当前位置:文档之家› 2018高考数学一轮复习第4节函数y=Asin(ωx+φ)的图象及三角函数模型的简单应用教师用书文

2018高考数学一轮复习第4节函数y=Asin(ωx+φ)的图象及三角函数模型的简单应用教师用书文

2018高考数学一轮复习第4节函数y=Asin(ωx+φ)的图象及三角函数模型的简单应用教师用书文
2018高考数学一轮复习第4节函数y=Asin(ωx+φ)的图象及三角函数模型的简单应用教师用书文

第四节 函数y =Asin(ωx +φ)的图象及三角函数模型的简单应用

———————————————————————————————— [考纲传真] 1.了解函数y =A sin(ωx +φ)的物理意义;能画出函数的图象,了解参数A ,ω,φ对函数图象变化的影响.2.会用三角函数解决一些简单实际问题,体会三角函数是描述周期变化现象的重要函数模型.

1.y =A sin (ωx +φ)的有关概念

先平移后伸缩 先伸缩后平移

? ?

1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)

(1)利用图象变换作图时“先平移,后伸缩”与“先伸缩,后平移”中平移的单位长度一致.( )

(2)将y =3sin 2x 的图象左移π4个单位后所得图象的解析式是y =3sin ?

????2x +π4.( )

(3)函数f (x )=A sin(ωx +φ)的图象的两个相邻对称轴间的距离为一个周期.( ) (4)函数y =A cos(ωx +φ)的最小正周期为T ,那么函数图象的两个相邻对称中心之间的距离为T

2

.( )

[答案] (1)× (2)× (3)× (4)√

2.(2016·四川高考)为了得到函数y =sin ?

????x +π3的图象,只需把函数y =sin x 的图

象上所有的点( )

A .向左平行移动π

3个单位长度

B .向右平行移动π

3个单位长度

C .向上平行移动π

3个单位长度

D .向下平行移动π

3

个单位长度

A [把函数y =sin x 的图象上所有的点向左平行移动

π

3

个单位长度就得到函数y =sin ?

????x +π3的图象.]

3.若函数y =sin(ωx +φ)(ω>0)的部分图象如图3-4-1,则ω=( )

图3-4-1

A .5

B .4

C .3

D .2

B [由图象可知,T 2=x 0+π4-x 0=π4

所以T =π2=2π

ω

,所以ω=4.]

4.将函数y =sin(2x +φ)的图象沿x 轴向左平移π

8个单位后,得到一个偶函数的图象,

则φ的一个可能取值为( )

A.

4

B.

π

4

C .0

D .-π4

B [把函数y =sin(2x +φ)沿x 轴向左平移π8个单位后得到函数y =sin 2? ????x +φ2+π8=sin ?

????2x +φ+π4为偶函数,则φ的一个可能取值是π4.]

5.(教材改编)电流I (单位:A)随时间t (单位:s)变化的函数关系式是I =5sin ?

????100πt +π3,t ∈[0,+∞),则电流I 变化的初相、周期分别是________. π3,150 [由初相和周期的定义,得电流I 变化的初相是π3,周期T =2π100π=1

50

.]

已知函数f (x )=3sin ? ????2

x -4,x ∈R.

(1)画出函数f (x )在一个周期的闭区间上的简图;

(2)将函数y =sin x 的图象作怎样的变换可得到f (x )的图象? [解] (1)列表取值:

(2)先把y =sin x 的图象向右平移π

4个单位,然后把所有点的横坐标扩大为原来的2

倍,再把所有点的纵坐标扩大为原来的3倍,得到f (x )的图象.12分

[规律方法] 1.变换法作图象的关键是看x 轴上是先平移后伸缩还是先伸缩后平移,对

于后者可利用ωx +φ=ω? ??

??x +φω确定平移单位.

2.用“五点法”作图,关键是通过变量代换,设z =ωx +φ,由z 取0,π2,π,3

2

π,

2π来求出相应的x ,通过列表,描点得出图象.如果在限定的区间内作图象,还应注意端点的确定.

[变式训练1] (1)(2016·全国卷Ⅰ)将函数y =2sin ? ????2x +π6的图象向右平移14个周期后,所得图象对应的函数为( )

A .y =2sin ? ????2x +π4

B .y =2sin ? ????2x +π3

C .y =2sin ?

????2x -π4 D .y =2sin ?

????2x -π3 (2)(2016·全国卷Ⅲ)函数y =sin x -3cos x 的图象可由函数y =2sin x 的图象至少向右平移________个单位长度得到.

(1)D (2)π3 [(1)函数y =2sin ? ????2x +π6的周期为π,将函数y =2sin ? ????2x +π6的图象

向右平移14个周期即π4个单位长度,所得图象对应的函数为y =2sin ??????2? ????x -π4+π6=2sin ?

????2x -π3,故选D.

(2)∵y =sin x -3cos x =2sin ?

????x -π3,∴函数y =sin x -3cos x 的图象可由函数

y =2sin x 的图象向右平移π

3

个单位长度得到.]

( )

图3-4-2

A .y =2sin ? ????2x -π6

B .y =2sin ?

????2x -π3 C .y =2sin ?

????x +π6

D .y =2sin ?

????x +π3

(2)已知函数y =A sin(ωx +φ)+b (A >0,ω>0)的最大值为4,最小值为0,最小正周期为π2,直线x =π

3

是其图象的一条对称轴,则下面各式中符合条件的解析式为( )

A .y =4sin ? ????4x +π6

B .y =2sin ? ????2x +π3+2

C .y =2sin ? ????4x +π3+2

D .y =2sin ?

????4x +π6+2 (1)A (2)D [(1)由图象知T 2=π3-? ????-π6=π2,故T =π,因此ω=2π

π

=2.又图象的

一个最高点坐标为? ????π3,2,所以A =2,且2×π3+φ=2k π+π2(k ∈Z),故φ=2k π-

π6(k ∈Z),结合选项可知y =2sin ?

????2x -π6.故选A.

(2)由函数y =A sin(ωx +φ)+b 的最大值为4,最小值为0,可知b =2,A =2.由函数的最小正周期为π2,可知2πω=π2,得ω=4.由直线x =π3是其图象的一条对称轴,可知4×

π

3+φ=k π+π2,k ∈Z ,从而φ=k π-5π6,k ∈Z ,故满足题意的是y =2sin ?

????4x +π6+2.]

[规律方法] 确定y =A sin(ωx +φ)+b (A >0,ω>0)的步骤和方法 (1)求A ,b :确定函数的最大值M 和最小值m ,则A =M -m

2

,b =

M +m

2

(2)求ω:确定函数的周期T ,则可得ω=2π

T

(3)求φ:常用的方法有:

①代入法:把图象上的一个已知点代入(此时A ,ω,b 已知)或代入图象与直线y =b 的交点求解(此时要注意交点在上升区间上还是在下降区间上).

②五点法:确定φ值时,往往以寻找“五点法”中的某一个点为突破口.“第一点”(即图象上升时与x 轴的交点)时ωx +φ=0;“第二点”(即图象的“峰点”)时ωx +φ=π2;

“第三点”(即图象下降时与x 轴的交点)时ωx +φ=π;“第四点”(即图象的“谷点”)

时ωx +φ=3π

2

;“第五点”时ωx +φ=2π.

[变式训练2] (2017·石家庄一模)函数f (x )=A sin(ωx +φ)(A >0,ω>0)的部分图象如图3-4-3所示,则f ?

??

