当前位置:文档之家› 低碳钢拉伸时力学性能的测定

低碳钢拉伸时力学性能的测定

低碳钢拉伸时力学性能的测定
低碳钢拉伸时力学性能的测定

§1.3 低碳钢拉伸时力学性能的测定

一、 实验目的和要求

1、 了解万能试验机的构造原理,掌握其操作规程和方法。

2、 观察试件拉伸过程中表现的变形规律和破坏现象。

3、 熟悉球铰引伸仪的正确使用方法。

4、 观察比例极限内力与变形间的线性关系,验证虎克定律。

5、 测定低碳钢的强度特征(屈服极限бs 和强度极限бb ),塑性特征(延伸率δ和截面收缩率ψ),绘制б—ε曲线。

二、实验内容和原理

常温下的拉伸实验是测定材料力学性能的基本实验,可用以测定弹性常数E 和μ ,比例极限 бp ,屈服极限бs ,抗拉强度бb ,断后伸长率δ和断面收缩率ψ等。这些力学性能都是工程设计的重要依据.

1.验证虎克定律 弹性模量是应力低于比例极限时应力与应变的比值。

l

A Pl E ?==00εσ 为验证荷载与变形的关系是否符合虎克定律 ,减少测量误差,实验一般用等增量法加载,即把荷载分成若干相等的加载等级ΔP,然后逐级加载。为保证应力不超出比例极限,加载前先估算出式样的屈服载荷,以屈服载荷的70%~80%作为测定弹性模量的最高载荷Pn 。此外,为使实验机夹紧式样,消除引伸仪和实验机机构的间

隙,以及开始阶段引伸仪刀刃在式样

上的可能滑动,对式样应施加一个初

载荷P 0,P 0可取为P n 的10%。从P 0

到P n 将载荷分成n 级,且n 不小于5,

于是

n

P P P n 0-=? n 5≥

例如,若低碳钢的屈服极限б

s =235Mpa ,试样直径d 0=10mm ,则

)取KN N d P s n 15(14800%804

120=??=σπ KN P P n 5.1%100=?=

实验时,从P 0到Pn 逐级加载,载荷的每级增量为ΔP 。对应着每个载荷Pi

(I=1,2,···,n ),记录下相应的伸长Δli ,Δli+1与Δli 的差值即为变形增量δ(Δl )i 。它是ΔP 引起的伸长增量。在逐级加载中,若得到的各级δ(Δl )I 基本相等,就表明Δl 与P 成线形关系,符合虎克定律。

2.屈服极限бs 及抗拉强度бb 的测定 测定E 后重新加载,当到达屈服阶段时,低弹钢的P —Δl 曲线呈锯齿形,与最高荷载P su 对应的应力称为上屈服点,它受变形速度和试样形状的影响,一般不作为强度指标。同样,载荷首次下降的最低点(初始瞬时效应)也不作为强度指标。一般将初始瞬时效应以后的最低载荷P sl ,除以试样的初始横截面面积A 0,作为屈服极限бs 。

若实验机由示力度盘和指针指示载荷,则在进入屈服阶段后,示力指针停止前进,并开始倒退,这时应注意指针的波动情况,捕捉指针所指的最低载荷Psl 。

屈服阶段过后,进入强化阶段,试样又恢复了抵抗继续变形的能力。载荷到达最大值P b 时,试样某一局部的截面明显缩小,出现了紧缩现象.这时示力度盘从动针停留在P b 不动,主动针则迅速倒退,表明载荷迅速下降,试样即将被拉断,以试样的初始横截面面积A 0 除P b 得抗拉强度бb 。

3.断后延伸率δ及端面收缩Ψ的测定 试样的标距原长为l 0,拉断后将两段试样紧密地接在一起,量出拉断后的标距为l 1 ,断后延伸率为

式中:0l —实验前的标距,

1l —实验后的标距。

断口附近塑性变形最大,所以l 1的量取与断口的部位有关。如断口发生于l 0 的两端或在 l 0以外,则实验无效,应重作。若断口距l 0 的一端的 距离小于或等于l 0/3(图 1.6b 和c ),则按下述断口移中法测定l 1。在拉断后的长段上,由断口处取约等于短段的格数得B 点,若剩余格数为偶数(图1.6b ),取其一半得C 点,设AB 长为a ,BC 长为b ,则l 1=a+2b 。当长段剩余格数为奇数时(图1.6c ),取剩余格数减1后的一半得C 点,加1后的一半得C 1点,设AB 、BC 和B C 1的长度分别为a 、b 1、b 2,则l 1= a+b 1+b 2。

试样拉断后,设缩紧处的最小横截面面积为A 1,由于断口不是规则的圆形,应在两个相互垂直的方向上量取最小截面的直径,以其平均值计算A 1,然后按

000

01/100?-=l l l δ00A P A P b b s s =

=σσ

下式计算端面收缩率:

式中:、A 0—实验前的截面面积,

A 1—实验后的断口横截面面积。

三、实验所用仪器及材料

1. 万能实验机

2. 蝶式引伸仪或球铰引伸仪

3. 游标卡尺

4. 低碳钢圆形截面试件

实验表明,试件的形状和尺寸对实验结果有显著的影响,为了比较实验结果,应按国家标准GB228—76中有关规定做比例试件,如图1.7 所示,图中l 0叫做标距(又叫计算长度)。

圆形截面标准试件:直径:d 0=20mm ,

标距:l 0=200mm (长试件),l 0=100mm (短试件)。

四、实验方法与步骤

000

10/100?-=A A A

ψ

1、试件准备

(1)在低碳钢试件的标距长度内(l

=100mm),每隔10 mm刻画一圆周线,以便观察变形分布和计算延伸率。

(2)在标距中央和两端分别沿互相垂直的两个方向各量一次直径,分别

计算这三处直径的平均值,取其中最小值作为试件直径d

0,同时测量标距l

2、试验机准备

(1)根据低碳钢的强度极限(б

b

=350—450MPa)和试件尺寸,估算试验

所需的最大荷载P

b

。选择合适的测力度盘并配置相应的摆锤。

(2)开动试验机,缓慢打开送油阀,将活动台上升10—20 mm消除自重。然后关闭送油阀,停止油泵电机,调整测力指针对准零点,并检查自动描图装置。

3、安装试件及引伸仪

(1)将试件一端加夹紧在试验机的夹头内(刚好使试件头部全部进入夹头,并要注意夹正),再移动下夹头使其达到适当位置,夹紧试件下端。

(2)将引伸仪十分小心的装到试件上(注意:使上下刀口位于试件纵向对称面内),调整指针到零点。为检查机器和引伸仪能否正常工作,须进行预拉,先把载荷预加到测定E的最高载荷P n,然后卸载到0~P0之间。

4、验证虎克定律

(1)缓慢加载至初载荷P0,记调整引伸仪为起始零点(或记下初读数)加载按等增量法进行,应保持加载均匀。每增加一个阶段载荷ΔP,记录一次引伸仪读数,分4—5各阶段加载。

