当前位置:文档之家› LCD文字显示实验82

LCD文字显示实验82

LCD文字显示实验82
LCD文字显示实验82

单片机原理及应用试验报告

题目:LCD文字显示实验

系别:物理与电子科学系专业: 物理学

姓名:胡逢雪学号: 201003024082 班级: 2010级物本班

指导教师:阳瑞新

完成日期: 2013年5月20日

目录

一、实验目的 (1)

二、LCD 模块 (2)

三、LCD与8x51的链接图 (7)

四、功能示意图 (8)

五、流程图 (8)

六、LCD文字显示程序 (9)

七、动态显示屏的系统调试与功能 (11)

八、设计小结 (12)

LCD文字显示实验LCD(Liquid Crystal Display)为液晶显示器面板,由于LCD的控制需要专用的驱动电路,且LCD面板的连线需要特殊的技巧,加上LCD面板结构比较脆弱,通常不会单独使用。而是将LCD面板、驱动与控制电路结合而成一个LCD模块(Liquid Crystal Display Moulde,LCM).LCM是一种很省电的显示器件,常被应用在数字或微型计算机控制的系统,作为简易的入机接口。

一、实验目的

1、熟悉单片机的控制流程,加深对单片机的理解和应用

2、掌握基本电路的焊接技术

3、认识LCD模块,掌握LCD与8x51的链接

4、了解LCD显示的基本原理

5、了解LCD的接口与控制方法

二、LCD 模块

(一).通过分析LCD的接口原理,根据设计的要求,以及设计的便捷性,本设计采用直接控制的方式,基于汇编和C语言的编程,采用软硬件结合的方式来实现控制,即于89C52单片机的开发板上,用89C52单片机作为芯片,用LCD1602作为液晶显示屏,以P0口作为LCD1602的数据输入,以P3.0绑定LCD1602A的RS引脚,以P3.1绑定LCD1602A 的E引脚,LCD1602A的R/W引脚接地,P0.0-P0.7对应这DB0-DB7,通过这样的形式去论证动态现实屏的结论。方框图如下:

图1-1

(二)1602型液晶显示器模块介绍

图为1602液晶显示模块

(三)、明亮度的控制电路图

1602LCD 模块

利用电位器实现对LCD的亮度调节:

电位器的结构:电位器的电阻体有两个固定端,通过手动调节转轴或

滑柄,改变了动触点在电阻体上的位置,则改变了

动触点与任一个固定端之间的电阻值,从而改变了

电压与电流的大小。

电位器的作用:电位器是随意调节改变电阻值的元件,在这里能够对

LCD进行亮度调节

(四). LCD显示模块功能特性描述

1、1602LCD的基本参数及引脚功能

1602LCD主要技术参数:

显示容量:16×2个字符

芯片工作电压:4.5—5.5V

工作电流:2.0mA(5.0V)

模块最佳工作电压:5.0V

字符尺寸:2.95×4.35(W×H)mm

指令3:光标和显示模式设置 I/D:光标移动方向,高电平右移,低电平左移 S:屏幕上所有文字是否左移或者右移。高电平表示有效,低电平则无效。

指令4:显示开关控制。 D:控制整体显示的开与关,高电平表示开显示,低电平表示关显示 C:控制光标的开与关,高电平表示有光标,低电平表示无光标 B:控制光标是否闪烁,高电平闪烁,低电平不闪烁。

指令5:光标或显示移位 S/C:高电平时移动显示的文字,低电平时移动光标。

指令6:功能设置命令 DL:高电平时为4位总线,低电平时为8位总线 N:低电平时为单行显示,高电平时双行显示 F: 低电平时显示5x7的点阵字符,高电平时显示5x10的点阵字符。

指令7:字符发生器RAM地址设置。

指令8:DDRAM地址设置。

指令9:读忙信号和光标地址 BF:为忙标志位,高电平表示忙,此时模块不能接收命令或者数据,如果为低电平表示不忙。

指令10:写数据。

指令11:读数据。

三、LCD与8x51的链接图

四、功能示意图

五、流程图

六、LCD文字显示程序

/*LCD文字显示实验(ch13-6-1.c)适用於89S51线上烧录实验板(USB版)*/ #include

#define LCDP P0 // 定义LCM 资料汇流排接至P0

sbit RS = P3^2; // 暂存器选择位元(0:指令,1:资料)

sbit RW = P3^1; // 设定读写位元(0:写入,1:读取)

sbit E = P3^0; // 致能位元(0:禁能,1:致能)

sbit BF = P0^7; // 忙碌检查位元(0:不忙,1:忙碌)

char line1[]="LCM test program";// 第1次显示字串(第1行)

char line2[]="Everything is OK";// 第1次显示字串(第2行)

char line3[]="中文LCM 测试程序";// 第2次显示字串(第1行)

char line4[]="一切正常欢迎使用";// 第2次显示字串(第2行)

void init_LCM(void); // 初始设定函数

void write_inst(char); // 写入指令函数

void write_char(char); // 写入字元资料函数

void check_BF(void); // 检查忙碌函数

void delay1ms(int); // 延迟函数

// ============ 主程序=========================== main()

{ char i; // 声明变量

init_LCM(); // 初始设定

while(1) // 无尽循环

//=====LCM test program ======

{ write_inst(0x80); // 指定第一列位置

for (i=0;i<16;i++) // 循环

write_char(line1[i]); // 显示16个字

//=====Everything is OK ======

write_inst(0x90); // 指定第二列位置

for (i=0;i<16;i++) // 循环

write_char(line2[i]); // 显示16个字

delay1ms(2000); // 延迟2秒

//===== 中文LCM 测试程序======

write_inst(0x80); // 指定第一列位置

for (i=0;i<16;i++) // 循环

write_char(line3[i]); // 显示16个字

//===== 一切正常欢迎使用======

write_inst(0x90); // 指定第二列位置

for (i=0;i<16;i++) // 循环

write_char(line4[i]); // 显示16个字

delay1ms(2000); // 延迟2秒

} // while结束

} // 主程序main()结束

//====初始设定函数(8位元传输模式)=================== void init_LCM(void)

{ write_inst(0x30); // 设定功能-8位元-基本指令

write_inst(0x30); // 设定功能-8位元-基本指令

write_inst(0x30); // 英文LCM相容设定,中交LCM可忽略write_inst(0x38); // 英文LCM设定两列,中交LCM可忽略write_inst(0x08); // 显示功能-关显示幕-无游标-游标不闪

write_inst(0x01); // 清除显示幕(填0x20,I/D=1)

write_inst(0x06); // 输入模式-位址递增-关显示幕

write_inst(0x0c); // 显示功能-开显示幕-无游标-游标不闪

} // init_LCM()函数结束

//==== 写入指令函数================================ void write_inst(char inst)

{ check_BF(); // 检查是否忙碌

LCDP = inst; // LCM读入MPU指令

RS = 0; RW = 0; E = 1; // 写入指令至LCM

check_BF(); // 检查是否忙碌

} // write_inst()函数结束

//==== 写入字元资料函数============================

void write_char(char chardata)

{ check_BF(); // 检查是否忙碌

LCDP = chardata; // LCM读入字元

RS = 1; RW = 0 ;E = 1; // 写入资料至LCM

check_BF(); // 检查是否忙碌

} // write_char()函数结束

//====检查忙碌函数================================

void check_BF(void)