??11π24的值为( )

图3-4-3

A .-

62 B .-32 C .-2

2

D .-1 D [由图象可得A =2,最小正周期T =4? ????7π12-π3=π,则ω=2πT =2.又f ? ??

??7π12=

2sin ?

??

??7π6+φ=-2,解得φ=-5π3+2k π(k ∈Z),即k =1,φ=π3,则f (x )=2

sin ? ????2x +π3,f ? ????11π24=2sin ? ??

??11π12+π3=2sin 5π4=-1,故选D.]

(2016·天津高考)已知函数f (x )=4tan x sin ? ????2-x ·cos ?

????x -3- 3.

(1)求f (x )的定义域与最小正周期;

(2)讨论f (x )在区间????

??-π4,π4上的单调性.

[解] (1)f (x )的定义域为??????

???

?x ?

??

x ≠π

2+k π,k ∈Z

.2分 f (x )=4tan x cos x cos ?

??

??

x -π3

- 3

=4sin x cos ?

????x -π3- 3

=4sin x ? ????

12cos x +32sin x - 3

=2sin x cos x +23sin 2

x - 3 =sin 2x +3(1-cos 2x )- 3 =sin 2x -3cos 2x =2sin ? ????2x -π3.

所以f (x )的最小正周期T =

2

=π.6分

(2)令z =2x -π3,则函数y =2sin z 的单调递增区间是??????-π2+2k π,π2+2k π,k ∈Z.

由-π2+2k π≤2x -π3≤π

2+2k π,

得-π12+k π≤x ≤5π

12

+k π,k ∈Z.8分

设A =??????-π4,π4,B =x ?

??

-π12+k π≤x ≤5π12+k π,k ∈Z ,易知A ∩B =?

???

??-π12,π

4

.

所以当x ∈?

???

??-π4,π4时,f (x )在区间?

???

??-π12,π4上单调递增,在区间?

???

??-π

4,-π12上

单调递减.12分

[规律方法] 讨论函数的单调性,研究函数的周期性、奇偶性与对称性,都必须首先利用辅助角公式,将函数化成一个角的一种三角函数.

[变式训练3] 设函数f (x )=

32

-3sin 2

ωx -sin ωx cos ωx (ω>0),且y =f (x )图象的一个对称中心到最近的对称轴的距离为π

4

. 【导学号:31222119】

(1)求ω的值;

(2)求f (x )在区间??????π,3π2上的最大值和最小值. [解] (1)f (x )=32

-3sin 2

ωx -sin ωx cos ωx =32-3·1-cos 2ωx 2-12

sin 2ωx =

32cos 2ωx -12sin 2ωx =-sin ?

????2ωx -π3.3分

因为图象的一个对称中心到最近的对称轴的距离为π4,又ω>0,所以2π2ω=4×π

4,因

此ω=1.5分

(2)由(1)知f (x )=-sin ? ????2x -π3.6分

当π≤x ≤3π2时,5π3≤2x -π3≤8π

3,

所以-

32≤sin ?

????2x -π3≤1,则-1≤f (x )≤32.10分

故f (x )在区间?

?????π,3π2上的最大值和最小值分别为32,-1.12分

f (t )=10-3cos π

12t -sin π12

t ,t ∈[0,24).

(1)求实验室这一天的最大温差;

(2)若要求实验室温度不高于11 ℃,则在哪段时间实验室需要降温? [解] (1)因为f (t )=10-2? ????32

cos π

12t +12sin π12t

=10-2sin ?

??

??π12t +π3,2分

又0≤t <24,

所以π3≤π12t +π3<7π3,-1≤sin ? ????π

12t +π3≤1.4分

当t =2时,sin ?

??

??π12t +π3=1;

当t =14时,sin ? ????π

12

t +π3=-1.

于是f (t )在[0,24)上取得最大值12,取得最小值8.

故实验室这一天最高温度为12 ℃,最低温度为8 ℃,最大温差为4 ℃.6分 (2)依题意,当f (t )>11时实验室需要降温. 由(1)得f (t )=10-2sin ? ????π12

t +π3,

故有10-2sin ? ??

??π12t +π3>11,

即sin ?

??

??π12t +π3<-12.9分

又0≤t <24,因此7π6<π12t +π3<11π

6,即10<t <18.

故在10时至18时实验室需要降温.12分

[规律方法] 1.三角函数模型在实际中的应用体现在两个方面:一是用已知的模型去分析解决实际问题,二是把实际问题抽象转化成数学问题,建立三角函数模型解决问题,其关键是合理建模.

2.建模的方法是认真审题,把问题提供的“条件”逐条地“翻译”成“数学语言”,这个过程就是数学建模的过程.

[变式训练4] (2015·陕西高考)如图3-4-4,某港口一天6时到18时的水深变化曲线

近似满足函数y =3sin ? ??

??π6x +φ+k .据此函数可知,这段时间水深(单位:m)的最大值为

( )

图3-4-4

A.5 B.6 C.8 D.10

C [根据图象得函数的最小值为2,有-3+k=2,k=5,最大值为3+k=8.]

[思想与方法]

1.由图象确定函数解析式

由图象确定y=A sin(ωx+φ)时,φ的确定是关键,尽量选择图象的最值点代入;若选零点代入,应根据图象升降找“五点法”作图中第一个零点.

2.对称问题

函数y=A sin(ωx+φ)的图象与x轴的每一个交点均为其对称中心,经过该图象上坐

标为(x ,±A )的点与x 轴垂直的每一条直线均为其图象的对称轴,这样的最近两点间横坐标的差的绝对值是半个周期(或两个相邻对称中心的距离).

[易错与防范]

1.要弄清楚是平移哪个函数的图象,得到哪个函数的图象.

2.要注意平移前后两个函数的名称是否一致,若不一致,应先利用诱导公式化为同名函数.

3.由y =sin x 的图象变换到y =A sin(ωx +φ)的图象,先相位变换再周期变换(伸缩变换),平移的量是|φ|个单位;而先周期变换(伸缩变换)再相位变换,平移的量是|φ|ω(ω

>0)个单位.原因是相位变换和周期变换都是针对x 而言的.

4.函数y =A sin(ωx +φ)在x ∈[m ,n ]上的最值可先求t =ωx +φ的范围,再结合图象得出y =A sin t 的值域.

课时分层训练(二十) 函数y =A sin(ωx +φ)的图象

A 组 基础达标

(建议用时:30分钟)

一、选择题

1.为了得到函数y =sin 3x +cos 3x 的图象,可以将函数y =2cos 3x 的图象

( ) 【导学号:31222120】

A .向右平移π12

个单位 B .向右平移π4

个单位

C .向左平移π12

个单位

D .向左平移π

4

个单位

A [由于y =sin 3x +cos 3x =2sin ? ????3x +π4,y =2cos 3x =2sin ? ????3x +π2,因此只需将y =2cos 3x 的图象向右平移π12个单位,即可得到y =2sin ??????3? ????x -π12+π2=2

sin ?

????3x +π4的图象.]

2.(2017·成都二诊)将函数f (x )=cos ? ????x +π6图象上所有点的横坐标缩短为原来的12,

纵坐标不变,得到函数g (x )的图象,则函数g (x )的解析式为( )

A .g (x )=cos ?

????2x +π3

B .g (x )=cos ?

????2x +π6

C .g (x )=cos ? ????x 2+π3

D .g (x )=cos ? ??

??x 2+π6

B [由图象变换规则可得g (x )=cos ?