(2)检查变形增量与载荷增量是否保持正比例关系,加载至终载荷P n后立即撤下引伸仪。

5、测定强度指标

(1)、继续缓慢加载,并注意观察测力指针的移动情况,当测力指针倒退时,

即表明材料已进入屈服阶段。记下指针后退所指示的最小载荷为屈服载荷P S

(2)、屈服阶段一过,材料进入强化阶段,载荷继续上升。单此时由于变形速度加大,载荷上升明显减慢,故需适当开大送油阀才能维持一定的加载速度。

当载荷达到最大值P

b

时,试件在某处出现“颈缩”现象,同时测力指针迅速倒

退,试件很快发生断裂。关闭送油阀,停机,记下最大载荷P

b

6、测量塑性变形

取下试件,将断裂试件的两段对齐并尽量靠拢。用游标卡尺测量段裂后标

距段的长度l

1和断口出直径d

1

。若断口不在标距中间的1/3区段内,用“断口移

中法”测量l

1。在断口处沿两相互垂直方向各测一次直径,取其平均值作为d

1。

材料力学性能考试答案

《工程材料力学性能》课后答案 机械工业出版社 2008第2版 第一章 单向静拉伸力学性能 1、 试述退火低碳钢、中碳钢和高碳钢的屈服现象在拉伸力-伸长曲线图上的区别?为什么? 2、 决定金属屈服强度的因素有哪些?【P12】 答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。 外在因素:温度、应变速率和应力状态。 3、 试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险?【P21】 答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。 4、 剪切断裂与解理断裂都是穿晶断裂,为什么断裂性质完全不同?【P23】 答:剪切断裂是在切应力作用下沿滑移面分离而造成的滑移面分离,一般是韧性断裂,而解理断裂是在正应力作用以极快的速率沿一定晶体学平面产生的穿晶断裂,解理断裂通常是脆性断裂。 5、 何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有哪些? 答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化。 6、 论述格雷菲斯裂纹理论分析问题的思路,推导格雷菲斯方程,并指出该理论的局限性。 【P32】 答: 212?? ? ??=a E s c πγσ,只适用于脆性固体,也就是只适用于那些裂纹尖端塑性变形可以忽略的情况。 第二章 金属在其他静载荷下的力学性能 一、解释下列名词: (1)应力状态软性系数—— 材料或工件所承受的最大切应力τ max 和最大正应力σmax 比值,即: () 32131max max 5.02σσσσσστα+--== 【新书P39 旧书P46】 (2)缺口效应—— 绝大多数机件的横截面都不是均匀而无变化的光滑体,往往存在截面的急剧变化,如键槽、油孔、轴肩、螺纹、退刀槽及焊缝等,这种截面变化的部分可视为“缺口”,由于缺口的存在,在载荷作用下缺口截面上的应力状态将发生变化,产生所谓的缺口效应。【P44 P53】 (3)缺口敏感度——缺口试样的抗拉强度σbn 的与等截面尺寸光滑试样的抗拉强度σ b 的比值,称为缺口敏感度,即: 【P47 P55 】 (4)布氏硬度——用钢球或硬质合金球作为压头,采用单位面积所承受的试验力计算而得的硬度。【P49 P58】 (5)洛氏硬度——采用金刚石圆锥体或小淬火钢球作压头,以测量压痕深度所表示的硬度 【P51 P60】。 (6)维氏硬度——以两相对面夹角为136。的金刚石四棱锥作压头,采用单位面积所承受

金属材料的力学性能

金属材料的力学性能 任何机械零件或工具,在使用过程中,往往要受到各种形式外力的作用。如起重机上的钢索,受到悬吊物拉力的作用;柴油机上的连杆,在传递动力时,不仅受到拉力的作用,而且还受到冲击力的作用;轴类零件要受到弯矩、扭力的作用等等。这就要求金属材料必须具有一种承受机械荷而不超过许可变形或不破坏的能力。这种能力就是材料的力学性能。金属表现来的诸如弹性、强度、硬度、塑性和韧性等特征就是用来衡量金属材料材料在外力作用下表现出力学性能的指标。 钢材力学性能是保证钢材最终使用性能(机械性能)的重要指标,它取决于钢的化学成分和热处理制度。在钢管标准中,根据不同的使用要求,规定了拉伸性能(抗拉强度、屈服强度或屈服点、伸长率)以及硬度、韧性指标,还有用户要求的高、低温性能等。 金属材料的机械性能 1、弹性和塑性: 弹性:金属材料受外力作用时产生变形,当外力 去掉后能恢复其原来形状的性能。力和变形同时存在、同时消失。如弹簧:弹簧靠弹性工作。 塑性:金属材料受外力作用时产生永久变形而不至于引起破坏的性能。(金属之间的连续性没破坏)塑性大小以断裂后的塑性变形大小来表示。 塑性变形:在外力消失后留下的这部分不可恢复的变形。 2、强度:是指金属材料在静载荷作用下抵抗变形和断裂的能力。强度指标一般用单位面积所承受的载荷即力表示,单位为MPa。 工程中常用的强度指标有屈服强度和抗拉强度。拉伸图:金属材料在拉伸过程中弹性变形、塑性变形直到断裂的全部力学性能可用拉伸图形象地表示出来。 材料在常温、静载作用下的宏观力学性能。是确定各种工程设计参数的主要依据。这些力学性能均需用标准试样在材料试验机上按照规定的试验方法和程序测定,并可同时测定材料的应力- 应变曲线。 对于韧性材料,有弹性和塑性两个阶段。弹性阶段的力学性能有: 比例极限:应力与应变保持成正比关系的应力最高限。当应力小于或等于比例极限时,应力与应变满足胡克定律,即应力与应变成正比。 弹性极限:弹性阶段的应力最高限。在弹性阶段内,载荷除去后,变形全部消失。这一阶段内的变形称为弹性变形。绝大多数工程材料的比例极限与弹性极限极为接近,因而可近似认为在全部弹性阶段内应力和应变均满足胡克定律。 塑性阶段的力学性能有: 屈服强度:材料发生屈服时的应力值。又称屈服极限。屈服时应力不增加但应变会继续增加。 屈服点:具有屈服现象的金属材料,试样在拉伸过程中力不增加(保持恒定)仍能继续伸长时的应力,称屈服点。若力发生下降时,则应区分上、下屈服点。屈服点的单位为 N/mm2(MPa)。 上屈服点(Re H):试样发生屈服而力首次下降前 的最大应力; 下屈服点(Re L):当不计初始瞬时效应时,屈服阶段中的最小应力。 条件屈服强度:某些无明显屈服阶段的材料,规定产生一定塑性应变量(例如0.2 %)时的应力值,作为条件屈服强度。应力超过屈服强度后再卸载,弹性变形将全部消失,但仍残留部分不可消失的变形,称为永久变形或塑性变形。 规定非比例延伸强度(Rp):非比例延伸率等于规定的引伸计标距百分率时的应力,例如Rp0.2 表示规定非比例延伸率为0.2%时的应力。 规定总延伸强度(Rt ):总延伸率等于规定的引伸计标距百分率时的应力。例如Rt0.5 表示规定总延伸率为