{ E=0; // 禁止读写动作

do // do-while循环开始

{ BF=1; // 设定BF为输入

RS = 0; RW = 1;E = 1; // 读取BF及AC

}while(BF == 1); // 忙碌继续等

} // check_BF()函数结束

//==== 延迟函数================================

void delay1ms(int x)

{ int i,j; // 声明变量

for (i=1;i

for (j=1;j<120;j++);// 执行120次,延迟1ms

} // delay1ms()函数结束

七.动态显示屏的系统调试与功能

(一)系统的调试

硬件调试

1、液晶屏不亮。解决方法:检查显示屏是否插错了,要注意管脚的接口连接。

2、液晶屏亮,但无任何显示。解决方法:调节对比度后按复位按键。

3、液晶屏亮,但只有一排白色方框。解决方法:插紧液晶,插正单片机,按复位或者重新下载程序。

4、背光亮但不能显示,解决方法:调节对比度。

5、显示不清晰,解决方法:增大供电流或者使用外部供电。

软件调试

软件调试主要通过Keil软件进行操作,对程序编写过程中的错误进行查找,找出错误,进行修改,然后再进行编译直至编译成功,生成.HEX文件,将已经生成的HEX文件写入单片机里面,然后,点击运行,继而实现相应功能。一般出现的问题如下:

1、在进行程序编译时出现了错误,查看错误的程序段,并并进行更改,在重新编译程序。

2、编译成功了,没有发现.HEX文件时,打开文件查看编译软件中的target→options for target→output→create HEX处打勾,后在重新编译。

3、编译成功后,且发现了.HEX文件,但proteus仿真失败!此时对线路进行查看,并改正,最后模拟成功。

八.设计小结

单片机已经成为当今计算机应用中空前活跃的领域,在生活中可以说得是无处不在。因此作为二十一世纪的大学来说掌握单片机的开发技术是十分重要的。

回顾起此次单片机制作,我们感慨颇多,在这几周的日子里,从选题到最后仿真调试,可以说得是苦多于甜,但是可以学到很多的东西,同时不仅可以巩固了以前所学过的知识,而且学到了很多在书本上所没有学到过的知识。通过这次设计制作使我们懂得了理论与实际相结合是很重要的,只有理论知识是远远不够的,只有把所学的理论知识与实践相结合起来,从理论中得出结论,才能真正为社会服务,从而提高自己的实际动手能力和独立思考的能力。

当然,这其中也有很多问题,第一、不够细心比如由于粗心大意焊错了线,由于对课本理论的不熟悉导致编程出现错误。第二,是在学习态度上,这次课设是对我们的学习态度的一次检验。对于这次单片机综合课程实习。我们这次制作所遇到的多半问题多数都是由于我们不够严谨。第三,在做人上,我们认识到,无论做什么事情,只要你足够坚强,有足够的毅力与决心,有足够的挑战困难的勇气,就没有什么办不到的。最后在老师的辛勤指导和同学的帮助下,终于完成了,在此我们表示感谢!同时,对给过我们帮助的所有同学和各位指导老师再次表示忠心的感谢!

单片机实验lcd显示实验

实验19 LCD显示实验 一、实验目的: 学习液晶显示的编程方法,了解液晶显示模块的工作原理。 掌握液晶显示模块与单片机的接口方法。 二、所需设备 CPU挂箱、8031CPU模块 三、实验内容 编程实现在液晶显示屏上显示中文汉字“北京理工达盛科技有限公司”。四、实验原理说明 五、实验步骤 1、实验连线 8255的PA0~PA7接DB0~DB7,PC7接BUSY,PC0接REQ,CS8255接CS0。 2、运行实验程序,观察液晶的显示状态。 六、程序框图 七、程序清单

八、附:点阵式LCD模块 点阵式LCD模块由一大一小两块液晶模块组成。两模块均由并行的数据接口和应答信号接口两部分组成,电源由接口总线提供。 (1)OCMJ2×8液晶模块介绍及使用说明 OCMJ中文模块系列液晶显示器内含 GB 2312 16*16点阵国标一级简体汉字和ASCII8*8(半高)及8*16(全高)点阵英文字库,用户输入区位码或 ASCII 码即可实现文本显示。 OCMJ中文模块系列液晶显示器也可用作一般的点阵图形显示器之用。提供有位点阵和字节点阵两种图形显示功能,用户可在指定的屏幕位置上以点为单位或以字节为单位进行图形显示。完全兼容一般的点阵模块。 OCMJ中文模块系列液晶显示器可以实现汉字、ASCII 码、点阵图形和变化曲线的同屏显示,并可通过字节点阵图形方式造字。 本系列模块具有上/下/左/右移动当前显示屏幕及清除屏幕的命令。一改传统的使用大量的设置命令进行初始化的方法,OCMJ 中文模块所有的设置初始化工作都是在上电时自动完成的,实现了“即插即用”。同时保留了一条专用的复位线供用户选择使用,可对工作中的模块进行软件或硬件强制复位。规划整齐的10个用户接口命令代码,非常容易记忆。标准用户硬件接口采用REQ/BUSY 握手协议,简单可靠。 1)表—1:OCMJ2X8(128X32)引脚说明 硬件接口 接口协议为请求/应答(REQ/BUSY)握手方式。应答BUSY 高电平(BUSY =1)表示 OCMJ 忙于内部处理,不能接收用户命令;BUSY 低电平(BUSY =0)表示 OCMJ 空闲,等待接收用户命令。发送命令到 OCMJ可在BUSY =0 后的任意时刻开始,先把用户命令的当前字节放到数据线上,接着发高电平REQ 信号(REQ =1)通知OCMJ请求处理当前数据线上的命令或数据。OCMJ模块在收到外部的REQ高电平信号后立即读取数据线上的命令或数据,同时将应答线BUSY变为高电平,表明模块已收到数据并正在忙于对此数据的内部处理,此时,用户对模块的写操作已经完成,用户可以撤消数据线上的信号并可作模块显示以外的其他工作,也可不断地查询应答线BUSY是否为低(BUSY =0?),如果BUSY =0,表明模块对用户的写操作已经执行完毕。可以再送下一个数据。如向模块发出一个完整的显示汉字的命令,包括坐标及汉字代码在内共需5个字节,模块在接收到最后一个字节后才开始执行整个命令的内

LCD1602液晶显示实验实验报告及程序.doc

实验三 LCD1602 液晶显示实验 姓名专业学号成绩 一、实验目的 1.掌握 Keil C51 软件与 proteus 软件联合仿真调试的方法; 2.掌握 LCD1602液晶模块显示西文的原理及使用方法; 3.掌握用 8 位数据模式驱动 LCM1602液晶的 C 语言编程方法; 4.掌握用 LCM1602液晶模块显示数字的 C 语言编程方法。 二、实验仪器与设备 1.微机一台 C51 集成开发环境仿真软件三、 实验内容 1.用 Proteus 设计一 LCD1602液晶显示接口电路。要求利用 P0口接 LCD1602 液晶的数据端, ~做 LCD1602液晶的控制信号输入端。 ~口扩展 3 个功能 键 K1~K3。参考电路见后面。 2.编写程序,实现字符的静态和动态显示。显示字符为 第一行:“ 1. 姓名全拼”,第二行:“ 2. 专业全拼 +学号”。 3.编写程序,利用功能键实现字符的垂直滚动和水平滚动等效果显示。显 示字符为: “1. 姓名全拼 2.专业全拼+学号EXP8DISPLAY ” 主程序静态显示“ My information!” 四、实验原理

