线AA1与平面AD1E所成角的正弦值.

立体几何与空间向量

10 第七部分 立体几何与空间向量 一、知识梳理 (一)基本知识梳理:见《步步高》文科P123—124 ;理科P135—137 . (二)要点梳理: 1。平面的基本性质是高考中立体几何的重点容.要掌握平面的基本性质,特别注意:不共线的三点确定一个平面.考察点和平面的位置关系时,要注意讨论点在平面的同侧还是两侧,会根据不同的情况作出相应的图形. [例]已知线段AB 长为3,A 、B 两点到平面α的距离分别为1与2,则AB 所在直线与平面α所成角的大小为_____; 解析:要注意到点A 、B 是平面α同侧还是在平面α的两侧的情况.当A 、B 在平面α的同侧时,AB 所在直线与平面α所成角大小为31arcsin ;当A 、B 在平面α的两侧时,AB 所在直线与平面α所成角为 2 π. 2。线面关系中三类平行的共同点是“无公共点”;三类垂直的共同点是“成角90°”.线面平行、面面平行,最终化归为线线平行;线面垂直、面面垂直,最终化归为线线垂直. [例]已知平面βα,,直线b a ,.有下列命题:(1) βαβα////a a ?????;(2)αββα//a a ?? ?? ⊥⊥ (3)βαβα////??????⊥⊥b a b a ;(4)βαβα////??? ? ?? ??b a b a .其中正确的命题序号是______. 解析:立体几何中的符号语言所描述的问题是高考命题中的重点,基本上每年的高考在选择或填空题中都会有涉及,要充分理解符号语言所体现的几何意义.(1)体现的是两平面平行的一个性质:若两平面平行,则一个平面的任一直线与另一平面平行.(2)要注意的是直线a 可能在平面α.(3)注意到直线与平面之间的关系:若两平行直线中的一条与一个平面垂直,则另一条也与这个平面垂直.且垂直于同一直线的两个平面平行.(4)根据两平面平行的判定知,一个平面两相交直线与另一个平面平行,两平面才平行.由此知:正确的命题是(1)与(3). 3。直线与平面所成角的围是]2, 0[π ;两异面直线所成角的围是]2 ,0(π .一般情况下,求二面角往往是指定 的二面角,若是求两平面所成二面角只要求出它们的锐角(直角)情况即可. [例]设A 、B 、C 、D 分别表示下列角的取值围:(1)A 是直线倾斜角的取值围;(2)B 是锐角;(3)C 是直线与平面所成角的取值围;(4)D 是两异面直线所成角的取值围.用“?”把集合A 、B 、C 、D 连接起来得到___. (答案:A C D B ???) 4。立体几何中的计算主要是角、距离、体积、面积的计算.两异面直线所成角、直线与平面所成角的计算是重点.求两异面直线所成角可以利用平移的方法将角转化到三角形中去求解,也可以利用空间向量的方法,特别要注意的是两异面直线所成角的围.当求出的余弦值为a 时,其所成角的大小应为||arccos a . [例]正方体ABCD -A 1B 1C 1D 1中,E 是AB 中点,则异面直线DE 与BD 1所成角的大小为_____. (答案:515 arccos ) 特别需要注意的是:两向量所成的角是两向量方向所成的角,它与两向量所在的异面直线所成角的概念是 不一样的.本题中的向量1BD 与所成的角大小是两异面直线DE 与BD 1所成角的补角. 5。直线与平面所成角的求解过程中,要抓住直线在平面上的射影,转化到直角三角形中去求解.点到平面的距离的求解可以利用垂线法,也可以利用三棱锥的体积转化. C A 1 B 1 C 1 E

空间向量与立体几何知识点归纳总结

空间向量与立体几何知识点归纳总结 一.知识要点。 1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等 的向量。 (2)向量具有平移不变性 2. 空间向量的运算。 定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。 OB OA AB a b =+=+u u u r u u u r u u u r v r ;BA OA OB a b =-=-u u u r u u u r u u u r r r ;()OP a R λλ=∈u u u r r 运算律:⑴加法交换律:a b b a ? ??ρ+=+ ⑵加法结合律:)()(c b a c b a ? ???ρ?++=++ ⑶数乘分配律:b a b a ? ???λλλ+=+)( 运算法则:三角形法则、平行四边形法则、平行六面体法则 3. 共线向量。 (1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向 量也叫做共线向量或平行向量,a ρ 平行于b ρ,记作b a ρ?//。 (2)共线向量定理:空间任意两个向量a ρ、b ρ (b ρ≠0ρ), a ρ b ρa ρb ρλ=)1(=++=y x y x 其中 a ± 共面向量 (1)定义:一般地,能平移到同一平面内的向量叫做共面向量。 说明:空间任意的两向量都是共面的。

