当前位置:文档之家› 函数的奇偶性、对称性与周期性总结-史上最全

函数的奇偶性、对称性与周期性总结-史上最全

函数的奇偶性、对称性与周期性总结-史上最全
函数的奇偶性、对称性与周期性总结-史上最全

函数的奇偶性、对称性与周期性常用结论,史上最全

函数是高中数学的重点与难点,在高考数学中占分比重巨大。高考中对函数的考查灵活,相关的结论众多,有奇偶性,对称性,还有周期性,这些结论及变形能否掌握,都影响着学生的最终成绩。本篇将函数的奇偶性、对称性与周期性常用的结论进行总结,希望对同学们有帮助。需要WORD 电子文档的同学,可以入群领取。 1.奇偶函数:

设[][][]b a a b x b a x x f y ,,,),( --∈∈=或奇偶函数的定义域关于原点对称。 ①若为奇函数;则称)(),()(x f y x f x f =-=-()

()()0,

1()

f x f x f x f x +-==-- ②若为偶函数则称)()()(x f y x f x f ==-。()

()-()0,

1()

f x f x f x f x -==- 2.周期函数的定义:

对于()f x 定义域内的每一个x ,都存在非零常数T ,使得()()f x T f x +=恒成立,则称函数()f x 具有周期性,T 叫做()f x 的一个周期,则kT (,0k Z k ∈≠)也是()f x 的周期,所有周期中的最小正数叫()f x 的最小正周期。

分段函数的周期:设)(x f y =是周期函数,在任意一个周期内的图像为C:),

(x f y =

[]a b T b a x -=∈,,。把)()(a b K KT x x f y -==轴平移沿个单位即按向量

)()0,(x f y kT ==平移,即得在其他周期的图像:[]b kT a kT x kT x f y ++∈-=,),(。

[][]??

?++∈-∈=b kT a,kT x )(b a, x

)()(kT x f x f x f

/

函数周期性的几个重要结论

2、()()f x a f x b +=+ ?)(x f y =的周期为a b T -=

3、)()(x f a x f -=+ ?)(x f y =的周期为a T 2=

4、)

(1

)(x f a x f =+

?)(x f y =的周期为a T 2=

5、)

(1

)(x f a x f -=+

?)(x f y =的周期为a T 2=

6、)

(1)(1)(x f x f a x f +-=+ ?)(x f y =的周期为a T 3=

"

7、 1

)(1

)(+-

=+x f a x f ?)(x f y =的周期为a T 2=

8、)

(1)(1)(x f x f a x f -+=+ ?)(x f y =的周期为a T 4=

9、)()()2(x f a x f a x f -+=+ ?)(x f y =的周期为a T 6= 10、若.2

, )2()(,0p T p px f px f p =-=>则

推论:偶函数)(x f y =满足)()(x a f x a f -=+?)(x f y = 周期a T 2=

推论:奇函数)(x f y =满足)()(x a f x a f -=+?)(x f y = 周期a T 4=

函数的对称性:

(1)中心对称即点对称:

①点对称;关于点与),()2,2(),(b a y b x a B y x A -- ②对称;关于与点),(),(),(b a y b x a B y b x a A ++--

③成中心对称;关于点与函数),()2(2)(b a x a f y b x f y -=-= ④成中心对称;关于点与函数),()()(b a x a f y b x a f y b +=+-=- ⑤成中心对称。关于点与(函数),(0)2,2(0),b a y b x a F y x F =--=

(2)轴对称:对称轴方程为:0=++C By Ax 。

"

①))

(2,)(2(),(),(2

222//B

A C By Ax

B y B A

C By Ax A x B y x B y x A +++-+++-

=与点关于直线成轴对称;0=++C By Ax

②函数))

(2()(2)(2

222B

A C By Ax A x f

B A

C By Ax B y x f y +++-=+++-

=与关于直线 0))

(2,)(2(0),(2

222=+++-+++-

=B

A C By Ax

B y B A

C By Ax A x F y x F 与0=++C By Ax 成轴对称。 ③关于直线

0=++C By Ax 成轴对称。

{

二、函数对称性的几个重要结论

(一)函数)

y=图象本身的对称性(自身对称)

(x

f

若()()

f x具有对称

+=±-,则()

f a x f b x

f x a f x b

+=±+,则()

f x具有周期性;若()()

性:“内同表示周期性,内反表示对称性”。

推论1:)

x=对称

=

+?)

f-

y=的图象关于直线a

(x

f

)

a

(x

(

x

f

a

推论2、)

x=对称

=?)

f-

f

y=的图象关于直线a

(x

)

2(

(x

a

f

x

推论3、)

x=对称

-?)

(x

=

y=的图象关于直线a

f

(x

)

2(

a

f

x

f+

推论1、b x a f x a f 2)()(=-++ ?)(x f y =的图象关于点),(b a 对称

/

推论2、b x a f x f 2)2()(=-+ ?)(x f y =的图象关于点),(b a 对称

推论3、b x a f x f 2)2()(=++- ?)(x f y =的图象关于点),(b a 对称

(二)两个函数的图象对称性(相互对称)(利用解析几何中的对称曲线轨迹方程理解) 1、偶函数)(x f y =与)(x f y -=图象关于Y 轴对称 2、奇函数)(x f y =与)(x f y --=图象关于原点对称函数 3、函数)(x f y =与()y f x =-图象关于X 轴对称

4、互为反函数)(x f y =与函数1()y f x -=图象关于直线y x =对称

推论1:函数)(x a f y +=与)(x a f y -=图象关于直线0=x 对称 推论2:函数)(x f y =与)2(x a f y -= 图象关于直线a x =对称 推论3:函数)(x f y -=与)2(x a f y +=图象关于直线a x -=对称

(三)抽象函数的对称性与周期性

'

1、抽象函数的对称性

性质1 若函数y=f(x)关于直线x=a轴对称,则以下三个式子成立且等价:(1)f(a+x)=f(a-x) (2)f(2a-x)=f(x) (3)f(2a+x)=f(-x)

性质2 若函数y=f(x)关于点(a,0)中心对称,则以下三个式子成立且等价:(1)f(a+x)=-f(a-x)(2)f(2a-x)=-f(x)(3)f(2a+x)=-f(-x) 易知,y=f(x)为偶(或奇)函数分别为性质1(或2)当a=0时的特例。

2、复合函数的奇偶性

定义1、若对于定义域内的任一变量x,均有f[g(-x)]=f[g(x)],则复数函数y=f[g(x)]为偶函数。

!