液晶显示的原理:采用的 LCD显示屏都是由不同部分组成的分层结构,位于最后面的一层是由荧光物质组成的可以发射光线的背光层,背光层发出的光线在穿过第一层偏振过滤层之后进入包含成千上万水晶液滴的液晶层,液晶层中的水晶液滴都被包含在细小的单元格结构中,一个或多个单元格构成屏幕上的一个像素。当 LCD中的电极产生电场时,液晶分子就会产生扭曲,从而将穿越其中的光线进行有规则的折射,然后经过第二层过滤层的过滤在屏幕上显示出来。 1.LCD1602采用标准的 14 引脚(无背光)或 16 引脚(带背光)接口,各 引脚接口说明如表: 编号符号引脚说明编号符号引脚说明 1VSS电源地9D2数据 2VDD电源正极10D3数据 3VL液晶显示偏压11D4数据 4RS数据/命令选择12D5数据 5R/W读/写选择13D6数据 6E使能信号14D7数据 7D0数据15BLA背光源正极 8D1数据16BLK背光源负极2. 1602 液晶模块内部的控制器共有11 条控制指令,如表所示:

(完整版)12864lcd显示部分试验总结报告

12864lcd显示部分试验总结报告 管岱2014.12.19 【实验目的】 在12864液晶显示屏上能够显示出在4×4小键盘上输入的激励源频率值,如输入“789HZ”、“8MHZ”、“2.3KHZ”,显示出“789H”、“8M”、“2.3K”。并且要求此部分程序有较好的可移植性,在最后对电阻率值的显示上能够较好的应用。 【实验原理】 12864-3A接口说明表: 在12864液晶显示原理的基础上,通过在ise上编写vhdl语言,使之能够在fpga学习板上顺利显示数据。

【实验内容】 12864的显示原理并不难理解,并且在以前也用汇编语言实现过,所以本次实验的难点不在于显示原理的理解,而在于VHDL语言的编写。 在实验初期,由于对vhdl语言的不熟练,我们“类比”汇编语言的显示程序,编写出如下的程序: 发现编译时就出现了问题,出现如“multi-source in unit <*> on signal <*>”的报错。在仔细调试检查后发现,我们错误的原因在于:在不同的进程中对同一个信号赋值。例如,在写指

令的进程中,将rs信号置‘0’,而在后面写数据的进程中又将rs置‘1’,由于在vhdl中各进程之间是并行的关系,因此这样编写程序会出现在同一时刻对同一个引脚赋高电平和低电平,从而出现矛盾。虽然在程序实际运行中,写指令进程在系统一上电就会完成,远早于写数据进程,但是在逻辑上这样编写是不符合VHDL语言的规则的。 因此,我们利用状态机的思想,将写指令和写数据的两个进程合二为一。程序片段如下: 利用状态机,将写指令和写数据的各个步骤分为一个一个分立的状态,顺序执行。这样编写将对同一个引脚信号的变化放在一个进程中,很好的解决了之前存在的问题。

LED灯实验报告

mcs-51单片机接口技术实验 适用:电气类专业本科学生 实验报告 实验一熟悉proteus仿真模拟器,led花样表演 一、实验目的 掌握以下方法: 1.在proteus的环境下,设计硬件原理图; 2.在keilc集成环境下设计c51语言程序; 2.在proteus的环境下,将硬件原理图与软件联接仿真运行。 二、实验环境 1.个人微机,windows操作系统 2.proteus仿真模拟器 3.keilc编程 三、实验题目 基本题:使用8051的并口带动8个led发光二极管显示一种花样表演。提高题:使用一个键切换实现3种以上花样表演。 四、实验类型: 学习、模仿与简单设计型。 五、实验步骤: 0、进入isis,先选择需要的元件,然后设计电原理图,保存文件; 1、在keilc软件集成环境下编写源程序,编译工程文件; 2、将所设计的硬件原理图与目标代码程序相联接; 4、按play键,仿真运行程序。 附,可能用到的元件名称: cpu:at89c51或任一种mcs-51家族cpu; 晶振:crystal; 电容器:capacitors,选22pf 电解电容:cap-elec或genelect10u16v 复位电阻:minres10k 限流电阻:minres330r 按键:button led:led-blue/red/yellow或diode-led (一)接线图如下: (二).基础花样 (四)程序流程图 (五)c程序 #include <> #define uint unsigned int #define uchar unsigned char const tab1[]={0xfe,0xfd,0xfb,0xf7,0xef,0xdf,0xbf,0x7f, /*正向流水灯*/ 0xbf,0xdf,0xef,0xf7,0xfb,0xfd,0xfe,0xff,};/*反向流水灯*/ const tab2[]={0xff,0x00,0xff,0x00,0xff,0x00,}; void delay() { uint i,j; for(i=0;i<256;i++) for(j=0;j<256;j++)

单片机实验--LCD显示实验

实验19L C D显示实验 一、实验目的: 学习液晶显示的编程方法,了解液晶显示模块的工作原理。 掌握液晶显示模块与单片机的接口方法。 二、所需设备 CPU挂箱、8031CPU模块 三、实验内容 编程实现在液晶显示屏上显示中文汉字“北京理工达盛科技 有限公司”。 四、实验原理说明 五、实验步骤 1、实验连线 8255的PA0~PA7接DB0~DB7,PC7接BUSY,PC0接REQ,CS8255 接CS0。 2、运行实验程序,观察液晶的显示状态。 六、程序框图 八、附:点阵式LCD 模块 点阵式LCD模块 由一大一小两块液晶 模块组成。两模块均 由并行的数据接口和 应答信号接口两部分 组成,电源由接口总 线提供。 (1)OCMJ2×8液晶 模块介绍及使 用说明 OCMJ中文模块系列液晶显示器内含 GB 2312 16*16点阵国标一级简体汉字和 ASCII8*8(半高)及8*16(全高)点阵英文字库,用户输入区位码或 ASCII 码即可实现文本显示。 OCMJ中文模块系列液晶显示器也可用作一般的点阵图形显示器