(2)共面向量定理:如果两个向量,a b r r 不共线,p r 与向量,a b r r 共面的条件 是存在实数,x y 使p xa yb =+r r r 。 (3)四点共面:若A 、B 、C 、P 四点共面<=>y x AP += <=>)1(=++++=z y x OC z OB y OA x OP 其中 5. 空间向量基本定理:如果三个向量,,a b c r r r 不共面,那么对空间任一向量 p r ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++r r r r 。 若三向量,,a b c r r r 不共面,我们把{,,}a b c r r r 叫做空间的一个基底,,,a b c r r r 叫 做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。 推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三 个有序实数,,x y z ,使OP xOA yOB zOC =++u u u r u u u r u u u r u u u r 。 6. 空间向量的直角坐标系: (1)空间直角坐标系中的坐标: 在空间直角坐标系O xyz -中,对空间任一点A ,存在唯一的有序实数组 (,,)x y z ,使++=,有序实数组(,,)x y z 叫作向量A 在空间直角坐 标系O xyz -中的坐标,记作(,,)A x y z ,x 叫横坐标,y 叫纵坐标,z 叫竖坐标。 注:①点A (x,y,z )关于x 轴的的对称点为(x,-y,-z),关于xoy 平面的对称点为(x,y,-z).即点关于什么轴/平面对称,什么坐标不变,其余的分坐标均相反。②在y 轴上的点设为(0,y,0),在平面yOz 中的点设为(0,y,z) (2)若空间的一个基底的三个基向量互相垂直,且长为1,这个基底叫单位 正交基底,用{,,}i j k r r r 表示。空间中任一向量k z j y i x a ++==(x,y,z ) (3)空间向量的直角坐标运算律: ①若123(,,)a a a a =r ,123(,,)b b b b =r ,则112233(,,)a b a b a b a b +=+++r r ,

空间向量与立体几何知识总结(全国高考必备!)

y k i A(x,y,z) O j x z 辅导科目:数学 授课教师: 全国章 年级: 高二 上课时间: 教材版本:人教版 总课时: 已上课时: 课时 学生签名: 课 题 名 称 教 学 目 标 重点、难点、考点 教学步骤及内容 空间向量与立体几何 一、空间直角坐标系的建立及点的坐标表示 空间直角坐标系中的坐标:如图给定空间直角坐标系和向量a ,设,,i j k (单位正交基底)为坐标向量,则存在唯一的有序实数组123(,,)a a a ,使123a a i a j a k =++,有序实数组123(,,)a a a 叫作向量a 在空间直角坐标系O xyz -中的坐标,记作123(,,)a a a a =.在空间直角坐标系O xyz -中,对空间任一点A ,存在唯一的有序实数组(,,)x y z ,使OA xi yj zk =++,有序实数组(,,)x y z 叫作向量A 在空间直角坐标系O xyz -中的坐标,记作(,,)A x y z ,x 叫横坐标,y 叫纵坐标,z 叫竖坐标. 二、空间向量的直角坐标运算律 (1)若123(,,)a a a a =,123(,,)b b b b =, 则112233(,,)a b a b a b a b +=+++, 112233(,,)a b a b a b a b -=---,123(,,)()a a a a R λλλλλ=∈, 112233//,,()a b a b a b a b R λλλλ?===∈, (2)若111(,,)A x y z ,222(,,)B x y z ,则212121(,,)AB x x y y z z =---. 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。 (3)//a b b a λ?=11 223 3()b a b a R b a λλλλ=?? ?=∈??=? 三、空间向量直角坐标的数量积 1、设b a ,是空间两个非零向量,我们把数量>