????2x +π6,故选B.] 3.函数f (x )=2sin(ωx +φ)? ????ω>0,-π2<φ<π2的部分图象如图3-4-5所示,则ω,φ的值分别是( )

图3-4-5

A .2,-π

3

B .2,-π

6

C .4,-π

6

D .4,π3

A [∵T 2=1112π-512π,∴T =π.由T =2πω=π,得ω=2.∵5π12×2+φ=π

2

+2k π,

k ∈Z ,∴φ=-π3

+2k π.又∵φ∈?

??

??-π2

,π2,∴φ=-π3

.]

4.已知函数f (x )=3sin ωx +cos ωx (ω>0),y =f (x )的图象与直线y =2的两个相邻交点的距离等于π,则f (x )的单调递增区间是( ) 【导学号:31222121】

A.?

?????k π-π12,k π+5π12,k ∈Z B.?

?????k π+5π12,k π+11π12,k ∈Z C.?

?????k π-π3,k π+π6,k ∈Z D.?

?????k π+π6,k π+2π3,k ∈Z C [由题设知f (x )=2sin ? ????ωx +π6,f (x )的周期为T =π,所以ω=2,

由2k π-π2≤2x +π6≤2k π+π2,k ∈Z 得,k π-π3≤x ≤k π+π

6

,k ∈Z.]

5.(2016·全国卷Ⅱ)若将函数y =2sin 2x 的图象向左平移π

12

个单位长度,则平移后图

象的对称轴为( )

A .x =k π2-π

6(k ∈Z) B .x =k π2+π

6(k ∈Z) C .x =

k π

2-π

12

(k ∈Z) D .x =

k π

2+π

12

(k ∈Z) B [将函数y =2sin 2x 的图象向左平移π12个单位长度,得到函数y =2sin2? ????x +π12=2sin ? ????2x +π6的图象.由2x +π6=k π+π2(k ∈Z),得x =k π2+π6(k ∈Z),即平移后图象的

对称轴为x =

k π

2

π

6

(k ∈Z).] 二、填空题

6.若函数f (x )=3sin ? ????ωx -π3(ω>0)的最小正周期为π2,则f ? ??

??π3=________. 【导学号:31222122】

0 [由f (x )=3sin ? ????ωx -π3(ω>0)的最小正周期为π2,得ω=4,所以f ? ??

??π3=3sin ?

????4×π3-π3=0.]

7.已知函数y =cos x 与y =sin(2x +φ)(0≤φ<π),它们的图象有一个横坐标为

π3的交点,则φ的值是________.

π6 [由题意cos π3=sin ? ????2×π3+φ,

即sin ?

????2π3+φ=12,2π3

+φ=k π+(-1)k

·π6(k ∈Z).因为0≤φ<π,所以φ=π6.] 8.某城市一年中12个月的平均气温与月份的关系可近似地用三角函数y =a +

A cos ????

??π

6

x -6 (x =1,2,3,…,12)来表示,已知6月份的月平均气温最高,为28 ℃,

12月份的月平均气温最低,为18 ℃,则10月份的平均气温值为________ ℃.

20.5 [依题意知,a =28+182=23,A =28-18

2

=5,

∴y =23+5cos ????

??π6 x -6 , 当x =10时,

y =23+5cos ? ??

??π6

×4=20.5.]

三、解答题

9.已知函数f (x )=2sin ? ????2x -π4+1. (1)求它的振幅、最小正周期、初相;

(2)画出函数y =f (x )在????

??-π2,π2上的图象.

[解] (1)振幅为2,最小正周期T =π,初相为-π

4.5分

(2)图象如图所示.

12分

10.已知函数y =A sin(ωx +φ)(A >0,ω>0)的图象过点P ? ??

??π12,0,图象上与点P 最

近的一个最高点是Q ?

??

??π3,5.

(1)求函数的解析式; (2)求函数f (x )的递增区间.

[解] (1)依题意得A =5,周期T =4? ??

??π3-π12=π,2分

∴ω=2ππ=2.故y =5sin(2x +φ),又图象过点P ? ????π12,0,4分 ∴5sin ?

??

??π6+φ=0,由已知可得π6+φ=0,∴φ=-π6,

∴y =5sin ?

????2x -π6.6分 (2)由-π2+2k π≤2x -π6≤π

2+2k π,k ∈Z ,

得-π6+k π≤x ≤π

3

+k π,k ∈Z ,10分

故函数f (x )的递增区间为?

?????k π-π6,k π+π3(k ∈Z).12分

B 组 能力提升

(建议用时:15分钟)

1.(2016·北京高考)将函数y =sin ? ????2x -π3图象上的点P ? ????π4,t 向左平移s (s >0)个单位长度得到点P ′.若P ′位于函数y =sin 2x 的图象上,则( )

A .t =12,s 的最小值为π

6

B .t =

32,s 的最小值为π6

C .t =12,s 的最小值为π

3

D .t =

32,s 的最小值为π3

A [因为点P ? ????π4,t 在函数y =sin ? ????2x -π3的图象上,所以t =sin ? ????2×π4-π3=sin

π6=12.所以P ? ????π4,12.将点P 向左平移s (s >0)个单位长度得P ′? ????π

4

-s ,12.

因为P ′在函数y =sin 2x 的图象上,所以sin 2? ????π4-s =1

2,即cos 2s =12,所以2s

=2k π+π3或2s =2k π+53π,即s =k π+π6或s =k π+5π6(k ∈Z),所以s 的最小值为π

6

.]

2.若函数y =cos 2x +3sin 2x +a 在?

?????0,π2上有两个不同的零点,则实数a 的取值

范围为________.

【导学号:31222123】

(-2,-1] [由题意可知y =2sin ? ????2x +π6+a ,该函数在??????0,π2上有两个不同的零点,即y =-a ,y =2sin ?

????2x +π6在??????0,π2上有两个不同的交点.

结合函数的图象可知1≤-a <2,所以-2<a ≤-1.]

3.函数f (x )=A sin(ωx +φ)?

????A >0,ω>0,0<φ<π2的部分图象如图3-4-6所示.

图3-4-6

(1)求f (x )的解析式;

(2)设g (x )=????

??f ? ????x -π122

求函数g (x )在x ∈????

??-π6,π3上的最大值,并确定此时x 的值. [解] (1)由题图知A =2,T 4=π3,则2πω=4×π

3

,2分

∴ω=3

2

.

又f ? ????-π6=2sin ??????32×? ????-π6+φ

=2sin ? ??

??-π4+φ=0, ∴sin ? ????φ-π4=0.4分

∵0<φ<π

2,

∴-π4<φ-π4<π4,

∴φ-π4=0,即φ=π4

∴f (x )的解析式为f (x )=2sin ? ????32x +π4.6分

(2)由(1)可得f ? ????x -π12=2sin ??????32? ????x -π12+π4

=2sin ? ????32

x +π8,8分 ∴g (x )=??????f ? ????x -π122=4×

1-cos ? ????3x +π42 =2-2cos ?

????3x +π4.10分

∵x ∈????