金属力学性能测试及复习答案

金属力学性能复习 一、填空题 1.静载荷下边的力学性能试验方法主要有拉伸试验、弯曲试验、扭转试验和压缩试验等。 2. 一般的拉伸曲线可以分为四个阶段:弹性变形阶段、屈服阶段、均匀塑性变形阶段和非均匀塑性变形阶段。 3. 屈服现象标志着金属材料屈服阶段的开始,屈服强度则标志着金属材料对开始塑性变形或小量塑性变形能力的抵抗。 4. 屈强比:是指屈服强度和抗拉强度的比值,提高屈强比可提高金属材料抵抗开始塑性变形的能力,有利于减轻机件和重量,但是屈强比过高又极易导致脆性断裂。 5. 一般常用的的塑性指标有屈服点延伸率、最大力下的总延伸率、最大力下的非比例延伸率、断后伸长率、断面收缩率等,其中最为常用的是断后伸长率和断面收缩率 。 6. 金属材料在断裂前吸收塑性变形功和断裂功的能力称为金属材料的韧性。一般来说,韧性包括静力韧性、冲击韧性和断裂韧性。 7. 硬度测试的方法很多,最常用的有三种方法:布氏硬度测试方法、络氏硬度的试验方法和维氏硬度实验法。 8. 金属材料制成机件后,机件对弹性变形的抗力称为刚度。它的大小和机件的截面积及其弹性模量成正比,机件刚度=E ·S. 9. 金属强化的方式主要有:单晶体强化、晶界强化、固溶强化、以及有序强化、位错强化、分散强化等(写出任意3种强化方式即可)。 10. 于光滑的圆柱试样,在静拉伸下的韧性端口的典型断口,它由三个区域组成:纤维区、放射区、剪切唇区。 11. 变形速率可以分为位移速度和应变速度。 二、判断题 1.在弹性变形阶段,拉力F 与绝对变形量之间成正比例线性关系;(√) 若不成比例原因,写虎克定律。 2.在有屈服现象的金属材料中,其试样在拉伸试验过程中力不断增加(保持恒定)仍能继续伸长的应力,也称为抗服强度。(×) 不增加,称为屈服强度。 3.一般来讲,随着温度升高,强度降低,塑性减小。(×) 金属内部原子间结合力减小,所以强度降低塑性增大。 4.络氏硬度试验采用金刚石圆锥体或淬火钢球压头,压入金属表面后,经规定保持时间后卸除主实验力,以测量压痕的深度来计算络氏硬度。压入深度越深,硬度越大,反之,硬度越小。(×) 络氏硬度公式 5.金属抗拉强度b σ与布氏硬度HB 之间有以下关系式:b σ=KHB ,这说明布氏硬度越大,其抗拉强度也越大。(√) 6.弹性模量E 是一个比例常数,对于某种金属来说,它是一种固有的特性。(√) 7.使用含碳量高(含碳量为)的钢,不能提高机件吸收弹性变形功。(×) 8.脆性断裂前不产生明显的塑性变形,即断裂产生在弹性变形阶段,吸收的能量很小,这种

材料力学性能静拉伸试验报告

静拉伸试验 一、实验目的 1、测45#钢的屈服强度s σ、抗拉强度m R 、断后伸长率δ和断面收缩率ψ。 2、测定铝合金的屈服强度s σ、抗拉强度m R 、断后伸长率δ和断面收缩率ψ。 3、观察并分析两种材料在拉伸过程中的各种现象。 二、使用设备 微机控制电子万能试验机、0.02mm 游标卡尺、试验分化器 三、试样 本试样采用经过机加工直径为10mm 左右的圆形截面比例试样,试样成分分别为铝合金和45#,各有数支。 四、实验原理 按照我国目前执行的国家 GB/T 228—2002标准—《金属材料 室温拉伸试验方法》的规定,在室温1035℃℃的范围内进行试验。将试样安装在试验机的夹头当中,然后开动试验机,使试样受到缓慢增加的拉力(一般应变速率应≤0.1m/s ),直到拉断为止,并且利用试验机的自动绘图装置绘出材料的拉伸图。 试验机自动绘图装置绘出的拉伸变形L ?主要是整个试样,而不仅仅是标距部分的伸长,还包括机器的弹性变形和试样在夹头中的滑动等因素,由于试样开始受力时,头部在头内的滑动较大,故绘出的拉伸图最初一段是曲线。 塑性材料与脆性材料的区别: (1)塑性材料: 脆性材料是指断后伸长率5%δ≥的材料,其从开始承受拉力直至试样被拉断,变形都比较大。塑性材料在发生断裂时,会发生明显的塑性变形,也会出现屈服和颈缩等现象; (2)脆性材料: 脆性材料是指断后伸长率5%δ<的材料,其从开始承受拉力直至试样被拉断,变形都很小。并且,大多数脆性材料在拉伸时的应力—应变曲线上都没有明显的直线段,几乎没有塑性变形,在断裂前不会出现明显的征兆,不会出现屈服和颈缩等现象,只有断裂时的应力值—强度极限。 脆性材料在承受拉力、变形记小时,就可以达到m F 而突然发生断裂,其抗拉强度也远远 小于45钢的抗拉强度。同样,由公式0m m R F S =即可得到其抗拉强度,而根据公式,10 l l l δ-=。 五、实验步骤 1、试样准备 用笔在试样间距0L (10cm )处标记一下。用游标尺测量出中间横截面的平均直径,并且测出试样在拉伸前的一个总长度L 。 2、试验机准备:

材料力学性能拉伸试验报告

材料力学性能拉伸试验报告 材化08 李文迪 40860044

[试验目的] 1. 测定低碳钢在退火、正火和淬火三种不同热处理状态下的强度与塑性性能。 2. 测定低碳钢的应变硬化指数和应变硬化系数。 [试验材料] 通过室温拉伸试验完成上述性能测试工作,测试过程执行GB/T228-2002:金属材料室温拉伸试验方法: 1.1试验材料:退火低碳钢,正火低碳钢,淬火低碳钢的R4标准试样各一个。 1.2热处理状态及组织性能特点简述: 1.2.1退火低碳钢:将钢加热到Ac3或Ac1以上30-50℃,保温一段时间后,缓慢而均匀 的冷却称为退火。 特点:退火可以降低硬度,使材料便于切削加工,并使钢的晶粒细化,消除应力。1.2.2正火低碳钢:将钢加热到Ac3或Accm以上30-50℃,保温后在空气中冷却称为正 火。 特点:许多碳素钢和合金钢正火后,各项机械性能均较好,可以细化晶粒。 1.2.3淬火低碳钢:对于亚共析钢,即低碳钢和中碳钢加热到Ac3以上30-50℃,在此 温度下保持一段时间,使钢的组织全部变成奥氏体,然后快速冷却(水冷或油冷),使奥氏体来不及分解而形成马氏体组织,称为淬火。 特点:硬度大,适合对硬度有特殊要求的部件。 1.3试样规格尺寸:采用R4试样。 参数如下:

1.4公差要求 [试验原理] 1.原理简介:材料的机械性能指标是由拉伸破坏试验来确定的,由试验可知弹性阶段 卸荷后,试样变形立即消失,这种变形是弹性变形。当负荷增加到一定值时,测力度盘的指针停止转动或来回摆动,拉伸图上出现了锯齿平台,即荷载不增加的情况下,试样继续伸长,材料处在屈服阶段。此时可记录下屈服强度R 。当屈服到一定 eL 程度后,材料又重新具有了抵抗变形的能力,材料处在强化阶段。此阶段:强化后的材料就产生了残余应变,卸载后再重新加载,具有和原材料不同的性质,材料的强度提高了。但是断裂后的残余变形比原来降低了。这种常温下经塑性变形后,材料强度提高,塑性降低的现象称为冷作硬化。当荷载达到最大值Rm后,试样的某一部位截面开始急剧缩小致使载荷下降,至到断裂。 [试验设备与仪器] 1.1试验中需要测得: (1)连续测量加载过程中的载荷R和试样上某段的伸长量(Lu-Lo)数据。(有万能材料试验机给出应力-应变曲线) (2)两个个直接测量量:试样标距的长度 L o;直径 d。 1.2试样标距长度与直径精度:由于两者为直接测量量,工具为游标卡尺,最高精度为 0.02mm。 1.3检测工具:万能材料试验机 WDW-200D。载荷传感器,0.5级。引伸计,0.5级。 注1:应力值并非试验机直接给出,由载荷传感器直接测量施加的载荷值,进而转化成工程应力,0.5级,即精确至载荷传感器满量程的1/500。 注2:连续测试试样上某段的伸长量由引伸计完成,0.5级,即至引伸计满量程的1/50。

材料在拉伸与压缩时的力学性能

§8-4 材料在拉伸与压缩时的力学性能 一、材料力学性能的概念 结构构件或机械零件总是由某一种材料制作的。例如,土木工程结构中常用混凝土、砖石、钢材或木材作为构件材料;机械设备常用金属(通常是钢)作为一个零件的材料。之所以选择某种特定的材料,一个重要的原因是,这种材料的力学性能能够满足工程实际的需要。当然,经济性和其他方面的功能性也是选择材料的重要依据。 材料的力学性能又称材料的机械性能,属于材料物理性能的一个重要部分,是材料在力(或应力)的作用下所表现出来的变形与破坏方面的性质,具体包括弹性变形、塑性变形、蠕变、断裂、疲劳、硬度等一系列的性能。 材料的力学性能是由材料内部的微观结构决定的。研究材料内部的微观结构与材料的力学性能之间的关系,这属于材料学的研究范畴,材料力学一般不作研究。但是,材料的某些力学性能指标,却是材料力学讨论强度、刚度和稳定性问题的起点,因此,有必要理解这些指标的含义和了解其获取方法。 材料力学中最为常用的材料力学性能指标包括:①强度指标——屈服极限和强度极限;②弹性常数——弹性模量、切变模量和泊松比。另有断裂韧度及疲劳极限等指标将在以后作出解释。 二、低碳钢的拉伸试验(GB/T 228-2002) 由于金属材料在各类工程中较为常用,低碳钢作为一种常用金属材料又可以在其关于拉伸的力学性能测试中很好的展示屈服极限、强度极限、弹性模量等力学性能指标的概念和获取方法,以下将按国家标准《GB/T 228-2002 金属材料室温拉伸试验方法》中规定的程序,简要描述低碳钢(Q235A级碳素结构钢,参见国家标准《GB/T 700-2006 碳素结构钢》)的拉伸试验过程及其主要结果。

材 料 力 学 性 能 实 验 报 告.

材料 学性能实院系:材料学院姓名:王丽朦学号:200767027 验报力告 实验目的: 通过拉伸试验掌握测量屈服强度,断裂强度,试样伸长率,界面收缩率的方法;通过缺口拉伸试验来测试缺口对工件性能的相关影响; 通过冲击试验来测量材料的冲击韧性; 综合各项试验结果,来分析工件的各项性能; 通过本实验来验证材料力学性能课程中的相关结论,同时巩固知识点,进一步深刻理解相关知识; 实验原理: 1)屈服强度 金属材料拉伸试验时产生的屈服现象是其开始产生宏观的塑性变形的一种标志。弹性变形阶段向塑性变形阶段的过渡,表现在试验过程中的现象为,外力不增加即保持恒定试样仍能继续伸长,或外力增加到某一数值是突然下降,随后,在外力不增加或上下波动情况下,试样继续伸长变形,这便是屈服现象。呈现屈服现象的金属材料拉伸时,试样在外力不增加仍能继续伸长时的应力称为屈服点,记作σs; 屈服现象与三个因素有关:(1)材料变形前可动位错密度很小或虽有大量位错但被钉扎住,如钢中的位错为杂质原子或第二相质点所钉扎;(2)随塑性变形发生,位错快速增殖;(3)位错运动速率与外加应力有强烈的依存关系。影响屈服强度的因素有很多,大致可分为内因和外因。 内因包括:金属本性及晶格类型的影响;晶界大小和亚结构的影响;还有溶质元素和第二相的影响等等。通过对内因的分析可表征,金属微量塑性变形抗力的屈服强度是一个对成分、组织极为敏感的力学性能指标,受许多内在因素的影响,改变合金成分或热处理工艺都可使屈服强度产生明显变化。 外因包括:温度、应变速率和应力状态等等。总之,金属材料的屈服强度即受各种内在因素的影响,又因外在条件不同而变化,因而可以根据人们的要求予以改变,这在机件设计、选材、拟订加工工艺和使用时都必须考虑到。 2)缺口效应 由于缺口的存在,在静载荷作用下,缺口截面上的应力状态将发生变化,产生所谓的“缺口效应”,从而影响金属材料的力学性能。 缺口的第一个效应是引起应力集中,并改变了缺口前方的应力状态,使缺口试样或机件所受的应力由原来的单向应力状态改变为两向或三向应力状态,也就是出现了σx(平面应力状态)或σy与σz(平面应变状态),这要视板厚或直径而定。