空间向量与立体几何知识点汇总

立体几何空间向量知识点总结 知识网络: 知识点拨: 1、空间向量的概念及其运算与平面向量类似,向量加、减法的平行四边形法则,三角形法则以及相关的运算律仍然成立.空间向量的数量积运算、共线向量定理、共面向量定理都是平面向量在空间中的推广,空间向量基本定理则是向量由二维到三维的推广. 2、当a 、b 为非零向量时.0a b a b ?=?⊥是数形结合的纽带之一,这是运用空间向量研究线线、线面、面面垂直的关键,通常可以与向量的运算法则、有关运算律联系来解决垂直的论证问题. 3、公式cos ,a b a b a b ?<>= ?是应用空间向量求空间中各种角的基础,用这个公式可以求两异面直线所成的角(但要注意两异面直线所成角与两向量的夹角在取值围上的区别),再结合平面的法向量,可以求直线与平面所成的角和二面角等. 4、直线的方向向量与平面的法向量是用来描述空间中直线和平面的相对位置的重要概念,通过研究方向向量与法向量之间的关系,可以确定直线与直线、直线与平面、平面与平面等的位置关系以及有关的计算问题. 5、用空间向量判断空间中的位置关系的常用方法 (1)线线平行 证明两条直线平行,只需证明两条直线的方向向量是共线向量. (2)线线垂直 证明两条直线垂直,只需证明两条直线的方向向量垂直,即0a b a b ?=?⊥.

(3)线面平行 用向量证明线面平行的方法主要有: ①证明直线的方向向量与平面的法向量垂直; ②证明可在平面找到一个向量与直线方向向量是共线向量; ③利用共面向量定理,即证明可在平面找到两不共线向量来线性表示直线的方向向量.(4)线面垂直 用向量证明线面垂直的方法主要有: ①证明直线方向向量与平面法向量平行; ②利用线面垂直的判定定理转化为线线垂直问题. (5)面面平行 ①证明两个平面的法向量平行(即是共线向量); ②转化为线面平行、线线平行问题. (6)面面垂直 ①证明两个平面的法向量互相垂直; ②转化为线面垂直、线线垂直问题. 6、运用空间向量求空间角 (1)求两异面直线所成角 利用公式cos, a b a b a b ? <>= ? , 但务必注意两异面直线所成角θ的围是 0, 2 π ?? ???, 故实质上应有:cos cos,a b θ=<> . (2)求线面角 求直线与平面所成角时,一种方法是先求出直线及射影直线的方向向量,通过数量积求出直线与平面所成角;另一种方法是借助平面的法向量,先求出直线方向向量与平面法向量的夹角φ,即可求出直线与平面所成的角θ,其关系是sinθ=| cosφ|.(3)求二面角 用向量法求二面角也有两种方法:一种方法是利用平面角的定义,在两个面先求出与棱垂直的两条直线对应的方向向量,然后求出这两个方向向量的夹角,由此可求出二面角的大小;另一种方法是转化为求二面角的两个面的法向量的夹角,它与二面角的大小相等或互补.7、运用空间向量求空间距离 空间中的各种距离一般都可以转化为求点与点、点与线、点与面的距离. (1)点与点的距离 点与点之间的距离就是这两点间线段的长度,因此也就是这两点对应向量的模. (2)点与面的距离 点面距离的求解步骤是: ①求出该平面的一个法向量; ②求出从该点出发的平面的任一条斜线段对应的向量; ③求出法向量与斜线段向量的数量积的绝对值再除以法向量的模,即得要求的点面距离. 备考建议:

空间向量与立体几何知识点学生

用空间向量判断空间中的位置关系的常用方法 (1)线线平行 证明两条直线平行,只需证明两条直线的方向向量是共线向量. (2)线线垂直 证明两条直线垂直,只需证明两条直线的方向向量垂直,即0a b a b ?=?⊥. (3)线面平行 用向量证明线面平行的方法主要有: ①证明直线的方向向量与平面的法向量垂直; ②证明可在平面内找到一个向量与直线方向向量是共线向量; ③利用共面向量定理,即证明可在平面内找到两不共线向量来线性表示直线的方向向量. (4)线面垂直 用向量证明线面垂直的方法主要有: ①证明直线方向向量与平面法向量平行; ②利用线面垂直的判定定理转化为线线垂直问题. (5)面面平行 ①证明两个平面的法向量平行(即是共线向量); ②转化为线面平行、线线平行问题. (6)面面垂直 ①证明两个平面的法向量互相垂直; ②转化为线面垂直、线线垂直问题. 6、运用空间向量求空间角 (1)求两异面直线所成角 利用公式cos ,a b a b a b ?<>= ?, 但务必注意两异面直线所成角θ的范围是0,2π?? ? ??, 故实质上应有:cos cos ,a b θ=<> . (2)求线面角 求直线与平面所成角时,一种方法是先求出直线及射影直线的方向向量,通过数量积求出直线与平面所成角;另一种方法是借助平面的法向量,先求出直线方向向量与平面法向量的夹角φ,即可求出直线与平面所成的角θ,其关系是sin θ=| cos φ|. (3)求二面角 用向量法求二面角也有两种方法:一种方法是利用平面角的定义,在两个面内先求出与棱垂直的两条直线对应的方向向量,然后求出这两个方向向量的夹角,由此可求出二面角的大小;另一种方法是转化为求二面角的两个面的法向量的夹角,它与二面角的大小相等或互补. 7、运用空间向量求空间距离 空间中的各种距离一般都可以转化为求点与点、点与线、点与面的距离. (1)点与点的距离 点与点之间的距离就是这两点间线段的长度,因此也就是这两点对应向量的模. (2)点与面的距离 点面距离的求解步骤是: ①求出该平面的一个法向量;

