当前位置:文档之家› 农林生物质组分分离及高值化利用

农林生物质组分分离及高值化利用

农林生物质组分分离及高值化利用
农林生物质组分分离及高值化利用

生物质热解技术研究现状及其进展

能源研究与信息 第17卷第4期 Energy Research and Information Vol. 17 No. 4 2001 文章编号 1008-8857(2001)04-0210-07 生物质热解技术研究现状及其进展 李伍刚,李瑞阳,郁鸿凌,徐开义 (上海理工大学上海 200093)  摘要生物质热解技术是把低能量密度生物质转化为高能量密度气、液、固产物的 一种新型生物质能利用技术。其中液体产物具有便于运输、储存等优点,可替代燃料 油用于发电、供暖系统以及可代替矿物油提炼某些重要的化学物质。介绍了国内外对 这一技术的各种研究及其进展,并简要介绍了上海理工大学独立研制开发的生物质闪 速液化实验装置。 关键词生物质热解; 生物油 中图法分类号 TK6文献标识码A 1 引言 能源是人类生存与发展的前提和基础,从远古时代原始人钻木取火到近代以蒸汽机为代表的工业革命,人类文明的每一跨越和进步都与所用能源种类及其利用方式紧密相连。目前人类赖以生存和进行经济建设的一次能源主要是矿物能源(煤、石油、天然气、核能等)。矿物能源的使用隐藏着两个严重问题,其一:根据目前的全球能耗量和矿物能源已探明的储量,煤、石油、天然气、核燃料可使用年限分别为220、40、60和260年[1],从长远来看人类必将面临能源危机。其二:矿物能源对环境有巨大破坏作用,矿物能源燃烧产生大量CO2、SO x、NO x等气体。CO2属温室效应气体,会造成全球变暖及臭氧层破坏。NO x、SO x等有害气体会直接对环境、设备和人体健康构成危害。故此,作为有重要长远意义和战略意义的技术储备,寻求清洁的可再生能源及其利用技术,已成为全球有识之士的共识,受到各国政府和研究机构的广泛关注。 生物质是一种清洁的可再生能源,生物质快速热解技术是生物质利用的重要途径,所谓热解就是利用热能打断大分子量有机物、碳氢化合物的分子键,使之转变为含碳原子数目较少的低分子量物质的过程。生物质热解是生物质在完全缺氧条件下,产生液体(生物油)、气体(可燃气)、固体(焦碳)三种产物的生物质热降解过程。 收稿日期:2001-6-10 基金项目:上海市重点学科建设资助项目 作者简介:李伍刚(1974-),男,上海理工大学热能工程专业硕士研究生。

生态园规划设计方案

XX生态园规划设计方案 农业生态园就是采用生态园模式进行观光园内农业的布局和生产,将农业活动、自然风光、科技示范、休闲娱乐、环境保护等融为一体,利用田园景观、自然生态及环境资源,结合农林渔牧生产、农业经营活动、农村文化及家庭生活,提供国民休闲,增进国民对农业及农村的体验为目的的农业经营;是集旅游功能、农业增效功能、绿化、美化和改善环境功能于一体的新型产业园。它实现了生态效益、经济效益与社会效益的统一。 随着城乡经济的发展和人民生活水平的提高,近年来都市休闲游的兴起,促使人们亲近自然、感受自然的需求持续增长。观光休闲农业在我国取得了长足的发展, 相继出现了多种类型的开发运作模式。通过逐渐带动引导着农业产业结构调整,根据地方自然资源优势,科学合理的功能定位,以推动社会主义新农村建设。汕尾也不例外,现在人们的生活需求更加丰富,追求多元化、立体性的生活方式,以减轻工作压力,调节生活平衡的愿望与日俱增。但是,全市境内目前尚无一处集休闲、娱乐、观光和健身于一体可供人们工作之余休闲娱乐的生态园,建设一个生态园已迫在眉睫、势在必行。 红海湾xx村自然条件优越,村风淳朴,村内无任何有污染的企业,公路直达本村,距深汕高速入口20公里,离汕尾市区也只有25分钟的里程,距红海湾风景区10公里,交通十分便利。 经营目标:形成汕尾社会各界人士休闲养身会所,品味正宗汕尾海滨野生鱼类,虾类,果蔬园等健康食品,尽情享受农夫乡村田野农家生活,把红海湾xx村生态园打造成最具汕尾海滨特色的绿色生态园和农家休闲中心,提高红海湾、xx村社会知名度带动xx村经济发展。塑造“汕尾海滨,鱼米之乡”标志性绿色生态园。红海湾xx村生态园以村自然风光为主体,共计总面积xx亩,分三个方面形成。 一方面挖土坑面积为xx亩,以四大家鱼养殖为主,不仅可以提供外需也可以让宾客自己垂钓挑选入菜。 另一方面面积xx亩,是生态园的中心,园区的主要活动空间都布置在这一边,初步规划将在沿岸建成绿色长堤、垂钓亭台、休闲小筑、渔人码头,最浓墨重彩的要数点缀在水面如同绿色珍珠般的一个小岛,岛上将根据需要建设休闲烧烤区、垂钓台等一系列具有汕尾特色的建筑,营造汕尾海滨的生活方式。让在都市中疲惫的人们惬意地享受汕尾海滨的放松、舒适和毫无压力的生活。在岛上可以玩玩水、钓钓鱼、看看书或约三五知己打打麻将、打打牌,享受远离喧闹城市的快乐生活。还可以品尝汕尾特色的绝无任何污染的地方特色水产、新鲜的蔬果等,辅以农家土灶的烹饪方式,享受一下原汁原味的汕尾农家风味。 再者以xx亩为种植区,周围都是当地农民种植的草坪,与水面结合,四季常绿,草坪是我们生态园的一大特色,让宾客在休闲时体验农村的田园风光。分别开避名贵树种种植区,果树种植区,精品水果种植区,大棚生产区,家禽散养区五个区,让宾客在休闲之余各需所取,既给宾客提供了无污染、无公害的美味食物,又让他们在紧张的工作生活节奏之外体验轻松愉快的农家乐。

