当前位置:文档之家› 白血病预后相关基因检测

白血病预后相关基因检测

白血病预后相关基因检测
白血病预后相关基因检测

白血病预后相关基因检测

【CN109593861A】不同位点白血病MEF2DBCL9融合基因寡核苷酸的检测方法及检测试剂盒【

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910118948.X (22)申请日 2019.02.18 (71)申请人 南方医科大学 地址 510515 广东省广州市白云区沙太南 路1023号-1063号 (72)发明人 李玉华 胡宇行 常宁 贺艳杰  (74)专利代理机构 北京市诚辉律师事务所 11430 代理人 范盈 (51)Int.Cl. C12Q 1/6886(2018.01) C12N 15/11(2006.01) (54)发明名称 不同位点白血病MEF2D-BCL9融合基因寡核 苷酸的检测方法及检测试剂盒 (57)摘要 本发明是一种用于检测不同位点白血病 MEF2D -BCL9融合基因检测方法及试剂盒,包括检 测体系PCR反应液、引物对、探针、阳性对照品和 阴性对照品。利用实时荧光PCR中的Taqman探针 技术检测患者体内MEF2D -BCL9融合基因的表达 情况以及对高危人群进行较为准确的筛查和鉴 定,具有特异性好,灵敏度高,方法简便高效的特 点。 权利要求书2页 说明书7页序列表3页 附图2页CN 109593861 A 2019.04.09 C N 109593861 A

权 利 要 求 书1/2页CN 109593861 A 1.一种用于不同位点MEF2D-BCL9融合基因的检验试剂盒,所述检验试剂盒中包括检测用引物、探针,其特征在于: 检测目的基因用上下游引物分别为:202-968-F、202-968-R、221-968-F、221-968-R、202-1055-F、202-1055-R、221-1055-F、221-1055-R,探针为202-968-Probe、221-968-Probe、202-1055-Probe、221-1055-Probe,检测内参基因ABL1用引物为ABL1-F、ABL1-R,探针为ABL1-Probe;其中, 序列信息 202-968-F:GCAGCCAGCACTACAGAGGA SEQ ID No.1 202-968-R:CTCTGGAGGCATGGTATAAGGTGT SEQ ID No.2 202-968-Probe:FAM-CCCCACCTCCTACAGCCAGCC-BHQ1 SEQ ID No.3 221-968-F:GTGACCTGAACAGTGCTAACGGA SEQ ID No.4 221-968-R:CTGGAGGCATGGTATAAGGTGT SEQ ID No.5 221-968-Probe:FAM-CCTGCCCCAGCCCTGTTGGTG-BHQ1 SEQ ID No.6 202-1055-F:CAGCCAGCACTACAGAGGAACA SEQ ID No.7 202-1055-R:CTGAGGGTTGGCATCGGAAC SEQ ID No.8 202-1055-Probe:FAM-CTGCCCCAGCGGCCAGCTA-BHQ1 SEQ ID No.9 221-1055-F:GTGACCTGAACAGTGCTAACGGA SEQ ID No.10 221-1055-R:ACCTGAAATTCGAGGATTCTGTGT SEQ ID No.11 221-1055-Probe:FAM-CTGCCCCAGCCCTGTTGGAA-BHQ1 SEQ ID No.12 ABL1-F:GTGAGTGACATAGCCTCATGTTC SEQ ID No.13 ABL1-R:GCAGGCGTGCTCGTGAAAT SEQ ID No.14 ABL1-Probe:Quasar670-TCAGGGAGGGTTAGGAAAACCAC-BHQ-plus SEQ ID No.15。 2.根据权利要求1所述的检验试剂盒,所述检验试剂盒中还包括阴性对照和阳性对照,所述阳性对照品为含有MEF2D-BCL9 Variant 1,MEF2D-BCL9 Variant 2,MEF2D-BCL9 Variant 3,MEF2D-BCL9 Variant 4;所述阴性对照品为去离子水。 3.一种用于不同位点MEF2D-BCL9融合基因的引物和探针组合物,所述的引物和探针组合物包括:202-968-F、202-968-R、221-968-F、221-968-R、202-1055-F、202-1055-R、221-1055-F、221-1055-R,探针为202-968-Probe、221-968-Probe、202-1055-Probe、221-1055-Probe,检测内参基因ABL1用引物为ABL1-F、ABL1-R,探针为ABL1-Probe;其中,序列信息 202-968-F:GCAGCCAGCACTACAGAGGA SEQ ID No.1 202-968-R:CTCTGGAGGCATGGTATAAGGTGT SEQ ID No.2 202-968-Probe:FAM-CCCCACCTCCTACAGCCAGCC-BHQ1 SEQ ID No.3 221-968-F:GTGACCTGAACAGTGCTAACGGA SEQ ID No.4 221-968-R:CTGGAGGCATGGTATAAGGTGT SEQ ID No.5 221-968-Probe:FAM-CCTGCCCCAGCCCTGTTGGTG-BHQ1 SEQ ID No.6 202-1055-F:CAGCCAGCACTACAGAGGAACA SEQ ID No.7 202-1055-R:CTGAGGGTTGGCATCGGAAC SEQ ID No.8 202-1055-Probe:FAM-CTGCCCCAGCGGCCAGCTA-BHQ1 SEQ ID No.9 2