空间向量与立体几何典型例题

空间向量与立体几何典型例题 一、选择题: 1.(2008全国Ⅰ卷理)已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( C ) A. 13 D.2 3 1、解:C.由题意知三棱锥1A ABC -为正四面体,设棱长为a , 则1AB =, 棱柱的高 1 3AO a ===(即点1B 到底面ABC 的距离),故1AB 与底面ABC 所成角的正弦值为113 AO AB =、 另解:设1,,AB AC AA u u u r u u u r u u u r 为空间向量的一组基底,1,,AB AC AA u u u r u u u r u u u r 的两两间的夹角为0 60 长度均为a ,平面ABC 的法向量为111133 OA AA AB AC =--u u u r u u u r u u u r u u u r ,11AB AB AA =+u u u r u u u r u u u r 211112,,33 OA AB a OA AB ?===u u u r u u u r u u u r u u u r 则1AB 与底面ABC 所成角的正弦值为11 1 1OA AB AO AB ?=u u u u r u u u r u u u r u u u r 、 二、填空题: 1.(2008全国Ⅰ卷理)等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角C AB D -- M N ,分别就是AC BC ,的中点,则EM AN ,所成角的余弦值等于 6 1 . 1、答案: 1 6 、设2AB =,作CO ABDE ⊥面, OH AB ⊥,则CH AB ⊥,CHO ∠为二面角C AB D -- cos 1CH OH CH CHO ==?∠=,结合等边三角形ABC 与正方形ABDE 可知此四棱锥为正四棱锥,则AN EM ==11(),22AN AC AB EM AC AE =+=-u u u r u u u r u u u r u u u u r u u u r u u u r , 11()()22AN EM AB AC AC AE ?=+?-=u u u r u u u u r u u u r u u u r u u u r 12 故EM AN ,所成角的余弦值1 6 AN EM AN EM ?=u u u r u u u u r u u u r u u u u r 另解:以O 为坐标原点,建立如图所示的直角坐标系, 则点(1,1,0),(1,1,0),(1,1,0),A B E C ----, 1111(,,(,,)222222 M N ---,

立体几何与空间向量-浙江省台州市书生中学2020届高三数学复习专题练习(无答案)

立体几何 例1.在三棱锥P ABC -中,PA ⊥底面ABC ,,6,8AB AC AB AC ⊥==,D 是线段AC 上一点,且 3AD DC =.三棱锥P ABC -的各个顶点都在球O 表面上,过点D 作球O 的截面,若所得截面圆的 面积的最大值与最小值之差为16π,则球O 的表面积为( ) A .72π B .86π C .112π D .128π 2.三视图 例2.某简单组合体的三视图如图所示,则该几何体的体积为( ) A .164+π B .484π+ C .4812π+ D .4816π+ 3.常见几何体的体积计算公式 例3.已知直角三角形 ABC 两直角边长之和为3,将ABC ?绕其中一条直角边旋转一周,所形成旋转体体积的最大值为__________,此时该旋转体外接球的表面积为___________. 例4.如图,三棱锥的顶点,,,都在同一球面上, 过球心且 ,是边 长为 等边三角形,点、分别为线段,上的动点(不含端点),且 ,则三棱锥 体积的最大值为__________. 例5.如图,在几何体中,平面底面ABC , 四边形是正方形,,Q 是 的中点,且 , . 求证:平面 ; 求二面角的余弦值.

