当前位置:文档之家› 高流中学高三数学二轮复习教学案一体化:利用导数研究函数的性质

高流中学高三数学二轮复习教学案一体化:利用导数研究函数的性质

高流中学高三数学二轮复习教学案一体化:利用导数研究函数的性质
高流中学高三数学二轮复习教学案一体化:利用导数研究函数的性质

专题二——利用导数研究函数的性质2009-2-24

高考趋势

导数作为进入高中考试范围的新内容,在考试中占比较大.常利用导数研究函数的性质,主要是利用导数求函数的单调区间、求函数的极值和最值,这些内容都是近年来高考的重点和难点,大多数试题以解答题的形式出现,通常是整个试卷的压轴题。试题主要先判断或证明函数的单调区间,其次求函数的极值和最值,有时涉及用函数的单调性对不等式进行证明。 考点展示

1.二次函数y f x =()的图象过原点且它的导函数y f x ='()的图象是如图所示的一条直线,则y f x =()图象的顶点在第 一 象限 2.如图,函数()f x 的图象是折线段ABC ,其中A B C ,,的坐标分别 为(04)(20)(64),,,,,,则((0))f f = 2 ; 函数()f x 在1x =处的导数(1)f '= -2 .

3.曲线3

24y x x =-+在点(1

3),处的切线的倾斜角为 45° 4.设曲线2

ax y =在点(1,a )处的切线与直线062=--y x 平行,则=a 1

5.设R a ∈,若函数ax e y x

+=,R x ∈有大于零的极值点,则a 的取值范围1-

6.已知二次函数2

()f x ax bx c =++的导数为()f x ',(0)0f '>,对于任意实数x ,有()0f x ≥,则

(1)

(0)

f f '的最小值为 2 . 7.已知函数3

()128f x x x =-+在区间[]

33-,上的最大值与最小值分别为M ,m ,则M m -=__32_ _ 8.过点P (2,8)作曲线3

x y =的切线,则切线方程为_ 12x-y-16=0或3x-y+2=0 样题剖析

例1、设函数32

3()(1)1,32

a f x x x a x a =

-+++其中为实数。 (Ⅰ)已知函数()f x 在1x =处取得极值,求a 的值;

(Ⅱ)已知不等式'

2

()1f x x x a >--+对任意(0,)a ∈+∞都成立,求实数x 的取值范围。

解: (1) '2()3(1)f x ax x a =-++,由于函数()f x 在1x =时取得极值,所以 '

(1)0f =

即 310,1a a a -++==∴

(2) 方法一:由题设知:223(1)1ax x a x x a -++>--+对任意(0,)a ∈+∞都成立 即22(2)20a x x x +-->对任意(0,)a ∈+∞都成立

设 22()(2)2()g a a x x x a R =+--∈, 则对任意x R ∈,()g a 为单调递增函数()a R ∈

所以对任意(0,)a ∈+∞,()0g a >恒成立的充分必要条件是(0)0g ≥

即 2

20x x --≥,20x -≤≤∴

于是x 的取值范围是}{

|20x x -≤≤

方法二:由题设知:223(1)1ax x a x x a -++>--+对任意(0,)a ∈+∞都成立 即22(2)20a x x x +-->对任意(0,)a ∈+∞都成立

于是2222x x a x +>+对任意(0,)a ∈+∞都成立,即22

202

x x

x +≤+ 20x -≤≤∴

于是x 的取值范围是}{|20x x -≤≤

点评:函数在某点处取得极值,则在这点处的导数为0,反过来,函数的导数在某点的值为0,则在函数这点处取得极值。

变式1.若f(x)=2

1ln(2)2

x b x -

++∞在(-1,+)上是减函数,则b 的取值范围是 1b ≤- 由题意可知'

()02

b f x x x =-+

<+,在(1,)x ∈-+∞上恒成立, 即(2)b x x <+在(1,)x ∈-+∞上恒成立,由于1x ≠-,所以1b ≤-, 变式2.已知函数1

1()3

x p f x -=,2

2()23

x p f x -=?(12,,x R p p ∈为常数).则()()12f x f x ≤对所有实

数x 成立的充分必要条件(用12,p p 表示)为 (1)由()f x 的定义可知,1()()f x f x =(对所有实数x )等价于

()()12f x f x ≤(对所有实数x )这又等价于1

2

3

23

x p x p --≤ ,即

12

3log 23

32x p x p ---≤=对所有实数x 均成立. (*)

由于121212()()()x p x p x p x p p p x R ---≤---=-∈的最大值为12p p -, 故(*)等价于12

32p p -≤,即123log 2p p -≤,这就是所求的充分必要条件

变式3.函数3()31f x ax x =-+对于[]1,1x ∈-总有()0f x ≥成立,则a = 4 . 解:若0x =,则不论a 取何值,()0f x ≥显然成立; 当0x > 即(0,1]x ∈时,3()310f x ax x =-+≥可化为,23

31a x x ≥

- 设()2331g x x x =-,则()()'

4312x g x x -=, 所以()g x 在区间10,2?? ???上单调递增,在区间1,12??????

上单调递减,因此()max 142g x g ??== ???

,从而4a ≥;

当0x < 即[)1,0x ∈-时,3()310f x ax x =-+≥可化为2331a x x ≤

-,()()'

4

312x g x x

-=0> ()g x 在区间[)1,0-上单调递增,因此()()ma 14n g x g =-=,从而4a ≤,综上4a =

例2、如图,等腰梯形ABCD 三边AB ,BC ,CD 分别与函数]2,2[,22

12

-=x y Q ,R ,求梯形ABCD 面积的最小值

解:设P 的坐标)221,(200+-x x P ,)0,24

(0

2

0x x A + )2,21(0x B )2

124(2002

0x x x S ++=利用基本不等式得,最小值为24 变式:设函数()b f x ax x =-,曲线()y f x =在点(2,(2))f 处的切线方程为74120x y --=。

(1)求()y f x =的解析式;(2)证明:曲线()y f x =上任一点处的切线与直线0x =和直线y x =所

围成的三角形面积为定值,并求此定值。

解:(1)方程74120x y --=可化为7

34

y x =-,当2x =时,12y =;

又()'

2b f x a x =+,于是12227

44

b a b a ?-=????+=??,解得13a b =??=?,故()3f x x x =-

(2)设()00,P x y 为曲线上任一点,由'

2

3

1y x =+

知曲线在点()00,P x y 处的切线方程为 ()002031y y x x x ??-=+- ???,即()00200331y x x x x x ????

--=+- ? ??

???

令0x =,得06y x =-

,从而得切线与直线0x =的交点坐标为060,x ??

- ??