生态农业园规划设计说明

生态农业园规划设计 第一节生态农业园概述 一、国内外生态农业园的发展概况 二、生态农业园的类型 (一)多元综合型 (二)科技示范园 (三)人文景观型 (四)休闲度假型 (五)生态旅游型 三、生态农业园的功能 (一)经济功能 (二)社会功能 (三)生态功能 第二节生态农业园的规划 一、农业园的规划原则 (一)因地制宜,综合规划设计 (二)主题突出,协调创新 (三)服务城乡,发展高效农业 (四)借助自然,实现“天人合一” (五)以人为本,人景交融 (六)效益兼顾,实现可持续发展 二、生态农业园的规划手法 (一)艺术表达遵循科技原理 (二)主观造景服从功能实用 (三)布局有序调控时空变化 (四)动态参与强化视觉愉悦 (五)心灵满足融进增知益智 (六)结构相融营造人景亲和 (七)创意美与自然美的和谐 (八)主题色彩体现农林氛围 (九)人文特征反映乡土特色 三、生态农业园的规划步骤 ⒈计划书阶段 ⒉基地调查研究阶段 ⒊资料分析研究阶段 ⒋方案编制阶段 ⒌形成成果文本和图件阶段 (一)园区选址 ⒈选址原则 ⒉选址条件评价

表13-2 生态农业园的选址条件评价 地理位置地理条件发展内容发展资源 城郊,原有农业区地形平坦,农业发展水平较高农业综合园区、园艺场、农业工厂、现代农场高科技生产设备,果菜工作场所,休闲,参观,科普,体验 城郊,原有农业区靠近自然风景区,农村资源好农业庄园,观光农园,农业公园参与,体验,休闲,渡假 城郊,农村地理条件变化多,山势起伏田园风光农作场,田园,摘采,体验 城郊,农村海拔较高,部分由森林游乐区衍生森林游乐区,森林浴,牧场,渡假村,生态教育,露营森林游乐区,瀑布,河川,林场,牧场,渡假村 城郊,农村有湖泊、水面,地势平缓观光休闲渔场水产养殖,捞捕,钓鱼,产品展受,海滨 城郊,农村农村历史人文,文化内涵底蕴丰厚农村历史文化展示农村民宿,农村民俗,农村建筑 (二)布局形式 ⒈围合式 ⒉中心式 ⒊放射式 ⒋制高式 ⒌因地式 (三)生态园整体规划方案 ⒈生态园功能分区规划 ⑴分区原则 ⑵分区规划 ⒉生态园中其他规划 ⑴入口规划 ⑵园路规划 ⑶给水排灌工程规划 ⑷园区绿化设计 (四)农业产业的项目规划 ⒈农业项目设计原则 ⑴因地制宜 ⑵技术先进 ⑶品种优良 ⑷观赏价值高 ⑸充分利用资源 ⑹可操作性 ⑺经济可行性 ⑻可持续性 ⒉农业产业项目分区 ⑴农例如茶园、野生植物园、四季果蔬园、养菇场、草药场、稻田、花圃、植物苗圃等 ⑵林例如林场、森林游乐区等 ⑶牧例如养鸡场、养猪场等以畜牧经营为主的观赏牧场 ⑷渔例如养虾场、贝类养殖场、鳄鱼养殖场、渔港、名贵鱼类养殖场等

生物质热解技术

生物质压缩成型技术 1 压缩成型原理 生物质主要有纤维素、半纤维素和木质素组成。木质素为光合作用形成的天然聚合体,具有复杂的三维结构,属于高分子化合物,它在植物中的含量一般为15%~30%。木质素不是晶体,没有熔点但有软化点,当温度为70-110℃时开始软化,木质素有一定的黏度;在200-300℃呈熔融状、黏度高,此时施加一定的压力,增强分子间的内聚力,可将它与纤维素紧密粘接并与相邻颗粒互相黏结,使植物体变得致密均匀,体积大幅度减少,密度显著增加,当取消外部压力后,由于非弹性的纤维分子之间相互缠绕,一般不能恢复原来的结构和形状。在冷却以后强度增加,成为成型燃料。压缩时如果对生物质原料进行加热,有利于减少成型时的挤压力。 对于木质素含量较低的原料,在压缩成型过程中,可掺入少量的黏结剂,使成型燃料保持给定形状。当加入黏结剂时,原料颗粒表面会形成吸附层,颗粒之间产生引力,使生物质粒子之间形成连锁的结构。这种成型方法所需的压力较小,可供选择的黏结剂包括黏土、淀粉、糖蜜、植物油和造纸黑液等。 2 压缩成型生产工艺 压缩成型技术按生产工艺分为黏结成型、压缩颗粒燃料和热压缩成型工艺,可制成棒状、块状、颗粒状等各种成型燃料。 生物质—-干燥—-粉碎—-调湿—-成型—-冷却—-成型燃料 主要操作步骤如下: (1)干燥 生物质的含水率在20%-40%之间,一般通过滚筒干燥机进行烘干,将原料

的含水率降低至8%-10%。如果原料太干,压缩过程中颗粒表面的炭化和龟裂有可能会引起自燃;而原料水分过高时,加热过程中产生的水蒸气就不能顺利排出,会增加体积,降低机械强度。 (2)粉碎 木屑及稻壳等原料的粒度较小,经筛选后可直接使用。而秸秆类原料则需通过粉碎机进行粉碎处理,通常使用锤片式粉碎机,粉碎的粒度由成型燃料的尺寸和成型工艺所决定。 (3)调湿 加入一定量的水分后,可以使原料表面覆盖薄薄的一层液体,增加黏结力,便于压缩成型。 (4)成型 生物质通过压缩成型,一般不使用添加剂,此时木质素充当了黏合剂。生物质压缩成型的设备一般分为螺旋挤压式、活塞冲压式和换模滚压成型。 螺旋挤压机源于日本,是目前国内比较常见的技术,生产的成型燃料为棒状,直径50-70mm。将已经粉碎的生物质通过螺旋推进器连续不断推向锥形成型筒的前端,挤压成型。因为生产过程是连续进行的,所以成型燃料的质量比较均匀,外表面在挤压过程中发生炭化,容易点燃。但是,由于螺杆处在较高温度和压力下工作,螺杆与物料始终处于摩擦状态,导致压缩区螺纹的磨损非常严重。当螺杆磨损到一定程度,螺杆与出料筒失去尺寸配合,原料就无法完成成型。因此,压缩区螺纹的磨损决定了螺杆的使用寿命,螺杆使用寿命成为生物质压缩成型技术实用化决定性因素。对螺杆磨损,由于受工艺技术的制约,目前没有从根本上解决问题,平均寿命仅为60-80h。