??-π6,π3,∴-π4≤3x +π4≤5π4,

π4=π,即x=

π

4

时,g(x)max=4.12分

∴当3x+

2020年高考数学三角函数专题解题技巧

三角函数专题复习 在三角函数复习过程中,认真研究考纲是必须做的重要工作。三角函数可以当成函数内容中的重要一支,要注意与其它知识的联系。 一、研究考题,探求规律 1. 从表中可以看出:三角函数题在试卷中所处的位置基本上是第一或第二题,本章高考重点考查基础知识,仍将以容易题及中档为主,题目的难度保持稳定,估计这种情况会继续保持下去 2. 特点:由于三角函数中,和差化积与积化和差公式的淡出,考查主体亦发生了变化。偏重化简求值,三角函数的图象和性质。考查运算和图形变换也成为了一个趋势。三角函数试题更加注重立足于课本,注重考查基本知识、基本公式及学生的运算能力和合理变形能力,对三角变换的要求有所降低。三角化简、求值、恒等式证明。图象。最值。 3、对三角函数的考查主要来自于:①课本是试题的基本来源,是高考命题的主要依据,大多数试题的产生是在课本题的基础上组合、加工和发展的结果。②历年高考题成为新高考题的借鉴,有先例可循。 二、典例剖析 例1:函数22()cos 2cos 2x f x x =-的一个单调增区间是 A .2(,)33ππ B .(,)62ππ C .(0,)3π D .(,)66 ππ- 【解析】函数22()cos 2cos 2 x f x x =-=2cos cos 1x x --,从复合函数的角度看,原函数看作2()1g t t t =--,cos t x =,对于2()1g t t t =--,当1[1,]2t ∈-时,()g t 为减函数,当1[,1]2 t ∈时,()g t 为增函数,当2(,)33x ππ∈时,cos t x =减函数,且11(,)22 t ∈-, ∴ 原函数此时是单调增,选A 【温馨提示】求复合函数的单调区间时,需掌握复合函数的性质,以及注意定义域、自变量系数的正负.求复合函数的单调区间一般思路是:①求定义域;②确定复合过程;③根据外层函数f(μ)的单调性,确定φ(x)的单调性;④写出满足φ(x)的单调性的含有x 的式子,并解出x 的范围;⑤得到原函数的单调区间(与定义域求交).求解时切勿盲目判断. 例2、已知tan 2θ=. (Ⅰ)求tan 4πθ??+ ??? 的值; (Ⅱ)求cos2θ的值. 【解析】 (Ⅰ)∵tan 2θ=, tan tan 4tan 41tan tan 4π θπθπθ+??∴+= ???-

高中数学三角函数公式大全全解

三角函数公式 1.正弦定理: A a sin = B b sin =C c sin = 2R (R 为三角形外接圆半径) 2.余弦定理:a 2=b 2+c 2-2bc A cos b 2=a 2+c 2-2ac B cos c 2=a 2+b 2-2ab C cos bc a c b A 2cos 2 22-+= 3.S ⊿= 21a a h ?=21ab C sin =21bc A sin =21ac B sin =R abc 4=2R 2A sin B sin C sin =A C B a sin 2sin sin 2=B C A b sin 2sin sin 2=C B A c sin 2sin sin 2=pr=))()((c p b p a p p --- (其中)(2 1 c b a p ++=, r 为三角形内切圆半径) 4.诱导公试 注:奇变偶不变,符号看象限。 注:三角函数值等于α的同名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名不变,符号看象限 注:三角函数值等于α的 异名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:

函数名改变,符号看象限 5.和差角公式 ①βαβαβαsin cos cos sin )sin(±=± ②βαβαβαsin sin cos cos )cos( =± ③β αβ αβαtg tg tg tg tg ?±= ± 1)( ④)1)((βαβαβαtg tg tg tg tg ?±=± 6.二倍角公式:(含万能公式) ①θ θ θθθ2 12cos sin 22sin tg tg += = ②θ θ θθθθθ2 22 2 2 2 11sin 211cos 2sin cos 2cos tg tg +-=-=-=-= ③θθθ2122tg tg tg -= ④22cos 11sin 222θθθθ-=+=tg tg ⑤22cos 1cos 2 θθ+= 7.半角公式:(符号的选择由 2 θ 所在的象限确定) ①2cos 12 sin θθ -± = ②2 cos 12sin 2θ θ-= ③2cos 12cos θθ+±= ④2cos 12 cos 2 θθ += ⑤2sin 2cos 12θθ=- ⑥2 cos 2cos 12θθ=+ ⑦2 sin 2 cos )2 sin 2 (cos sin 12θ θθθθ±=±=± ⑧θ θ θθθθθ sin cos 1cos 1sin cos 1cos 12 -=+=+-± =tg 8.积化和差公式: [])sin()sin(21cos sin βαβαβα-++=[] )sin()sin(21 sin cos βαβαβα--+=[])cos()cos(21cos cos βαβαβα-++= ()[]βαβαβα--+-=cos )cos(2 1 sin sin 9.和差化积公式:

高三数学必背公式总结

高三数学必背公式总结 高三数学必背公式总结汇总 一、对数函数 log.a(MN)=logaM+logN loga(M/N)=logaM-logaN logaM^n=nlogaM(n=R) logbN=logaN/logab(a>0,b>0,N>0 a、b均不等于1) 二、简单几何体的面积与体积 S直棱柱侧=c*h(底面周长乘以高) S正棱椎侧=1/2*c*h′(底面的周长和斜高的一半) 设正棱台上、下底面的周长分别为c′,c,斜高为h′,S=1/2*(c+c′)*h S圆柱侧=c*l S圆台侧=1/2*(c+c′)*l=兀*(r+r′)*l S圆锥侧=1/2*c*l=兀*r*l S球=4*兀*R^3 V柱体=S*h V锥体=(1/3)*S*h V球=(4/3)*兀*R^3 三、两直线的位置关系及距离公式 (1)数轴上两点间的距离公式|AB|=|x2-x1| (2) 平面上两点A(x1,y1),(x2,y2)间的距离公式 |AB|=sqr[(x2-x1)^2+(y2-y1)^2] (3) 点P(x0,y0)到直线l:Ax+By+C=0的距离公式 d=|Ax0+By0+C|/sqr (A^2+B^2) (4) 两平行直线l1:=Ax+By+C=0,l2=Ax+By+C2=0之间的距离d=|C1- C2|/sqr(A^2+B^2) 同角三角函数的基本关系及诱导公式 sin(2*k*兀+a)=sin(a)

tan(2*兀+a)=tana sin(-a)=-sina,cos(-a)=cosa,tan(-a)=-tana sin(2*兀-a)=-sina,cos(2*兀-a)=cosa,tan(2*兀-a)=-tana sin(兀+a)=-sina sin(兀-a)=sina cos(兀+a)=-cosa cos(兀-a)=-cosa tan(兀+a)=tana 四、二倍角公式及其变形使用 1、二倍角公式 sin2a=2*sina*cosa cos2a=(cosa)^2-(sina)^2=2*(cosa)^2-1=1-2*(sina)^2 tan2a=(2*tana)/[1-(tana)^2] 2、二倍角公式的变形 (cosa)^2=(1+cos2a)/2 (sina)^2=(1-cos2a)/2 tan(a/2)=sina/(1+cosa)=(1-cosa)/sina 五、正弦定理和余弦定理 正弦定理: a/sinA=b/sinB=c/sinC 余弦定理: a^2=b^2+c^2-2bccosA b^2=a^2+c^2-2accosB c^2=a^2+b^2-2abcosC cosA=(b^2+c^2-a^2)/2bc cosB=(a^2+c^2-b^2)/2ac cosC=(a^2+b^2-c^2)/2ab tan(兀-a)=-tana sin(兀/2+a)=cosa sin(兀/2-a)=cosa