例6.如图几何体中,底面ABCD 为正方形,PD ⊥平面ABCD ,//EC PD ,且22PD AD EC ===.(1)求证://BE 平面PDA ; (2)求PA 与平面PBD 所成角的大小. 例7.已知三棱锥A BCD -的棱长均为6,其内有n 个小球,球1O 与三棱锥A BCD -的四个面都相切,球2O 与三棱锥A BCD -的三个面和球1O 都相切,如此类推,…,球n O 与三棱锥A BCD -的三个面和球1n O -都相切(2n ≥,且n *∈N ),则球1O 的体积等于__________,球n O 的表面积等于__________. 例8.如图所示,在等腰梯形ABCD 中,, ,E ,F 为AB 的三等分点,且 将 和 分别沿DE 、CF 折起到A 、B 两点重合,记为点P . 证明:平面平面PEF ; 若 ,求PD 与平面PFC 所成角的正弦值.

立体几何与空间向量

第30练 空间角的突破方略 题型一 异面直线所成的角 例1 在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,求异面直线BA 1与AC 所成的角. 破题切入点 利用BA 1→·AC →=|BA 1→|·|AC →|×cos 〈BA 1→,AC →〉,求出向量BA 1→与AC →的夹角〈BA 1→,AC →〉, 再根据异面直线BA 1,AC 所成角的范围确定异面直线所成角.还可用几何法或坐标法. 解 方法一 因为BA 1→=BA →+BB 1→,AC →=AB →+BC →, 所以BA 1→·AC →=(BA →+BB 1→)·(AB →+BC →) =BA →·AB →+BA →·BC →+BB 1→·AB →+BB 1→·BC →. 因为AB ⊥BC ,BB 1⊥AB ,BB 1⊥BC , 所以BA →·BC →=0,BB 1→·AB →=0, BB 1→·BC →=0,BA →·AB →=-a 2. 所以BA 1→·AC →=-a 2. 又BA 1→·AC →=|BA 1→|·|AC →|·cos 〈BA 1→,AC →〉, cos 〈BA 1→,AC →〉=-a 2 2a ×2a =-12. 所以〈BA 1→,AC →〉=120°. 所以异面直线BA 1与AC 所成的角为60°. 方法二 连接A 1C 1,BC 1,则由条件可知A 1C 1∥AC , 从而BA 1与AC 所成的角亦为BA 1与A 1C 1所成的角, 由于该几何体为边长为a 的正方体, 于是△A 1BC 1为正三角形,∠BA 1C 1=60°, 从而所求异面直线BA 1与AC 所成的角为60°. 方法三 由于该几何体为正方体,

立体几何与空间向量 (1)

第30练 空间角的突破方略 题型一 异面直线所成的角 例1 在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,求异面直线BA 1与AC 所成的角. 破题切入点 利用BA 1→·AC →=|BA 1→|·|AC →|×cos 〈BA 1→,AC →〉,求出向量BA 1→与AC →的夹角〈BA 1→,AC → 〉,再根据异面直线BA 1,AC 所成角的范围确定异面直线所成角.还可用几何法或坐标法. 解 方法一 因为BA 1→=BA →+BB 1→,AC →=AB →+BC →, 所以BA 1→·AC →=(BA →+BB 1→)·(AB →+BC →)

=BA →·AB →+BA →·BC →+BB 1→·AB →+BB 1→·BC →. 因为AB ⊥BC ,BB 1⊥AB ,BB 1⊥BC , 所以BA →·BC →=0,BB 1→·AB →=0, BB 1→·BC →=0,BA →·AB →=-a 2. 所以BA 1→·AC →=-a 2. 又BA 1→·AC →=|BA 1→|·|AC →|·cos 〈BA 1→,AC →〉, cos 〈BA 1→,AC → 〉= -a 22a ×2a =-1 2. 所以〈BA 1→,AC → 〉=120°. 所以异面直线BA 1与AC 所成的角为60°. 方法二 连接A 1C 1,BC 1,则由条件可知A 1C 1∥AC , 从而BA 1与AC 所成的角亦为BA 1与A 1C 1所成的角, 由于该几何体为边长为a 的正方体, 于是△A 1BC 1为正三角形,∠BA 1C 1=60°, 从而所求异面直线BA 1与AC 所成的角为60°. 方法三 由于该几何体为正方体,

相关主题
文本预览
相关文档 最新文档