?; 令y x =,得02y x x ==,从而得切线与直线y x =的交点坐标为()002,2x x ; 所以点()00,P x y 处的切线与直线0,x y x ==所围成的三角形面积为

00

16262x x -=; 故曲线()y f x =上任一点处的切线与直线0,x y x ==所围成的三角形面积为定值,此定值为6;

要掌握求函数的极值的一般步骤,利用导数研究函数的单调性,另外要熟记常见函数的导数公式以及和、差、乘积和商的导数公式 曲线上某点处的切线与过某点的切线之间是有区别的 切线的几何意义比较明显,解题时,应多结合图形,图形可以帮助确定解题方向,也可以帮助及时

找出错误。 自我测试

1. 过原点作曲线y =e x 的切线,则切点的坐标为 (1, e )

2.直线1

2

y x b =

+是曲线ln (0)y x x =>的一条切线,则实数b = l n 2

1- . 3.已知函数()f x ,

x ∈R 满足(2)3f =,且()f x 在R 上的导数满足/()10f x -<,则不等式

22()1f x x <+的解集为__ (,)-∞+∞ __. (构造函数()()g x f x x =-)

4.一个物体的运动方程为2

1t t s +-=其中s 的单位是米,t 的单位是秒,那么物体在3秒末的瞬时速度是 5 米/秒.

5.母线长为1的圆锥体积最大时,圆锥的高等于

3

3

6.半径为r 的圆的面积S(r)=πr 2

,周长C(r)=2πr ,若将r 看作(0,+∞)上的变量,则(πr 2

)`=2πr ○

1,○1式可以用语言叙述为:圆的面积函数的导数等于圆的周长函数。对于半径为R 的球,若将R 看作(0,+∞)上的变量,请你写出类似于○

1的式子: ○2,○2式可以用语言叙述为: .

解:V 球=3

43

R π,又

32443R R ππ'()= 故○2式可填32443R R ππ'()=,用语言叙述为“球的体积函数的导数等于球的表面积函数.”

(本题考查类比的思想方法,本题属于中等题)

7.已知函数),1,0(),22(log 2)(log )(R t a a t x x g x x f a a ∈≠>-+==和的图象在x =2处的切线互相平行.

(1)求t 的值.

(2)设2)(]4,1[)()()(≥∈-=x F x x f x g x F 时,,当恒成立,求a 的取值范围. (1)解:e t x x g e x x f a a log 2

24)(,log 1)(-+='=

' ∵函数)()(x g x f 和的图象在x=2处的切线互相平行, ∴)2()2(g f '=' ∴

e t e a a log 2

4

log 21+= ∴t=6 (2)∵t=6,

∴x x x f x g x F a a log )42(log 2)()()(-+=-=

=]4,1[,)42(log 2

∈+x x

x a

令].4,1[,1616

4)42()(2∈++=+=

x x

x x x x h ∵]4,1[,)2)(2(4164)(22∈+-=-

='x x

x x x x h ∴当0)(420)(21>'≤<<'<≤x h x x h x 时,,当时, ∴)2,1[)(在x h 是单调减函数,在]4,2(是单调增函数 ∴.36)4()1()(,32)2()(max min =====h h x h h x h

∴当.32log )(136log )(10min min a a x F a x F a =>=<<时,有,当时,有 ∵当2)(2)(]4,1[min ≥∴≥∈x F x F x 恒成立,时, ∴满足条件的a 的值满足下列不等式组:

???≥<<236log .10a a ① 或??

?≥>232log ,

1a

a ② 不等式组①的解集为空集,解不等式组②,得 241≤

8.已知函数()f x 的导数2

()33,f x x ax '=-(0).f b =,a b 为实数,12a <<.

(Ⅰ)若()f x 在区间[1, 1]-上的最小值、最大值分别为2-、1,求a 、b 的值; (Ⅱ)在(Ⅰ)的条件下,求经过点(2, 1)P 且与曲线()f x 相切的直线l 的方程; (Ⅲ)设函数2()(()61)x

F x f x x e '=++?,试判断函数()F x 的极值点个数. 解(Ⅰ)由已知得,3

2

3()2

f x x ax b =-

+ 由()0f x '=,得10x =,2x a =. ∵[1, 1]x ∈-,12a <<,

∴ 当[1, 0)x ∈-时,()0f x '>,()f x 递增;

当(0, 1]x ∈时,()0f x '<,()f x 递减.

∴ ()f x 在区间[1, 1]-上的最大值为(0)f b =,∴1b =. 又33(1)11222f a a =-

+=-,33

(1)1122

f a a -=--+=-, ∴ (1)(1)f f -<. 由题意得(1)2f -=-,即322a -

=-,得43

a =. 故4

3

a =,1

b =为所求.

(Ⅱ)解:由(1)得32()21f x x x =-+,2

()34f x x x '=-,点(2, 1)P 在曲线()f x 上.

⑴ 当切点为(2, 1)P 时,切线l 的斜率2()|4x k f x ='==, ∴ l 的方程为14(2)y x -=-,即470x y --=.

⑵当切点P 不是切点时,设切点为00(, )Q x y 0(2)x ≠,切线l 的斜率020

0()|34x x k f x x x ='==-,

∴ l 的方程为 2

0000(34)()y y x x x x -=--. 又点(2, 1)P 在l 上,∴ 200001(34)(2)y x x x -=--, ∴ 322000001(21)(34)(2)x x x x x --+=--, ∴ 2200000(2)(34)(2)x x x x x -=--,

∴ 2200034x x x =-,即002(2)0x x -=,∴00x =. ∴ 切线l 的方程为1y =.…8分

故所求切线l 的方程为470x y --=或1y =. ………………………………9分

( 或者:由(1)知点A (0,1)为极大值点,所以曲线()f x 的点A 处的切线为1y =,恰好经过点(2, 1)P ,符合题意.)

(Ⅲ)解: 2222()(3361)33(2)1x x

F x x ax x e x a x e ??=-++?=--+???. ∴ []222()63(2)233(2)1x x

F x x a e x a x e '??=--?+--+???

22[66(3)83]x x a x a e =--+-?.

二次函数266(3)83y x a x a =--+-的判别式为

222

36(3)24(83)12(31211)123(2)1a a a a a ???=---=-+=--??,

令0?≤

,得:2

1(2),223a a -≤

≤≤+ 令0?>

,得22a a <>或 ∵20x

e

>,12a <<,

∴当22a ≤<时,()0F x '≥,函数()F x 为单调递增,极值点个数为0;

当12a <<此时方程()0F x '=有两个不相等的实数根,根据极值点的定义,可知函数()F x 有两个极值点.

高考数学函数与导数相结合压轴题(含具体解答)(学案)

函数与导数相结合压轴题精选(二) 11、已知)0()(2 3 >+++=a d cx bx ax x f 为连续、可导函数,如果)(x f 既有极大值M ,又有极小值N ,求证:.N M > 12、已知函数ax x x f +-=3 )(在(0,1)上是增函数. (1)求实数a 的取值集合A ; (2)当a 取A 中最小值时,定义数列}{n a 满足:)(21n n a f a =+,且b b a )(1,0(1=为常 数),试比较n n a a 与1+的大小; (3)在(2)的条件下,问是否存在正实数C ,使20<-+< c a c a n n 对一切N n ∈恒成立?