生物质热解技术

生物质热解技术 按温度,升温速率,固定停留时间(反应时间)和颗粒大小等实验条件可将热解分为炭化(慢热解),快速热解和气化。由于液体产物的诸多优点和随之而来的人们对其研究兴趣的日益高涨,对液体产物收率相对较高的快速热解技术的研究和应用越来越受到人们的重视。快速热解过程在几秒或更短的时间内完成。所以,化学反应,传热传质以及相变现象都起重要作用。关键问题是使生物质颗粒只在极短的时间内处于较低温度(此种低温利于生成焦炭),然后一直处于热解过程最优温度。要达到此目的的一种方法是使用小生物质颗粒(应用于流化床反应器),另一种方法是通过热源直接与生物质颗粒表面接触达到快速传热(这一方法应用于生物质烧蚀热解技术中)。由众多实验研究得知,较低的加热温度和较长气体停留时间会有利于炭的生成,高温和较长停留时间会增加生物质转化为气体的量,中温和短停留时间对液体产物增加最有利。 秸秆发电商品化前景分析 解决浪费性生物质能资源的唯一出路在于商品化。生物质能秸秆发电技术,不仅为农村提供更多电力,更有意义的是将使生物质能资源的商品化成为可能,一方面农民可通过出售秸秆获得更多的收入;另一方面过去农村使用直接燃烧秸秆的方式进行炊事,要为秸秆的收集、运输、储存以及在直接燃烧时花费大量的时间和劳力。如果能使用秸秆发电,农村使用更多的商品能源,农民将获得更多的时间从事生产性劳动,以尽早脱贫致富。因此,将秸秆发电进行能源方式转化,是一件利国利民的好事。 1 生物质能秸秆发电的工艺流程 农作物秸秆在很久以前就开始作为燃料,直至1973年第一次石油危机时丹麦开始研究利用秸秆作为发电燃料。在这个领域丹麦BWE公司是世界领先者,第一家秸秆燃烧发电厂于1998年投入运行(Haslev,5Mw)。此后,BWE公司在西欧设计并建造了大量的生物发电厂,其中最大的发电厂是英国的Elyan发电厂,装机容量为38Mw。 1.1 秸秆的处理、输送和燃烧 发电厂内建设两个独立的秸秆仓库。每个仓库都有大门,运输货车可从大门驶入,然后停在地磅上称重,秸秆同时要测试含水量。任何一包秸秆的含水量超过25%,则为不合格。在欧洲的发电厂中,这项测试由安装在自动起重机上的红外传感器来实现。在国内,可以手动将探测器插入每一个秸秆捆中测试水分,该探测器能存储99组测量值,测量完所有秸秆捆之后,测量结果可以存入连接至地磅的计算机。然后使用叉车卸货,并将运输货车的空车重量输入计算机。计算机可根据前后的重量以及含水量计算出秸秆的净重。 货车卸货时,叉车将秸秆包放入预先确定的位置;在仓库的另一端,叉车将秸秆包放在进料输送机上;进料输送机有一个缓冲台,可保艚崭?分钟;秸秆从进料台通过带密封闸门(防火)的进料输送机传送至进料系统;秸秆包被推压到两个立式螺杆上,通过螺杆的旋转扯碎秸秆,然后将秸秆传

化学分离与提纯的常用方法

化学分离与提纯的常用方法 提纯是指将混合物净化除去其杂质,得到混合物中的主体物质,提纯后的杂质不必考虑其化学成分和物理状态。混合物的分离方法有许多种,但根据其分离本质可分为两大类,一类:化学分离法,另一类:物理法,下面就混合物化学分离及提纯方法归纳如下: 分离与提纯的原则 1.引入的试剂一般只跟杂质反应。 2.后续的试剂应除去过量的前加的试剂。 3.不能引进新物质。 4.杂质与试剂反应生成的物质易与被提纯物质分离。 5.过程简单,现象明显,纯度要高。 6.尽可能将杂质转化为所需物质。 7.除去多种杂质时要考虑加入试剂的合理顺序。 8.如遇到极易溶于水的气体时,要防止倒吸现象的发生。 概念区分 清洗:从液体中分离密度较大且不溶的固体,分离沙和水; 过滤:从液体中分离不溶的固体,净化食用水; 溶解和过滤:分离两种固体,一种能溶于某溶剂,另一种则不溶,分离盐和沙; 离心分离法:从液体中分离不溶的固体,分离泥和水; 结晶法:从溶液中分离已溶解的溶质,从海水中提取食盐; 分液:分离两种不互溶的液体,分离油和水; 萃取:入适当溶剂把混合物中某成分溶解及分离,庚烷,取水溶液中的碘; 蒸馏:溶液中分离溶剂和非挥发性溶质,海水中取得纯水;

分馏:离两种互溶而沸点差别较大的液体,液态空气中分离氧和氮;石油的精炼; 升华:离两种固体,其中只有一种可以升华,离碘和沙; 吸附:去混合物中的气态或固态杂质,活性炭除去黄糖中的有色杂质; 分离和提纯常用的化学方法 1.加热法: 当混合物中混有热稳定性差的物质时,可直接加热,使热稳定性差的物质分解而分离出去。如,NaCl中混有NH4Cl,Na2CO3中混有NaHCO3等均可直接加热除去杂质。 2.沉淀法: 在混合物中加入某种试剂,使其中一种以沉淀的形式分离出去的方法。使用该方法一定要注意不能引入新的杂质。若使用多种试剂将溶液中不同微粒逐步沉淀时,应注意后加试剂的过量部分除去,最后加的试剂不引入新的杂质。如,加适量的BaCl2溶液可除去NaCl中混有的Na2SO4。