白血病融合基因

白血病融合基因Last revision on 21 December 2020

bcr/abl融合基因 慢性粒细胞白血病(Chronic Myelogenous Leukemia,CML)是一种发生于造血干细胞的血液系统恶性克隆增生性疾病。在受累的细胞系中可找到Ph标记染色体或(和)bcr/abl基因重排。 基因结构 人abl基因位于9号染色体长臂,有1b、1a和2-11共12个外显子。转录始自1b或1a,形成的两种mRNA长度分别为7kb和6kb,合成的两种蛋白质分子量均约为145,前者定位于细胞膜,而后者主要在细胞核内。abl主要结构有N 端的肉瘤同源2(srchomology,SH2)、SH1。SH2结合磷酸化的酪氨酸残基,SH1具有酪氨酸激酶活性。近C端富含酸性氨基酸残基,可结合DNA。abl蛋白参与细胞周期调节。在G0期,abl-Rb蛋白复合物与DNA结合。在G1→S转变过程中,Rb被磷酸化,abl与之分离,并激活,使RNA聚合酶磷酸化,促进转录,细胞进入S期。 bcr基因位于22号染色体长臂,有23个外显子。蛋白产物分子量均为160。bcr蛋白第1-63个氨基酸是二聚体化结构,参与bcr蛋白多聚体的形成。bcr蛋白参与细胞周期调节,但详细过程还不十分明确。bcr基因断裂点集中在三个区域:主要(major bcr,M-bcr)、次要(minor bcr,m-bcr)和μ(μ-bcr)区域。abl基因断裂位于第1或第2内含子。因断裂点不一,bcr/abl融合基因及其mRNA和蛋白产物呈多样性。CML的bcr基因断裂点常位于M-bcr,主要是b2a2和b3a2,蛋白分子量为210kb。bcr基因在ALL中大约2/3为m-BCR位点。Ph1染色体和bcr/abl融合基因是CML的分子基础,并可作为区分典型CML 和非典型CML的诊断指标。

白血病融合基因检测综述

白血病融合基因检测综 述 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

白血病相关融合基因的检测及意义 白血病是造血系统的恶性克隆性疾病,由于造血干细胞受损,导致克隆中的白血病细胞失去进一步分化成熟的能力而停滞在细胞发育的不同阶段。白血病细胞具有自我更新增强、增殖失控、分化障碍、凋亡受阻等特点,患者会出现不同程度的贫血、出血、感染和浸润的临床症状,严重危害生命健康。近年来,随着细胞生物学和分子生物学技术的发展,人们已经认识到大部分的白血病中都存在着包括缺失、重复、易位等染色体畸变,导致原癌基因或抑癌基因结构变异,原癌基因激活或抑癌基因失活,产生新的融合基因,编码融合蛋白。现有报道的染色体畸变已有五十种以上,累及更多数目的融合基因,这些异常已经逐渐成为不同类型白血病的分子生物学特异性标志。 白血病相关融合基因的种类多样,常见的融合基因有BCR-ABL、AML1-ETO、PML-RARα、E2A-PBX1、MLL-AF4、TEL-AML1、SIL-TAL1、DEK-CAN、CBFβ-MYH11等。 BCR(breakpoint cluster region)基因是BCR-ABL融合基因的组成部分,与费城染色体(Philadelphia Chromosome)的形成有关,具有两种转录异构体。正常的BCR基因编码产物的功能还尚未清楚,它编码的蛋白具有丝氨酸/苏氨酸激酶活性,是RAC1和CDC42的GTP酶激活蛋白。ABL1基因是编码细胞质和细胞核蛋白酪氨酸激酶的原癌基因,与细胞分化、细胞分裂、细胞粘附、应激反应等生命活动相关。活化的ABL1蛋白通过SH3结构域受到负调控,SH3结构域的缺失会导致ABL1基因转化为癌基因。CDC2介导的磷酸化能够调节ABL1酪氨酸激酶的DNA结合活化过程,表明ABL1可能在细胞周期中发挥作用。 Nowell及Hungerford于1960年发现在慢性粒细胞性白血病(CML)患者外周血中有一个比G组染色体还小的近端着丝粒染色体,由于首先在美国费城(Philadelphia)发现,故命名为费城染色体。1971年O`Riordon利用荧光显带法确认费城染色体是第22号染色体长臂缺失大段后剩余的部分。1973年Rowley 发现缺失下来的那部分通常易位到9号染色体长臂的末端,形成t(9;22) (q34;q11)。1982年Deklein等在费城染色体上首次发现了原来位于9号染色体长臂末端(9q34)的癌基因ABL1,证明费城染色体上有来自9号染色体长臂末端的片端,是22号染色体与9号染色体相互易位的产物。易位使9号染色体长臂(9q34)上的原癌基因ABL1和22号染色体(22q11)上的BCR基因重新组合成融合基因,因而称为BCR-ABL融合基因。 BCR-ABL融合基因编码的融合蛋白具有很强的酪氨酸激酶活性,改变细胞多种蛋白质酪氨酸磷酸化水平和细胞微丝机动蛋白的功能,扰乱细胞内正常的信号传导途径,使细胞失去了对周围环境的反应性,并抑制凋亡的发生,影响细胞周期调控,导致骨髓造血干细胞过度增殖。BCR-ABL融合基因在病人中常见有四种剪接体mRNA:编码P210融合蛋白的b2a2和b3a2,编码P190的e1a2,编码 P230的e19a2。其中b3a2和 b2a2主要存在于CML,ela2主要在急性淋巴细胞性白血病(ALL)中出现,而出现较少的e19a2根据2008年世界卫生组织(WHO)最新版的血液系统肿瘤分类标准,也应被诊断为CML。90%以上的CML患者血细胞中都发现有费城染色体的存在,主要为P210融合蛋白,因而费城染色体和BCR-ABL融合基因可以作为区分典型CML和非典型CML的诊断指标。同时在费城染色体阳性的ALL患者中,65%的成人和80%的儿童能够检测到P190融合蛋白阳性。由于BCR-ABL融合蛋白能够收到多种小分子化合物的抑制,临床上第一代针对BCR-ABL融