13、已知)(2 2)(2 R x x a x x f ∈+-= 在区间[-1,1]上是增函数. (1)求实数a 的值所组成的集合A. (2)设关于x 的方程x x f 1 )(= 的两根为1x 、2x ,试问:是否存在实数m ,使得不等式 ||1212x x tm m -≥++对任意]1,1[-∈∈t A a 及恒成立?若存在,求出m 的取值 范围;若不存在,请说明理由 14、已知二次函数y=g(x )的图象过原点和点(m ,0)与点(m+1, m+1), (1)求y=g(x )的表达式; (2)设)(x f =(x -n)g(x )(m>n>0)且)(x f 在x =a 和x =b(b0, a ≠1,函数5 5 log )(+-=x x x f a , (1)讨论)(x f 在区间(-∞,-5)上的单调性,并予以证明; (2)设g(x )=1+log a (x -3),如果)(x f =g(x )有实数根,求a 的取值范围.

高考数学导数解法知识分享

高考中数学导数的解法 1、导数的背景: (1)切线的斜率;(2)瞬时速度. 如一物体的运动方程是21s t t =-+,其中s 的单位是米,t 的单位是秒,那么物体在3t =时的瞬时速度为_____(答:5米/秒) 2、导函数的概念:如果函数()f x 在开区间(a,b )内可导,对于开区间(a,b )内的每一个0x ,都对应着一个导数 ()0f x ' ,这样()f x 在开区间(a,b )内构成一个新的函数,这一新的函数叫做()f x 在开区间(a,b )内的导函数, 记作 ()0 lim x y f x y x ?→?'='=?()() lim x f x x f x x ?→+?-=?, 导函数也简称为导数。 提醒:导数的另一种形式0 0x x 0)()(lim )(0 x x x f x f x f y x x --='='→= 如(1)*?? ?>+≤== 1 1)(2 x b ax x x x f y 在1=x 处可导,则=a =b 解:?? ?>+≤==1 1)(2 x b ax x x x f y 在1=x 处可导,必连续1)(lim 1 =-→x f x b a x f x +=+ →)(lim 1 1)1(=f ∴ 1=+b a 2lim 0 =??- →?x y x a x y x =??+→?0lim ∴ 2=a 1-=b (2)*已知f(x)在x=a 处可导,且f ′(a)=b ,求下列极限: (1)h h a f h a f h 2) ()3(lim --+→?; (2)h a f h a f h ) ()(lim 20-+→? 分析:在导数定义中,增量△x 的形式是多种多样,但不论△x 选择哪种形式,△y 也必须选择相对应的形式。利用函数f(x)在a x =处可导的条件,可以将已给定的极限式恒等变形转化为导数定义的结构形式。 解:(1)h h a f h a f h 2) ()3(lim --+→

高中数学 第3章《导数及其应用》复习 精品导学案2 苏教版选修1-1

江苏省响水中学高中数学 第3章《导数及其应用》复习2导学案 苏 教版选修1-1 复习要求: 1.了解函数的单调性与导数的关系;能利用导数研究函数的单调性;会求函数的单调区间. 2.了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值;会求闭区间上函数的最大值、最小值. 课前预习: 1.知识要点回顾: (1)函数的导数与单调性的关系: (2)函数的极值与导数: (3)函数的最值与导数 ①函数f(x)在[a ,b]上有最值的条件:如果在区间[a ,b]上函数y =f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值. ②求y =f(x )在[a ,b]上的最大(小)值的步骤: (4)若函数f(x)在定义域A 上存在最大值与最小值,则①对任意x ∈A ,f(x)>0? >0;②存在x ∈A ,f(x)>0? >0. 2.判断: (1)函数f(x)在区间(a ,b)内单调递增,则f′(x)>0;( ) (2)函数的极大值一定比极小值大;( ) (3)对可导函数f(x),f′(x0)=0是x0为极值点的充要条件;( ) (4)函数的最大值不一定是极大值,函数的最小值也不一定是极小值。( ) 3.函数f(x)=x +4x 的单调减区间是 4.函数f(x)=xex 的极小值点是 5.已知f(x)=x3-ax 在[1,+∞)上是增函数,则a 的最大值是 课堂探究:

2.已知函数f(x)=x-alnx. (1)当a=2时,求曲线y=f(x)在点A(1,f(1))处的切线方程; (2)求函数f(x)的极值. 3.已知函数f(x)=2x3-3(a+1)x2+6a x. (1)若a=1,求曲线y=f(x)在点(2,f(2))处的切线方程; (2)若|a|>1,求f(x)在闭区间[0,2|a|]上的最小值. 变式:已知函数f(x)=(x-k)ex (1)求f(x)的单调区间; (2)求f(x)在区间[0,1]上的最小值. 3.设函数f(x)=x3-3ax+b (a≠0). (1)若曲线y=f(x)在点(2,f(x))处与直线y=8相切,求a,b的值; (2)求函数f(x)的单调区间与极值点.

《3.3.1函数的单调性与导数》教学案

3.3.1《函数的单调性与导数》教学案 教学目标: 1.了解可导函数的单调性与其导数的关系; 2.能利用导数研究函数的单调性,会求函数的单调区间,对多项式函数一般不超过三次; 教学重点: 利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间 教学难点: 利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间 教学过程: 一.创设情景 函数是客观描述世界变化规律的重要数学模型,研究函数时,了解函数的赠与减、增减的快与慢以及函数的最大值或最小值等性质是非常重要的.通过研究函数的这些性质,我们可以对数量的变化规律有一个基本的了解.下面,我们运用导数研究函数的性质,从中体会导数在研究函数中的作用. 二.新课讲授 1.问题:图3.3-1(1),它表示跳水运动中高度h 随时间t 变化的函数2() 4.9 6.510h t t t =-++的图像,图3.3-1(2)表示高台跳水运动员的速度v 随时间t 变化的函数'()()9.8 6.5v t h t t ==-+的图像. 运动员从起跳到最高点,以及从最高点到入水这两段时间的运动状态有什么区别? 通过观察图像,我们可以发现: (1)运动员从起点到最高点,离水面的高度h 随时间t 的增加而增加,即()h t 是增函数.相应地,'()()0v t h t =>. (2) 从最高点到入水,运动员离水面的高度h 随时间t 的增加而减少,即()h t 是减 函数.相应地,'()()0v t h t =<. 2.函数的单调性与导数的关系 观察下面函数的图像,探讨函数的单调性与其导数正负的关系. 如图3.3-3,导数'0()f x 表示函数()f x 在 点00(,)x y 处的切线的斜率. 在0x x =处,'0()0f x >,切线是“左下右上”式的,