高三数学三角函数经典练习题及复习资料精析

1.将函数()2sin 2x f x =的图象向右移动02π???? << ?? ? 个单位长度, 所得的部分图象如右图所示,则?的值为( ) A .6 π B .3 π C .12 π D .23 π 2.已知函数()sin 23f x x π??=+ ?? ? ,为了得到()sin 2g x x =的图象,则 只需将()f x 的图象( ) A .向右平移3π个长度单位 B .向右平移6 π个长度单位 C .向左平移6π个长度单位 D .向左平移3 π 个长度单位 3.若113sin cos αα +=sin cos αα=( ) A .13- B .13 C .13-或1 D .13或-1 4.2014cos()3 π的值为( ) A .12 B . 3 2 C .12- D .32 - 5.记cos(80),tan 80k -?=?那么= ( ). A 2 1k -.2 1k - C 2 1k -.2 1k k -- 6.若sin a = -45 ,a 是第三象限的角,则sin()4 a π +=( ) (A )-7210 (B ) 7210 (C )2 - 10 (D ) 210

7 .若 55 2) 4 sin(2cos -=+ π αα,且)2 ,4(ππα∈,则α2tan 的值为( ) A .3 4- B .4 3- C .4 3 D .3 4 8.已知函数)sin(cos )cos(sin )(x x x f +=,则下列结论正确的是 ( ) A .)(x f 的周期为π B .)(x f 在)0,2 (π-上单调递减 C .)(x f 的最大值为2 D .)(x f 的图象关于直线π=x 对称 9.如图是函数2(ωφ),φ<2 π的图象,那么 A.ω=11 10,φ=6 π B.ω=10 11,φ6π C.ω=2,φ=6 π D.ω =2,φ6 π 10.要得到函数sin(4)3 y x π=-的图象,只需要将函数sin 4y x =的 图象( ) A .向左平移3 π个单位 B .向右平移3 π 个单位 C .向左平移12π个单位 D .向右平移12 π个单位 11.要得到12cos -=x y 的图象,只需将函数x y 2sin =的图象

高考数学必背公式总结

高考公式大总结 根式 当n 为奇数时,a a n n =; 当n 为偶数时,???<-≥==0,0,a a a a a a n n . 正数的正(负)分数指数幂: 1.n m n m a a =1,,0(*>∈>n N n m a ,且) 2.n m n m a a 1 = -1,,0(*>∈>n N n m a ,且). 整数指数幂的运算性质: (1)();,,0Q s r a a a a s r s r ∈>=+ (2)() ()Q s r a a a rs s r ∈>=,,0; (3)()()Q r b a b a ab r r r ∈>>=,0,0. (4)();,,0Q s r a a a a s r s r ∈>=÷- 对数 (1)对数的性质: ① N a N a =log ; ② N a N a =log ; ③ a N N b b a log log log = (换底公式); (2)对数的运算法则: ① ();log log log N M MN a a a += ② ;log log log N M N M a a a -= ③ M n M a n a log log =; 错误! M m n M a n a m log log = ① 常用对数:以10为底的对数叫做常用对 数,并把log 10N 记作_lg 10; ② 自然对数:以_e_为底的对数称为自然对 数,并把loge N 记作ln N . 1.同角三角函数的基本关系 1cos sin 22=+αα αααtan cos sin =(Z k k ∈+≠,2 ππ α) 2.诱导公式的规律: 三角函数的诱导公式可概括为:奇变偶不变,符号看 象限.其中“奇变偶不变”中的奇、偶分别是指π 2 的 奇数倍和偶数倍,变与不变是指函数名称的变化.若是奇数倍,则正、余弦互变;若是偶数倍,则函数名称不变.“符号看象限”是把α当锐角时,原三角函数式中的2πα?? + ??? 所在象限的原三角函数值的符号. 二倍角公式: αααcos sin 22sin =; ααα22sin cos 2cos -==1cos 22-α =α2sin 21-; α α α2 tan 1tan 22tan -= 三角恒等变换 ()βαβαβαsin cos cos sin sin ±=±; ()βαβαβαsin sin cos cos cos =±; ()β αβ αβαtan tan 1tan tan tan ±= ±; 解三角形 1.正弦定理: R C c B b A a 2sin sin sin === 正弦定理的三种变式:

高考数学三角函数知识点总结及练习

三角函数总结及统练 一. 教学内容: 三角函数总结及统练 (一)基础知识 1. 与角α终边相同的角的集合},2{Z k k S ∈+==απβ 2. 三角函数的定义(六种)——三角函数是x 、y 、r 三个量的比值 3. 三角函数的符号——口诀:一正二弦,三切四余弦。 4. 三角函数线 正弦线MP=αsin 余弦线OM=αcos 正切线AT=αtan 5. 同角三角函数的关系 平方关系:商数关系: 倒数关系:1cot tan =?αα 1c s c s i n =?αα 1s e c c o s =?αα 口诀:凑一拆一;切割化弦;化异为同。 6. 诱导公式——口诀:奇变偶不变,符号看象限。 α απ+k 2 α- απ- απ+ απ-2 α π -2 α π +2

正弦 αsin αsin - αsin αsin - αsin - αcos αcos 余弦 αcos αcos αcos - αcos - αcos αsin αsin - 正切 αtan αtan - αtan - αtan αtan - αcot αcot - 余切 αcot αcot - αcot - αcot αcot - αtan αtan - 7. 两角和与差的三角函数 ?????? ? ?+-=-?-+=+?????????+?=-?-?=+?-?=-?+?=+βαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβαt a n t a n 1t a n t a n )t a n (t a n t a n 1t a n t a n )t a n (s i n s i n c o s c o s )c o s (s i n s i n c o s c o s )c o s (s i n c o s c o s s i n )s i n (s i n c o s c o s s i n )s i n ( 8. 二倍角公式——代换:令αβ= ??????? -= -=-=-=?=ααααααααααα22222tan 1tan 22tan sin cos sin 211cos 22cos cos sin 22sin 降幂公式?????? ?+=-=22cos 1cos 22cos 1sin 22αααα 半角公式: 2cos 12 sin αα -± =;2cos 12cos αα+±=; αα αcos 1cos 12tan +-± = αα ααα cos 1sin sin cos 12 tan += -= 9. 三角函数的图象和性质 函数 x y sin = x y cos = x y tan =

广州艺术生高考数学复习资料3三角函数性质与图像

三角函数性质与图像 知识清单: .......... 函数s i n ()y A x ω?=+的图像和性质以函数sin y x =为基础,通过图像变换来把握.如①sin y x =????→图例变化为 ②sin()y A x ω?=+(A >0,ω>0)相应地, ①的单调增区间2,22 2 k k ππππ??-++?? ? ? ??? →变为 222 2 k x k π π πω?π- +++≤≤ 的解集是②的增区间. 注:⑴)sin(?ω+=x y 或cos()y x ω?=+(0≠ω )的周期ω π 2= T ; ⑵sin()y x ω?=+的对称轴方程是2 x k π π=+ (Z k ∈),对称中心(,0)k π; cos()y x ω?=+的对称轴方程是x k π=(Z k ∈) ,对称中心1(,0) 2 k ππ+; )tan(?ω+=x y 的对称中心( 0,2πk ). 课前预习 1.函数sin cos y x x =-的最小正周期是 2π . 2. 函数1 π2sin()23 y x =+ 的最小正周期T = 4π . 3.函数sin 2 x y =的最小正周期是2π