中国异基因造血干细胞移植治疗血液系统疾病专家共识(Ⅱ)——移植后白血病复发(完整版)

中国异基因造血干细胞移植治疗血液系统疾病专家共识(Ⅱ)——移 植后白血病复发(完整版) 白血病复发是异基因造血干细胞移植(allo-HSCT)失败的主要原因之一。国际骨髓移植登记组(CIBMTR)的资料显示,复发在非血缘和同胞相合移植后的死因中分别占33%和47%[1]。北京大学血液病研究所的资料显示,单倍型和同胞相合移植后的复发相关死亡率在总体人群中分别为15.6%和16.7%[2],在死因中分别占32%和42%。移植后一旦复发预后很差,目前治疗选择仍然有限;各移植中心在处理移植后复发方面各自进行了探索。本共识综合各移植中心的经验和临床研究,并参考国外文献,进行归纳总结,旨在对移植后白血病复发的诊断和处理原则进行推荐。 一、定义和分类 根据复发时肿瘤负荷分为血液学复发、细胞遗传学和(或)分子生物学复发;根据肿瘤细胞来源可分为供者型复发和受者型复发;从复发部位上可分为髓内复发、髓外复发和髓内伴髓外复发。 1.血液学复发: 指移植后完全缓解的患者外周血中又出现白血病细胞或骨髓中原始细胞≥5%或出现新的病态造血或髓外白血病细胞浸润。 2.细胞遗传学复发: 指移植后已达细胞遗传学完全缓解的患者又出现原有细胞遗传学异常,或性别染色体由完全供者型出现受者一定比例的嵌合(比例界值尚无统一标准,且不等同于白血病细胞的增加),尚未达到血液学复发的标准。

3.分子生物学复发: 是近年研究的热点,指应用流式细胞术(FCM)和(或)聚合酶链反应(PCR)等分子生物学方法检测到特异或非特异分子生物学标志异常或超过一定界值、尚未达到血液学复发的标准。参见以下微小残留病(MRD)判定标准。 二、MRD检测 (一)常用MRD检测方法 1.染色体: G显带、R显带和(或)荧光原位杂交(FISH)分析证明有白血病细胞或肿瘤细胞特异的染色体易位和融合基因存在,是检测MRD的标志技术。FISH 检测MRD的敏感度为10-2~10-3,检测结果阳性即表明患者体内有残留白血病细胞。 2.FCM : FCM检测的MRD为白血病相关免疫表型(LAIP),敏感度达10-4左右。FCM检测MRD在急性淋巴细胞白血病(ALL)尤其是B-ALL中的预测意义较急性髓系白血病(AML)敏感、特异,但移植后各监测时间点的意义、抗体的组合及界值等尚未达到标准化。多个研究在ALL中将<10-4定义为MRD阴性,提示复发率较低、预后良好[3]。 3.PCR技术: PCR技术检测的MRD包括特异分子生物学标志(TEL-AML1、BCR-ABL、AML-ETO、CBFβ-MYH11、NPM1等)和非特异标志(IgH/TCR 重排、WT1等),敏感性可达到10-5~10-6。 4.供受者嵌合状态的检测:

急性髓系白血病(AML)的治疗专家共识

第一部分急性髓系白血病(AML)的治疗 一、年龄<60岁,无前驱血液病史患者的治疗 (一)诱导治疗阶段 1.方案:建议采用标准诱导缓解方案,①含Ara-C、蒽环类药物和蒽醌类药物的方案(即DA 3+7方案);②HA(HHT)③以HA+蒽环类药物,如 HAD(DNR)、HAA(阿克拉霉素)等 (1)标准剂量:Ara-C 100-200mg/㎡·d×7d+蒽环类或蒽醌类3d,或+HHT 7(或3)d,可能需要2个疗程 (2)含中大剂量Ara-C:中:1.0-2.0g/㎡每12h1次×6次,+蒽环类和(或)蒽醌类或HHT。DNR 40-45 mg/㎡·d×3d,HHT 2.0-2.5mg/㎡·d×7d(或4mg/㎡·d×3d,米托蒽醌6-10mg/㎡·d×3d 2.诱导治疗过程中方案调整: (1)标准剂量治疗后: ①化疗后第7天查骨髓象: 如果残留白血病细胞明显(≥10%),可考虑双诱导治疗:a.标准剂量Ara-C +蒽环类;b.中剂量Ara-C为基础的联合方案(如FLAG方案:氟达拉滨+Ara-C +G-CSF);c.小剂量(如CAG:G-CSF+Ara-C+阿克拉霉素);d .也可不治疗,单纯观察(尤其在骨髓增生低下)残留白血病细胞<10%且无增生低下可选标准剂量:Ara-C+蒽环类等继续化疗(可与第一个疗程不同);还可联合蒽醌类或HHT、吖啶类、鬼臼类 残留白血病细胞<10%且骨髓增生低下可不再化疗,等随象恢复,此时可给予G-CSF,建议用量:5ug/kg/d(或300ug/d) ②骨髓恢复期:21天复查骨髓象和血常规:a.CR,进入缓解后治疗;b.幼稚细胞比例下降不足60%,按诱导失败对待;c.未CR,但幼稚细胞比例下降超过60%可重复原方案1疗程;d.增生低下,残留白血病细胞<10%时等待骨髓象和血常规恢复;≥10%考虑下一步治疗(参考双诱导或按诱导治疗失败对待)

正常核型急性髓系白血病患者融合基因的检测

2009年4月第47卷第11期·论著· 急性髓系白血病(Acute myeloid leukemia,AM L)是一种以造血干/祖细胞获得性突变为特征的恶性克隆性疾病,大约55%的成人病例在诊断时出现非随机的克隆性染色体异常,儿童病例的检出率更高,但正常核型检出率在AM L中达到40%~47%[1]。染色体畸变能在转录水平干扰造血调控、影响髓系细胞分化,因此快速、简便地获得患者染色体遗传缺陷的信息是临床亟待解决的问题。本研究采用多重RT-PCR方法一次可同时检测29种基因重排,提高了隐匿性染色体易位的检出率,用于初诊时的筛选,对临床分型、预后判断及指导个体化治疗具有重要价值。 1材料与方法 1.1对象 选取2006年1月~2008年11月山西医科大学第二医院及山西省儿童医院血液科门诊或住院AM L初治患者60例,男30例,女30例,年龄1~70岁,中位年龄35岁。所有病例均经临床、形态学、免疫学和组化染色确诊,分别为M1、M2、M3、M4各12例,M5、M6各6例。所有病例均进行了染色体核型分析。 1.2方法 1.2.1试剂和仪器TRIzol试剂盒购自美国Gibco/BRL公司;AM V逆转录酶、RNAsin、TaqDNA聚合酶购自美国Promega公司。PCR扩增仪为美国Perkin-Elmer公司产品。 1.2.2细胞总RNA的提取和逆转录反应全部病例于初诊化疗开始前采取骨髓标本2~3mL,用淋巴细胞分离液提取单个核细胞,按Trizol一步法提取细胞总RNA,分光光度计测定A260值、A280值,以AM V逆转录酶系合成cDNA。引物序列参照文献[1]方法设计。逆转录广泛表达的转录因子(E2A)mRNA为内对照。1.2.3多重巢式RT-PCR两轮均平行设置8组含有混合引物的多重PCR,同时检测29种染色体易位和畸变所形成的86种剪接形式。每组检测的融合基因包括:第Ⅰ组inv(16)的CBF/M YH11;t(X;11)的M LL/AFX;t(6;11)的M LL/AF6;t(11;19) 正常核型急性髓系白血病患者融合基因的检测 赵瑾1*周永安1△苏丽萍1武坚锐2王恺1解菊芬1马莉1石磊3 (1.山西医科大学第二医院血液科;2.山西省儿童医院检验科;3.山西医科大学第二医院风湿科,太原030001) [摘要]目的探讨急性髓系白血病(AM L)患者染色体畸变所形成的易位相关融合基因的临床和实验的关系。方法采用多重巢式RT-PCR方法和染色体核型分析技术对60例AM L患者的融合基因进行分析。结果18例(30%)正常核型的AM L 患者分别检测出有PM L/RARα、AM L1/ETO、TLS/ERG、CBFβ/M YH11和M LL/AF9等5种融合基因的存在。结论多重巢式RT-PCR技术可用于白血病患者初诊时染色体畸变的筛选,可在核型正常的AM L患者中检出隐匿的染色体易位,对AM L 的诊断分型具有重要帮助,进一步指导临床个体化治疗。 [关键词]急性髓系白血病;融合基因;多重RT-PCR;正常核型 [中图分类号]R733.7[文献标识码]A[文章编号]1673-9701(2009)11-11-03 Det ect ion of Fusion Genes in Acut e Myeloid Leukemia Pat ient s wit h Nor mal Kar yot ypes ZHAO Jin1ZHOU Yongan1SU Liping1WU Jianrui2WANG Kai1XIE Jufen1MA Li1SHI Lei3 1.Department of Haematology,the Second Teaching Hospital of Shanxi M edical University; 2.Children's Hospital of Shanxi; 3.Department of Rheumatism,the Second Teaching Hospital of Shanxi M edical University,Taiyuan030001 [Abst r act]Object ive To investigate the fusion genes derived from chromosome structural aberrations in patients with acute myelocytic leukemia determined by multiplex RT-PCR and explore its potential clinical significance in diagnosis,treatment and prognosis evaluation. Met hods Bone marrow samples from60patients were analyzed with a novel multiplex nested RT-PCR and examination for chromosome karyotype.Result s5types of fusion genes such as PM L/RARα,AM L1/ETO,CBFβ/M YH11,TLS/ERG,M LL/AF9were detected in18(30%)patients with normal karyotypes by multiplex RT-PCR.Conclusion M ultiplex RT-PCR technique can quickly screen chromosome structural aberrations in patients with newly diagnosed leukemia.It is useful in detection of fusion genes in acute myeloid leukemia(AM L)with normal karyotypes and it would refine the karyotype analysis,help us to improve classification of the leukemia types of M ICM and to direct individulized chemotherapy. [Key Words]Acute myeloid leukemia;Fusion gene;M ultiplex RT-PCR;Normal karyotype *山西医科大学硕士研究生在读 △通讯作者 CHINA MODERN DOCTOR中国现代医生11