材料力学性能实验报告

大连理工大学实验报告 学院(系):材料科学与工程学院专业:材料成型及控制工程班级:材0701姓名:学号:组:___ 指导教师签字:成绩: 实验一金属拉伸实验 Metal Tensile Test 一、实验目的Experiment Objective 1、掌握金属拉伸性能指标屈服点σS,抗拉强度σb,延伸率δ和断面收缩率 φ的测定方法。 2、掌握金属材料屈服强度σ0.2的测定方法。 3、了解碳钢拉伸曲线的含碳量与其强度、塑性间的关系。 4、简单了解万能实验拉伸机的构造及使用方法。 二、实验概述Experiment Summary 金属拉伸实验是检验金属材料力学性能普遍采用的极为重要的方法之一,是用来检测金属材料的强度和塑性指标的。此种方法就是将具有一定尺寸和形状的金属光滑试样夹持在拉力实验机上,温度、应力状态和加载速率确定的条件下,对试样逐渐施加拉伸载荷,直至把试样拉断为止。通过拉伸实验可以解释金属材料在静载荷作用下常见的三种失效形式,即过量弹性变形,塑性变形和断裂。在实验过程中,试样发生屈服和条件屈服时,以及试样所能承受的最大载荷除以试样的原始横截面积,求的该材料的屈服点σS,屈服强度σ0.2和强度极限σb。用试样断后的标距增长量及断处横截面积的缩减量,分别除以试样的原始标距长度,及试样的原始横截面积,求得该材料的延伸率δ和断面收缩率φ。 三、实验用设备The Equipment of Experiment 拉力实验的主要设备为拉力实验机和测量试样尺寸用的游标卡尺,拉力

实验机主要有机械式和液压式两种,该实验所用设备原东德WPM—30T液压式万能材料实验机。液压式万能实验机是最常用的一种实验机。它不仅能作拉伸试验,而且可进行压缩、剪切及弯曲实验。 (一)加载部分The Part of Applied load 这是对试样施加载荷的机构,它利用一定的动力和传动装置迫使试样产生变形,使试样受到力或能量的作用。其加载方式是液压式的。在机座上装有两根立柱,其上端有大横梁和工作油缸。油缸中的工作活塞支持着小横梁。小横梁和拉杆、工作台组成工作框架,随工作活塞生降。工作台上方装有承压板和弯曲支架,其下方为钳口座,内装夹持拉伸试样用的上夹头。下夹头安装在下钳口座中,下钳口座固定在升降丝杆上。 当电动机带动油泵工作时,通过送油阀手轮打开送油阀,油液便从油箱经油管和进入工作油缸,从而推动活塞连同工作框架一起上升。于是在工作台与大横梁之间就可进行压缩、弯曲等实验,在工作台与下夹头之间就进行拉伸实验。实验完毕后,关闭送油阀、旋转手轮打开回油阀,则工作油缸中的油液便经油管泄回油箱,工作台下降到原始位置。 (二)测力部分The Part of Measuring Force 加载时,油缸中的油液推动工作活塞的力与试样所承受的力随时处于平衡状态。如果用油管和将工作油缸和测力油缸连同,此油压便推动测力活塞,通过连杆框架使摆锤绕支点转动而抬起。同时,摆锤上方的推板便推动水平齿杆,使齿轮带动指针旋转。指针旋转的角度与油压亦即与试样所承受的载荷成正比,因此在测力度盘上便可读出试样受力的量值。 四、试样Sample 拉伸试样,通常加工成圆型或矩形截面试样,其平行长度L0等于5d或10d (前者为长试样,后者为短试样),本实验用短试样,即L0=5d。本实验所用的试样形状尺寸如图1—1所示。 图1-1圆柱形拉伸试样及尺寸

金属材料的力学性能

第1章工程材料 1.1 金属材料的力学性能 金属材料的性能包括使用性能和工艺性能。使用性能是指金属材料在使用过程中应具备的性能,它包括力学性能(强度、塑性、硬度、冲击韧性、疲劳强度等)、物理性能(密度、熔点、导热性、导电性等)和化学性能(耐蚀性、抗氧化性等)。工艺性能是金属材料从冶炼到成品的生产过程中,适应各种加工工艺(如:铸造、冷热压力加工、焊接、切削加工、热处理等)应具备的性能。 金属材料的力学性能是指金属材料在载荷作用时所表现的性能。 1.1.1 强度 金属材料的强度、塑性一般可以通过金属拉伸试验来测定。 1.拉伸试样 图1.1.1拉伸试样与拉伸曲线 2.拉伸曲线 拉伸曲线反映了材料在拉伸过程中的弹性变形、塑性变形和直到拉断时的力 F时,拉伸曲线Op为一直线,即试样的伸长量与载荷学特性。当载荷不超过 p 成正比地增加,如果卸除载荷,试样立即恢复到原来的尺寸,即试样处于弹性变形阶段。载荷在Fp-Fe间,试样的伸长量与载荷已不再成正比关系,但若卸除载荷,试样仍然恢复到原来的尺寸,故仍处于弹性变形阶段。当载荷超过Fe后,试样将进一步伸长,但此时若卸除载荷,弹性变形消失,而有一部分变形当载荷增加到Fs时,试样开始明显的塑性变形,在拉伸曲线上出现了水平的或锯齿形的线段,这种现象称为屈服。当载荷继续增加到某一最大值Fb时,试样的局部截面缩小,产生了颈缩现象。由于试样局部截面的逐渐减少,故载荷也逐渐降低,试样就被拉断。 3.强度 强度是指金属材料在载荷作用下,抵抗塑性变形和断裂的能力。

(1) 弹性极限 金属材料在载荷作用下产生弹性变形时所能承受的最大应力称为弹性极限,用符号σe 表示: (2) 屈服强度金属材料开始明显塑性变形时的最低应力称为屈服强度 在拉伸试验中不出现明显的屈服现象,无法确定其屈服点。所以国标中规定,以试样塑性变形量为试样标距长度的0.2%时,材料 承受的应力称为“条件屈服强度”,并以符号 σ0.2 表示。 1.1.2 塑性 金属材料在载荷作用下,产生塑性变形而不破坏的能力称为塑性。常用的塑性指标有伸长率δ 和断面收缩率ψ。 1.伸长率 试样拉断后,标距长度的增加量与原标距长度的百分比称为伸长率,用δ表示: 2.断面收缩率 试样拉断后,标距横截面积的缩减量与原横截面积的百分比称为断面收缩率,,用ψ表示: 1.1.3 硬度