4.函数]),0[)(26 sin( 2ππ ∈-=x x y 为增函数的区间是]6 5, 3 [ ππ 5.函数22cos()( )3 6 3 y x x π π π=- ≤≤的最小值是1 6.为了得到函数)6 2sin(π-=x y 的图象,可以将函数x y 2cos =的图象向左平移3 π 个单位长度 7.将函数sin y x =的图象上各点的横坐标扩大为原来的2倍,纵坐标不变,再把所得图象上所有点向左平移 3 π 个单位,所得图象的解析式是y=sin( 2 1x+ 6 π ). 8. 函数sin y x x =+ 在区间[0, 2 π ]的最小值为___1___. 9.已知f (x )=5sin x cos x -35cos 2 x + 3 2 5(x ∈R ) ⑴求f (x )的最小正周期;y=5sin(2x-3π ) T=π ⑵求f (x )单调区间;[k 12 π π- ,k π+ 12 5π], [k 12 5ππ+ ,k π+ 12 11π]k Z ∈ ⑶求f (x )图象的对称轴,对称中心。x=1252ππ+k ,( 0,6 2π π+ k ) k Z ∈ 典型例题 例1、三角函数图像变换 将函数1 2cos()3 2 y x π=+的图像作怎样的变换可以得到函数cos y x =的图像? 变式1:将函数cos y x =的图像作怎样的变换可以得到函数2cos(2)4 y x π =-的图像? 例2、已知简谐运动π π()2sin 32f x x ????? ?=+< ? ???? ?的图象经过点(01),,则该简谐运动的最 小正周期T 和初相?分别为6T =,π6 = 例3、三角函数性质 求函数34sin(2)2 3 y x ππ= + 的最大、最小值以及达到最大(小)值时x 的值的集合.; 变式1:函数y =2sin x 的单调增区间是[2k π-2 π ,2k π+ 2 π ](k ∈Z ) 变式2、下列函数中,既是(0, 2 π)上的增函数,又是以π为周期的偶函数是( B) (A)y =lg x 2 (B)y =|sin x | (C)y =cos x (D)y=x 2sin 2 变式3、已知? ? ???? ∈2, 0πx ,求函数)12 5cos( )12 cos( x x y +--=ππ 的值域y=2sin (x+ 6 π )?? ? ??2,22 变式4、已知函数12 ()log (sin cos )f x x x =- y=log 2 1()4 sin(2π -x ) ⑴求它的定义域和值域;(2k 4 52,4 πππ π+ + k ) k ∈Z ?? ? ?? ?+∞- ,21

高考数学复习三角函数常用公式

2019年高考数学复习三角函数常用公式 常见的三角函数包括正弦函数、余弦函数和正切函数。以下是三角函数常用公式,请打击学习记忆。 两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA) 倍角公式 tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cota cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a sin+sin(+2/n)+sin(+2*2/n)+sin(+2*3/n)++sin[+2*(n-1)/n]=0 cos+cos(+2/n)+cos(+2*2/n)+cos(+2*3/n)++cos[+2*(n-1)/n]=0 以及 sin^2()+sin^2(-2/3)+sin^2(+2/3)=3/2 tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0 四倍角公式: sin4A=-4*(cosA*sinA*(2*sinA^2-1)) cos4A=1+(-8*cosA^2+8*cosA^4) tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)

文科高考数学必背公式

文科高考数学必背公式

文科高考数学必背公式 高中数学诱导公式全集: 常用的诱导公式有以下几组: 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα (k∈Z) cos(2kπ+α)=cosα (k∈Z) tan(2kπ+α)=tanα (k∈Z) cot(2kπ+α)=cotα (k∈Z) 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三:

任意角α与 -α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα

公式六: π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα

高考数学三角函数公式

高考数学三角函数公式 同角三角函数的基本关系式 倒数关系: 商的关系:平方关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα sin2α+cos2α=1 1+tan2α=sec2α 1+cot2α=csc2α (六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。”) 诱导公式(口诀:奇变偶不变,符号看象限。) sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα sin(2kπ+α)=sinα

高中数学教案三角函数的图象与性质

高中数学教案三角函数的图象及性质 精编习题 三角函数的图象及性质 一、知识网络 二、高考考点 (一)三角函数的性质 1、三角函数的定义域,值域或最值问题; 2、三角函数的奇偶性及单调性问题;常见题型为:三角函数为奇 函数(或偶函数)的充要条件的应用;寻求三角函数的单调区间;比较大小的判断等. 3、三角函数的周期性;寻求型三角函数的周期以及 难度较高的含有绝对值的三角函数的周期. (二)三角函数的图象 1、基本三角函数图象的变换; 2、型三角函数的图象问题;重点是“五点法”作草

图的逆用:由给出的一段函数图象求函数解析式; 3、三角函数图象的对称轴或对称中心:寻求或应用; 4、利用函数图象解决应用问题. (三)化归能力以及关于三角函数的认知变换水平. 三、知识要点 (一)三角函数的性质 1、定义域及值域 2、奇偶性 (1)基本函数的奇偶性奇函数:y=sinx,y=tanx;偶函数:y=cosx. (2)型三角函数的奇偶性 (ⅰ)g(x)=(x∈R) g(x)为偶函数 由此得; 同理,为奇函数 . (ⅱ) 为偶函数;为奇函 数 . 3、周期性 (1)基本公式

(ⅰ)基本三角函数的周期y=sinx,y=cosx的周期为;y=tanx,y=cotx的周期为 . (ⅱ)型三角函数的周期 的周期为; 的周期为 . (2)认知 (ⅰ)型函数的周期 的周期为; 的周期为 . (ⅱ)的周期 的周期为; 的周期为 . 均同它们不加绝对值时的周期相同,即对y=的解析式施加绝对值后,该函数的周期不变.注意这一点及(ⅰ)的区别. (ⅱ)若函数为型两位函数之和,则探求周期适于“最小公倍数法”. (ⅲ)探求其它“杂”三角函数的周期,基本策略是试验――猜想――证明. (3)特殊情形研究

高考数学三角函数复习专题

三角函数复习专题 一、核心知识点归纳: ★★★1、正弦函数、余弦函数和正切函数的图象与性质: sin y x = cos y x = tan y x = 图象 定义域 R R ,2x x k k ππ?? ≠+∈Z ???? 值域 []1,1- []1,1- R 最值 当22 x k π π=+ () k ∈Z 时,max 1y =; 当22 x k π π=- ()k ∈Z 时,min 1y =-. 当()2x k k π=∈Z 时, max 1y =; 当2x k ππ=+ ()k ∈Z 时,min 1y =-. 既无最大值也无最小值 周期性 2π 2π π 奇偶性 奇函数 偶函数 奇函数 单调性 在2,22 2k k π πππ? ? - + ??? ? ()k ∈Z 上是增函数;在 32,222k k ππππ??++??? ? ()k ∈Z 上是减函数. 在[]()2,2k k k πππ-∈Z 上是增函数;在 []2,2k k πππ+ ()k ∈Z 上是减函数. 在,2 2k k π πππ? ? - + ?? ? ()k ∈Z 上是增函数. 对称性 对称中心()(),0k k π∈Z 对称轴 ()2 x k k π π=+ ∈Z 对称中心 (),02k k ππ? ?+∈Z ?? ? 对称轴()x k k π=∈Z 对称中心 (),02k k π?? ∈Z ??? 无对称轴 ★★2.正、余弦定理:在ABC ?中有: 函 数 性 质