导数学案(有答案)

3.1.1平均变化率 课时目标 1.理解并掌握平均变化率的概念.2.会求函数在指定区间上的平均变化率.3.能利用平均变化率解决或说明生活中的实际问题. 1.函数f(x)在区间[x1,x2]上的平均变化率为____________.习惯上用Δx表示________,即__________,可把Δx看作是相对于x1的一个“__________”,可用__________代替x2;类似地,Δy=__________,因此,函数f(x)的平均变化率可以表示为________. 2.函数y=f(x)的平均变化率Δy Δx= f(x2)-f(x1) x2-x1 的几何意义是:表示连接函数y=f(x)图象 上两点(x1,f(x1))、(x2,f(x2))的割线的________. 一、填空题 1.当自变量从x0变到x1时,函数值的增量与相应自变量的增量之比是函数________.(填序号) ①在[x0,x1]上的平均变化率; ②在x0处的变化率; ③在x1处的变化率; ④以上都不对. 2.设函数y=f(x),当自变量x由x0改变到x0+Δx时,函数的增量Δy=______________. 3.已知函数f(x)=2x2-1的图象上一点(1,1)及邻近一点(1+Δx,f(1+Δx)),则Δy Δx= ________. 4.某物体做运动规律是s=s(t),则该物体在t到t+Δt这段时间内的平均速度是______________. 5.如图,函数y=f(x)在A,B两点间的平均变化率是________. 6.已知函数y=f(x)=x2+1,在x=2,Δx=0.1时,Δy的值为________. 7.过曲线y=2x上两点(0,1),(1,2)的割线的斜率为______. 8.若一质点M按规律s(t)=8+t2运动,则该质点在一小段时间[2,2.1]内相应的平均速度是________. 二、解答题 9.已知函数f(x)=x2-2x,分别计算函数在区间[-3,-1],[2,4]上的平均变化率.10.过曲线y=f(x)=x3上两点P(1,1)和Q(1+Δx,1+Δy)作曲线的割线,求出当Δx=0.1时割线的斜率.

高考数学导数题型归纳

导数题型归纳 请同学们高度重视: 首先,关于二次函数的不等式恒成立的主要解法: 1、分离变量;2变更主元;3根分布;4判别式法 5、二次函数区间最值求法:(1)对称轴(重视单调区间) 与定义域的关系 (2)端点处和顶点是最值所在 其次,分析每种题型的本质,你会发现大部分都在解决“不等式恒成立问题”以及“充分应用数形结合思想”,创建不等关系求出取值范围。 最后,同学们在看例题时,请注意寻找关键的等价变形和回归的基础 一、基础题型:函数的单调区间、极值、最值;不等式恒成立; 1、此类问题提倡按以下三个步骤进行解决: 第一步:令0)(' =x f 得到两个根; 第二步:画两图或列表; 第三步:由图表可知; 其中不等式恒成立问题的实质是函数的最值问题, 2、常见处理方法有三种: 第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0) 第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元); 例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上, ()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常数,432 3()1262 x mx x f x =-- (1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围; (2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值. 解:由函数4323()1262x mx x f x =-- 得32 ()332 x mx f x x '=-- (1) ()y f x =在区间[]0,3上为“凸函数”, 则 2 ()30g x x mx ∴=--< 在区间[0,3]上恒成立 解法一:从二次函数的区间最值入手:等价于max ()0g x < 解法二:分离变量法: ∵ 当0x =时, 2 ()330g x x mx ∴=--=-<恒成立, 当03x <≤时, 2 ()30g x x mx =--<恒成立 等价于233 x m x x x ->=-的最大值(03x <≤)恒成立, 而3 ()h x x x =-(03x <≤)是增函数,则max ()(3)2h x h == (2)∵当2m ≤时()f x 在区间(),a b 上都为“凸函数” 则等价于当2m ≤时2 ()30g x x mx =--< 恒成立 解法三:变更主元法 再等价于2 ()30F m mx x =-+>在2m ≤恒成立(视为关于m 的一次函数最值问题) 2 2 (2)0230 11(2)0230 F x x x F x x ?->--+>?????-<-+>??? 例2),10(32 R b a b x a ∈<<+- ],2不等式()f x a '≤恒成立,求a 的取值范围.

导数及其应用学案+作业 (答案)

变化率与导数、导数的计算 1.函数y =f (x )在x =x 0处的导数:f ′(x 0)=lim Δx →0 Δy Δx =lim Δx →0 f (x 0+Δx )-f (x 0)Δx . 2.函数f (x )在点x 0处的导数f ′(x 0)的几何意义:f ′(x 0)是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率.相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0). 二、基本初等函数的导数公式 原函数 导函数 f (x )=c (c 为常数) f ′(x )=0 f (x )=x n (n ∈Q *) f ′(x )=nx n -1 f (x )=sin x f ′(x )=cos_x f (x )=cos x f ′(x )=-sin_x f (x )=a x f ′(x )=a x ln_a f (x )=e x f ′(x )=e x f (x )=lo g a x f ′(x )=1x ln a f (x )=ln x f ′(x )=1x 三、导数的运算法则 1.[f (x )±g (x )]′=f ′(x )±g ′(x ); 2.[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); 3.????f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2 (g (x )≠0). 1.函数求导的原则 对于函数求导,一般要遵循先化简,再求导的基本原则,求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用,在实施化简时,首先必须注意变换的等价性,避免不必要的运算失误. 2.曲线y =f (x )“在点P (x 0,y 0)处的切线”与“过点P (x 0,y 0)的切线”的区别与联系 (1)曲线y =f (x )在点P (x 0,y 0)处的切线是指P 为切点,切线斜率为k =f ′(x 0)的切线,是唯一的一条切线. (2)曲线y =f (x )过点P (x 0,y 0)的切线,是指切线经过P 点.点P 可以是切点,也可以不是切点,而且这样的直线可能有多条. 1.用定义法求下列函数的导数. (1)y =x 2; (2)y =4x 2. [自主解答] (1)因为Δy Δx =f (x +Δx )-f (x )Δx =(x +Δx )2-x 2 Δx