白血病融合基因检测综述0105复习过程

白血病相关融合基因的检测及意义 白血病是造血系统的恶性克隆性疾病,由于造血干细胞受损,导致克隆中的白血病细胞失去进一步分化成熟的能力而停滞在细胞发育的不同阶段。白血病细胞具有自我更新增强、增殖失控、分化障碍、凋亡受阻等特点,患者会出现不同程度的贫血、出血、感染和浸润的临床症状,严重危害生命健康。近年来,随着细胞生物学和分子生物学技术的发展,人们已经认识到大部分的白血病中都存在着包括缺失、重复、易位等染色体畸变,导致原癌基因或抑癌基因结构变异,原癌基因激活或抑癌基因失活,产生新的融合基因,编码融合蛋白。现有报道的染色体畸变已有五十种以上,累及更多数目的融合基因,这些异常已经逐渐成为不同类型白血病的分子生物学特异性标志。 白血病相关融合基因的种类多样,常见的融合基因有BCR-ABL、AML1-ETO、 PML-RARα、E2A-PBX1、MLL-AF4、TEL-AML1、SIL-TAL1、DEK-CAN、CBFβ-MYH11等。 BCR(breakpoint cluster region)基因是BCR-ABL融合基因的组成部分,与费城染色体(Philadelphia Chromosome)的形成有关,具有两种转录异构体。正常的BCR基因编码产物的功能还尚未清楚,它编码的蛋白具有丝氨酸/苏氨酸激酶活性,是RAC1和CDC42的GTP酶激活蛋白。ABL1基因是编码细胞质和细胞核蛋白酪氨酸激酶的原癌基因,与细胞分化、细胞分裂、细胞粘附、应激反应等生命活动相关。活化的ABL1蛋白通过SH3结构域受到负调控,SH3结构域的缺失会导致ABL1基因转化为癌基因。CDC2介导的磷酸化能够调节ABL1酪氨酸激酶的DNA结合活化过程,表明ABL1可能在细胞周期中发挥作用。 Nowell及Hungerford于1960年发现在慢性粒细胞性白血病(CML)患者外周血中有一个比G组染色体还小的近端着丝粒染色体,由于首先在美国费城(Philadelphia)发现,故命名为费城染色体。1971年O`Riordon利用荧光显带法确认费城染色体是第22号染色体长臂缺失大段后剩余的部分。1973年Rowley发现缺失下来的那部分通常易位到9号染色体长臂的末端,形成t(9;22)(q34;q11)。1982年Deklein等在费城染色体上首次发现了原来位于9号染色体长臂末端(9q34)的癌基因ABL1,证明费城染色体上有来自9号染色体长臂末端的片端,是22号染色体与9号染色体相互易位的产物。易位使9号染色体长臂(9q34)上的原癌基因ABL1和22号染色体(22q11)上的BCR基因重新组合成融合基因,因而称为BCR-ABL融合基因。 BCR-ABL融合基因编码的融合蛋白具有很强的酪氨酸激酶活性,改变细胞多种蛋白质酪氨酸磷酸化水平和细胞微丝机动蛋白的功能,扰乱细胞内正常的信号传导途径,使细胞失去了对周围环境的反应性,并抑制凋亡的发生,影响细胞周期调控,导致骨髓造血干细胞过度增殖。BCR-ABL融合基因在病人中常见有四种剪接体mRNA:编码P210融合蛋白的b2a2和b3a2,编码P190的e1a2,编码P230的e19a2。其中b3a2和b2a2主要存在于CML,ela2主要在急性淋巴细胞性白血病(ALL)中出现,而出现较少的e19a2根据2008年世界卫生组织(WHO)最新版的血液系统肿瘤分类标准,也应被诊断为CML。90%以上的CML患者血细胞中都发现有费城染色体的存在,主要为P210融合蛋白,因而费城染色体和BCR-ABL融合基因可以作为区分典型CML和非典型CML的诊断指标。同时在费城染色体阳性的ALL患者中,65%的成人和80%的儿童能够检测到P190融合蛋白阳性。由于BCR-ABL融合蛋白能够收到多种小分子化合物的抑制,临床上第一代针对BCR-ABL融合蛋白的酪氨酸激酶小分子抑制剂(TKI)伊马替尼就是是通过结合抑制BCR-ABL融合蛋白的酪氨酸激酶结构域来抑制其在细胞周期中的影响,从而发挥抗白血病作用的。第二代BCR-ABL酪氨酸激酶抑制剂达沙替尼和尼洛替尼也是在这个基础上进行改进,以以减少因伊马替尼使用而带来的抗药性。对费城染色体和BCR-ABL融合基因的检测,对于正确区分CML类型,指导临床治疗和判断预后情况具有重要的指导作用。