之用。提供有位点阵和字节点阵两种图形显示功能,用户可在指定的屏幕位置上以点为单位或以字节为单位进行图形显示。完全兼容一般的点阵模块。 OCMJ中文模块系列液晶显示器可以实现汉字、ASCII 码、点阵图形和变化曲线的同屏显示,并可通过字节点阵图形方式造字。 本系列模块具有上/下/左/右移动当前显示屏幕及清除屏幕的命令。一改传统的使用大量的设置命令进行初始化的方法,OCMJ 中文模块所有的设置初始化工作都是在上电时自动完成的,实现了“即插即用”。同时保留了一条专用的复位线供用户选择使用,可对工作中的模块进行软件或硬件强制复位。规划整齐的10个用户接口命令代码,非常容易记忆。标准用户硬件接口采用REQ/BUSY 握手协议,简单可靠。 硬件接口 接口协议为请求/应答(REQ/BUSY)握手方式。应答BUSY 高电平(BUSY =1)表示 OCMJ 忙于内部处理,不能接收用户命令;BUSY 低电平(BUSY =0)表示 OCMJ 空闲,等待接收用户命令。发送命令到 OCMJ可在BUSY =0 后的任意时刻开始,先把用户命令的当前字节放到数据线上,接着发高电平REQ 信号(REQ =1)通知OCMJ请求处理当前数据线上的命令或数据。OCMJ模块在收到外部的REQ高电平信号后立即读取数据线上的命令或数据,同时将应答线BUSY变为高电平,表明模块已收到数据并正在忙于对此数据的内部处理,此时,用户对模块的写操作已经完成,用户可以撤消数据线上的信号并可作模块显示以外的其他工作,也可不断地查询应答线BUSY是否为低(BUSY =0?),如果BUSY =0,表明模块对用户的写操作已经执行完毕。可以再送下一个数据。如向模块发出一个完整的显示汉字的命令,包括坐标及汉字代码在内共需5个字节,模块在接收到最后一个字节

LCD1602液晶显示实验要点

实验报告 实验名称: [LCD1602液晶显示实验]姓名: 学号: 指导教师: 实验时间: [2013年6月15日] 信息与通信工程学院

LCD1602液晶显示实验 1.实验原理 1.1 基本原理 1.1.1 1602字符型LCD简介 字符型液晶显示模块是一种专门用于显示字母、数字、符号等点阵式LCD,目前常用16*1,16*2,20*2和40*2行等的模块。 1.1.2 1602LCD的基本参数及引脚功能 1602LCD分为带背光和不带背光两种,基控制器大部分为HD44780,带背光的比不带背光的厚,是否带背光在应用中并无差别,两者尺寸差别如下图1-2所示: 图1-2 1602LCD尺寸图 1.1602LCD主要技术参数: 显示容量: 16×2个字符 芯片工作电压: 4.5~5.5V 工作电流: 2.0mA(5.0V) 模块最佳工作电压: 5.0V 字符尺寸: 2.95×4.35(W×H)mm 2.引脚功能说明: 1602LCD采用标准的14脚(无背光)或16脚(带背光)接口,各引脚接口说明如表: 表1-3引脚接口说明表 编 符号引脚说明编号符号引脚说明 号 1 VSS 电源地9 D 2 数据 2 VDD 电源正极10 D 3 数据 3 VL 液晶显示偏压11 D 4 数据 4 RS 数据/命令选择12 D 5 数据 5 R/W 读/写选择13 D 6 数据 6 E 使能信号14 D 7 数据 7 D0 数据15 BLA 背光源正极 8 D1 数据16 BLK 背光源负极

1.1.3 1602LCD的指令说明及时序 1602液晶模块内部的控制器共有11条控制指令,如表1-4所示: 表1-4 控制命令表 序号指令RS R/W D7 D6 D5 D4 D3 D2 D1 D0 1 清显示0 0 0 0 0 0 0 0 0 1 2 光标返回0 0 0 0 0 0 0 0 1 * 3 置输入模式0 0 0 0 0 0 0 1 I/D S 4 显示开/关控制0 0 0 0 0 0 1 D C B 5 光标或字符移位0 0 0 0 0 1 S/C R/L * * 6 置功能0 0 0 0 1 DL N F * * 7 置字符发生存贮器 地址 0 0 0 1 字符发生存贮器地址 8 置数据存贮器地址0 0 1 显示数据存贮器地址 9 读忙标志或地址 0 1 BF 计数器地址 10 写数到CGRAM或 DDRAM) 1 0 要写的数据内容 11 从CGRAM或 DDRAM读数 1 1 读出的数据内容 1602液晶模块的读写操作、屏幕和光标的操作都是通过指令编程来实现的。(说明:1为高电平、0为低电平)读写操作时序如图1-5和1-6所示: 图1-5 读操作时序

液晶的电光特性实验报告含思考题

西安交通大学实验报告 第1页(共9页)课程:_______近代物理实验_______ 实验日期:年月日 专业班号______组别_______交报告日期:年月日 姓名__Bigger__学号__报告退发:(订正、重做) 同组者__________教师审批签字: 实验名称:液晶的电光特性 一、 二、实验目的 1) 2)了解液晶的特性和基本工作原理; 3) 4)掌握一些特性的常用测试方法; 5) 6)了解液晶的应用和局限。 三、 四、实验仪器 激光器,偏振片,液晶屏,光电转换器,光具座等。 五、 六、实验原理 液晶分子的形状如同火柴一样,为棍状,长度在十几埃,直径为4~6埃,液晶层厚度一般为 5-8微米。排列方式和天然胆甾相液晶的主要区别是:扭曲向列的扭曲角是人为可控的,且“螺距” 与两个基片的间距和扭曲角有关。而天然胆甾相液晶的螺距一般不足1um,不能人为控制。扭曲向

列排列的液晶对入射光会有一个重要的作用,他会使入射的线偏振光的偏振方向顺着分子的扭曲方向旋转,类似于物质的旋光效应。在一般条件下旋转的角度(扭曲角)等于两基片之间的取向夹角。 对于介电各向异性的液晶当垂直于螺旋轴的方向对胆甾相液晶施加一电场时,会发现随着电场的增大,螺距也同时增大,当电场达到某一阈值时,螺距趋于无穷大,胆甾相在电场的作用下转变成了向列相。这也称为退螺旋效应。由于液晶分子的结构特性,其极化率和电导率等都具有各向异性的特点,当大量液晶分子有规律的排列时,其总体的电学和光学特性,如介电常数、折射率也将呈现出各向异性的特点。如果我们对液晶物质施加电场,就可能改变分子排列的规律。从而使液晶材料的光学特性发生改变,1963年有人发现了这种现象。这就是液晶的的电光效应。 为了对液晶施加电场,我们在两个玻璃基片的内侧镀了一层透明电极。将这个由基片电极、取向膜、液晶和密封结构组成的结构叫做液晶盒。根据液晶分子的结构特点,假定液晶分子没有固定的电极,但可被外电场极化形成一种感生电极矩。这个感生电极矩也会有一个自己的方向,当这个方向以外电场的方向不同时,外电场就会使液晶分子发生转动,直到各种互相作用力达到平衡。液晶分子在外电场作用下的变化,也将引起液晶合中液晶分子的总体排列规律发生变化。当外电场足够强时,两电极之间的液晶分子将会变成如图1中的排列形式。这时,液晶分子对偏振光的旋光作用将会减弱或消失。通过检偏器,我们可以清晰地观察到偏振态的变化。大多数液晶器件都是这样工作的。 图1液晶分子的扭曲排列变化 若将液晶盒放在两片平行偏振片之间,其偏振方向与上表面液晶分子取向相同。不加电压时,入射光通过起偏器形成的线偏振光,经过液晶盒后偏振方向随液晶分子轴旋转90°,不能通过检偏器;施加电压后,透过检偏器的光强与施加在液晶盒上电压大小的关系见图2;其中纵坐标为透光强度,横坐标为外加电压。最大透光强度的10%所对应的外加电压值称为阈值电压(U th),标志了液晶电光效应有可观察反应的开始(或称起辉),阈值电压小,是电光效应好的一个重要指标。最大透光强度的90%对应的外加电压值称为饱和电压(U r),标志了获得最大对比度所需的外加电压数值,U 小则易获得良好的显示效果,且降低显示功耗,对显示寿命有利。对比度D r=I max/I min,其中I max r 为最大观察(接收)亮度(照度),I min为最小亮度。陡度β=U r/U th即饱和电压与阈值电压之比。 图2液晶电光效应关系图