函数的极值与导数优秀教学设计

函数的极值与导数教学设计 【内容分析】 本节内容选自人民教育出版社A版的理科选修2-2或者文科选修1-1的导数及其应用的内容,这些是在学生学习了函数的单调与导数的下一节课的内容,函数是描述客观世界变化规律的重要数学模型,而导数是研究函数的最有效的工具,运用导数研究函数的性质,从中可以体会到导数在研究函数中的巨大作用. 【学情分析】 在高一就学习了函数的最大(小)值,这与本小节所要研究的对象——函数极值有着本质区别的,学生容易产生混淆,易把极大值当做最大值,极小值当做最小值.在认识理解导数大小与函数单调性的关系后,结合函数图像直观地引入函数极值的概念,强化极值是描述函数局部特征的概念,使得学生对极值与最值的概念区分开来,也为下节“函数的最值与导数”做好铺垫. 【教学目标】 (1)理解极大值、极小值的概念. (2)能够运用判别极大值、极小值的方法来求函数的极值. (3)掌握求可导函数的极值的步骤 【教学重点】 极大、极小值的概念和判别方法,以及求可导函数的极值的步骤. 【教学难点】 极大、极小值概念的理解,熟悉求可导函数的极值的步骤 【学法指导】阅读自学、探究交流、合作展示. 【数学思想】数形结合、合情推理. 【知识百科】 1.函数的最值 函数最值一般分为函数最小值与函数最大值.简单来说,最小值即定义域中函数值的最小值,最大值即定义域中函数值的最大值.函数最大(小)值的几何意义---函数图像的最高(低)点的纵坐标即为该函数的最大(小)值. 2.函数的极值 函数在其定义域的某些局部区域所达到的相对最大值或相对最小值.当函数在其定义域的某一点的值大于该点周围任何点的值时,称函数在该点有极大值;当函数在其定义域的某一点的值小于该点周围任何点的值时,称函数在该点有极小值.这里的极大值和极小值只具有局部意义.函数极值点的几何意义---函数图像的某段子区间内上极

《函数的单调性与导数》教学设计

教学设计 普通高中课程标准实验教科书《数学》选修1-1 (人教A版) 函数的单调性与导数 (第一课时) 张丽园 安阳市实验中学(第39中学) 2016年6月15日

《函数的单调性与导数》教学设计 安阳市实验中学(第39中学)张丽园 【课题】函数的单调性与导数 【教材】人教A版《数学》选修1-1 【课时】1课时 【教材分析】 函数的单调性与导数是人教A版选修1-1第三章第三课第一节的内容.在学习本节课之前学生已经学习了函数及函数单调性等概念,对单调性有了一定的感性和理性的认识,同时在第二章中已经学习了导数的概念,对导数有了一定的知识储备. 函数的单调性是高中数学中极为重要的一个知识点.以前学习了利用函数单调性的定义、函数的图象来研究函数的单调性,学习了导数以后,利用导数来研究函数的单调性,是导数在研究处理函数性质问题中的一个重要应用.同时,在本课第二节要学习利用导数研究函数的极值,学习了导数研究函数的单调性,对于研究利用导数求函数的极值有重要的帮助.因此,学习本节内容具有承上启下的作用. 【学生学情分析】 课堂学生为高二年级的的学生,学生基础普遍比较好,但是学习单调性的概念是在高一第一学期学过,因此对于单调性概念的理解不够准确,同时导数是高中学生新接触的概念,如何将导数与函数的单调性联系起来是一个难点. 在本节课之前学生已经学习了导数的概念、导数的几何意义和导数的四则运算,初步接触了导数在几何中的简单应用,但对导数的应用还仅停留在表面上.本节课应着重让学生通过探究来研究利用导数判定函数的单调性. 【教学目标】 知识点:1.探索函数的单调性与导数的关系; 2.会利用导数判断函数的单调性并求函数的单调区间. 能力点:1.通过本节的学习,掌握用导数研究单调性的方法. 2.在探索过程中培养学生的观察、分析、概括的能力渗透数形结合思想、转化思想. 教育点:通过在教学过程中让学生多动手、多观察、勤思考、善总结,培养学生的探索精神,引导学生养成自主学习的学习习惯. 自主探究点:通过问题的探究,体会知识的类比迁移.以已知探求未知,从特殊到一般的数学思想方法. 【教学重点】 利用导数研究函数的单调性,会求函数的单调区间. 【教学难点】 ⒈探究函数的单调性与导数的关系; ⒉如何用导数判断函数的单调性. 【教学方法】 启发式教学 【课时安排】 1 课时

高考数学导数的解题技巧

2019年高考数学导数的解题技巧高考导数题主要是考查与函数的综合,考查不等式、导数的应用等知识,难度属于中等难度。 都有什么题型呢? ①应用导数求函数的单调区间,或判定函数的单调性; ②应用导数求函数的极值与最值; ③应用导数解决有关不等式问题。 有没有什么解题技巧啦? 导数的解题技巧还是比较固定的,一般思路为 ①确定函数f(x)的定义域(最容易忽略的,请牢记); ②求方程f′(x)=0的解,这些解和f(x)的间断点把定义域分成若干区间; ③研究各小区间上f′(x)的符号,f′(x)>0时,该区间为增区间,反之则为减区间。 从这两步开始有分类讨论,函数的最值可能会出现极值点处或者端点处,多项式求导一般结合不等式求参数的取值范围,根据题目会有一定的变化,那接下来具体总结一些做题技巧。 技巧破解+例题拆解 1.若题目考察的是导数的概念,则主要考察的是对导数在一点处的定义和导数的几何意义,注意区分导数与△y/△x 之间的区别。

观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。随机观察也是不可少的,是相当有趣的,如蜻蜓、蚯蚓、毛毛虫等,孩子一边观察,一边提问,兴趣很浓。我提供的观察对象,注意形象逼真,色彩鲜明,大小适中,引导幼儿多角度多层面地进行观察,保证每个幼儿看得到,看得清。看得清才能说得正确。在观察过程中指导。我注意帮助幼儿学习正确的观察方法,即按顺序观察和抓住事物的不同特征重点观察,观察与说话相结合,在观察中积累词汇,理解词汇,如一次我抓住时机,引导幼儿观察雷雨,雷雨前天空急剧变化,乌云密布,我问幼儿乌云是什么样子的,有的孩子说:乌云像大海的波浪。有的孩子说“乌云跑得飞快。”我加以肯定说“这是乌云滚滚。”当幼儿看到闪电时,我告诉他“这叫电光闪闪。”接着幼儿听到雷声惊叫起来,我抓住时机说:“这就是雷声隆隆。”一会儿下起了大雨,我问:“雨下得怎样?”幼儿说大极了,我就舀一盆水往下一倒,作比较观察,让幼儿掌握“倾盆大雨”这个词。雨后,我又带幼儿观察晴朗的天空,朗诵自编的一首儿歌:“蓝天高,白云飘,鸟儿飞,树儿摇,太阳公公咪咪笑。”这样抓住特征见景生情,幼儿不仅印象深刻,对雷雨前后气象变化的词语学得快,记得牢,而且会应用。我还在观察的基础上,引导幼儿联想,让他们与以往学的词语、生活经验联系起来,在发展想象力中发展语言。