基因突变导致的白血病

基因突变导致的白血病 就像传说中的Ikaros在飞向太阳的同时也在迎接自己的死亡,采血管同名的基因也给癌症患者带来了巨的麻烦一项新的研究表明,Ikaros基因突变在急性淋巴细胞白血病(ALL)——一生长迅速的难治性癌症——的触发中扮演了一个重要角色。研究人员希望一发现能够治疗这种疾病提供新的途径。 一种名为费城染色体的重排导致了慢性粒细胞白血病(CML),这是一种血细胞癌症,病人能够生存较长的时间,并随着治疗而逐渐康复。在一小部分ALL患者中也会发现类似的缺陷,而ALL在几个月的时间内就足以致命,并且很难治愈。长期以来,研究人员一直在探索这两种疾病之间的差别。一个可能的罪魁祸首便是Ikaros基因,那些Ikaros基因产生了突变而没有费城染色体的儿童往往会患上ALL。 为了搞清Ikaros基因是否也在费城染色体与ALL的关系中扮演了重要角色,由美国田纳西州孟菲斯市圣裘德儿童研究医院的血液病理学家James Downing领导的一个研究小组,对同时具有费城染色体的ALL 患者——包括21名儿童和22名成人——进行了研究。其中大病人都携带了一个有缺陷的基因副本,其中儿童发生突变的几率为76.2%,成人为90.9%。研究人员将在4月17日出版的英国《自然》杂志上报告这一研究成果。而在23名CML成人患者中并没有发现Ikaros基因突变,从而证明了这种基因对于在携带费城染色体的人群中触发ALL起到了关键作用。Ikaros基因编码了一种转录因子蛋白质,后者对于一种称为淋巴细胞的白血球细胞的正常发育是至关重要的。但研究人员尚未搞清这种基因突变如何引发了癌症。Downing表示,一种可能性是由突变产生的有缺陷的蛋白质形成了异常的淋巴细胞,并最终引发了癌症。 美国宾夕法尼亚州费城福克斯·蔡斯癌症中心的肿瘤学家Mitchell Smith表示,这一发现是“一个巨大的飞跃”,为疾病的治疗铺平了道路。他强调:“这一发现在现阶段并没有什么作为,但是一旦你知道未来将是什么样子,你便很容易找到努力的方向。”美国癌症学会的分子生物学家William Phelps指出,Ikaros蛋白质本身可能并不是一个很好的药物靶点,这是因为它是一个转录因子,这种蛋白质缺乏附着后能够抑制其活动的化合物的结合位置。但Smith强调,由Ikaros基因控制的其他基因或蛋白质很可能成为药物的合适目标。