定义2、若对于定义域内的任一变量x,均有f[g(-x)]=-f[g(x)],则复合函数y=f[g(x)]为奇函数。

说明:

(1)复合函数f[g(x)]为偶函数,则f[g(-x)]=f[g(x)]而不是f[-g(x)]=f[g(x)],复合函数y=f[g(x)]为奇函数,则f[g(-x)]=-f[g(x)]而不是f[-g(x)]=-f[g(x)]。

(2)两个特例:y=f(x+a)为偶函数,则f(x+a)=f(-x+a);y=f(x+a)为奇函数,则f(-x+a)=-f(a+x)

(3)y=f(x+a)为偶(或奇)函数,等价于单层函数y=f(x)关于直线x=a轴对称(或关于点(a,0)中心对称)

~

3、复合函数的对称性

性质3复合函数y=f(a+x)与y=f(b-x)关于直线x=(b-a)/2轴对称

性质4、复合函数y=f(a+x)与y=-f(b-x)关于点((b-a)/2,0)中心对称

推论1、复合函数y=f(a+x)与y=f(a-x)关于y轴轴对称

推论2、复合函数y=f(a+x)与y=-f(a-x)关于原点中心对称

4、函数的周期性

若a是非零常数,若对于函数y=f(x)定义域内的任一变量x点有下列条件之一成立,则函数y=f(x)是周期函数,且2|a|是它的一个周期。

^

①f(x+a)=f(x-a) ②f(x+a)=-f(x) ③f(x+a)=1/f(x) ④f(x+a)=1/f(x)

5、函数的对称性与周期性

性质5 若函数y =f(x)同时关于直线x =a 与x =b 轴对称,则函数f(x)必为周期函数,且T =2|a -b|

性质6、若函数y =f(x)同时关于点(a ,0)与点(b ,0)中心对称,则函数f(x)

必为周期函数,且T =2|a -b|

性质7、若函数y =f(x)既关于点(a ,0)中心对称,又关于直线x =b 轴对称,则函数f(x)必为周期函数,且T =4|a -b| 6、函数对称性的应用

(1)若k y y h x x k h x f y 2,2),)(//=+=+=对称,则关于点(,即

k x h f x f x f x f 2)2()()()(/=-+=+

nk x h f x h f x h f x f x f x f n n n 2)2()2()2()()()(1121=-++-+-++++-

(2)例题 1、1)1()(21

21)(=-++=

x f x f a

a a x f x

x

)对称:,关于点(; ·

2)()(10122

1

4)(1=-++--=+x f x f x x f x x )对称:,关于(

1)1

()2121)0,(1

1)(=+≠∈+=

x f x f x R x x f ()对称:,关于(αα

2、奇函数的图像关于原点(0,0)对称:0)()(=-+x f x f 。

3、若)(),()()2()(x f y x a f x a f x a f x f =+=--=则或的图像关于直线a x =对称。设

个不同的实数根,则有n x f 0)(=

na x a x x a x x a x x x x n n n =-+++-++-+=+++)2()2()2(2

2

221121 .

),212(111a x x a x k n =?-=+=时,必有当

用函数奇偶性、周期性与对称性解题的常见类型

|

灵活应用函数奇偶性、周期性与对称性,可巧妙的解答某些数学问题,它对训练学生分析问题与解决问题的能力有重要作用.下面通过实例说明其应用类型。

1.求函数值

例1.(高考题)设)(x f 是),(+∞-∞上的奇函数,),()2(x f x f -=+当10≤≤x 时,x x f =)(,则)5.7(f 等于(-0.5) (2)()(4)(2)f x f x f x f x +=-+=-+得 4T =

(A )0.5; (B )-0.5; (C )1.5; (D )-1.5.

例2.(竞赛题)已知)(x f 是定义在实数集上的函数,且[])(1)(1)2(x f x f x f +=-+,

,32)1(+=f 求)1989(f 的值.23)1989(-=f 。

1()1(2)

(2)(4)1()1(+2)1()

111()

(4)=8

1()()11()f x f x f x f x f x f x f x f x f x T f x f x f x ++++=

+=

--++

-+=→=+-

-得-

2、比较函数值大小

例3.若))((R x x f ∈是以2为周期的偶函数,当[]1,0∈x 时,,)(1998

1

x

x f =试比较)19

98(

f 、)17101(f 、)15

104(f 的大小. 解:))((R x x f ∈ 是以2为周期的偶函数,又1998

1)(x

x f = 在[]1,0上是增函数,且

1151419161710<<<<

,).15

104()1998(17101(),1514()1916()171(f f f f f f <<<<∴即

3、求函数解析式

例4.(高考题)设)(x f 是定义在区间),(+∞-∞上且以2为周期的函数,对Z k ∈,用k

I 表示区间),12,12(+-k k 已知当0I x ∈时,.)(2x x f =求)(x f 在k I 上的解析式. 解:设1211212),12,12(<-<-?+<<-∴+-∈k x k x k k k x

0I x ∈ 时,有22)2()2(121,)(k x k x f k x x x f -=-<-<-∴=得由

)(x f 是以2 为周期的函数,2)2()(),()2(k x x f x f k x f -=∴=-∴.

例5.设)(x f 是定义在),(+∞-∞上以2为周期的周期函数,且)(x f 是偶函数,在区间

[]3,2上,.4)3(2)(2+--=x x f 求[]2,1∈x 时,)(x f 的解析式.