LCD液晶显示实验实验报告及程序

实验三 LCD1602液晶显示实验 姓名专业学号成绩 一、实验目的 1.掌握Keil C51软件与proteus软件联合仿真调试的方法; 2.掌握LCD1602液晶模块显示西文的原理及使用方法; 3.掌握用8位数据模式驱动LCM1602液晶的C语言编程方法; 4.掌握用LCM1602液晶模块显示数字的C语言编程方法。 二、实验仪器与设备 1.微机一台 C51集成开发环境仿真软件 三、实验内容 1.用Proteus设计一LCD1602液晶显示接口电路。要求利用P0口接LCD1602 液晶的数据端,~做LCD1602液晶的控制信号输入端。~口扩展3个功能键 K1~K3。参考电路见后面。 2.编写程序,实现字符的静态和动态显示。显示字符为 第一行:“1.姓名全拼”,第二行:“2.专业全拼+学号”。 3.编写程序,利用功能键实现字符的垂直滚动和水平滚动等效果显示。显示字 符为:

“1.姓名全拼 2.专业全拼+学号 EXP8 DISPLAY ” 主程序静态显示“My information!” 四、实验原理 液晶显示的原理:采用的LCD显示屏都是由不同部分组成的分层结构,位于最后面的一层是由荧光物质组成的可以发射光线的背光层,背光层发出的光线在穿过第一层偏振过滤层之后进入包含成千上万水晶液滴的液晶层,液晶层中的水晶液滴都被包含在细小的单元格结构中,一个或多个单元格构成屏幕上的一个像素。当LCD中的电极产生电场时,液晶分子就会产生扭曲,从而将穿越其中的光线进行有规则的折射,然后经过第二层过滤层的过滤在屏幕上显示出来。 1.LCD1602采用标准的14引脚(无背光)或16引脚(带背光)接口,各引脚 接口说明如表:

dsp实验报告 哈工大实验三 液晶显示器控制显示实验

实验三液晶显示器控制显示实验 一. 实验目的 通过实验学习使用2407ADSP 的扩展I/O 端口控制外围设备的方法,了解液晶显示器的显示控制原理及编程方法。 二. 实验设备 计算机,ICETEK-LF2407-EDU 实验箱。 三.实验原理 ICETEK-LF2407-A 是一块以TMS320LF2407ADSP 为核心的DSP 扩展评估板,它通过扩展接口与实验箱的显示/控制模块连接,可以控制其各种外围设备。 液晶显示模块的访问、控制是由2407ADSP 对扩展I/O 接口的操作完成。 控制I/O 口的寻址:命令控制I/O 接口的地址为0x8001,数据控制I/O 接口的地址为0x8003 和0x8004,辅助控制I/O 接口的地址为0x8002。 显示控制方法: ◆液晶显示模块中有两片显示缓冲存储器,分别对应屏幕显示的象素,向其中写入数 值将改变显示,写入“1”则显示一点,写入“0”则不显示。其地址与象素的对应 方式如下: ◆发送控制命令:向液晶显示模块发送控制命令的方法是通过向命令控制I/O 接口 写入命令控制字,然后再向辅助控制接口写入0。下面给出的是基本命令字、解释 和 C 语言控制语句举例。 ?显示开关:0x3f 打开显示;0x3e 关闭显示; ?设置显示起始行:0x0c0+起始行取值,其中起始行取值为0 至63; ?设置操作页:0x0b8+页号,其中页号取值为0-7; ?设置操作列:0x40+列号,其中列号为取值为0-63; ◆写显示数据:在使用命令控制字选择操作位置(页数、列数)之后,可以将待显示的 数据写入液晶显示模块的缓存。将数据发送到相应数据控制I/O 接口即可。

LED点阵显示屏实验报告

16?16点阵LED电子显示屏的设计 摘要:文章介绍了基于单片机AT89C51的16?16点阵LED电子显示屏的设计。分别阐述了显示屏显示的基本原理,硬件设计、控制方法及其程序的实现。经过调试和分析,设计的结果能够实现对汉字的静态和动态显示,动态显示的内容有多种方式,同时又可通过上位机更新显示的内容。 关键字:AT89C51;16?16点阵;LED;显示屏 一绪论 LED显示屏是利用发光二极管点阵模块或像素单元组成的平面式显示屏幕。它具有发光效率高、使用寿命长、组态灵活、色彩丰富以及对室内外环境适应能力强等优点。并广泛的应用于公交汽车,码头,商店,学校和银行等公共场合的信息发布和广告宣传。LED显示屏经历了从单色,双色图文显示屏到现在的全彩色视频显示屏的发展过程,自20世纪八十年代开始,LED显示屏的应用领域已经遍布交通、电信、教育、证券、广告宣传等各方面。 1 LED点阵显示屏概述 LED点阵显示屏的构成型式有多种,其中典型的有两种。一种把所需展示的广告信息烧写固化到EPROM芯片内,能进行固定内容的多幅汉字显示,称为单显示型;另一种在机内设置了字库、程序库,具有程序编制能力,能进行内容可变的多幅汉字显示,称可编程序型。 目前,国内的LED点阵显示屏大部分是单显示型,其显示的内容相对较少,显示花样较单一。一般在产品出厂时,显示内容就已写入显示屏控制系统中的EPROM芯片内,当需要更换显示内容时就非常困难,这样使该类型的显示屏使用范围受到了限制。国内的另一种LED显示屏——可编程序型LED显示屏,虽然增加了显示屏系统的编程能力,显示内容和显示花样都有所增加,但也存在着更换显示内容不便的缺点。随着社会经济的迅速发展,如今的广告牌都存在着显示内容丰富、信息量大、信息更换速度快等特点。因此传统的LED显示屏控制系统已经越来越不能满足现代广告宣传业的需要。而利用PC机通信技术控制LED显示屏,则具有显示内容丰富,信息更换灵活等优点。 2 LED显示屏控制技术状况 显示屏的控制系统包括输入接口电路、信号控制、转换和数字化处理电路及输出接口电路等,涉及的具体技术很多,其关键技术包括串行传输与并行传输技术、动态扫描与静态锁存技术、自动检测及远程控制技术等。

液晶的电光特性实验报告含思考题

液晶的电光特性实验报 告含思考题 Revised as of 23 November 2020

西安交通大学实验报告 第 1 页(共 9 页) 课程:_______近代物理实验_______ 实验日期:年月日 专业班号______组别_______交报告日期:年月日 姓名__Bigger__学号__报告退发:(订正、重做) 同组者__ ________教师审批签字: 实验名称:液晶的电光特性 一、实验目的 1)了解液晶的特性和基本工作原理; 2)掌握一些特性的常用测试方法; 3)了解液晶的应用和局限。 二、实验仪器 激光器,偏振片,液晶屏,光电转换器,光具座等。 三、实验原理 液晶分子的形状如同火柴一样,为棍状,长度在十几埃,直径为4~6埃, 液晶层厚度一般为5-8微米。排列方式和天然胆甾相液晶的主要区别是:扭曲 向列的扭曲角是人为可控的,且“螺距”与两个基片的间距和扭曲角有关。而天 然胆甾相液晶的螺距一般不足1um,不能人为控制。扭曲向列排列的液晶对入 射光会有一个重要的作用,他会使入射的线偏振光的偏振方向顺着分子的扭曲 方向旋转,类似于物质的旋光效应。在一般条件下旋转的角度(扭曲角)等于两 基片之间的取向夹角。