①正弦定理: 2sin sin sin a b c R A B C ===(R 为ABC ?外接圆半径) 2sin 2sin 2sin a R A b R B c R C =??=??=? ? sin 2sin 2sin 2a A R b B R c C R ? =?? ? =?? ? =?? 注意变形应用 ②面积公式:111 sin sin sin 222 ABC S abs C ac B bc A ?= == ③余弦定理: 222222 2222cos 2cos 2cos a b c bc A b a c ac B c a b ab C ?=+-?=+-??=+-? ? 222 222222 cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab ?+-=?? +-?=???+-= ?? 二、练习题 1、角α的终边过点 b b 则且(,5 3 cos ),4,--=α的值( ) A 、3 B 、-3 C 、3± D 、5 2、已知2π θπ<<,3 sin()25 πθ+=-,则tan(π-θ)的值为( ) A .34 B .43 C .34- D .4 3 - 3、2(sin cos )1y x x =--是 ( ) A .最小正周期为2π的偶函数 B .最小正周期为2π的奇函数 4、为得到函数πcos 3y x ? ?=+ ?? ?的图象,只需将函数sin y x =的图像( ) A .向左平移π 6个长度单位 B .向右平移 π 6 个长度单位 C .向左平移5π 6 个长度单位 D .向右平移 5π 6 个长度单位 5、()sin()(0,0,||)2 f x A x A ωφωφπ =+>>< 是( ) A. y = 2sin(x -4π) B. y = 2sin(x +4π) C. y = 2sin (2x -8π) D. y = 2sin (2x +8 π )

高考数学必背公式大全

高考数学必背公式大全 由于高中数学公式很多,同学们复习的时候不方便查阅,下面是我给大家带来的高考必背数学公式,希望能帮助到大家! 高考必背数学公式1 两角和公式 sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-sinbcosa cos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinb tan(a+b)=(tana+tanb)/(1-tanatanb)tan(a-b)=(tana-tanb)/(1+tanatanb ) ctg(a+b)=(ctgactgb-1)/(ctgb+ctga)ctg(a-b)=(ctgactgb+1)/(ctgb-ctga ) 倍角公式 tan2a=2tana/(1-tan2a)ctg2a=(ctg2a-1)/2ctga cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a 半角公式 sin(a/2)=√((1-cosa)/2)sin(a/2)=-√((1-cosa)/2) cos(a/2)=√((1+cosa)/2)cos(a/2)=-√((1+cosa)/2) tan(a/2)=√((1-cosa)/((1+cosa))tan(a/2)=-√((1-cosa)/((1+cosa)) ctg(a/2)=√((1+cosa)/((1-cosa))ctg(a/2)=-√((1+cosa)/((1-cosa)) 高考必背数学公式2 和差化积

1、2sinacosb=sin(a+b)+sin(a-b)2cosasinb=sin(a+b)-sin(a-b) 2、2cosacosb=cos(a+b)-sin(a-b)-2sinasinb=cos(a+b)-cos(a-b) 3、sina+sinb=2sin((a+b)/2)cos((a-b)/2cosa+cosb=2cos((a+b)/2)sin((a-b)/2) 4、tana+tanb=sin(a+b)/cosacosbtana-tanb=sin(a-b)/cosacosb 5、ctga+ctgbsin(a+b)/sinasinb-ctga+ctgbsin(a+b)/sinasinb 等差数列 1、等差数列的通项公式为: an=a1+(n-1)d(1) 2、前n项和公式为: Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2) 从(1)式可以看出,an是n的一次数函(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0. 在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项. , 且任意两项am,an的关系为: an=am+(n-m)d 它可以看作等差数列广义的通项公式. 3、从等差数列的定义、通项公式,前n项和公式还可推出: a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}

(完整版)高中数学三角函数历年高考题汇编(附答案)

三角函数历年高考题汇编 一.选择题1、(2009)函数 22cos 14y x π? ?=-- ?? ?是 A .最小正周期为π的奇函数 B .最小正周期为π的偶函数 C .最小正周期为 2π的奇函数 D .最小正周期为2 π 的偶函数 2、(2008)已知函数 2()(1cos 2)sin ,f x x x x R =+∈,则()f x 是( ) A 、最小正周期为π的奇函数 B 、最小正周期为2π 的奇函数 C 、最小正周期为π的偶函数 D 、最小正周期为2 π 的偶函数 3.(2009浙江文)已知a 是实数,则函数()1sin f x a ax =+的图象不可能... 是( ) 4.(2009山东卷文)将函数 sin 2y x =的图象向左平移 4 π 个单位, 再向上平移1个单位,所得图象的函数解析式是 A. 22cos y x = B. 2 2sin y x = C.)4 2sin(1π++=x y D. cos 2y x = 5.(2009江西卷文)函数()(13)cos f x x x =的最小正周期为 A .2π B . 32π C .π D . 2 π 6.(2009全国卷Ⅰ文)如果函数3cos(2)y x φ=+的图像关于点4( ,0)3 π 中心对称,那么φ的最小值为 A. 6π B.4π C. 3π D. 2π 7.(2008海南、宁夏文科卷)函数 ()cos 22sin f x x x =+的最小值和最大值分别为( ) A. -3,1 B. -2,2 C. -3, 3 2 D. -2, 32 8.(2007海南、宁夏)函数 πsin 23y x ??=- ???在区间ππ2?? -???? ,的简图是( )

高中数学教师备课必备系列(三角函数(一)专题9 三角函数图像与性质

专题九三角函数图像与性质.正弦函数、余弦函数、正切函数的图像 .三角函数的单调区间: 的递增区间是,递减区间是 ; 的递增区间是,递减区间是, 的递增区间是, .函数 最大值是,最小值是,周期是,频率是,相位是,初相是;其图象的对称轴是直线,凡是该图象与直线的交点都是该图象的对称中心。 .由=的图象变换出=(ω+)的图象一般有两个途径,只有区别开这两个途径,才能灵活进

行图象变换。 利用图象的变换作图象时,提倡先平移后伸缩,但先伸缩后平移也经常出现无论哪种变形,请切记每一个变换总是对字母而言,即图象变换要看“变量”起多大变化,而不是“角变化”多少。 途径一:先平移变换再周期变换 (伸缩变换) 先将=的图象向左(>)或向右(<=平移||个单位,再将图象上各点的横坐标变为原来的 倍(ω>),便得=(ω+)的图象。 途径二:先周期变换(伸缩变换)再平移变换。 先将=的图象上各点的横坐标变为原来的倍(ω>),再沿轴向左(>)或向右(<=平移 个单位,便得=(ω+)的图象。 .由=(ω+)的图象求其函数式: 给出图象确定解析式(ω)的题型,有时从寻找“五点”中的第一零点(-,)作为突破口, 要从图象的升降情况找准 ..第一个零点的位置。 .对称轴与对称中心: 的对称轴为,对称中心为; 的对称轴为,对称中心为; 对于和来说,对称中心与零点相联系,对称轴与最值点联系。 .求三角函数的单调区间:一般先将函数式化为基本三角函数的标准式,要特别注意、的正负利用单调性三角函数大小一般要化为同名函数,并且在同一单调区间; .求三角函数的周期的常用方法: 经过恒等变形化成“、”的形式,在利用周期公式,另外还有图像法和定义法。 .五点法作(ω)的简图: 五点取法是设ω,由取、、π、、π来求相应的值及对应的值,再描点作图。 四.典例解析