解:当[]2,3--∈x ,即[]3,2∈-x ,

4)3(24)3(2)()(22++-=+---=-=x x x f x f

又)(x f 是以2为周期的周期函数,于是当[]2,1∈x ,即243-≤-≤-x 时,

[]).

21(4)1(243)4(2)()

4()(2

2

≤≤+--=++--=?-=x x x x f x f x f 有

).21(4)1(2)(2≤≤+--=∴x x x f

4、判断函数奇偶性

例6.已知)(x f 的周期为4,且等式)2()2(x f x f -=+对任意R x ∈均成立,判断函数)(x f 的奇偶性.

解:由)(x f 的周期为4,得)4()(x f x f +=,由)2()2(x f x f -=+得

)4()(x f x f +=-,),()(x f x f =-∴故)(x f 为偶函数.

5、确定函数图象与x 轴交点的个数

例7.设函数)(x f 对任意实数x 满足)2()2(x f x f -=+,=+)7(x f ,0)0()7(=-f x f 且判断函数)(x f 图象在区间[]30,30-上与x 轴至少有多少个交点.

解:由题设知函数)(x f 图象关于直线2=x 和7=x 对称,又由函数的性质得

)(x f 是以10为周期的函数.在一个周期区间[)10,0上,

%

,)(0)0()22()22()4(,0)0(不能恒为零且x f f f f f f ==-=+==

故)(x f 图象与x 轴至少有2个交点.

而区间[)30,30-有6个周期,故在闭区间[]30,30-上)(x f 图象与x 轴至少有13个交点.

6、在数列中的应用

例8.在数列{}n a 中,)2(11,31

1

1≥-+=

=--n a a a a n n n ,求数列的通项公式,并计算.1997951a a a a ++++

分析:此题的思路与例2思路类似. 解:令,1αtg a =则)4

(1111112απ

αα+=-+=-+=

tg tg tg a a a ?

?

?

?

???+-=-+=??????+?-=∴+?=---+=

-+=---απαπαπ

απ

απ4)1(11,4)1()

4

2()

4

(

1)

4

(11111122

3n tg a a a n tg a tg tg tg a a a n n n n 于是

不难用归纳法证明数列的通项为:)4

4

(απ

π+-=n tg a n ,且以4为周期.

于是有1,5,9 …1997是以4为公差的等差数列,

1997951a a a a ====∴ ,由4)1(11997?-+=n 得总项数为500项,

.350050011997951=?=++++∴a a a a a

7、在二项式中的应用

例9.今天是星期三,试求今天后的第9292天是星期几?

分析:转化为二项式的展开式后,利用一周为七天这个循环数来进行计算即可.

解:191919191)191(929192290929119292092

9292+?++++=+=C C C C

1

)137()137()137()137()1137(9291

92

2

90

9291192920929292+?+?++?+?=+?=∴C C C C

因为展开式中前92项中均有7这个因子,最后一项为1,即为余数, 故9292天为星期四. 8、复数中的应用

例10.(上海市高考题)设)(2

3

21是虚数单位i i z +-=,则满足等式,z z n =且大于1的正整数n 中最小的是()

(A ) 3 ; (B )4 ; (C )6 ; (D )7. 分析:运用i z 2

3

21+

-=方幂的周期性求值即可. [

解:10)1(,11=?=-∴=--n n n z z z z z ,

)

(.4)(,,1).

(13),(31,31,1min 3B n n k N k k n N k k n n z 故选择最小时即的倍数必须是=∴=∴∈+=∴∈=--∴=

9、解“立几”题

例11.ABCD —1111D C B A 是单位长方体,黑白二蚁都从点A 出发,沿棱向前爬行,每走一条棱称为“走完一段”。白蚁爬行的路线是,111 →→D A AA 黑蚁爬行的路线是

.1 →→BB AB 它们都遵循如下规则:所爬行的第2+i 段所在直线与第i 段所在直线必须

是异面直线(其中)N i ∈.设黑白二蚁走完第1990段后,各停止在正方体的某个顶点处,这时黑白蚁的距离是()

(A )1; (B )2;(C )3 ; (D )0.

解:依条件列出白蚁的路线→→→→→CB C C C D D A AA 111111

,1 →→AA BA 立即可以发现白蚁走完六段后又回到了A 点.可验证知:黑白二蚁走

完六段后必回到起点,可以判断每六段是一个周期.

1990=64331+?,因此原问题就转化为考虑黑白二蚁走完四段后的位置,不难计算出在走完四段后黑蚁在1D 点,白蚁在C 点,故所求距离是.2

|

例题与应用

例1:f(x) 是R 上的奇函数f(x)=- f(x+4) ,x ∈[0,2]时f(x)=x ,求f(2007) 的值

例2:已知f(x)是定义在R 上的函数,且满足f(x+2)[1-f(x)]=1+f(x),f(1)=2,求

f(2009) 的值 。故f(2009)= f(251×8+1)=f(1)=2

例3:已知f(x)是定义在R 上的偶函数,f(x)= f(4-x),且当[]0,2-∈x 时,f(x)=-2x+1,则当[]6,4∈x 时求f(x)的解析式

例4:已知f(x)是定义在R 上的函数,且满足f(x+999)=)

(1

x f -,f(999+x)=f(999-x), 试判断函数f(x)的奇偶性.

例5:已知f(x)是定义在R 上的偶函数,f(x)= f(4-x),且当[]0,2-∈x 时,f(x)是减函数,求证当[]6,4∈x 时f(x)为增函数

例6:f(x)满足f(x) =-f(6-x),f(x)= f(2-x),若f(a) =-f(2000),a ∈[5,9]且f(x)在[5,9]上单调.求a 的值.

(

例7:已知f(x)是定义在R 上的函数,f(x)= f(4-x),f(7+x)= f(7-x),f(0)=0,

求在区间[-1000,1000]上f(x)=0至少有几个根?