导数与函数的单调性教学设计

《导数与函数的单调性》教学设计 【课题】导数与函数的单调性 【课时】1课时 【教材分析】 导数与函数的单调性是人教版选修2-2第三章第一节的内容。函数单调性是高中阶段刻划函数变化的一个最基本的性质。在高中数学课程中,对于函数单调性的研究分成两个阶段:第一个阶段是用定义研究单调性,知道它的变化趋势,是高一需要了解的知识点;第二阶段用导数的性质研究单调性,知道它的变化快慢,是高二需要掌握的知识内容。 在学习本节课之前学生已经学习了导数、函数及函数单调性等概念,对单调性有了一定的感性和理性的认识,同时在第二章中已经学习了导数的概念,对导数有了一定的知识储备。 函数的单调性是高中数学中极为重要的一个知识点。以前学习了利用函数单调性的定义、函数的图象来研究函数的单调性,学习了导数以后,利用导数来研究函数的单调性,是导数在研究处理函数性质问题中的一个重要应用。同时,在本章第二节要学习利用导数研究函数的极值,学习了导数研究函数的单调性,对于研究利用导数求函数的极值有重要的帮助。因此,学习本节内容具有承上启下的作用。【学情分析】 课堂学生为高二年级的的学生,学生基础一般,高一阶段对于单调性概念的理解不够准确且现在早已忘记;同时导数是高中学生新接触的概念,如何将导数与函数的单调性联系起来是一个难点。 在本节课之前学生已经学习了导数的概念、导数的几何意义和导数的四则运算,初步接触了导数在几何中的简单应用,但对导数的应用还仅停留在表面上。本节课应着重让学生通过探究来研究利用导数判定函数的单调性。 【教学目标】 知识与能力: 一是能探索并应用函数的单调性与导数的关系求单调区间;二是掌握判断函数单调性的方法;三是能由导数信息绘制函数大致图象。 过程与方法: 通过利用导数研究单调性问题的研究过程,体会从特殊到一般的、数形结合的研究方法。 情感态度与价值观: (1)通过导数方法研究单调性问题,体会到不同数学知识间的内在联系,认识到数学是一个有机整体。 2)通过导数研究单调性的基本步骤(即算法)的形成和使用,使得学生认识到导数使得一些复杂的问题就变得有矩可循,因而认识到导数的实用价值。 【教学重点】

变化率与导数、导数的计算学案(高考一轮复习)

20XX 年高中数学一轮复习教学案 第二章 函数、导数及其应用 第11节 变化率与导数、导数的计算 一.学习目标: 1.了解导数概念的实际背景,理解导数的几何意义; 2.能根据导数定义,求函数y =c (c 为常数),y =x ,y =x 2,y =1 x 的导数; 3.能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数. 二.学习重、难点: 1.学习重点:能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数; 2.学习难点:理解导数的几何意义. 三.学习方法:讲练结合 四.自主复习: 1.导数的概念 (1)函数在x =x 0处的导数 函数y =f (x )在x =x 0处的瞬时变化率是__________________________=lim Δx →0 Δy Δx , 称其为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0 . (2)导函数:当上式中的x 0看作变量x 时,函数f ′(x )为f (x )的________. (3)导数的几何意义:f ′(x 0)是曲线y =f (x )在点P (x 0,f (x 0))处的________,相应的切线方程是_____________________.

2.基本初等函数的导数公式 3.运算法则 (1)[f(x)±g(x)]′=_________________; (2)[f(x)·g(x)]′=________________________; (3)[f(x) g(x) ]′=_______________________ (g(x)≠0).五.复习前测: 1.已知函数f(x)=sin x+ln x,则f′(1)的值为() A.1-cos1 B.1+cos1 C.cos1-1 D.-1-cos1

高考数学专题导数题的解题技巧

第十讲 导数题的解题技巧 【命题趋向】导数命题趋势: 综观2007年全国各套高考数学试题,我们发现对导数的考查有以下一些知识类型与特点: (1)多项式求导(结合不等式求参数取值范围),和求斜率(切线方程结合函数求最值)问题. (2)求极值, 函数单调性,应用题,与三角函数或向量结合. 分值在12---17分之间,一般为1个选择题或1个填空题,1个解答题. 【考点透视】 1.了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念. 2.熟记基本导数公式;掌握两个函数和、差、积、商的求导法则.了解复合函数的求导法则,会求某些简单函数的导数. 3.理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值. 【例题解析】 考点1 导数的概念 对概念的要求:了解导数概念的实际背景,掌握导数在一点处的定义和导数的几何意义,理解导函数的概念. 例1.(2007年北京卷)()f x '是3 1()213 f x x x = ++的导函数,则(1)f '-的值是 . [考查目的] 本题主要考查函数的导数和计算等基础知识和能力. [解答过程] ()2 2 ()2,(1)12 3.f x x f ''=+∴-=-+=Q 故填3. 例2. ( 2006年湖南卷)设函数()1 x a f x x -=-,集合M={|()0}x f x <,P='{|()0}x f x >,若M P,则实 数a 的取值范围是 ( ) A.(-∞,1) B.(0,1) C.(1,+∞) D. [1,+∞) [考查目的]本题主要考查函数的导数和集合等基础知识的应用能力.

2020高考数学二轮复习 专题五 函数与导数 第3讲 导数及其应用学案

第3讲导数及其应用 [考情考向分析] 1.导数的意义和运算是导数应用的基础,是高考的一个热点.2.利用导数解决函数的单调性与极值(最值)问题是高考的常见题型. 热点一导数的几何意义 1.函数f(x)在x0处的导数是曲线f(x)在点P(x0,f(x0))处的切线的斜率,曲线f(x)在点P处的切线的斜率k =f′(x0),相应的切线方程为y-f(x0)=f′(x0)(x-x0). 2.求曲线的切线要注意“过点P的切线”与“在点P处的切线”的不同. 例1 (1)(2018·全国Ⅰ)设函数f(x)=x3+(a-1)x2+ax,若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为( ) A.y=-2x B.y=-x C.y=2x D.y=x 答案 D 解析方法一∵f(x)=x3+(a-1)x2+ax, ∴f′(x)=3x2+2(a-1)x+a. 又f(x)为奇函数,∴f(-x)=-f(x)恒成立, 即-x3+(a-1)x2-ax=-x3-(a-1)x2-ax恒成立, ∴a=1,∴f′(x)=3x2+1, ∴f′(0)=1, ∴曲线y=f(x)在点(0,0)处的切线方程为y=x. 故选D. 方法二∵f(x)=x3+(a-1)x2+ax为奇函数, ∴f′(x)=3x2+2(a-1)x+a为偶函数, ∴a=1,即f′(x)=3x2+1,∴f′(0)=1, ∴曲线y=f(x)在点(0,0)处的切线方程为y=x. 故选D. (2)若直线y=kx+b是曲线y=ln x+1的切线,也是曲线y=ln(x+2)的切线,则实数b=________. 答案ln 2 解析设直线y=kx+b与曲线y=ln x+1和曲线y=ln(x+2)的切点分别为(x1,ln x1+1),(x2,ln(x2+2)).∵直线y=kx+b是曲线y=ln x+1的切线,也是曲线y=ln(x+2)的切线, ∴1 x1 = 1 x2+2 ,即x1-x2=2.