对于介电各向异性的液晶当垂直于螺旋轴的方向对胆甾相液晶施加一电场时,会发现随着电场的增大,螺距也同时增大,当电场达到某一阈值时,螺距趋于无穷大,胆甾相在电场的作用下转变成了向列相。这也称为退螺旋效应。由于液晶分子的结构特性,其极化率和电导率等都具有各向异性的特点,当大量液晶分子有规律的排列时,其总体的电学和光学特性,如介电常数、折射率也将呈现出各向异性的特点。如果我们对液晶物质施加电场,就可能改变分子排列的规律。从而使液晶材料的光学特性发生改变,1963年有人发现了这种现象。这就是液晶的的电光效应。 为了对液晶施加电场,我们在两个玻璃基片的内侧镀了一层透明电极。将这个由基片电极、取向膜、液晶和密封结构组成的结构叫做液晶盒。根据液晶分子的结构特点,假定液晶分子没有固定的电极,但可被外电场极化形成一种感生电极矩。这个感生电极矩也会有一个自己的方向,当这个方向以外电场的方向不同时,外电场就会使液晶分子发生转动,直到各种互相作用力达到平衡。液晶分子在外电场作用下的变化,也将引起液晶合中液晶分子的总体排列规律发生变化。当外电场足够强时,两电极之间的液晶分子将会变成如图1中的排列形式。这时,液晶分子对偏振光的旋光作用将会减弱或消失。通过检偏器,我们可以清晰地观察到偏振态的变化。大多数液晶器件都是这样工作的。 图1 液晶分子的扭曲排列变化 若将液晶盒放在两片平行偏振片之间,其偏振方向与上表面液晶分子取向相同。不加电压时,入射光通过起偏器形成的线偏振光,经过液晶盒后偏振方

LCD显示实验..

昆明理工大学 微型计算机技术实验设计报告 设计项目名称:LCD显示实验 设计完成人:张恩寿王基春 班级:2011级电科111、112班 学号:201111103123 姓名:张恩寿学号:201111103223 姓名:王基春

一、实验目的 学习液晶显示的编程方法,了解液晶显示模块的工作原理。 掌握液晶显示模块与pc机的接口方法。 掌握点阵式LCD的工作原理、使用方法以及动态显示的编程方法。 二、所需设备 8086cpu试验箱、8255芯片、导线。 三、实验内容 编程实现在液晶显示屏上显示中文汉字,显示各自的名字。首先,显示器第一行从左到右依次显示“我是张恩寿腾”,然后,第二行倒序依次显示“我是王基 春冲”。 四、实验原理 (一)、液晶显示器LCD的工作原理 ,厚度各为1mm的玻璃板之间充满液晶材料,在结构上,LCD屏幕是用两块间距为5~7m 并在这两片玻璃板上设置两个透明电极构成的,屏幕最前面是彩色滤光膜,屏幕 的后面是背光源。 LCD中的背光源在反射板和光导板的作用下,变成平面光,射向液晶板,形成面光源。 液晶屏幕上的各单元即像素采用行列式结构,在没有电信号时,像素排成整齐的矩阵,使背光源发出的光畅通无阻的穿过。在液晶两边的电极加上信号电压后,液晶板就处 于电场中,液晶单元在电场作用下其状态不再整齐,从而引起各个像素点的透光 率发生改变,引起光线灰度有深浅变化。 每个像素点有对应的行位和列位,处于行列交叉点的一个液晶单元的扭曲状态决定于行位上的电极和列位上的电极之间的电压。组成LCD屏幕时,将同一行上的行位连在一 起,称为行电极,而将同一列上的列位连在一起,称为列电极。显示过程中,依 次往每个行电极加选通信号,而往每个列电极加要显示的信号,显示信号的强弱 决定了相应像素点液晶的扭曲状态,从而对光的穿透率产生控制作用。扭曲范围 越大,对比度越高。这样,通过控制电极信号的电压就可以控制像素点的亮度, 从而使屏幕产生不同亮度层次的图象。但如果没有彩色滤光膜,那么,这种图象 只能是黑白的。 要使LCD显示彩色影像,必须加上彩色滤光膜。彩色滤光膜中有一个具有绿光功能的彩色层,它让需要的光透过去,而把不需要的光阻挡住。和液晶板相对应,滤光膜中 的彩色层也分成许多像素单元。实际上,彩色层中的每个像素和液晶板上的每个 像素都由红绿蓝三个子像素构成,两者的子像素也一一对应。背光源发出的白光 透过液晶板以后,成为不同灰度层次的白色光线,照射到滤光膜上的红绿蓝三个

液晶显示技术试验讲义

附件一 彰化師大光電所 光電實驗技術 液晶顯示技術實驗講義 (初稿) Version Ⅰ

實驗項目: 1.基版、液晶空盒之製作及聚光干涉圖樣之觀察。 2. TN 面板之製作及量測。 3. PSCT 面板之製作及量測。 4. SSCT面板之製作及量測。 5.圖形顯示及4X4顯示面板之製作。

實驗一基板、液晶空盒之製作及聚光干涉圖樣之觀察 一、目的: (1) 學習基板處理及製作水平、垂直配向液晶樣品。 (2) 觀察各樣品於聚光干涉儀下之圖樣,藉以瞭解配向原理與效果 二、使用儀器設備及材料: 儀器設備:超音波清洗機、紫外光源、烘箱、旋轉塗佈機、聚光干涉儀、摩擦配向機。 使用材料:ITO玻璃、玻璃清潔藥品、PVA (水平配向用)、DMOAP (垂直配向用)、spacer (間隔物)、向列相液晶(nematic LC, NLC) (E7)、紫 外硬化膠。 三、實驗步驟: (一) 玻璃的清洗: (1) 以玻璃切割機製作ITO玻璃基板為尺寸約2cm 3cm數塊,並整齊擺置 於鐵槽上。 (2) 將此鐵槽(先清洗乾淨)置於裝有RO水稀釋化學清潔液(1:20) 之容 器中,於超音波清洗機(內裝定量RO水) 內振盪清洗~20分鐘後倒掉 此清潔液,並以RO水沖刷掉附著之泡沫。 (3) 換裝以RO水,重複步驟(2) 三次。 (4) 換裝以丙酮,重複步驟(2) 一次,振盪完時立即將裝有已清洗過玻璃 群之鐵槽置於烘箱內(~70o C) 約數分鐘後直至丙酮立即完全揮發,此 時玻璃清洗完成。 (二) 水平配向(homogeneous alignment) 膜製作: (1) 準備PVA (Polyvinyl Alcohol;顆粒狀) 及RO水混於容器中,製作PVA 溶液(~0.05wt%);其中加熱皿至100o C並放入攪拌石,使PVA顆粒 溶解於水中後,冷卻備用。 (2) 使用旋轉塗佈機塗佈PVA溶液於已清洗乾淨之玻璃基片。 (3) 將玻璃基片置入烘箱內(~120o C) 約20分鐘,烤乾後移出。 (4) 最後,以摩擦配向機(Rubbing Machine) 摩擦玻璃基片(ITO面) , 完成水平配向膜之塗佈;滾筒轉速依最初調至較佳經驗值後固定不動。