解:依题意f(x)关于x=2,x=7对称,类比命题2(2)可知f(x)的一个周期是10

故f(x+10)=f(x) ∴f(10)=f(0)=0 又f(4)=f(0)=0 即在区间(0,10]上,方程f(x)=0至少两个根

又f(x)是周期为10的函数,每个周期上至少有两个根, 因此方程f(x)=0在区间[-1000,1000]上至少有1+10

2000

2?

=401个根.

例1、函数y=f(x)是定义在实数集R上的函数,那么y=-f(x+4)与y=f(6-x)的

图象之间(D )

A.关于直线x=5对称 B.关于直线x=1对称

C.关于点(5,0)对称 D.关于点(1,0)对称

解:据复合函数的对称性知函数y=-f(x+4)与y=f(6-x)之间关于

点((6-4)/2,0)即(1,0)中心对称,故选D。(原卷错选为C)

例2、设f(x)是定义在R上的偶函数,其图象关于x=1对称,证明f(x)是周期函数。例3、设f(x)是(-∞,+∞)上的奇函数,f(x+2)=-f(x),当0≤x≤1时f(x)

=x,则f(7.5)等于(-0.5)(1996年理工类第15题)

例4、设f(x)是定义在R上的函数,且满足f(10+x)=f(10-x),f(20-x)=-f(20

+x),则f(x)是(C )

A.偶函数,又是周期函数 B.偶函数,但不是周期函数

C.奇函数,又是周期函数 D.奇函数,但不是周期函数

六、巩固练习

1、函数y=f(x)是定义在实数集R上的函数,那么y=-f(x+4)与y=f(6-x)的图象()。

A.关于直线x=5对称B.关于直线x=1对称C.关于点(5,0)对称D.关于点(1,0)对称

2、设f(x)是(-∞,+∞)上的奇函数,f(x+2)=-f(x),当0≤x≤1时, f(x)=x,则f(7.5)=()。

A .0.5

B .-

0.5 C .1.5 D .-1.5

3、设f(x)是定义在(-∞,+∞)上的函数,且满足f(10+x)=f(10-x), f(20-x)=-f(20+x),则f(x)是( )。

A .偶函数,又是周期函数

B .偶函数,但不是周期函数

C .奇函数,又是周期函数

D .奇函数,但不是周期函数 4、f(x)是定义在R 上的偶函数,图象关于x =1对称,证明f(x)是周期函数。

参考答案:D ,B ,C ,T =2。

5、在数列12211(*)n n n n x x x x x x n N ++===-∈{}中,已知,,求100x =-1.

《函数的奇偶性与周期性》教案

教学过程 一、课堂导入 我们生活在美的世界中,有过许多对美的感受,请想一下有哪些美? 对于对称美,请想一下哪些事物给过你对称美的感觉呢? 生活中的美引入我们的数学领域中,它又是怎样的情况呢?若给它适当地建立直角坐标系,那么会发现什么特点? 数学中对称的形式也很多,这节课我们就来复习在坐标系中对称的函数

二、复习预习 1、复习单调性的概念 2、复习初中的轴对称和中心对称 3、预习奇偶性的概念 4、预习奇偶性的应用

三、知识讲解 考点1 函数的奇偶性 [探究] 1. 提示:定义域关于原点对称,必要不充分条件. 2.若f(x)是奇函数且在x=0处有定义,是否有f(0)=0?如果是偶函数呢? 提示:如果f(x)是奇函数时,f(0)=-f(0),则f(0)=0;如果f(x)是偶函数时,f(0)不一定为0,如f(x)=x2+1. 3.是否存在既是奇函数又是偶函数的函数?若有,有多少个? 提示:存在,如f(x)=0,定义域是关于原点对称的任意一个数集,这样的函数有无穷多个.

考点2 周期性 (1)周期函数: 对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y =f(x)为周期函数,称T为这个函数的周期. (2)最小正周期: 如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.

四、例题精析 【例题1】 【题干】判断下列函数的奇偶性 (1)f(x)=lg 1-x 1+x ;(2)f(x)= ? ? ?x2+x(x>0), x2-x(x<0); (3)f(x)= lg(1-x2) |x2-2|-2 .

函数的奇偶性与周期性练习题

函数的奇偶性与周期性 1.奇函数f (x )的定义域为R ,若f (x +2)为偶函数,则f (1)=1,则f (8)+f (9)= ( ) A. -2 B.-1 C. 0 D. 1 2.在函数①|2|cos x y =,②|cos |x y = ,③)62cos(π +=x y ,④)42tan(π -=x y 中,最小正周期为π的所有函数为 A.①②③ B. ①③④ C. ②④ D. ①③ 3.设函数)(),(x g x f 的定义域为R ,且)(x f 是奇函数,)(x g 是偶函数,则下列结论中正确的是 A. )()(x g x f 是偶函数 B. )(|)(|x g x f 是奇函数 C. |)(|)(x g x f 是奇函数 D. |)()(|x g x f 是奇函数 4.已知()f x 是定义在R 上的奇函数,且是以2为周期的周期函数,若当(]0,1x ∈时 2()1f x x =-,则7()2 f 的值为 A 34- B 34 C 12- D 12 5.下列函数为偶函数的是 A. sin y x = B. 3y x = C. x y e = D. y = 6.设()f x 是周期为2的奇函数,当0≤x ≤1时,()f x =2(1)x x -,则5 ()2f -= (A) -12 (B)1 4- (C)14 (D)12 7.下列函数中,既是偶函数又在()0,+∞单调递增的函数是 (A )3y x = (B) 1y x =+ (C )21y x =-+ (D) 2x y -= 8.下列函数为偶函数的是() A.()1f x x =- B.()2f x x x =+ C.()22x x f x -=- D.()22x x f x -=+ 9.偶函数y=f(x)的图像关于直线x=2对称,f(3)=3,则f(-1)=_______. 10.函数)4)(()(-+=x a x x f 为偶函数,则实数a = . 11.已知()f x 为奇函数,()()9,(2)3,(2)g x f x g f =+-==则 .