材料在拉伸与压缩时的力学性能

第3讲教学方案——材料在拉伸与压缩时的力学性能许用应力与强度条件

§2-3 材料在拉伸与压缩时的力学性能 材料的力学性能:也称机械性能。通过试验揭示材料在受力过程中所表现出的与试件几何尺寸无关的材料本身特性。如变形特性,破坏特性等。研究材料的力学性能的目的是确定在变形和破坏情况下的一些重要性能指标,以作为选用材料,计算材料强度、刚度的依据。因此材料力学试验是材料力学课程重要的组成部分。 此处介绍用常温静载试验来测定材料的力学性能。 1. 试件和设备 标准试件:圆截面试件,如图2-14:标距l 与直径d 的比例分为,d l 10=,d l 5=; 板试件(矩形截面):标距l 与横截面面积A 的比例分为,A l 3.11=,A l 65.5=; 试验设备主要是拉力机或全能机及相关的测量、记录仪器。 详细介绍见材料力学试验部分。国家标准《金属拉伸试验方法》(如GB228-87)详细规定了实验 方法和各项要求。 2. 低碳钢拉伸时的力学性能 低碳钢是指含碳量在0.3%以下的碳素钢,如A 3钢、16Mn 钢。 1)拉伸图(P —ΔL ),如图2-15所示。 弹性阶段(oa ) 屈服(流动)阶段(bc ) 强化阶段(ce )由于P —ΔL 曲线与试样的尺寸有关,为了消除试件尺寸的影响,可采用应力应变曲线,即εσ-曲线来代替P —ΔL 曲线。进而试件内部出现裂纹,名义应力σ下跌,至f 点试件断裂。 对低碳钢来说,s σ,b σ是衡量材料强度的重要指标。 2)εσ-曲线图,如图2-16所示,其各特征点的含义为: oa 段:在拉伸(或压缩)的初始阶段应力σ与应变ε为直线关系直至a 点,此时a 点所对应的

金属材料的力学性能及其测试方法

目录 摘要 (1) 1引言 (1) 2金属材料的力学性能简介 (2) 2.1 强度 (2) 2.2 塑性 (2) 2.3 硬度 (2) 2.4 冲击韧性 (3) 2.5 疲劳强度 (3) 3金属材料力学性能测试方法 (3) 3.1拉伸试验 (3) 3.2压缩试验 (6) 3.3扭转试验 (8) 3.4硬度试验 (11) 3.5冲击韧度试验 (16) 3.6疲劳试验 (19) 4常用的仪器设备简介 (20) 4.1万能试验机 (20) 4.2扭转试验机 (23) 4.3摆锤式冲击试验机 (28) 5金属材料力学性能测试方法的发展趋势 (30) 参考文献 (30)

金属材料的力学性能及其测试方法 摘要:金属的力学性能反映了金属材料在各种形式外力作用下抵抗变形或破坏的某些能力,它与材料的失效形式息息相关。本文主要解释了金属材料各项力学性能的概念,介绍了几个常见的测试金属材料力学性能的试验以及相关的仪器设备,最后阐述了金属材料力学性能测试方法的发展趋势。 关键词:金属材料,力学性能,测试方法,仪器设备,发展趋势 Test Methods for The Mechanical Properties of Metal Material Abstract:The mechanical properties of metal material which reflect some abilities of deformation and fracture resistance under various external forces are closely linked with failure forms. This paper mainly introduces some concepts of mechanical properties of metal material, common experiments testing mechanical properties of metal material and apparatuses used. The trend of development of test methods for mechanical properties of metal material is also discussed. Keywords:metal material,mechanical properties,test methods,apparatuses,development trend 1引言 材料作为有用的物质,就在于它本身所具有的某种性能,所有零部件在运行过程中以及产品在使用过程中,都在某种程度上承受着力或能量、温度以及接触介质等的作用,选用材料的主要依据是它的使用性能、工艺性能和经济性,其中使用性能是首先需要满足的,特别是针对性的材料力学性能往往是材料设计和使用所追求的主要目标。材料性能测试与组织表征的目的就是要了解和获知材料的成分、组织结构、性能以及它们之间的关系。而人们要有效地使用材料,首先必须要了解材料的力学性能以及影响材料力学性能的各种因素。因此,材料力学性能的测试是所有测试项目中最重要和最主要的内容之一。 在人类发展的历史长河过程中,人们已经建立了许多反映材料表面的和内在的各种关于力学、物理等相关材料性能的测试和分析技术,近现代科学的发展已使材料性能测试分析从经验发展并建立在现代物理理论和试验的基础之上,并且

金属材料力学性能

金属材料力学性能文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

常见的金属材料力学性能 一. 金属材料相关概念 任何机械零件或工具,在使用过程中,往往要受到各种形式的外力作用。这就要求金属材料必须具有一种承受机械载荷而不超过许可变形或不被破坏的能力;这种能力就是金属材料的力学性能。诸如金属材料的强度、刚度、硬度、塑性和韧性等特征就是用来衡量金属材料在外力下表现出来的力学性能的指标。 强度 强度是指金属材料在静载荷作用下抵抗变形和断裂的能力。一般用单位面 积所承受的作用力表示,符号为σ,单位为MPa。 工程中常用的强度指标有屈服强度和抗拉强度。屈服强度是指金属材料在外力作用下,产生屈服现象时的应力,或开始出现塑性变形时的最低应力值,用σs表示。抗拉强度是指金属材料在拉力作用下,被拉断前所承受的最大应力值,用σb表示。 对于大多数机械零件,工作时不允许产生塑性变形,所以屈服强度是零件强度设计的依据;对于因断裂而失效的零件,则用抗拉强度作为其设计的依据。 刚度 刚度是指金属材料在外力载荷作用下抵抗弹性变形的能力。对于机械零件要求较高的尺寸稳定性时,需要考虑刚度指标。 硬度 硬度是指材料表面抵抗比它更硬的物体压入的能力。

几种常用金属材料力学性能一览表 注:1.上表中材料的强度数值仅供参考,在不同的热处理工艺及环境下其对应的强度值不同。 二.材料的失效与许用应力 通常将材料的强度极限与屈服极限统称为材料的极限应力,用σu 表示。对于脆性材料强度极限为其唯一强度指标;对于塑性材料,其屈服应力小于强度极限,通常以屈服应力作为极限应力。 为了机械零件使用的安全性,对于机械构件要有足够的强度储备。因此,实际是使用的最大应力值必须小于材料的极限应力。最大使用应力称为许用应力,用[σ]表示。许用应力与极限应力的关系如下: [σ]=σu n , σu ={σs σb 式中,n 为大于1的因数,称为安全因数。对于塑性材料n 为,σu=σs ;对于脆性材料n 为,σu=σb 。 强度条件 σmax =(F A )max ≤[σ] 式中,F ,机械零件所承受的最大载荷作用力,单位N ;

材料力学性能测试实验报告

材料力学性能测试实验 报告 标准化管理部编码-[99968T-6889628-J68568-1689N]