分离技术-

1、列举一个给你日常生活带来很大益处,而且是得益于分离科学的事例。分析解决这个分离问题时可采用哪几种分离方法,这些分离方法分别依据分离物质的那些性质。 2、中国科学家屠呦呦因成功研制出新型抗疟疾药物青蒿素,获得2015年诺贝尔医学奖。青蒿素是从中医文献中得到的启发,用现代化学方法提取的,请通过查阅资料说明提取分离中药有效成分都有哪些具体的实施方法。 3、了解国内纯净水生产的主要分离技术是什么,该技术掉了原水中的哪些物质(写出详细工艺流程)。 4、活性炭和碳纳米管是否有可能用来做固相萃取的填料?如果可以,你认为它们对溶质的保留机理会是一样的吗? 5、固体样品的溶剂萃取方法有哪几种,从原理、设备及复杂程度、适用物质对象和样品、萃取效果等方面总结各方法的特点。 1答:海水的淡化可采用膜分离技术 膜分离技术( Membrane Separation,MS) 是利用具有选择透过性的天然或人工合成的薄膜作为分离介质,以外界能量或化学位差为推动力,对双组分或多组分药材进行分离、分级、提纯或富集的技术。膜分离技术包括微滤、纳滤、超滤和反渗透等。 2答: 1.经典的提取分离方法传统中草药提取方法有:溶剂提取法、水蒸汽蒸馏法两种。溶剂提取法有浸渍法、渗源法、煎煮法、回流提取法、连续提取等。分离纯化方法有,系统溶剂分离法、两相溶剂举取法、沉淀法、盐析法、透析法、结晶法、分馏法等。 2.现代提取分离技术超临界流体萃取法、膜分离技术、超微粉碎技术、中药絮凝分离技术、半仿生提取法、超声提取法、旋流提取法、加压逆流提取法、酶法、大孔树脂吸附法、超滤法、分子蒸馏法。 超临界流体萃取法(SFE):该技术是80年代引入中国的一项新型分离技术。其原理是以一种超临界流体在高于临界温度和压力下,从目标物中萃取有效成分,当恢复到常压常温时,溶解在流体中成分立即以溶于吸收液的

生物质快速热解技术

生物质快速热解技术 摘要:生物质能源是可再生能源的重要组成部分,有丰富的资源和低污染的特点,它的开发与利用已成为2l世纪研究的重要课题。本文概述了生物质转化利用的方法,并重点阐述了生物质热化学转化法中的快速热解技术,同时综述了国内外快速热解反应器的现状,以度其产物——生物油的收集与特征分析,并提出了我国在快速热解研究方面应采取的有关措施。 生物质是地球上绿色植物通过光合作用获得的各种有机物质,它是以化学方式储存太阳能,也是以可再生形式储存在生物圈的碳。主要包括林业生物质、农业废弃物、水生植物、能源作物、城市垃圾、有机废水和人、畜粪便等。 据统计,世界每年生物质产量约l460亿吨,其中农村每年的生物质产量就有300亿吨,而生物质的利用却仅占世界能源消耗总量的l4%,发达国家占3%,发展中国家占35%,是继石油、煤炭、天然气等化石能源之后,当今全球第四大能源。但随着化石能源利用中产生诸如“酸雨”、“温室效应”等环境问题的日益突出,以及化石燃料本身可开采量的逐渐减少,生物质能源凭借其是一种环境友好型能源,及其利用中较低的SO、NO产出和CO净排放量为零等优点,引起了越来越多人的关注。 不言而喻,生物质能源将是未来可持续发展能源体系的重要组成部分,无论是从环境,还是从资源方面考虑,研究生物质能源的转化与利用都是一项迫在眉睫的重大课题。 1生物质转化利用方法 1.1生物法或称为微生物法 生物质(主要是农作物秸秆、粪便、有机废水等)在厌氧条件下发酵制得沼气,主要成分是甲烷;糖类、淀粉类原料水解发酵制取酒精。 1.2化学处理法 生物质中的半纤维素在酸l生条件下加热水解获得重要的化工原料糠醛;利用稻壳生产白炭黑等。 1.3热化学转化法 1.3.1热解生物质在隔绝或少量氧气的条件下,热解反应获得气体、固体、液体3类产品。近几十年来国外研究开发了快速热解技术,即生物质瞬间热解制取液体燃料油,其得率高达70%以上,是一种很有开发前景的生物质应用技术。 1.3.2液化分直接液化和间接液化两类,直接液化是生物质在高压设备中,添加适宜的催化剂,反应制得液化油,作为汽车用燃料,或者分离加工成化工用品,这是近年来生物质能利用研究的热点。间接液化是把生物质先气化成气体后,再进一步合成液体产品;或者把生物质中的纤维素、半纤维素水解,然后再发酵制取酒精。 1.3.3气化生物质在较高的温度(700—900℃)下,与气化剂(如空气、氧气或水蒸气)反应得到小分子可燃气体的过程。目前使用最广泛的是空气作气化剂,产生的气体主要作为燃料使用,可用于锅炉、民用炉灶、发电等场合,也可作为合成甲醇、氨的化工原料。气化技术在国外已实现大规模工业化,主要有气化发电技术,目前我国在此方面已基本完成中试与小规模生产,现正走向大型产业化生产阶段。 1.3.4直接燃烧生物质在充足氧气的环境下直接燃烧,把化学能转变为热能。近年来还出现了生物质固化成型技术,通过机械加压的方法将分散、无定形生物质转化为一定形状和密度的固体燃料,然后再燃烧。 热化学转化法可用图1表示:

分离和提纯技术

分离和提纯技术 多步分离单酚和生物质油的不溶相中的热解木质素摘要: 为了实现生物质油中的不溶相高位值的利用,用酸性和碱性溶液合成的有机溶液分离单酚和生物质油不溶相中的热解木质素。酚醛树脂可由生物质油中的不溶相抽出反应获得,其在酚类中含量高达94.35%,愈创木酚的含量达到了48.27%。而且,傅里叶变换红外光谱(FTIR)、核磁共振(NMR)和凝胶渗透色谱(GPC)分析热解木质素显示的主要结构单元是愈创木酚和二甲氧基苯酚。高分子量热解木质素中以分子量高于1000的聚合物为主, 而低分子量热解木质素中含有较多的活性酚羟基。 1.引言 生物质油是一种有生物质快速热解的液体产物,其包含数百种化学物的复杂的液体混合物,它表现为一些较差的特性,比如高含水量、含氧量高、热值低,和强大的腐蚀性,这些缺点使它很难直接用作汽车燃料,因此,开发了几种高级技术提高生物油的品量,包括催化加氢脱氧、催化裂化、蒸汽重整、催化酯化、超临界提升,等等。然而,由于生物质油的复杂性,一个单一的提高品质的技术无法实现所有成分的有效转换。研究催化裂化的影响和蒸汽重整生物油的主要化学组分表明,羧酸和酮表现出高反应活性和催化稳定性。而酚类化合物较难转化,酚类化合物的高效转换通常需要高强度的反应条件如加氢脱氧下高氢气压力。高分子量酚醛树脂低聚物不仅显示低反应性,