导数与函数的单调性 省优质课教学设计

《导数与函数的单调性》教学设计 教材分析:《导数与函数的单调性》是北师大版选修2-2第三章1.1节的内容,也是高考的重点内容之一。本节内容的学习与掌握有助于学生深入的研究函数的性质,尤其借助导数知识求解函数的单调区间起到推波助澜的作用。学生已经掌握了基本的求导公式和导数的四则运算规则,对于导数也有了初步认识,通过本节课的学习,是学生认识到导数可以作为一种工具来进一步研究函数,对于求解较复杂函数的单调区间是一个捷径。 教学目标: 1.知识与技能: 理解导数与函数单调性的关系,会用导数法确定函数的单调区间,能确定函数的大致图像。 2.过程与方法: (1)通过导数与函数单调性关系的探究过程,体会从特殊到一般、数形结合的思想方法。 (2)通过导数法求单调区间基本步骤的形成,体会算法思想。 3.情感、态度与价值观: 通过导数法求单调区间,体会不同数学知识间的内在联系,体会导数的实用价值。 教学重点:函数单调性的判定和单调区间的求法 教学难点:理解为何将导数与函数单调性联系起来 教法学法: 1、教法:整堂课围绕“一切为了学生发展”的教学原则,突出①动--师生互动、共同探索;②导--教师指导、循序渐进 (1)新课引入--较简单的数学问题引入,帮助学生联想。 (2)理解导数的内涵,组织学生自主探索,获得用函数的导数判断函数单调性的法则。 (3)例题处理--始终从问题出发,层层设疑,让他们在探索中自得知识。 (4)练习--深化对用函数的导数判断函数单调性的法则内涵的理解,巩固新知识。 2、学法: (1)合作学习:引导学生分组讨论,合作交流,共同探讨问题。 (2)自主学习:引导学生动口、动脑、参与数学活动。 (3)探究学习:引导学生发挥主观能动性,主动探索新知。

2019-2020年高考数学二轮复习专题02函数与导数教学案文

2019-2020年高考数学二轮复习专题02函数与导数教学案文 一.考场传真 1. 【xx 年普通高等学校招生全国统一考试(湖南卷)文科】已知f (x )是奇函数,g (x )是偶函数,且f (-1)+g (1)=2,f (1)+g (-1)=4,则g (1)等于( ) A.4 B.3 C.2 D.1 2. 【xx 年普通高等学校招生全国统一考试(安徽卷文科)】定义在上的函数满足.若当时., 则当时, =________________. 3. 【xx 年普通高等学校招生全国统一考试(四川卷)文科】设函数(,为自然对数的底数).若存在使成立,则的取值范围是( ) (A ) (B ) (C ) (D ) 4. 【xx 年全国高考统一考试天津数学(文)卷】设函数22,()ln )3(x x g x x x x f e +-=+-=. 若实数a , b 满足, 则( ) (A) (B) (C) (D)

5.【xx年普通高等学校招生全国统一考试(湖南卷)文科】函数的图像与函数的图像的交点个数为() A.0 B.1 C.2 D.3 6. 【xx年高考新课标Ⅱ数学(文)卷】若存在正数x使2x(x-a)<1成立,则a 的取值范围是() (A)(-∞,+∞)(B)(-2, +∞) (C)(0, +∞) (D)(-1,+∞) 7. 【xx年普通高等学校招生全国统一考试(广东卷)文科】若曲线在点处的切线平行于轴,则. 8. 【xx年普通高等学校招生全国统一考试(安徽卷文科)】已知函数有两个极值点,若,则关于的方程的不同实根个数为 (A)3 (B) 4

(C) 5 (D) 6 如图则有3个交点,故选A. 二.高考研究 【考纲要求】 1.函数 (1)了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念. (2)在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数. (3)了解简单的分段函数,并能简单应用(函数分段不超过三段). (4)理解函数的单调性、最大(小)值及其几何意义;了解函数奇偶性的含义. (5)会运用基本初等函数的图像分析函数的性质. 2.指数函数 (1)了解指数函数模型的实际背景. (2)理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算. (3)理解指数函数的概念及其单调性,掌握指数函数图像通过的特殊点,会画底数为2,3,10,1/2,1/3的指数函数的图像. (4)体会指数函数是一类重要的函数模型. 3.对数函数 (1)理解对数的概念及其运算性质,知道用换底公式将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用. (2)理解对数函数的概念及其单调性,掌握对数函数图像通过的特殊点,会画底数为2,10,1/2的对数函数的图像. (3)体会对数函数是一类重要的函数模型; (4)了解指数函数与对数函数()互为反函数. 4.幂函数

(完整版)高三文科数学导数专题复习

高三文科数学导数专题复习 1.已知函数)(,3 ,sin )(x f x x b ax x f 时当π =+=取得极小值 33 -π . (Ⅰ)求a ,b 的值; (Ⅱ)设直线)(:),(:x F y S x g y l ==曲线. 若直线l 与曲线S 同时满足下列两个条件: (1)直线l 与曲线S 相切且至少有两个切点; (2)对任意x ∈R 都有)()(x F x g ≥. 则称直线l 为曲线S 的“上夹线”. 试证明:直线2:+=x y l 是曲线x b ax y S sin :+=的“上夹线”. 2. 设函数3 221()231,0 1.3 f x x ax a x a =- +-+<< (1)求函数)(x f 的极大值; (2)若[]1,1x a a ∈-+时,恒有()a f x a '-≤≤成立(其中()f x '是函数()f x 的导函数),试确定实数a 的取值范围. 3.如图所示,A 、B 为函数)11(32 ≤≤-=x x y 图象上两点,且AB//x 轴,点M (1,m )(m>3)是△ABC 边AC 的中点. (1)设点B 的横坐标为t ,△ABC 的面积为S ,求S 关于t 的函数关系式)(t f S =; (2)求函数)(t f S =的最大值,并求出相应的点C 的坐标.