材料基本力学性能试验—拉伸和弯曲一、实验原理 拉伸实验原理 拉伸试验是夹持均匀横截面样品两端,用拉伸力将试样沿轴向拉伸,一般拉 至断裂为止,通过记录的力——位移曲线测定材料的基本拉伸力学性能。 对于均匀横截面样品的拉伸过程,如图 1 所示, 图 1 金属试样拉伸示意图 则样品中的应力为 其中A 为样品横截面的面积。应变定义为 其中△l 是试样拉伸变形的长度。 典型的金属拉伸实验曲线见图 2 所示。 图3 金属拉伸的四个阶段 典型的金属拉伸曲线分为四个阶段,分别如图 3(a)-(d)所示。直线部分的斜率E 就是杨氏模量、σs 点是屈服点。金属拉伸达到屈服点后,开始出现颈缩 现象,接着产生强化后最终断裂。 弯曲实验原理 可采用三点弯曲或四点弯曲方式对试样施加弯曲力,一般直至断裂,通过实 验结果测定材料弯曲力学性能。为方便分析,样品的横截面一般为圆形或矩形。 三点弯曲的示意图如图 4 所示。 图4 三点弯曲试验示意图 据材料力学,弹性范围内三点弯曲情况下C 点的总挠度和力F 之间的关系是 其中I 为试样截面的惯性矩,E 为杨氏模量。 弯曲弹性模量的测定 将一定形状和尺寸的试样放置于弯曲装置上,施加横向力对样品进行弯曲, 对于矩形截面的试样,具体符号及弯曲示意如图 5 所示。 对试样施加相当于σpb0.01。 (或σrb0.01)的10%以下的预弯应力F。并记录此力和跨中点处的挠度,然后对试样连续施加弯曲力,直至相应于σpb0.01(或σrb0.01)的50%。记录弯曲力的增量DF 和相应挠度的增量Df ,则弯曲弹性模量为 对于矩形横截面试样,横截面的惯性矩I 为 其中b、h 分别是试样横截面的宽度和高度。 也可用自动方法连续记录弯曲力——挠度曲线至超过相应的σpb0.01(或σrb0.01)的弯曲力。宜使曲线弹性直线段与力轴的夹角不小于40o,弹性直线段的高度应超过力轴量程的3/5。在曲线图上确定最佳弹性直线段,读取该直线段的弯曲力增量和相应的挠度增量,见图 6 所示。然后利用式(4)计算弯曲弹性模量。 二、试样要求

金属材料力学性能实验报告

金属材料力学性能实验报告 姓名:班级:学号:成绩: 实验名称实验一金属材料静拉伸试验 实验设备1)电子拉伸材料试验机一台,型号HY-10080 2)位移传感器一个; 3)刻线机一台; 4)游标卡尺一把; 5)铝合金和20#钢。 试样示意图 图1 圆柱形拉伸标准试样示意图 试样宏观断口示意图 图2 铝合金试样常温拉伸断裂图和断口图 (和试样中轴线大约成45°角的纤维状断口,几乎没有颈缩,可以知道为切应力达到极限,发生韧性断裂)

图3 正火态20#钢常温拉伸断裂图和断口图 (可以明显看出,试样在拉断之后在断口附近产生颈缩。断口处可以看出有三个区域:1.试样中心的纤维区,表面有较大的起伏,有较大的塑性变形;2.放射区,表面较光亮平坦,有较细的放射状条纹;3.剪切唇,轴线成45°角左右的倾斜断口) 原始数据记录 表1 正火态20#钢试样的初始直径测量数据(单位:mm ) 左 中 右 平均值 9.90 10.00 10.00 9.97 9.92 10.00 10.00 10.00 10.00 9.92 左 中 右 平均值 8.70 8.72 8.68 8.69 8.68 8.70 8.70 8.64 8.72 8.70 表2 时效铝合金试样的初始直径测量数据(单位:mm ) 两试样的初始标距为050 L mm 。 表3 铝合金拉断后标距测量数据记录(单位:mm ) AB BC AB+2BC 平均 12.32 23.16 58.64 58.79 24.02 17.46 58.94 测量20#钢拉断后的平均标距为u L =69.53 mm ,断口的直径平均值为u d =6.00 mm 。 测量得到铝合金拉断后的断面直径平均值为7.96mm 。

金属材料力学性能代 含义

金属材料力学性能代号含义 名称代号单位含义 抗拉强度σb MPa 或 N/mm^2材料试样受拉力时,在拉断前所承受的最大应力.抗压强度σbc MPa 或 N/mm^2材料试样受压力时,在压坏前所承受的最大应力.抗弯强度σbb MPa 或 N/mm^2材料试样受弯曲力时,在破坏前所承受的最大应力.抗剪强度τMPa 或 N/mm^2材料试样受剪力时,在剪断前所承受的最大剪应力. 抗扭强度τb MPa 或 N/mm^2材料试样受扭转力时,在扭断前所承受的最大剪应力 屈服点σs MPa 或 N/mm^2材料试样在拉伸过程中,负荷不增加或开始有所降低而变形继续发生的现象称为屈服. 屈服时的最小应力称为屈服点和屈服极限. 屈服强度σ0.2MPa 或 N/mm^2材料试样在拉伸过程中, 负荷不增加或开始有所降低而变形继续发生的现象称为屈服. 对某些屈服现象不明显的金属材料, 测定屈服点比较困难,为便于测量,通常按其产生永久变形量等于试样原长0.2%时的应力称为屈服度或条件屈服强度. 弹性极限σcσc 材料能保持弹性变形的最大应力. 真实弹性极限难以测定, 实际规定按永久变形为原长的0.005%时的应力值表示. 比例极限σp MPa 或 N/mm^2在弹性变形阶段, 材料所承受的和应变能保持正比的最大应力,称比例极限. σp与σc两数值很接近,一般常互相通用. 弹性模量E MPa 或 N/mm^2在比例极限的范围内, 应力与应变成正比时的比例常数,衡量材料刚度的指标. E=σ/ε ε——试样纵向线应变. 切变模量G MPa 或 N/mm^2在比例极限的范围内, 应力与应变成正比时的比例常数,衡量材料刚度的指标. G=τ/γ γ——试样切应变. 泊松比μ在弹性范围内, 试样横向线应变与纵向线应变的比值. μ=|ε/ε'| ε'= -με, ε'——试样横向线应变.

金属材料力学性能

常见的金属材料力学性能 一. 金属材料相关概念 任何机械零件或工具,在使用过程中,往往要受到各种形式的外力作用。这就要求金属材料必须具有一种承受机械载荷而不超过许可变形或不被破坏的能力;这种能力就是金属材料的力学性能。诸如金属材料的强度、刚度、硬度、塑性和韧性等特征就是用来衡量金属材料在外力下表现出来的力学性能的指标。 1.1 强度 强度是指金属材料在静载荷作用下抵抗变形和断裂的能力。一般σ,单位为MPa用单位面积所承受的作用力表示,符号为。 工程中常用的强度指标有屈服强度和抗拉强度。屈服强度是指金属材料在外力作用下,产生屈服现象时的应力,或开始出现塑性变形σs表示。抗拉强度是指金属材料在拉力作用时的最低应力值,用σb表示。下,被拉断前所承受的最大应力值,用对于大多数机械零件,工作时不允许产生塑性变形,所以屈服强度是零件强度设计的依据;对于因断裂而失效的零件,则用抗拉强度作为其设计的依据。 1.2 刚度 刚度是指金属材料在外力载荷作用下抵抗弹性变形的能力。对于机械零件要求较高的尺寸稳定性时,需要考虑刚度指标。 1.3 硬度