但在加热条件下也很有可能生成焦炭,这将导致催化剂失活。因此,生物油的分离会使不同的分数不同的升级技术更有效率和随后的隔离还提供了一个初期的有价值的化学物质。 蒸馏和溶剂萃取是常见的隔离和分离技术。由于生物油的热气流和化学不稳定性,以及含量高的高沸点化合物,传统的蒸馏馏分油收率低并且会结焦。为了解决这个问题,王等人介绍了用分子蒸馏技术的一个合适的方法分离热敏感的化学物质,他们对生物油的分离特性的研究表明,这种方法导致高馏分油产量没有明显的炼焦,并获得的分数被成功升级到产生更好的燃料,另一个前景看好的隔离方法是溶剂萃取,一般应用于生物油特性描述,在许多溶剂中,水是廉价和高效的一种。水萃取后生物油可以分为水溶性和水不溶性阶段,并且分离阶段可以单独处理。低分子量的水溶相主要包括反应活性高酸和酮。已经证明醋酸和左旋葡聚糖可以有效地隔绝生物油水溶相,升级研究表明,生物油水溶相广泛用于蒸汽转化,可以生成高产量的氢,此外,在温和加氢脱氧和催化裂化过程中,生物油水溶相也是生产碳氢化合物、醇类、烯烃的原料。虽然生物油水溶相表明好的升级性能, 由于其成分的复杂性水不溶性的升级阶段的研究是受限的,它的主要衍生产品,包括单酚如苯酚、愈创木酚,和二甲氧基苯酚以及酚类低聚物(或热解木质素)。通过加氧脱氢单酚可以转化为碳氢化合物,但热解木质素由于其化学惰性很难升级。因此,除了更高效利用水溶相,,将生物油水不溶相进一步分离成几种组分,然后用合适的技术将他们分别升级也非常必要,主要的设计方案是图1所示。水溶相升级到催化裂化,蒸

热解生物质制油技术

热解生物质制油技术 热能C074 范竹茵073730 摘要:热解技术已经应用到了能源转化的各个方面,它以其快速、清洁等优点引起了人们的广泛关注和研究。其中生物质的热解为我们提供了新型的能源——生物油。生物质在热解反应器中进行裂解等一系列的化学反应,通过控制反应的温度、速率和物料的湿度等来调节生物油的各种性质。同时由于不同的热解反应器以及不同的原料也会使得油的热值、纯净度等一些特性受到影响。 关键词:热解、生物质、生物油、热解反应器、 正文:随着全球工业的发展,煤、石油等不可再生的化石能源大量的消耗,人类面临着一场有史以来最严重的能源危机,寻找替代能源已经成为了迫在眉睫的大事。氢能、核能、太阳能、风能、水能及生物质能等清洁能源备受人们的关注,其中热解生物质制油就是一种用可再生能源代替石油的技术。 热解又称裂解,它是利用热能切断大分子量的有机物、碳氢化合物,使之转变为含碳数更少的低分子量物质的过程,废弃生物质的热解是一个复杂的化学反应过程,包括大分子的键断裂、异构化和小分子的聚合等反应,最后生成各种较小的分子。热解的优点在于能回收可储输的燃料,可在焚烧温度低的条件下,从有机物中直接回收燃料气和油品。从资源化角度来看,热解是木质素纤维素转化为燃料乙醇和其他高附加化工产品工艺中的关键性环节。由于热解温度相对较低,所以NO发生量少、气体生成量仅占焚烧法的几分之一。 热解生物油是用热化学的方法将生物质转化成液体物质,进而制备成能直接用于发电厂或车用发动机燃料,以代替柴油等石油能源产品。热解技术日趋成熟,在反应器的设计、原料预处理、生物油的分离和后续制备、生物质的热解机理方面都有重大突破,在国内外都已形成产业化。 热解生物质产生燃料的技术在欧盟已经获得最大的资助,快速热解是有效转化生物质产生液体燃料的方法,液体燃料的产率能达到生物质重量的70%~80%,因此被认为是解决可再生燃料代替化石燃料的有效方法之一。 一.生物质热解概念

第十章 生物质热解技术

第十章生物质热解技术 1 概述 热化学转化技术包括燃烧、气化、热解以及直接液化,转化技术与产物的相互关系见图10-1。热化学转化技术初级产物可以是某种形式的能量携带物,如,木炭(固态)、生物油(液态)或生物质燃气(气态),或者是能量。这些产物可以被不同的实用技术所使用,也可通过附加过程将其转化为二次能源加以利用。 图10-1 热化学转化技术与产物的相互关系 生物质热解、气化和直接液化技术都是以获得高品位的液体或者气体燃料以及化工制品为目的,由于生物质与煤炭具有相似性,它们最初来源于煤化工(包括煤的干馏、气化和液化)。本章中主要围绕热解展开。 1.1生物质热解概念 热解(Pyrolysis又称裂解或者热裂解)是指在隔绝空气或者通入少量空气的条件下,利用热能切断生物质大分子中的化学键,使之转变成为低分子物质的过程。可用于热解的生物质的种类非常广泛,包括农业生产废弃物及农林产品加工业废弃物、薪柴和城市固体废物等。 关于热解最经典的定义源于斯坦福研究所的J. Jones提出的,他的热解定义为“在不向反应器内通入氧、水蒸气或加热的一氧化碳的条件下,通过间接加热使寒潭有机物发生热化学分解,生成燃料(气体、液体和固体)的过程”。他认为通过部分燃烧热解产物来直接提供热解所需热量的情况,严格地讲不应该称为部分燃烧或缺氧燃烧。他还提出将严格意义上的热解和部分燃烧或缺氧燃烧引起的气化、液化等热化学过程统称为PTGL(Pyrolysis,Thermal Gasification or Liquification)过程。 生物质由纤维素、半纤维素和木质素三种主要组分组成,纤维素是β-D-葡萄糖通过C1-C4苷键联结起来的链状高分子化合物,半纤维素是脱水糖基的聚合物,当温度高于500℃时,纤维素和半纤维素将挥发成气体并形成少量的炭。木质素是具有芳香族特性的,非结晶性的,具有三度空间结构的高聚物。由于木质素中的芳香族成分受热时分解较慢,因而主要形成炭。此外,生物质还含有提取物,主要由萜烯、脂肪酸、芳香物和挥发性油组成,这些提取物在有机和无机溶剂中是可溶的。三种成分的含量茚生物质原料的不同而变化,生物质热裂解产