函数的奇偶性及周期性综合运用

函数的奇偶性及周期性 1. 已知定义在 R 上的奇函数 f(x) 满足 f(x+2)= -f(x) f(6) 的值为 ( ) A.-1 B.0 C.1 D.2 【答案】 B 【解析】 ∵ f(x+2)=-f(x), ∴ f(6)=f(4+2)=-f(4)=f(2)= -f(0) 又 f(x) 为R 上的奇函数 , ∴ f(0)=0. ∴ f(6)=0. 2. 函数 f ( x) x 3 sin x 1( x R), 若 f(a)=2, 则 f(-a) 的值为 ( ) A.3 B.0 C.-1 D.-2 【答案】 B 【解析】 设 g ( x) 3 sinx, 很明显 g(x) 是一个奇函数 . x ∴ f(x)=g(x)+1. ∵ f(a)=g(a)+1=2, ∴ g(a)=1. ∴ g(-a)=-1. ∴ f(-a)=g(-a)+1=-1+1=0. 3. 已知 f(x) 是定义在 R 上的偶函数 , 并满足 f(x+2)= 1 1 x 2 时 ,f(x)=x-2, 则 f ( x) f(6.5) 等于?? ( ) A.4.5 B.-4.5 C.0.5 D.-0.5 【答案】 D 【 解 析 】 由 f(x 2) 1 得 f(x 4) 1 f ( x ) f ( x 2) f(6.5)=f(2.5). 因为 f(x) 是偶函数 , 得 f(2.5)=f(-2.5)=f(1.5), 而 1 x 2 时 ,f(x)=x-2, 所以 f(1.5)=-0.5. 综上 , 知f(6.5)=-0.5. 4. 已知函数 f(x) 是定义在 R 上的奇函数 , 当 x>0时 ,f(x)= - 是 ( ) A. ( 1) B. ( 1] C. (1 ) D. [1 ) 【答案】 A 【解析】 当 x>0时 f ( x ) 1 2 x 1 1 x 2 当 x<0时,-x>0, ∴ f( x ) 1 2 x . 又∵ f(x) 为 R 上的奇函数 , ∴ f(-x)=-f(x). ∴ f ( x ) 1 2 x . ∴ f ( x ) 2 x 1 . ∴ f ( x) 2 1 1 即 2 x 1 . x ∴ x<-1. 2 2 ∴不等式 f ( x ) 1 的解集是 ( 1) . 2 5. 设 g(x) 是定义在 R 上、以 1为周期的函数 . 若函数 f(x)=x+g(x) 则f(x) 在区间 [0,3] . f ( x) 那 么 f(x) 的 周 期 是 4, 得 2 x 则不等式 f ( x) 1 的解集 2 1 2 在区间 [0,1] 上的值域为 [-2,5],

函数的奇偶性与周期性 知识点与题型归纳

1.结合具体函数,了解函数奇偶性的含义. 2.会运用函数的图象理解和研究函数的奇偶性. 3.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性. ★备考知考情 1.对函数奇偶性的考查,主要涉及函数奇偶性的判断,利用奇偶函数图象的特点解决相关问题,利用函数奇偶性求函数值,根据函数奇偶性求参数值等. 2.常与函数的求值及其图象、单调性、对称性、零点等知识交汇命题. 3.多以选择题、填空题的形式出现. 一、知识梳理《名师一号》P18 注意: 研究函数奇偶性必须先求函数的定义域 知识点一函数的奇偶性的概念与图象特征 1.一般地,如果对于函数f(x)的定义域内任意一个x, 都有f(-x)=f(x),那么函数f(x)就叫做偶函数. 2.一般地,如果对于函数f(x)的定义域内任意一个x, 都有f(-x)=-f(x),那么函数f(x)就叫做奇函数. 1

2 3.奇函数的图象关于原点对称; 偶函数的图象关于y 轴对称. 知识点二 奇函数、偶函数的性质 1.奇函数在关于原点对称的区间上的单调性相同, 偶函数在关于原点对称的区间上的单调性相反. 2. 若f (x )是奇函数,且在x =0处有定义,则(0)0=f . 3. 若f (x )为偶函数,则()()(||)f x f x f x =-=. 《名师一号》P19 问题探究 问题1 奇函数与偶函数的定义域有什么特点? (1)判断函数的奇偶性,易忽视判断函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的一个必要条件. (2)判断函数f (x )的奇偶性时,必须对定义域内的 每一个x , 均有f (-x )=-f (x )、f (-x )=f (x ), 而不能说存在x 0使f (-x 0)=-f (x 0)、f (-x 0)=f (x 0). (补充) 1、若奇函数()f x 的定义域包含0,则(0)0=f . (0)0=f 是()f x 为奇函数的 既不充分也不必要条件 2.判断函数的奇偶性的方法 (1)定义法: 1)首先要研究函数的定义域,

1.10基本初等函数奇偶性和周期性

1.10基本初等函数奇偶性和周期性 姓名___________ 本节重点:①能够正确判断函数的奇偶性和周期性;②运用基本初等函数的性质解题。 一.基础练习 1. 写出下列函数中,奇函数是________;偶函数是________;非奇非偶函数是________ ①sin 2y x = ②2cos y x = ③4221y x x =++ ④2(1)y x =- ⑤()x x f x e e -=- ⑥1()1 x f x x -=+ ⑦1()lg 1 x f x x -=+ ⑧23 ()f x x -= 2. 已知多项式函数32()f x ax bx cx d =+++,系数,,,a b c d 满足__________时,()f x 是奇函数; 满足___________时,它是偶函数. 3. 定义在R 上的奇函数()f x 满足(2)()f x f x +=-,则(2)f =________. 4. 函数sin 2y x =的周期是________;tan y x π=的周期是________. 5. 已知函数()f x 是定义在(-3,3)上的奇函数,当03x << ()f x 图象如右,则不等式 ()0f x x >的解集是____________. 二、例题讲解 例1:判断下列函数的奇偶性 (1)2 ()2||3f x x x =-- (2)22 2,0 ()2,0 x x x f x x x x ?-≥?=?--,实数a 的范围是____________.