硬度是指材料表面抵抗比它更硬的物体压入的能力。 . . . . 几种常用金属材料力学性能一览表 材料牌b/MPa 抗拉强屈服强s/MPa 550-70045350-550 685-985490-685SKD61 650-970Cr12MoV 450-650 550-860350-5502S45C/S50C560-750350-560 Unimax 580-885 350-580 SKH51 680-960 485-680 注:1.上表中材料的强度数值仅供参考,在不同的热处理工艺及环境下其对应的强度值不同。 二.材料的失效与许用应力 通常将材料的强度极限与屈服极限统称为材料的极限应力,用σu表示。对于脆性材料强度极限为其唯一强度指标;对于塑性材料,其屈服应力小于强度极限,通常以屈服应力作为极限应力。 为了机械零件使用的安全性,对于机械构件要有足够的强度储备。因

材料在拉伸与压缩时的力学性能-3

§2-3 材料在拉伸与压缩时的力学性能 材料的力学性能:也称机械性能。通过试验揭示材料在受力过程中所表现出的与试件几何尺寸无关的材料本身特性。如变形特性,破坏特性等。研究材料的力学性能的目的是确定在变形和破坏情况下的一些重要性能指标,以作为选用材料,计算材料强度、刚度的依据。因此材料力学试验是材料力学课程重要的组成部分。 此处介绍用常温静载试验来测定材料的力学性能。 1. 试件和设备 标准试件:圆截面试件,如图2-14:标距l 与直径的比例分为,d d l 10=,; d l 5=板试件(矩形截面):标距l 与横截面面积的比例分为,A A l 3.11=,A l 65.5=; 试验设备主要是拉力机或全能机及相关的测量、记录仪器。 详细介绍见材料力学试验部分。国家标准《金属拉伸试验方法》(如GB228-87)详细规定了实验 方法和各项要求。 2. 低碳钢拉伸时的力学性能 低碳钢是指含碳量在0.3%以下的碳素钢, 如A 3钢、16Mn 钢。 1)拉伸图(P —ΔL ),如图2-15所示。 弹性阶段(oa ) 屈服(流动)阶段(bc ) 强化阶段(ce )由于P —ΔL 曲线与试样 的尺寸有关,为了消除试件尺寸的影响,可采用 应力应变曲线,即εσ?曲线来代替P —ΔL 曲 线。进而试件内部出现裂纹,名义应力下跌, 至f 点试件断裂。 σ对低碳钢来说,s σ,b σ是衡量材料强度的重要指标。 2)εσ?曲线图,如图2-16所示,其各特征点的含义为: oa 段:在拉伸(或压缩)的初始阶段应力σ与应变ε为直线关系直至a 点,此时a 点所对应的

应力值称为比例极限,用P σ表示。它是应力与应变成正比例的最大极限。当P σσ≤ 则有 εσE = (2-5) 即胡克定律,它表示应力与应变成正比,即有 αε σtan == E E 为弹性模量,单位与σ相同。 当应力超过比例极限增加到b 点时, 关系偏离直线,此时若将应力卸至 零,则应变随之消失(一旦应力超过b 点,卸载后,有一部分应变不能消除),此b 点的应力定义为弹性极限ε?σe σ。 e σ是材料只出现弹性变形的极限值。 bc 段:应力超过弹性极限后继续加载, 会出现一种现象,即应力增加很少或不增 加,应变会很快增加,这种现象叫屈服。开始发生屈服的点所对应的应力叫屈服极限s σ。又称屈服强度。在屈服阶段应力不变而应变不断增加,材料似乎失去了抵抗变形的能力,因此产生了显著的塑性变形(此时若卸载,应变不会完全消失,而存在残余变形)。所以s σ是衡量材料强度的重要指标。 表面磨光的低碳钢试样屈服时,表面将出现与轴线成45°倾角的条纹,这是由于材料内部晶格相对滑移形成的,称为滑移线,如图2-17所示。 ce 段:越过屈服阶段后,如要让试 件继续变形,必须继续加载,材料似乎 强化了,ce 段即强化阶段。应变强化阶 段的最高点(e 点) 所对应的应力称为强度极限b σ。 它表示材料所能承受的最大应力。过e 点后,即应力达到强度极限后,试件局部发生剧烈收缩的现象,称为颈缩,如图2-18所示。 3)延伸率和截面收缩率 为度量材料塑性变形的能力,定义 延伸率为

材料力学性能实验(2个)讲解

《材料力学性能》实验教学指导书 实验总学时:4 实验项目:1.准静态拉伸 2. 不同材料的冲击韧性 材料科学与工程学院实验中心 工程材料及机制基础实验室

实验一 准静态拉伸 一、实验目的 1.观察低碳钢(塑性材料)与铸铁(脆性材料)在准静态拉伸过程中的各种现象(包括屈服、强化和颈缩等现象),并绘制拉伸图。 2.测定低碳钢的屈服极限σs ,强度极限σb ,断后延伸率δ和断面收缩率ψ。 3.测定铸铁的强度极限σb 。 4.比较低碳钢和铸铁的力学性能的特点及断口形貌。 二、概述 静载拉伸试验是最基本的、应用最广的材料力学性能试验。一方面,由静载拉伸试验测定的力学性能指标,可以作为工程设计、评定材料和优选工艺的依据,具有重要的工程实际意义。另一方面,静载拉伸试验可以揭示材料的基本力学行为规律,也是研究材料力学性能的基本试验方法。 静载拉伸试验,通常是在室温和轴向加载条件下进行的,其特点是试验机加载轴线与试样轴线重合,载荷缓慢施加。 在材料试验机上进行静拉伸试验,试样在负荷平稳增加下发生变形直至断裂,可得出一系列的强度指标(屈服强度s σ和抗拉强度b σ)和塑性指标(伸长率δ和断面收缩率ψ)。通过试验机自动绘出试样在拉伸过程中的伸长和负荷之间的关系曲线,即P —Δl 曲线,习惯上称此曲线为试样的拉伸图。图1即为低碳钢的拉伸图。 试样拉伸过程中,开始试样伸长随载荷成比例地增加,保持直线关系。当载荷增加到一定值时,拉伸图上出现平台或锯齿状。这种在载荷不增加或减小的情况下,试样还继续伸长的现象叫屈服,屈服阶段的最小载荷是屈服点载荷s P ,s P 除以试样原始横截面面积Ao 即得到屈服极限s σ: s s A P = σ 试样屈服后,要使其继续发生变形,则要克服不断增长的抗力,这是由于金属材料在塑性变形过程中不断发生的强化。这种随着塑性变形增大,变形抗力不断增加的现象叫做形变强化或加工硬化。由于形变强化的作用,这一阶段的变形主要是均匀塑性变形和弹性变形。当载荷达到最大值b P 后,试样的某一部位截面积开始急剧缩小,出现“缩颈”现象,此后的变形主要集中在缩颈附近,直至达到 P b 试样拉断。P b 除以试样原始横截面面积A 0即得到

相关主题
文本预览
相关文档 最新文档