农业生态园规划设计书

目录 一、前言 (1) 二、规划目标 (1) 三、规划设计原 则 (1) (一)生态的原则 (1) (二)高效益原则 (2) (三)参与性原则 (2) (四)突出特色的原则 (2) (五)文化渲染的原则 (2) (六)整体规划、分期开发原则.....................2 四、总体规划布局 (3) (一)园区景观篇 (3) (二)基础设施篇 (3) (三)绿色农业生产篇 (3) (四)科普教育篇 (3) (五)主题型景观篇 (3) 1、园区景观带 (4) 2、餐饮、住宿、商务区 (4) 3、开心农场,家禽认养区 (4) 4、滨水景观区 (4)

5、主题园区 (4) 6、科普区 (4) 五、园林景观配置格局 (5) (一)植物景观配置原则 (5) (二)建筑景观配置原则 (5) 六、旅游开发规划 (6) (一)旅游市场分析 (6) (二)旅游项目开发规划 (6) 1、文化类 (6) 2、观光类 (6) 3、主题类 (6) 4、休闲类 (6) 5、参与逗趣类 (6) 6、运动娱乐类 (6) (三)游线规划 (7) (四)环境容量与游人规划 (7) (五)旅游服务配套设施规划 (7) (六)游览组织规划 (7) 1、一日游 (7) 2、二日游 (8) 3、多日游 (8)

(七)经济效益分析 (8) 七、环境保护规划 (9) (一)环境保护和资源利用 (9) (二)垃圾分类收集、处理、再利用 (9) (三)防灾规划 (9) 八、基础设施规划 (9) (一)排灌系统和给排水规划 (9) (二)道路交通系统规划 (9) (三)电力电讯规划 (9) 九、各园区的规划设计 (9) (一)植物专类园的规划设计 (9) (二)果木观光采摘园规划设计 (9) (三)园林景观区域的规划设计 (9) (四)休闲度假和服务区的规划设计 (9) (五)生产和示范区规划设计 (10) (六)办公区、职工生活区规划设计 (10) (七)观景点和亭、廊的规划设计 (10) 十、后记 (10) 参考图

中药提取分离技术

中药提取分离纯化 中草药提取液或提取物仍然就是混合物,需进一步除去杂质,分离并进行精制。具体得方法随各中草药得性质不同而异,以后将通过实例加以叙述,此处只作一般原则性得讨论。 一、溶剂分离法: 一般就是将上述总提取物,选用三、四种不同极性得溶剂,由低极性到高极性分步进行提取分离。水浸膏或乙醇浸膏常常为胶伏物,难以均匀分散在低极性溶剂中,故不能提取完全,可拌人适量惰性填充剂,如硅藻土或纤维粉等,然后低温或自然干燥, 粉碎后,再以选用溶剂依次提取,使总提取物中各组成成分,依其在不同极性溶剂中溶解度得差异而得到分离。例如粉防己乙醇浸膏,碱化后可利用乙醚溶出脂溶性生物碱,再以冷苯处理溶出粉防己碱,与其结构类似得防己诺林碱比前者少一甲基而有一酚 羟基,不溶于冷苯而得以分离。利用中草药化学成分,在不同极性溶剂中得溶解度进行分离纯化,就是最常用得方法。 广而言之,自中草药提取溶液中加入另一种溶剂,析出其中某种或某些成分,或析出其杂质,也就是一种溶剂分离得方法。中草药得水提液中常含有树胶、粘液质、蛋白质、糊化淀粉等,可以加入一定量得乙醇,使这些不溶于乙醇得成分自溶液中沉淀析出,而达到与其它成分分离得目得。例如自中草药提取液中除去这些杂质,或自白及水提取液中获得白及胶,可采用加乙醇沉淀法;自新鲜括楼根汁中制取天花粉素, 可滴人丙酮使分次沉淀析出。目前,提取多糖及多肽类化合物,多采用水溶解、浓缩、加乙醇或丙酮析出得办法。 此外,也可利用其某些成分能在酸或碱中溶解,又在加碱或加酸变更溶液得pH 后,成不溶物而析出以达到分离。例如内酯类化合物不溶于水,但遇碱开环生成羧酸盐溶于水,再加酸酸化,又重新形成内酯环从溶液中析出,从而与其它杂质分离;生物碱一般不溶于水,遇酸生成生物碱盐而溶于水,再加碱碱化,又重新生成游离生物碱。这些化合物可以利用与水不相混溶得有机溶剂进行萃取分离。一般中草药总提取物用酸水、碱水先后处理,可以分为三部分:溶于酸水得为碱性成分(如生物碱),溶于碱水得为酸性成分(如有机酸),酸、碱均不溶得为中性成分(如甾醇)。还可利用不同酸、碱度进一步分离,如酸性化台物可以分为强酸性、弱酸性与酷热酚性三种,它们分别溶于碳酸氢钠、碳酸钠与氢氧化钠,借此可进行分离。有些总生物碱,如长春花生物碱、石蒜生物碱,可利用不同rH值进行分离。但有些特殊情况,如酚性生物碱紫董定碱(corydine)在氢氧化钠溶液中仍能为乙醚抽出,蝙蝠葛碱(dauricins)在乙醚溶液中能为氢氧化钠溶液抽出,而溶于氯仿溶液中则不能被氢氧化钠溶液抽出;有些生物碱得盐类,如四氢掌叶防己碱盐酸盐在水溶液中仍能为氯仿抽出。这些性质均有助于各化合物得分离纯化。 二、两相溶剂萃取法: 1.萃取法:两相溶剂提取又简称萃取法,就是利用混合物中各成分在两种互不相溶得溶剂中分配系数得不同而达到分离得方法。萃取时如果各成分在两相溶剂中分配系数相差越大,则分离效率越高、如果在水提取液中得有效成分就是亲脂性得物质,一般多用亲脂性有机溶剂,如苯、氯仿或乙醚进行两相萃取,如果有效成分就是偏于亲水性得物质,在亲脂性溶剂中难溶解,就需要改用弱亲脂性得溶剂,例如乙酸乙酯、丁醇等。还可以在氯仿、乙醚中加入适量乙醇或甲醇以增大其亲水性。提取黄酮类成分时,多用乙酸乙脂与水得两相萃取。提取亲水性强得皂甙则多选用正丁醇、异戊醇与水作两相萃取。不过,一般有机溶剂亲水性越大,与水作两相萃取得效果就越不好,因为能使较多得亲水性杂质伴随而出,对有效成分进一步精制影响很大。