高中数学三角函数公式大全

高中数学三角函数公式大全 三角函数看似很多,很复杂,而掌握三角函数的内部规律及本质也是学好三角函数的关键所在,下面是三角函数公式大全:操作方法 01 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) = (tanA+tanB)/(1-tanAtanB) tan(A-B) = (tanA-tanB)/(1+tanAtanB) cot(A+B) = (cotAcotB-1)/(cotB+cotA) cot(A-B) = (cotAcotB+1)/(cotB-cotA)

02 倍角公式 tan2A = 2tanA/(1-tan^2 A) Sin2A=2SinA?CosA Cos2A = Cos^2 A--Sin^2 A =2Cos^2 A—1 =1—2sin^2 A 三倍角公式 sin3A = 3sinA-4(sinA)^3; cos3A = 4(cosA)^3 -3cosA -a) tan3a = tan a ? tan(π/3+a)? tan(π/3 半角公式 --cosA)/2} sin(A/2) = √{(1 cos(A/2) = √{(1+cosA)/2} --cosA)/(1+cosA)} tan(A/2) = √{(1 cot(A/2) = √{(1+cosA)/(1 -cosA)} tan(A/2) = (1--cosA)/sinA=sinA/(1+cosA)

高考数学重点难点讲解之三角函数的图像和性质

难点15 三角函数的图象和性质 三角函数的图象和性质是高考的热点,在复习时要充分运用数形结合的思想,把图象和性质结合起来.本节主要帮助考生掌握图象和性质并会灵活运用. ●难点磁场 (★★★★)已知α、β为锐角,且x(α+β-2π)>0,试证不等式f(x)=)sin cos ()sin cos (αββα+x x <2对一切非零实数都成立. ●案例探究 [例1]设z1=m+(2-m2)i,z2=cos θ+(λ+sin θ)i,其中m,λ,θ∈R ,已知z1=2z2,求λ的取值范围. 命题意图:本题主要考查三角函数的性质,考查考生的综合分析问题的能力和等价转化思想的运用,属★★★★★级题目. 知识依托:主要依据等价转化的思想和二次函数在给定区间上的最值问题来解决. 错解分析:考生不易运用等价转化的思想方法来解决问题. 技巧与方法:对于解法一,主要运用消参和分离变量的方法把所求的问题转化为二次函数在给定区间上的最值问题;对于解法二,主要运用三角函数的平方关系把所求的问题转化为二次函数在给定区间上的最值问题. 解法一:∵z1=2z2, ∴m+(2-m2)i=2cos θ+(2λ+2sin θ)i,∴ ???+=-=θλθ sin 222cos 22m m ∴λ=1-2cos2θ-sin θ=2sin2θ-sin θ-1=2(sin θ-41)2-89 . 当sin θ=41时λ取最小值-89 ,当sin θ=-1时,λ取最大值2. 解法二:∵z1=2z2 ∴ ???+=-=θλθsin 222cos 22m m

∴??????? --==222sin 2cos 2 λθθm m , ∴4)22(42 22λ--+m m =1. ∴m4-(3-4λ)m2+4λ2-8λ=0,设t=m2,则0≤t ≤4, 令f(t)=t2-(3-4λ)t+4λ2-8λ,则 ???????? ?≥≥≤-≤ ≥?0 )4(0)0(424300 f f λ或f(0)·f(4)≤0 ∴??? ??? ??? ≤≥≤≤≤≤--≥02204345 89λλλλλ或或 ∴-89 ≤λ≤0或0≤λ≤2. ∴λ的取值范围是[-89 ,2]. [例2]如右图,一滑雪运动员自h=50m 高处A 点滑至O 点,由于运动员的技巧(不计阻力),在O 点保持速率v0不为,并以倾角θ起跳,落至B 点,令OB=L ,试问,α=30°时,L 的最大值为多少?当L 取最大值时,θ为多大? 命题意图:本题是一道综合性题目,主要考查考生运用数学知识来解决物理问题的能力.属★★★★★级题目. 知识依托:主要依据三角函数知识来解决实际问题. 错解分析:考生不易运用所学的数学知识来解决物理问题,知识的迁移能力不够灵活. 技巧与方法:首先运用物理学知识得出目标函数,其次运用三角函数的有关知识来解决实际问题. 解:由已知条件列出从O 点飞出后的运动方程:

高考数学总复习三角函数

高三数学二轮专题复习教案――三角函数 一、本章知识结构: 二、重点知识回顾 1、终边相同的角的表示方法:凡是与终边α相同的角,都可以表示成k ·3600+α的形式,特例,终边在x 轴上的角集合{α|α=k ·1800,k ∈Z},终边在y 轴上的角集合{α|α=k ·1800+900,k ∈Z},终边在坐标轴上的角的集合{α|α=k ·900,k ∈Z}。在已知三角函数值的大小求角的大小时,通常先确定角的终边位置,然后再确定大小。 理解弧度的意义,并能正确进行弧度和角度的换算; ⑴角度制与弧度制的互化:π弧度ο 180=, 1801π = ο弧度,1弧度 ο )180 ( π ='1857ο≈ ⑵弧长公式:R l θ=;扇形面积公式: Rl R S 21212==θ。 2、任意角的三角函数的定义、三角函数的符号规律、特殊角的三角函数值、同角三角函数的关系式、 诱导公式: (1)三角函数定义:角α中边上任意一点P 为),(y x ,设r OP =||则: ,cos ,sin r x r y == ααx y =αtan (2)三角函数符号规律:一全正,二正弦,三正切,四余弦; (3)特殊角的三角函数值 α 6π 4π 3π 2π π 23π 2π sin α 0 21 22 23 1 -1 cos α 1 23 22 21 0 -1 0 1

tan α 0 33 1 3 不存在 0 不存在 0 (3)同角三角函数的基本关系: x x x x x tan cos sin ; 1cos sin 22==+ (4)诱导公式(奇变偶不变,符号看象限): sin(πα-)=sin α,cos(πα-)=-cos α,tan(πα-)=-tan α sin(πα+)=-sin α,cos(πα+)=-cos α,tan(πα+)=tan α sin(α-)=-sin α,cos(α-)=cos α,tan(α-)=-tan α sin(2πα-)=-sin α,cos(2πα-)=cos α,tan(2πα-)=-tan α sin(2k πα+)=sin α,cos(2k πα+)=cos α,tan(2k πα+)=tan α,()k Z ∈ sin(2 π α -)=cos α,cos(2 π α -)=sin α sin(2 π α +)=cos α,cos(2 π α +)=-sin α 3、两角和与差的三角函数 (1)和(差)角公式 ①;sin cos cos sin )sin(βαβαβα±=± ②;sin sin cos cos )cos( βαβαβαμ=±③βαβ αβαtan tan 1tan tan )tan(μ±= ± (2)二倍角公式 二倍角公式:①αααcos sin 22sin =; ②ααααα2 222sin 211cos 2sin cos 2cos -=-=-=;③ ααα2tan 1tan 22tan -= (3)经常使用的公式 ①升(降)幂公式: 21cos 2sin 2αα-= 、21cos 2cos 2αα+=、1 sin cos sin 22ααα =; ②辅助角公式:sin cos )a b ααα?+=+(?由,a b 具体的值确定); ③正切公式的变形:tan tan tan()(1tan tan )αβαβαβ+=+-?. 4、三角函数的图象与性质 (一)列表综合三个三角函数sin y x =,cos y x =,tan y x =的图象与性质,并挖掘: ⑴最值的情况; ⑵了解周期函数和最小正周期的意义.会求sin()y A x ω?=+的周期,或者经过简单的恒等变形可化为上

相关主题
文本预览
相关文档 最新文档