液晶的电光特性实验报告含思考题

告 第1 页(共9页)课程:_______近代物理实验_______?实验日期:? 年月日 专业班号______组别_______?交报告日期:?年 月日 姓名__Bigger__学号__报告退发:(订正、重做) 同组者__ ________?教师审批签字: 实验名称:液晶的电光特性 一、实验目的 1)了解液晶的特性和基本工作原理; 2)掌握一些特性的常用测试方法; 3)了解液晶的应用和局限。 二、实验仪器 激光器,偏振片,液晶屏,光电转换器,光具座等。 三、实验原理 液晶分子的形状如同火柴一样,为棍状,长度在十几埃,直径为4~6埃,液晶 层厚度一般为5-8微米。排列方式和天然胆甾相液晶的主要区别是:扭曲向列 的扭曲角是人为可控的,且“螺距”与两个基片的间距和扭曲角有关。而天然胆甾 相液晶的螺距一般不足1um,不能人为控制。扭曲向列排列的液晶对入射光会有 一个重要的作用,他会使入射的线偏振光的偏振方向顺着分子的扭曲方向旋转,类 似于物质的旋光效应。在一般条件下旋转的角度(扭曲角)等于两基片之间的取向 夹角。 对于介电各向异性的液晶当垂直于螺旋轴的方向对胆甾相液晶施加一电场时,会发现随着电场的增大,螺距也同时增大,当电场达到某一阈值时,螺距趋于无 穷大,胆甾相在电场的作用下转变成了向列相。这也称为退螺旋效应。由于液晶分

子的结构特性,其极化率和电导率等都具有各向异性的特点,当大量液晶分子有规律的排列时,其总体的电学和光学特性,如介电常数、折射率也将呈现出各向异性的特点。如果我们对液晶物质施加电场,就可能改变分子排列的规律。从而使液晶材料的光学特性发生改变,1963年有人发现了这种现象。这就是液晶的的电光效应。 为了对液晶施加电场,我们在两个玻璃基片的内侧镀了一层透明电极。将这个由基片电极、取向膜、液晶和密封结构组成的结构叫做液晶盒。根据液晶分子的结构特点,假定液晶分子没有固定的电极,但可被外电场极化形成一种感生电极矩。这个感生电极矩也会有一个自己的方向,当这个方向以外电场的方向不同时,外电场就会使液晶分子发生转动,直到各种互相作用力达到平衡。液晶分子在外电场作用下的变化,也将引起液晶合中液晶分子的总体排列规律发生变化。当外电场足够强时,两电极之间的液晶分子将会变成如图1中的排列形式。这时,液晶分子对偏振光的旋光作用将会减弱或消失。通过检偏器,我们可以清晰地观察到偏振态的变化。大多数液晶器件都是这样工作的。 图1液晶分子的扭曲排列变化 若将液晶盒放在两片平行偏振片之间,其偏振方向与上表面液晶分子取向相同。不加电压时,入射光通过起偏器形成的线偏振光,经过液晶盒后偏振方向随液晶分子轴旋转90°,不能通过检偏器;施加电压后,透过检偏器的光强与施加在液晶盒上电压大小的关系见图2;其中纵坐标为透光强度,横坐标为外加电压。最大透光强度的10%所对应的外加电压值称为阈值电压(Uth),标志了液晶电光效应有可观察反应的开始(或称起辉),阈值电压小,是电光效应好的一个重要指标。最大透光强度的90%对应的外加电压值称为饱和电压(Ur),标志了获得最大对 小则易获得良好的显示效果,且降低显示功耗,对比度所需的外加电压数值,U r 显示寿命有利。对比度D r =I max/Imin,其中Imax为最大观察(接收)亮度(照度),I min为最小亮度。陡度β= U r/ U th即饱和电压与阈值电压之比。

LCD显示实验

. 单片机实验报告 班级: 姓名: 学号: 指导教师:

实验三 LCD显示实验(2学时) 一、实验目的: 学习液晶显示的编程方法,了解液晶显示模块的工作原理。 掌握液晶显示模块与单片机的接口方法。 学习和掌握8255扩展通用I/O的方法。 基于扩展I/O口,实现LCD显示器的控制。 二、实验设备: CPU挂箱、8031CPU模块 三、实验内容: 在掌握8255扩展I/O口的基础上,实现LCD的显示,并显示“中北大学1105064102 姓名”。。 四、实验原理说明 LCD显示电路 点阵式LCD显示电路是在系统板上外挂电正式液晶显示模块,模块的数据线、状态、控制线都通过插孔引出。可直接与系统相连。 1、OCMJ2×8液晶模块介绍及使用说明 OCMJ中文模块系列液晶显示器内含 GB 2312 16*16点阵国标一级简体汉字和ASCII8*8(半高)及8*16(全高)点阵英文字库,用户输入区位码或 ASCII 码即可实

现文本显示。也可用作一般的点阵图形显示器之用。提供位点阵和字节点阵两种图形显示功能,用户可在指定的屏幕位置上以点为单位或以字节为单位进行图形显示。完全兼容一般的点阵模块。OCMJ中文模块系列液晶显示器可以实现汉字、ASCII 码、点阵图形和变化曲线的同屏显示,并可通过字节点阵图形方式造字。本系列模块具有上/下/左/右移动当前显示屏幕及清除屏幕的命令。一改传统的使用大量的设置命令进行初始 1)表—1:OCMJ2X8(128X32)引脚说明 化的方法,OCMJ 中文模块所有的设置初始化工作都是在上电时自动完成的,实现了“即插即用”。同时保留了一条专用的复位线供用户选择使用,可对工作中的模块进

键盘扫描及动态LED 显示实验报告

《单片机》实验报告 一.实验题目 实验4.7 7279 键盘扫描及动态LED 显示实验 二.实验要求 本实验利用7279 进行键盘扫描及动态LED 数码管显示控制。 三.实验源程序 #include //*** 函数定义*** void long_delay(void); // 长延时 void short_delay(void); // 短暂延时 void delay10ms(unsigned char); // 延时10MS void write7279(unsigned char, unsigned char); // 写入到HD7279 unsigned char read7279(unsigned char); // 从HD7279读出 void send_byte(unsigned char); // 发送一个字节 #define uchar unsigned char #define uint unsigned int uchar bianma[]={0x1b,0x13,0x0b,0x03,0x1a,0x12,0x0a,0x02,0x19,0x11,0x09,0x01,0x18,0x10,0x08,0x 00}; unsigned char receive_byte(void); // 接收一个字节 //*** 变量及I/O口定义*** unsigned char digit[5]; unsigned char key_number, j, k,mk; //mk为按键次数计数值 unsigned int tmr; unsigned long wait_cnter; sbit cs=P1^0; // cs at P1.0 sbit clk=P1^1; // clk 连接于P1.1 sbit dat=P1^2; // dat 连接于P1.2 sbit key=P1^3; // key 连接于P1.3