函数的奇偶性和周期性

精锐教育学科教师辅导讲义 讲义编号11sh11sx00 学员编号: 年级:高二课时数:3 学员姓名:辅导科目:数学学科教师: 课题函数的奇偶性和周期性 授课日期及时段 教学目标 1、理解函数的周期性与奇偶性的概念 2、能根据函数的周期性求函数值或在相关区间上的函数解析式 3、会判断函数的奇偶性,并会结合周期性与奇偶性解决相关问题 教学内容 一、知识点梳理及运用 知识点一、函数的奇偶性 1、定义:设() y f x =,x A ∈,如果对于任意x A ∈,都有,则称函数() y f x =为奇函数;如果对于任意x A ∈,都有,则称函数() y f x =为偶函数 2、函数具有奇偶性的必要条件是其定义域关于对称 3、() f x是偶函数?() f x的图象关于y轴对称 () f x是奇函数?() f x的图象关于原点对称 4、若奇函数() f x的定义域包含0,则(0)0 f= 5、判断函数奇偶性的方法: ①定义法:首先判断其定义域是否关于原点对称 若不对称,则为非奇非偶函数 若对称,则再判断()() f x f x =-或()() f x f x =-是否成立 ②性质法:设() f x,() g x的定义域分别是 12 , D D,那么在它们的公共定义域 12 D D D =?上: 奇±奇=奇,偶±偶=偶,奇?奇=偶,偶?偶=偶,奇?偶=奇 典型例题 例1、(判断奇偶性)判断下列函数的奇偶性 (1)35 ()35 f x x x =+(2)2 ()3||1 f x x x =-+(3) 2 2 (0) () (0) x x x f x x x x ?+< ? =? -+> ?? (4)()|1||1| f x x x =+--

函数对称性、周期性和奇偶性的规律总结大全 .分解

函数对称性、周期性和奇偶性规律 一、 同一函数的周期性、对称性问题(即函数自身) 1、 周期性:对于函数 )(x f y =,如果存在一个不为零的常数 T ,使得当x 取定义域内的每一个值时,都有 )()(x f T x f =+都成立,那么就把函数)(x f y =叫做周期函数,不为零的常数T 叫做这个函数的周 期。如果所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小正周期。 2、 对称性定义(略),请用图形来理解。 3、 对称性: 我们知道:偶函数关于y (即x=0)轴对称,偶函数有关系式 )()(x f x f =- 奇函数关于(0,0)对称,奇函数有关系式 0)()(=-+x f x f 上述关系式是否可以进行拓展?答案是肯定的 探讨:(1)函数)(x f y =关于a x =对称?)()(x a f x a f -=+ )()(x a f x a f -=+也可以写成)2()(x a f x f -= 或 )2()(x a f x f +=- 简证:设点),(11y x 在 )(x f y =上,通过)2()(x a f x f -=可知,)2()(111x a f x f y -==, 即点)(),2(11x f y y x a =-也在上,而点),(11y x 与点),2(11y x a -关于x=a 对称。得证。 若写成:)()(x b f x a f -=+,函数)(x f y =关于直线2 2)()(b a x b x a x +=-++= 对称 (2)函数 )(x f y =关于点),(b a 对称?b x a f x a f 2)()(=-++ b x f x a f 2)()2(=-++上述关系也可以写成 或 b x f x a f 2)()2(=+- 简证:设点),(11y x 在 )(x f y =上,即) (11x f y =,通过 b x f x a f 2)()2(=+-可知, b x f x a f 2)()2(11=+-,所以 1 112)(2)2(y b x f b x a f -=-=-,所以点 )2,2(11y b x a --也在)(x f y =上,而点)2,2(11y b x a --与),(11y x 关于),(b a 对称。得 证。 若写成:c x b f x a f =-++)()(,函数)(x f y =关于点)2 ,2( c b a + 对称 (3)函数 )(x f y =关于点b y =对称:假设函数关于b y =对称,即关于任一个x 值,都有两个 y 值与其对应,显然这不符合函数的定义,故函数自身不可能关于b y =对称。但在曲线c(x,y)=0,则 有可能会出现关于 b y =对称,比如圆04),(22=-+=y x y x c 它会关于y=0对称。 4、 周期性: (1)函数 )(x f y =满足如下关系系,则T x f 2)(的周期为 A 、 )()(x f T x f -=+ B 、) (1 )()(1)(x f T x f x f T x f - =+= +或 C 、 )(1)(1)2(x f x f T x f -+=+或) (1) (1)2(x f x f T x f +-=+(等式右边加负号亦成立)

函数的奇偶性与周期性试题(答案)

函数的奇偶性与周期性 一、选择题 1.(2015·四川绵阳诊断性考试)下列函数中定义域为R ,且是奇函数的是( ) A .f(x)=x2+x B .f(x)=tan x C .f(x)=x +sin x D .f(x)=lg 1-x 1+x 2.(2014·新课标全国卷Ⅰ)设函数f(x),g(x)的定义域都为R ,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是( ) A .f(x)g(x)是偶函数 B .|f(x)|g(x)是奇函数 C .f(x)|g(x)|是奇函数 D .|f(x)g(x)|是奇函数 3.(2015·长春调研)已知函数f(x)=x2+x +1x2+1,若f(a)=23 ,则f(-a)=( ) A.23 B .-23 C.43 D .-43 4.已知f(x)在R 上是奇函数,且满足f(x +4)=f(x),当x ∈(0,2)时,f(x)=2x2,则f(7)等于( ) A .-2 B .2 C .-98 D .98 5.函数f(x)是周期为4的偶函数,当x ∈[0,2]时,f(x)=x -1,则不等式xf(x)>0在[-1,3]上的解集为( ) A .(1,3) B .(-1,1) C .(-1,0)∪(1,3) D .(-1,0)∪(0,1) 6.设奇函数f(x)的定义域为R ,最小正周期T =3,若f(1)≥1,f(2)=2a -3a +1 ,则a 的取值范围是( ) A .a<-1或a≥23 B .a<-1 C .-1