观光农业生态园规划设计说明

农业生态园规划设计说明 生态园成为集生态旅游、休闲度假、生态农业示范、生态产品生产、生态房产开发于一体,具有高水平的经济效益、生态效益和社会效益的综合园区。本园将推出四大生态产品:1、生态旅游、休闲度假:包括生态观光(生态景观观光、生态农业观光、生态技术观光);休闲度假(营造生态旅馆,配套生态保健、生态疗养等设施);生态餐饮(全部提供绿色食品,瓜果可以自我採摘,鱼虾可以自我捕捉);科普教育(生态知识、生物科学、自然保护、花卉文化等)、娱乐逗趣(动物驯化逗趣、水上娱乐等)。2、生态农业示范和产业化:通过运用生态系统、持续经营、物质循环、食物链、立体种养等理论和技术,形成各种优化的生态农业模式,包括大田立体种养,水体立体种养,水生、湿生、中生、旱生植物的水平布置等等,形成高效的农业,为社会主义新农村建设提供示范和技术指导,在此基础上,申办国家和地方的科研和成果推广项目,组织农民进行规模化生产,并进行收购、深加工和销售,提高附加值。3、生态产品生产:包括园林苗木花卉、高档切花、特色蔬菜瓜果、特色禽畜和高档水产品等等绿色产品的生产。生态产品生产主要分两类:一类是结合生态农业示范,形成本园的拳头产品;另一类是结合旅游和生态餐饮,形成本园的特色。4、生态房产开发:生态园优美的环境,为高附加值的生态房产开发打下坚实的基础。该项目将是生态园获取高利润的主要项目之一。 王国莉,骆海峰,陈鸣春,李丘民,洪冰冰 惠州学院生命科学系,广东惠州516007 摘要:发展观光农业是“绿色经济”大背景下的一种自然选择。许多观光农业生态园因为缺乏科学的规划设计和经营管理,造成旅游形象定位模糊,观光性、生态示范作用以及科普教育和农业科技示范性不强。文章提出观光农业生态园规划时应遵循因地制宜、培植精品、效益兼顾的原则,结合实例探讨了具体规划方案,将生态园建成一个“生态农业示范园”、“观光农业旅游园”、“绿色食品生产园”及“科普教育和农业科技示范园”,最终实现生态园生态、经济和社会效益的统一和可持续发展。 关键词:观光农业;生态园;生态农业;规划设计 在“绿色”和“生态”概念日渐普及、农业和旅游业产业地位不断提升的今天,走观光农业发展的道路已经成为“绿色经济”大背景下的一种自然选择。观光农业是传统农业与现代旅游业相结合的产物,是具有休闲、娱乐和求知功能的生态、文化旅游[1]。进入21世纪,观光农业将是重要的娱乐产业,农业观光园作为观光农业的主体必将得到更进一步的发展。观光农业生态园就是采用生态园模式进行观光园内农业的布局和生产,将农事活动、自然风光、科技示范、休闲娱乐、环境保护等融为一体,实现生态效益、经济效益与社会效益的统一[2]。但是

生物质热解总结

一、热解分类 根据反应温度和加热速率的不同,生物质热解工艺可分成慢速、常规、快速或闪速几种。慢速裂解工艺已经具有了几千年的历史,是一种以生成木炭为目的的炭化过程川,低温和长期的慢速裂解可以得到30%的焦炭产量;低于600℃的中等温度及中等反应速率(0.1-1℃)的常规热 裂解可制成相同比例的气体、液体和固体产品: 快速热裂解大致在10-200℃/S的升温速率,小于5秒的气相停留时间;闪速热裂解相比于快速热裂解的反应条件更为严格,气相停留时间通常小于1秒,升温速率要求大于1护'C/S.并以102-1护Vs的冷却速率对产物进行快速冷却。但是闪速热裂解和快速热裂解的操作条件并没有严格的区分,有些学者将闪速热裂解也归纳到快速热裂解一类中,两者都是以获得最大化液体产物收率为目的而开发。 事实上,现在人们在考虑生物质的热解机理时,常常假设生物质的三种主要组成物独立进行裂解。纤维素主要在325℃-375℃之间裂解,半纤维素主要在225℃-325℃之间发生裂解,而木质素则在250℃-500℃之间发生裂解(大多数木质素裂解发生在310℃-400℃之间)(shafizadch和Chin. 1977)。纤维素和半纤维素的裂解产生大多数的挥发物,而木质素裂解产生大多数的碳。 二、纤维素热解机理 1、纤维素结构 纤维素是由D-葡萄糖通过β(1-4)一糖苷键相连形成的高分子聚合物。不同的分子通过氢键形成大的聚集结构。目前的研究表明纤维素存在五种结晶变体,即纤维素I,Ⅱ,Ⅲ, IV和V。其中纤维素I是纤维素的天然存在形式。 纤维素是自然界中大量存在的天然高分子物质,是自然界分布最广、含量最多的一种多糖。纤维素是植物细胞壁的主要成分,它是由吡喃葡萄糖普通过0-1, 4-搪昔联结成的线性大分子,一般可用通式(C6HioO5)n表示, n称为聚合度,通常情况下在104左右. 纤维素是由β-D-葡萄糖为聚合单元构成的直状高聚物, 分子通式为(C6H10O5)n。它是具有饱和糖结构的典型碳水化合物,为生物质细胞壁的主组成部分。在高温作用下, 纤维素会发生一系列复杂的脱水、解聚、脱挥发分和结构重整等变化。纤素热解动力学涉及这一系列复杂变化中包含的各反应机理。但是, 由于热解过程中并行或者顺序发生的反应数目众多,实际上不可能、对工程应用来说没有必要建立一个考虑了所有这些反应的详尽的动力学模型. 因此, 该领域内的研究者关注的大多是谓的“准机理模型(pseudo-mechanistic model) ”, 在这一类模型中, 热解产物被笼统地划分为挥发分、固定碳等几大类. 总体上, 准机理模型有两种:单步全局模型和半全局动力学模型[]。 [ 7 ]余春江, 骆仲泱, 方梦祥, 廖燕芬, 王树荣, 岑可法;一种改进的纤维素热解动力学模型;浙江大学学报(工学板),2002:36,509-515 2、纤维素热解机理 由于纤维素在生物质原料中占据了几乎一半的含量,其热裂解行为在很大程度上体现出生物质整体的热裂解规律,纤维素具有最为简单的结构且在不同的材质中其结构和化学特性变化最小,因而当前研究基本上都从纤维素的热解行为入手开展工作。 纤维素热解动力学模型体现了纤维素热解化学反应的本征过程,是整个热解模型的核心部分。动力学模型的可靠性对于颗粒热解模型是否能正确反映真实过程至关重要。 2.1源于对纤维素燃烧过程的研究 纤维素热裂解机理的探索,最早源于对纤维素燃烧过程的研究,通过纤维素燃烧试验,Broido发现纤维素在低温加热条件下,经由吸热反应一部分纤维素转化为脱水纤维素。热裂解