白血病经典融合基因检测

白血病经典融合基因检测 (一)bcr/abl融合基因 abl为一原癌基因,位于9号染色体q34,基因产物是一种非受体型酪氨酸蛋白激酶;bcr基因位于22号染色体q11,正常的bcr基因产物为160kD的胞质磷酸蛋白,由于t(9;22)(q34;q11)的易位,形成bcr/abl融合基因,该易位产生bcr/abl嵌合基因,基因产物为210kD的融合蛋白,它的表达激活了酪氨酸蛋白激酶,改变了细胞的蛋白酪氨酸水平和肌动蛋白结合能力,扰乱了正常的信号传导途径,抑制了凋亡的发生。 bcr基因断裂点集中在三个区域:主要(major bcr,M-bcr)、次要(minor bcr,m-bcr)和μ(μ-bcr)。abl基因断裂位于第1或第2内含子。因断裂点不一,bcr-abl融合基因及其mRNA和蛋白产物呈多样性。根据bcr基因断裂点的不同,主要有下述几种类型的bcr/abl融合形式:①在典型的CML中,大部分融合基因是在主要断裂点簇集区(M-bcr)内断裂融合而成,由此形成的bcr/abl融合mRNA是由b3a2或b2a2转录而成,其最终产物是相对分子质量210×103的胞浆蛋白P210,这种癌蛋白是绝大多数慢性期CML表型异常的根源所在。②当bcr基因断裂点发生在上游的一段长约54.4 kb的内含子,也称m-bcr区,产生一个e1a2接头的杂合mRNA,编码P190融合蛋白。③bcr断裂点也可在M-bcr区的下游,即μ-bcr,产生e19a2融合,编码P230融合蛋白。【我个人认为P230CML其特征主要是成熟中性粒细胞增生为主,表现为隐匿,良性的临床过程,患者生存期长的特点。】 bcr/abl融合基因存在于95%以上的慢性粒细胞白血病患者,是CML最重要的分标志,是疾病状态的决定性因素。在一部分成人急性淋巴细胞性白血病(20%-30%)、儿童急性淋巴细胞白血病(2%-10%)和急性粒细胞性白血病的患者中也可表达bcr/abl融合基因。在bcr/abl 阳性B-ALL细胞具有较特殊的表型,更多地表达CD34及CD10等细胞表面抗原,CD38阳性率较低,且IgH 检出率也相对较低,而CD10 /CD34 /CD38-是其独特的免疫表型特点。(二)AML1/ETO融合基因 t(8;21)(q22;q22)主要见于急性粒细胞白血病部分分化型(AML-M2),亦可发生于急性粒细胞白血病未分化型(AML-M1)、急性粒-单核细胞白血病(AML-M4)及骨髓增生异常综合征(MDS)-RAEB-T中。这种染色体易位导致21号体上AML1基因(acute myeloblastic leukemia one gene)与8号染色体的ETO基因(eight twenty one gene,也称为MTG8基因)的融合形成AML1/ETO融合基因。AML1/ETO融合蛋白是一种转录抑制因子,可抑制正常AML1蛋白介导的功能,改变造血祖细胞自我更新及成熟过程,同时也产生启动异常造血细胞增殖的信号,引起白血病细胞生长。 t(8;21)(q22;q22)阳性是预后好的标志,其完全缓解(CR)率可达90%,5年长期无病生存率(event-free survival,EFS)可达50%-70%,AML1/ETO融合基因的存在是白血病预后良好的标志。经化疗或BMT后大部分病人可在短期内转为阴性,但仍有转阳性的可能,及时治疗可再次转阴性。RT-PCR结果由阴性转阳性或持续阳性可能预示复发。 (三)CBFβ/MYH11融合基因 M4Eo是M4型白血病中的一种特殊类型,约占急性粒细胞白血病的10%。患者骨髓中粒系和单核系原始细胞同时恶性增生,嗜酸粒细胞占5%~30%。含有CBFβ-MYH11融合基因的M4Eo患者预后较好。 Inv(16) /t(16;16)(p13;q22)为急性髓系白血病(AML)-M4Eo的非随机染色体异常,16q22断裂区受累基因CBFβ编码CBF的β亚单位,inv(16)/t(16;16)导致形成CBFβ/MYH11融合基因。inv(16)/t(16;16)(p13;q22)的结果是16号染色体长臂的CBFβ基因与短臂的平滑肌肌球蛋白重链1(MYH11)基因发生重排,形成CBFβ-MYH11和MYH11-CBFβ两种融合基因,其中CBFβ-MYH11融合基因易促使白血病发病。CBFβ链不直接结合DNA,而是通过与CBF

基因检测报告范文

第一篇基因检测报告:三博远志基因检测报告书 (模版) 北京三博远志健康人群基因检测项目价格 男性肿瘤易感基因检测A(高风险基础型13个位点,合计3900元)基因风险评估项目 检测位点 价格 全选 非小细胞肺癌风险基因检测 3个位点 900元 肝癌风险基因检测 1个位点 300元 胃癌风险基因检测 3个位点 900元 结/直肠癌风险基因检测 4个位点 1200元 食管癌风险基因检测

600元 男性肿瘤易感基因检测B(低风险扩展型25个位点,300元/位点)基因风险评估项目 检测位点 价格 单选 膀胱癌风险基因检测 4个位点 1200元 胰腺癌风险基因检测 4个位点 1200元 白血病风险基因检测 3个位点 900元 淋巴癌风险基因检测 3个位点 900元 脑肿瘤风险基因检测