大学物理实验讲义实验液晶电光效应实验

实验14 液晶电光效应实验 液晶是介于液体与晶体之间的一种物质状态。一般的液体内部分子排列是无序的,而液晶既具有液体的流动性,其分子又按一定规律有序排列,使它呈现晶体的特性。当光通过液晶时,会产生偏振面旋转,双折射等效应。液晶分子是含有极性基团的极性分子,在电场作用下,偶极子会按电场方向取向,导致分子原有的排列方式发生变化,从而液晶的光学性质也随之发生改变,这种因外电场引起的液晶光学性质的改变称为液晶的电光效应。 1888年,奥地利植物学家Reinitzer在做有机物溶解实验时,在一定的温度范围内观察到液晶。1961年美国RCA公司的Heimeier发现了液晶的一系列电光效应,并制成了显示器件。从70年代开始,日本公司将液晶与集成电路技术结合,制成了一系列的液晶显示器件,至今在这一领域保持领先地位。液晶显示器件由于具有驱动电压低(一般为几伏),功耗极小,体积小,寿命长,无辐射等优点,在当今各种显示器件的竞争中有独领风骚之势。 【实验目的】 1.在学习液晶光开关的基本原理,测量液晶光开关的电光特性曲线,并由电光特性曲线得到液晶的阈值电压和关断电压。 2.测量驱动电压周期变化时,液晶光开关的时间响应曲线,并由时间响应曲线得到液晶的上升时间和下降时间。 3.测量液晶光开关的视角特性。 4.了解液晶光开关构成矩阵式图像显示的原理。 【仪器用具】 ZKY-LCDEO型液晶光开关电光特性综合实验仪、数字示波器 【实验原理】 1.液晶光开关的工作原理

液晶的种类很多,仅以常用的扭曲向列型液晶为例,说明其工作原理。光开关的结构如图1所示。在两块玻璃板之间夹有液晶,液晶分子的形状如同火柴一样,为棍状。棍的长度 在十几埃,直径为4~6埃,液晶层厚度一般为5-8微米。玻璃板的内表面涂有透明电极,电极的表面预先作了定向处理(可用软绒布朝一个方向摩擦),这样,液晶分子在透明电极表面就会躺倒在摩擦所形成的微沟槽里;电极表面的液晶分子按一定方向排列,且上下电极上的定向方向相互垂直。上下电极之间的那些液晶分子趋向于平行排列。然而由于上下电极上液晶的定向方向相互垂直,所以从俯视方向看,液晶分子的排列从上电极的沿-45度方向排列逐步地、均匀地扭曲到下电极的沿+45度方向排列,整个扭曲了90度。如图1左图所示。 理论和实验都证明,上述均匀扭曲排列起来的结构具有光波导的性质,即偏振光从上电极表面透过扭曲排列起来的液晶传播到下电极表面时,偏振方向会旋转90度。 取两张偏振片贴在玻璃的两面,P1的透光轴与上电极的定向方向相同,P2的透光轴与下电极的定向方向相同,于是P1和P2的透光轴相互正交。 在未加驱动电压的情况下,来自光源的自然光经过偏振片P1后只剩下平行于透光轴的线偏振光,该线偏振光到达输出面时,其偏振面旋转了90°。这时光的偏振面与P2的透光轴平行,因而有光通过。 在施加足够电压情况下,在静电场的作用下,除了基片附近的液晶分子被基片“锚定”以外,其他液晶分子趋于平行于电场方向排列。于是原来的扭曲结构被破坏,成了均匀结构,如图1右图所示。从P1透射出来的偏振光的偏振方向在液晶中传播时不再旋转,保持原来的偏振方向到达下电极。这时光的偏振方向与P2正交,因而光被关断。 由于上述光开关在没有电场的情况下让光透过,加上电场的时候光被关断,因此叫做常通型光开关,又叫做常白模式。若P1和P2的透光轴相互平行,则构成常黑模式。 入射的自然光 偏振片P1 偏振片P2 出射光 扭曲排列的液晶分子具有光波导效应 光波导已被电场拉伸 图1. 液晶光开关的工作原理

液晶电光效应实验报告.doc

液晶电光效应实验报告 【实验目的】 1.在掌握液晶光开关的基本工作原理的基础上,测量液晶光开关的电光特性曲线,并由电光特性曲线得到液晶的阈值电压和关断电压。 2.测量驱动电压周期变化时,液晶光开关的时间响应曲线,并由时间响应曲线得到液晶的上升时间和下降时间。 3.测量由液晶光开关矩阵所构成的液晶显示器的视角特性以及在不同视角下的对比度,了解液晶光开关的工作条件。 4.了解液晶光开关构成图像矩阵的方法,学习和掌握这种矩阵所组成的液晶显示器构成文字和图形的显示模式,从而了解一般液晶显示器件的工作原理。 【实验仪器】 液晶电光效应实验仪一台,液晶片一块 【实验原理】 1.液晶光开关的工作原理 液晶的种类很多,仅以常用的TN(扭曲向列)型液晶为例,说明其工作原理。 TN型光开关的结构:在两块玻璃板之间夹有正性向列相液晶,液晶分子的形状如同火柴一样,为棍状。棍的长度在十几埃(1埃=10-10米),直径为4~6埃,液晶层厚度一般为5-8微米。玻璃板的内表面涂有透明电极,电极的表面预先作了定向处理(可用软绒布朝一个方向摩擦,也可在电极表面涂取向剂),这样,液晶分子在透明电极表面就会躺倒在

摩擦所形成的微沟槽里;电极表面的液晶分子按一定方向排列,且上下电极上的定向方向相互垂直。上下电极之间的那些液晶分子因范德瓦尔斯力的作用,趋向于平行排列。然而由于上下电极上液晶的定向方向相互垂直,所以从俯视方向看,液晶分子的排列从上电极的沿-45度方向排列逐步地、均匀地扭曲到下电极的沿+45度方向排列,整个扭曲了90度。理论和实验都证明,上述均匀扭曲排列起来的结构具有光波导的性质,即偏振光从上电极表面透过扭曲排列起来的液晶传播到下电极表面时,偏振方向会旋转90度。取两张偏振片贴在玻璃的两面,P1的透光轴与上电极的定向方向相同,P2的透光轴与下电极的定向方向相同,于是P1和P2的透光轴相互正交。 在未加驱动电压的情况下,来自光源的自然光经过偏振片P1后只剩下平行于透光轴的线偏振光,该线偏振光到达输出面时,其偏振面旋转了90°。这时光的偏振面与P2的透光轴平行,因而有光通过。 在施加足够电压情况下(一般为1~2伏),在静电场的作用下,除了基片附近的液晶分子被基片“锚定”以外,其他液晶分子趋于平行于电场方向排列。于是原来的扭曲结构被破坏,成了均匀结构。从P1透射出来的偏振光的偏振方向在液晶中传播时不再旋转,保持原来的偏振方向到达下电极。这时光的偏振方向与P2正交,因而光被关断。 由于上述光开关在没有电场的情况下让光透过,加上电场的时候光被关断,因此叫做常通型光开关,又叫做常白模式。若P1和P2的透光轴相互平行,则构成常黑模式。 液晶可分为热致液晶与溶致液晶。热致液晶在一定的温度范围内呈

相关主题
文本预览
相关文档 最新文档