超声提取分离技术

超声分离提取技术 摘要:超声提取技术是一种具有极强物理和声化学效应的分离方法,在生物医药,食品,精细化工等方面有着广泛应用。本文主要介绍了超声提取分离技术的原理、特点以及应用前景等。 关键词:超声波;分离提取;应用 The Technology of Ultrasonic Separation and Extraction Abstraction: The technology of ultrasonic extraction is a way of separation with great physical and acoustochemistry effect. It is widely applied among biological medicine, food science, fine chemical industry and other aspects. This article mainly introduce the theory, characteristic and application prospect of the ultrasonic separation and extraction. Keywords: ultrasonic; separation and extraction; application 1.前言 超声波是一种振动频率大于20000Hz的弹性波,在物质介质中的相互作用效应可分为热效应、空化效应和机械传质效应。超声波振动能产生强大的能量,给予媒质点以很大的速度和加速度,使浸提剂和提取物不断震荡,形成空化效应,有助于溶质扩散,加速植物中的有效成分进入溶剂,同时作用于植物叶肉组织可高效粉碎细胞壁,从而释放出其内容物,提高有效成分的提取率[1-2]。 超声波热效应是通过介质的微粒间和分界面上的摩擦以及介质的吸收等使超声能量转化为热能,提高介质和生物体的温度,从而有利于有效成分的溶出;超声波的机械振动发生的位移、速度变化不大,但其加速度却相当大,能显著增大溶剂进入提取物细胞的渗透性,从而强化了萃取过程。超声波的空化效应通过形成强声波作用产生液胞的振荡、伸长、收缩乃至崩溃等,往往使生物组织受到严重的损伤和破裂,从而加速有效成分的溶出和浸提[3-4]。 超声波提取法是利用超声波的空化效应、机械传质效应和热效应,以提高细胞内容物的穿透力和传输能力,增大物质分子运动频率和速度,提高有效成分的浸出率。与传统提取分离方法相比,如熬煮法、压滤法、化学法、溶剂浸提法、生物酶法等,超声提取法具有提取效率高、提取时间短、有效成分活性高等优点[5]。 传统的机械破碎法难以将细胞有效破碎,提取效率低。而化学破碎方法易造成提取物结构的改变和活性降低或失活。超声提取技术是一种具有极强物理和声化学效应的分离方法,其在溶液中形成的冲击波和微射流可以形成空化效应,达到破碎细胞和最大限度地保存和提高反应分子反应活性。将超声提取技术应用于提取茶叶的有效成分,操作简便快捷、无需加

生物质热解

生物质热解分慢速热解和快速热解。 快速热解为生物质在常压中等温度(约500℃),较高的升温速率103一104℃/s,蒸汽停留时间1s以内,据文献报道液体生物油的产率最高可达85%,并仅有少量可燃的不凝性气体和炭产生。 生物质快速热解技术始于20世纪70年代,是一种新型的生物质能源转化技术。它在隔绝空气或少量空气的条件下,采用中等反应温度,很短的蒸汽停留时间,对生物质进行快速的热解过程,再经过骤冷和浓缩,最后得到深棕色的生物油。 众所周知,目前生物质气化法是大规模集中处理生物质的主要方式,但也存在气体热值低,不易存贮、输送,小规模设备发电成本高以及上电网困难等问题;而固体燃料直接燃烧存在燃烧不完全,热利用率低,使用场合受限制等缺点。鉴于上述情形,生物质快速热解技术作为一项资源高效利用的新技术逐渐受到重视,已成为国内外众多学者研究的热点课题。因为生物油易于储存和运输,热值约为传统燃料油的一半以上,又可以作为合成化学品的原料,同时产生的少量气、固体产物可以在生产中回收利用。 2.1国外快速热解现状 国际能源署(IEA)组织了加拿大、芬兰、意大利、瑞典、英国及美国的10余个研究小组进行了10余年的研究工作,重点对这一过程发展的潜力、技术、经济可行性以及参与国之间的技术交流进行了协调,并在所发表的报告中得出了十分乐观的结论。欧美从20世纪70年代第一次进行生物质快速热解实验以来,已经形成比较完备的技术设备和工业化系统,表1较详细列出了欧美地区快速热解技术正常运行的反应器。

其中加拿大的Dyna Motive Energy Systems是目前利用生物质快速热解技术实行商业化生产规模最大的企业,其处理量为1500kg/h,生产以树皮、白木树、刨花、甘蔗渣为原料,在隔绝氧气450~500℃条件下,采用鼓泡循环流化床反应器,生物油的产率为60%一75%,炭15%一20%,不凝性气体10%~20%以上均为质量产率。生物油和炭可以作为商业产品出售,而不凝性气体则为循环气体燃烧使用,整个过程无废弃物产生,从而达到原料100%的利用率。 2.2国内快速热解现状 我国是一个农业大国,生物质资源非常丰富,仅稻草、麦草、蔗渣、芦苇、竹子等非木材纤维年产就超过10亿吨,加上大量的木材加工剩余物,都是取之不尽的能源仓库。 目前我国生物质的利用形式还是以直接燃烧为主,快速热解技术研究在国内尚处于起步阶段,主要的研究情况如下:沈阳农业大学开展了国家科委“八五”重点攻关项目“生物质热裂解液化技术”的研究工作,并与荷兰Twente大学合作,引进生产能力50kg/h的旋转锥型热解反应器,他们在生物质热解过程的实验研究和理论分析方面都做了很有成效的工作;浙江大学、中科院化工冶金研究所、河北环境科学院等近年来也进行了生物质流化床实验的研究,并取得了一定的成果;其中浙江大学于20世纪90年代中期,在国内率先开展了相关的原理性试验研究,最早使用GC—MS联用技术定量分析了生物油的主要组分,得到了各个运行参数对生物油产率及组成的影响程度;山东工程学院于1999年成功开发了等离子体快速加热生物质热解技术,并首次在国内利用实验室设备热解玉米秸粉,制出了生物油加。

相关主题
文本预览
相关文档 最新文档