600元 前列腺癌风险基因检测 1个位点 300元 肾癌风险基因检测 4个位点 1200元 甲状腺癌风险基因检测 3个位点 900元 睾丸癌风险基因检测 1个位点 300元 女性肿瘤易感基因检测A(高风险基础型19个位点,合计5700元)基因风险评估项目 检测位点 价格 全选 乳腺癌风险基因检测

1200元 非小细胞肺癌风险基因检测 3个位点 900元 结/直肠癌风险基因检测 4个位点 1200元 肝癌风险基因检测 1个位点 300元 胃癌风险基因检测 3个位点 900元 宫颈癌风险基因检测 4个位点 1200元 女性肿瘤易感基因检测B(低风险扩展型31个位点,300元/位点)基因风险评估项目 检测位点

单选 卵巢癌风险基因检测3个位点 900元 胰腺癌风险基因检测4个位点 1200元 食管癌风险基因检测2个位点 600元 子宫癌风险基因检测3个位点 900元 脑肿瘤风险基因检测2个位点 600元 肾癌风险基因检测 4个位点 1200元 膀胱癌风险基因检测4个位点

白血病融合基因检测的意义

白血病融合基因检测的意义 白血病(leukemia)属于造血系统的恶性肿瘤,是一组高度异质性的恶性血液病,其特点为白血病细胞呈现异常增生伴分化成熟障碍。临床出现不同程度的贫血、出血、发热及肝脾、淋巴结肿大,可危及生命。 白血病融合基因(fusion gene),是白血病的分子生物学特异性标志。近年来,由于分子生物学技术的发展,对白血病细胞分子遗传学改变的了解也不断深入。迄今报道白血病涉及至少数十种融合基因。已经认识到大部分的白血病中存在着染色体结构畸变,包括缺失、重复、倒位、易位等,导致原癌基因及抑癌基因结构变异,原癌基因激活或抑癌基因失活,产生新的融合基因,编码融合蛋白。有些基因是调控细胞增殖、分化和凋亡的转录因子,当基因发生变异,直接影响了下游信号传递途径,导致细胞增殖能力增强、凋亡障碍,分化障碍等,产生白血病表型。 一些典型的白血病融合基因是某种白血病的特异性分子诊断标志,如 BCR-ABL融合基因,可出现在95%以上的慢性粒细胞白血病(CML)。患者预后效果的好坏,与融合基因的类型有一定关系,如急性早幼粒细胞白血病(APL)特有的PML-RARa融合基因,对APL患者用全反式维甲酸(ATRA)诱导缓解治疗,其预后非常好,复发率低。而有些基因,如MLL相关融合基因,预后差,死亡率高。 1.融合基因检测对白血病诊断的意义 通过临床实践发现单纯细胞形态学分型,检测者的主观成分较大,相互间的符合率及正确率有一定限制,随着细胞和分子生物学技术的迅速发展及对白血病发病机制研究的不断深入,认识到白血病发病过程中的基因和表型变化对各类白血病的诊断与治疗具有重要意义,因此提出了白血病MICM分型。近两年白血病分子特征的研究取得了明显进展,尤其是对染色体易位形成融合基因,有一些已作为诊断不同类型白血病的分子生物学特异性标志和确定诊断的唯一依据,如急性早幼粒细胞白血病APL:PML/RARA,t(15;17)(q21;q22);急性髓细胞白血病AML-M4Eo:CBFB/MYH11,inv(16)(p13;q22);慢性粒细胞白血病CML或部分急性淋巴细胞白血病ALL:BCR/ABL,t (9;22)(q34;q11);AML-M2:AML1/ETO,t(8;21)(q22;q22);ALL-L3:MYC/IgH,t(8;14) (q24;q32);AML-M4/M5:11q23MLL异常等。白血病融合基因可以通过逆转录PCR(RT-PCR)技术加以检出,有助于评价白血病的急性程度、克隆特性及分型,使白血病的诊断分型更加科学化和规范化。2007年卫生部颁布的《医疗机构临床检验项目目录》,其中有要求利用RT-PCR或real-time PCR技术的白血病融合基因检查,主要涉及6种融合基因的检查,包括BCR/ABL、PML/RARA、AML1/MPSI/EVI1、DEK/CAN、AML1/MTG8、E2A/PBX1。 RT-PCR可比传统的细胞学方法及临床症状出现早5~8个月,可检出1×106个有核细胞中的一个白血病细胞,在白血病的早期诊断方面有着其它方法无可比拟的特异性和敏感性。 2.融合基因检测对白血病治疗和预后判断的意义 细胞遗传学分型与疾病的预后关系密切,对于指导临床个性化治疗方案的选择和判断预后具有十分重要的意义。急性白血病有PML/RARA, CBFB/MYH11,AML1/ETO融合基因预后较好,化疗完全,缓解率高,可长期

相关主题
相关文档 最新文档