4. 已知函数x a x x f ln )(2-=在]2,1(是增函数,x a x x g -=)(在(0,1)为减函数. (I )求)(x f 、)(x g 的表达式; (II )求证:当0>x 时,方程2)()(+=x g x f 有唯一解; (III )当1->b 时,若21 2)(x bx x f -≥在x ∈]1,0(内恒成立,求b 的取值范围 5. 已知函数3 2 ()f x x ax bx c =+++在2x =处有极值,曲线()y f x =在1x =处的切线平行于直线32y x =--,试求函数()f x 的极大值与极小值的差。 6.函数x a x x f - =2)(的定义域为]1,0((a 为实数). (1)当1-=a 时,求函数)(x f y =的值域; (2)若函数)(x f y =在定义域上是减函数,求a 的取值范围; (3)求函数)(x f y =在∈x ]1,0(上的最大值及最小值,并求出函数取最值时x 的值. 7.设x=0是函数2()()()x f x x ax b e x R =++∈的一个极值点. (Ⅰ)求a 与b 的关系式(用a 表示b ),并求)(x f 的单调区间; (Ⅱ)设]2,2[,,)1()(,0212 2-∈++-=>+ξξ问是否存在x e a a x g a ,使得|1|)()(21≤-ξξg f 成立?若存在,求a 的取值范围;若不存在,说明理由. 8. 设函数()2ln q f x px x x =- -,且()2p f e qe e =--,其中e 是自然对数的底数. (1)求p 与q 的关系;

二轮复习导数的应用导学案

《导数的应用》导学案 ●命题视角: ●真题感悟: 1.(2014.全国)若函数()ln =-f x kx x 在区间()1,+∞单调递增,则k 的取值范围是( ) A. (],2-∞- B. (],1-∞- C. [)2,+∞ D. [)1,+∞ 2.(201 3.课标)已知定义在实数集R 上的函数()f x 满足(1)3f =,且()f x 的导数()f x '在R 上恒有()2f x '<()x R ∈,则不等式()21f x x <+的解集为( ) A .(1,)+∞ B .(,1)-∞- C .(1,1)- D .(,1)-∞-∪(1,)+∞ 3.(201 4.辽宁)当[]2,1∈-x 时,不等式32430-++≥ax x x 恒成立,则实数a 的取值范围是( ) A. []5,3-- B. 96,8??--???? C. []6,2-- D. []4,3-- ●透析高考 热点突破 热点一 不等式的恒成立问题 例1 已知函数()ln a f x x x =-,其中a ∈R . (1)当2a =时,求函数()f x 的图象在点(1,(1))f 处的切线方程; (2)如果对于任意(1,)x ∈+∞,都有()2f x x >-+,求a 的取值范围.

变式训练1: 已知函数()()()()ln 11f x x x x ax a a R =---+∈. (1)若0a =,判断函数()f x 的单调性; (2)若1x >时,()0f x <恒成立,求a 的取值范围.

热点二 利用导数证明不等式 例2 设函数()(1)ln(1),(1,0)f x x a x x x a =-++>-≥. (1)求()f x 的单调区间; (2)证明:当0m n >>时,(1)(1)n m m n +<+.

1.3.1函数的单调性与导数教案

1.3.1函数的单调性与导数教案 谷城一中杨超 教学目标 1.正确理解利用导数判断函数的单调性的原理; 2.掌握利用导数判断函数单调性的方法 教学重点:探索函数的单调性与导数的关系,求单调区间. 教学难点:利用导数判断函数的单调性 教学过程 一.回顾与思考 1、函数单调性的定义是什么? 2、判断函数的单调性有哪些方法?比如判断y=x2的单调性,如何进行?(分别用定义法、图像法完成) 3、函数x =怎么判断单调性呢?还有其他方法吗? 22+ x y ln 二.新知探究函数的单调性与导数之间的关系 【情景引入】函数是客观描述世界变化规律的重要数学模型,研究函数时,了解函数的增与减、增减的快与慢以及函数的最大值或最小值等性质是非常重要的.通过研究函数的这些性质,我们可以对数量的变化规律有一个Array基本的了解.函数的单调性与函数的导数一样都是反 映函数变化情况的,那么函数的单调性与函数的导数 是否有着某种内在的联系呢? 【思考】如图(1),它表示跳水运动中高度h随 时间t变化的函数2 =-++的图像,图 h t t t () 4.9 6.510 (2)表示高台跳水运动员的速度v随时间t变化的函 数' ==-+的图像.运动员从起跳到最 v t h t t ()()9.8 6.5 高点,以及从最高点到入水这两段时间的运动状态有什么区别? 【引导】随着时间的变化,运动员离水面的高度的变化有什么趋势?是逐渐增大还是逐步减小? 【探究】通过观察图像,我们可以发现: (1)运动员从起点到最高点,离水面的高度h随时间t的增加而增加,即() h t是增函数.相应地,' =>. v t h t ()()0 Array(2)从最高点到入水,运动员离水面的 高h随时间t的增加而减少,即() h t是减函 数.相应地' v t h t ()()0 =<, 【思考】导数的几何意义是函数在该点 处的切线的斜率,函数图象上每个点处的切 线的斜率都是变化的,那么函数的单调性与

(完整版)高考数学真题导数专题及答案

2017年高考真题导数专题 一.解答题(共12小题) 1.已知函数f(x)=ae2x+(a﹣2)e x﹣x. (1)讨论f(x)的单调性; (2)若f(x)有两个零点,求a的取值范围. 2.已知函数f(x)=ax2﹣ax﹣xlnx,且f(x)≥0. (1)求a; (2)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2. 3.已知函数f(x)=x﹣1﹣alnx. (1)若f(x)≥0,求a的值; (2)设m为整数,且对于任意正整数n,(1+)(1+)…(1+)<m,求m的最小值. 4.已知函数f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值) (1)求b关于a的函数关系式,并写出定义域; (2)证明:b2>3a; (3)若f(x),f′(x)这两个函数的所有极值之和不小于﹣,求a的取值范围.5.设函数f(x)=(1﹣x2)e x. (1)讨论f(x)的单调性; (2)当x≥0时,f(x)≤ax+1,求a的取值范围. 6.已知函数f(x)=(x﹣)e﹣x(x≥). (1)求f(x)的导函数; (2)求f(x)在区间[,+∞)上的取值范围. 7.已知函数f(x)=x2+2cosx,g(x)=e x(cosx﹣sinx+2x﹣2),其中e≈2.17828…是自然对数的底数. (Ⅰ)求曲线y=f(x)在点(π,f(π))处的切线方程; (Ⅱ)令h(x)=g (x)﹣a f(x)(a∈R),讨论h(x)的单调性并判断有无极

,求证: ) 10.已知函数f(x)=x3﹣ax2,a∈R, (1)当a=2时,求曲线y=f(x)在点(3,f(3))处的切线方程; (2)设函数g(x)=f(x)+(x﹣a)cosx﹣sinx,讨论g(x)的单调性并判断有无极值,有极值时求出极值. 11.设a,b∈R,|a|≤1.已知函数f(x)=x3﹣6x2﹣3a(a﹣4)x+b,g(x)=e x f (x). (Ⅰ)求f(x)的单调区间; (Ⅱ)已知函数y=g(x)和y=e x的图象在公共点(x0,y0)处有相同的切线,(i)求证:f(x)在x=x0处的导数等于0; (ii)若关于x的不等式g(x)≤e x在区间[x0﹣1,x0+1]上恒成立,求b的取值范围. 12.已知函数f(x)=e x(e x﹣a)﹣a2x. (1)讨论f(x)的单调性; (2)若f(x)≥0,求a的取值范围.

相关主题
文本预览
相关文档 最新文档