函数的奇偶性与周期性考点和题型归纳

函数的奇偶性与周期性考点和题型归纳 一、基础知 1.函数的奇偶性 函数的定义域关于原点对称是函数具有奇偶性的前提条件. 若f (x )≠0,则奇(偶)函数定义的等价形式如下: (1)f (-x )=f (x )?f (-x )-f (x )=0?f (-x ) f (x )=1?f (x )为偶函数; (2)f (-x )=-f (x )?f (-x )+f (x )=0?f (-x ) f (x )=-1?f (x )为奇函数. 2.函数的周期性 (1)周期函数 对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数f (x )为周期函数,称T 为这个函数的周期. 周期函数定义的实质 存在一个非零常数T ,使f (x +T )=f (x )为恒等式,即自变量x 每增加一个T 后,函数值就会重复出现一次. (2)最小正周期 如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期. 二、常用结论 1.函数奇偶性常用结论

(1)如果函数f (x )是奇函数且在x =0处有定义,则一定有f (0)=0;如果函数f (x )是偶函数,那么f (x )=f (|x |). (2)奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性. (3)在公共定义域内有:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇. 2.函数周期性常用结论 对f (x )定义域内任一自变量x : (1)若f (x +a )=-f (x ),则T =2a (a >0). (2)若f (x +a )= 1 f (x ) ,则T =2a (a >0). (3)若f (x +a )=-1 f (x ),则T =2a (a >0). 3.函数图象的对称性 (1)若函数y =f (x +a )是偶函数,即f (a -x )=f (a +x ),则函数y =f (x )的图象关于直线x =a 对称. (2)若对于R 上的任意x 都有f (2a -x )=f (x )或f (-x )=f (2a +x ),则y =f (x )的图象关于直线x =a 对称. (3)若函数y =f (x +b )是奇函数,即f (-x +b )+f (x +b )=0,则函数y =f (x )关于点(b,0)中心对称. 考点一 函数奇偶性的判断 [典例] 判断下列函数的奇偶性: (1)f (x )=36-x 2 |x +3|-3; (2)f (x )=1-x 2+x 2-1; (3)f (x )=log 2(1-x 2) |x -2|-2 ; (4)f (x )=? ??? ? x 2+x ,x <0,x 2-x ,x >0. [解] (1)由f (x )=36-x 2 |x +3|-3,可知????? 36-x 2≥0,|x +3|-3≠0?????? -6≤x ≤6, x ≠0且x ≠-6, 故函数f (x )的定 义域为(-6,0)∪(0,6],定义域不关于原点对称,故f (x )为非奇非偶函数.

函数的奇偶性与周期性

函数的奇偶性与周期性 考点梳理 一、函数的奇偶性 (探究:奇、偶函数的定义域有何特点?若函数f(x)具有奇偶性,则f(x)的定义域关于原点对称,反之,若函数的定义域不关于原点对称,则函数无奇偶性。) 二、奇、偶函数的性质 1、奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上单调性相反。 2、在公共定义域内, (1)两个奇函数的和函数是奇函数,两个奇函数的积函数是偶函数。(2)两个偶函数的和函数、积函数是偶函数。 (3)一个奇函数,一个偶函数的积函数是奇函数。 3、若f(x)是奇函数且在x=0处有定义,则f(0)=0。 (探究:若f(x)是偶函数且在x=0处有定义,是否有f(x)=0?不一定,

如f(x)= 21x +,而f(0)=1。) 三、函数的周期性 一般的,对于函数f(x),如果存在一个非零常数T ,使得当x 取定义域的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数,非零常数T 叫做这个函数的周期。 对于一个周期函数f(x),如果在它所有的周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期。 (探究:若偶函数f(x)满足对任意的x R ∈,都有f(2+x)=f(-x),那么函数f(x)是周期函数吗? 是周期函数,()()(),(2)() (2)(),()=2f x f x f x f x f x f x f x f x T ∴-=+=-∴ += 是偶函数, 又所以是以为周期的函数) 例题解析 要点1:函数奇偶性的判定 判断函数奇偶性的一般方法 (1)首先确定函数的定义域,看其是否关于原点对称,否则,既不是奇函数也不是偶函数。 (2)若定义域关于原点对称,则可用下述方法进行判断: ①定义判断: ()()()()-()()f x f x f x f x f x f x -=?-=?为偶函数, 为奇函数。 ②等价形式判断:

函数的单调性奇偶性和周期性和对称性之间的关系

函 数 的 对 称 性 一个函数的自对称 定义1、定义域为R 的函数()f x ,若满足()()f a x f a x +=-或是(2)()f a x f x -=,图像特征函数自身关于x a =对称。就是该函数的对称轴是x a =。 定义2、定义域为R 的函数()f x ,若满足()()f a x f a x +=--或是(2)()f a x f x -=-,图像特征函数自身关于点(,0)a 对称。就是该函数的对称点是(,0)a 。 定义3、定义域为R 的函数()f x ,若满足()()f a x f b x +=-,图像特征函数自身关于2a b x += 对称。就是该函数的对称轴是2 a b x +=。 定义2、定义域为R 的函数()f x ,若满足()()f a x f b x +=--,图像特征函数自身关于点( ,0)2a b +对称。就是该函数的对称点是(,0)2 a b +。 还可以推广为()()f a x m f b x +=-- 含义:函数()f x 关于( ,)22a b m +这个点对称。 周期性:若()f x 对于定义域中的任意x 均有()()f x T f x +=,则()f x 是周期函数. 它的变形有: (1)f(x-1)=f(x+1) (2)f(x+2)=-f(x);(3)f(x+2)=1() f x - (4)f(x+3) +f(x)=1 (5)f(x+1)=) (11)(x f x f -+ 特征是x 的符号相同。 习 题 1、已知()f x 是R 上的偶函数,且f(-x-1)=f(-x+1) 当[0,1]x ∈时,()1f x x =-+,求当[5,7]x ∈时,()f x 的解析式。 2、定义域为R 的()f x 既是奇函数又是周期函数,T 是它的一个周期.问:区间[,]T T -上它有几个根?(财富:奇函数的半周期也是0点) 3、定义在R 上的偶函数()f x 以3为周期,且(2)0f =,则方程()0f x =在区间(0,6) 上有几个根? 4、()f x 是R 上的偶函数,若将()f x 的图象向右平移一个单位又得到一个奇函数,且(2)1f =-,求(1)(2)(3)(2008)f f f f ++++L 的值. 5、定义在R 上的函数()f x 满足5()()02 f x f x ++=且5 ()4 f x +为奇函数,下列结论谁正确? ①函数()f x 的最小正周期是52;②函数()f x 的图象关于点(5,04)对称;③函数()f x 的图象关于52 x =对称;④函数()f x 的最大值为5()2f . 6、函数()f x 的定义域为R ,若(1)f x +与(1)f x -都是奇函数,则( )(A) ()f x 是偶函数; (B) ()f x 是奇函数 (C) ()(2)f x f x =+ ; (D) (3)f x +是奇函数 例4举例子,构造新函数,用定义,平移,伸缩处理四道抽象函数题。 (1)f(x)是奇函数,则有f(-x+a)= f(x+a)是奇函数,则f(-x+a)= (2)函数f(x-1)是偶函数,求y=f(x)的对称轴。

函数的奇偶性与周期性

函数的奇偶性与周期性 1.函数的奇偶性 2.(1)周期函数 对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数y =f (x )为周期函数,称T 为这个函数的周期. (2)最小正周期 如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期. 3.判断下列结论的正误(正确的打“√”,错误的打“×”) (1)若f (x )是定义在R 上的奇函数,则f (-x )+f (x )=0.(√) (2)偶函数的图象不一定过原点,奇函数的图象一定过原点.(×) (3)如果函数f (x ),g (x )为定义域相同的偶函数,则F (x )=f (x )+g (x )是偶函数.(√) (4)定义域关于原点对称是函数具有奇偶性的一个必要条件.(√) (5)若T 是函数的一个周期,则nT (n ∈Z ,n ≠0)也是函数的周期.(√) (6)函数f (x )在定义域上满足f (x +a )=-f (x ),则f (x )是周期为2a (a >0)的周期函数.(√) (7)函数f (x )=0,x ∈(0,+∞)既是奇函数又是偶函数.(×) (8)若函数y =f (x +a )是偶函数,则函数y =f (x )关于直线x =a 对称.(√) (9)若函数y =f (x +b )是奇函数,则函数y =f (x )关于点(b,0)中心对称.(√) (10)若某函数的图象关于y 轴对称,则该函数为偶函数;若某函数的图象关于(0,0)对称,则该函数为奇函数.(√) 考点一 判断函数的奇偶性

函数的奇偶性及周期性

函数的奇偶性及周期性 1.函数的奇偶性 (1)周期函数 对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x +T)=f(x),那么就称函数f(x)为周期函数,称T为这个函数的周期. (2)最小正周期 如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期. [小题体验] 1.下列函数中为偶函数的是() A.y=x2sin x B.y=x2cos x C.y=|ln x|D.y=2-x 答案:B 2.若函数f(x)是周期为5的奇函数,且满足f(1)=1,f(2)=2,则f(8)-f(14)=________. 答案:-1 3.已知函数f(x)是定义在R上的奇函数,当x≥0时,f(x)=x(1+x),则x<0时,f(x)=________. 答案:x(1-x) 1.判断函数的奇偶性,易忽视判断函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的一个必要条件. 2.判断函数f(x)的奇偶性时,必须对定义域内的每一个x,均有f(-x)=-f(x)或f(-

x )=f (x ),而不能说存在x 0使f (-x 0)=-f (x 0)或f (-x 0)=f (x 0). 3.分段函数奇偶性判定时,误用函数在定义域某一区间上不是奇偶函数去否定函数在整个定义域上的奇偶性. [小题纠偏] 1.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是( ) A .-13 B.13 C.12 D .-1 2 解析:选B ∵f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数, ∴a -1+2a =0,∴a =1 3.又f (-x )=f (x ), ∴b =0,∴a +b =1 3 . 2.设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时, f (x )= ? ???? -4x 2+2,-1≤x <0,x , 0≤x <1,则f ????32=________. 解析:由题意得,f ????32=f ????-12=-4×????-122+2=1. 答案:1 考点一 函数奇偶性的判断(基础送分型考点——自主练透) [题组练透] 判断下列函数的奇偶性: (1)f (x )=1-x 2+x 2-1; (2)f (x )=3-2x +2x -3; (3)f (x )=3x -3- x ; (4)(易错题)f (x )=4-x 2 |x +3|-3 ; (5)(易错题)f (x )=????? x 2+x ,x >0, x 2-x ,x <0. 解:(1)∵由? ???? x 2-1≥0, 1-x 2≥0,得x =±1, ∴f (x )的定义域为{-1,1}. 又f (1)+f (-1)=0,f (1)-f (-1)=0,

高三一轮复习精题组函数的奇偶性与周期性(有详细答案)

§2.3函数的奇偶性与周期性 1.函数的奇偶性 奇偶性,定义,图象特点偶函数,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)是偶函数,关于y轴对称 奇函数,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)是奇函数,关于原点对称 2.周期性 (1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值 时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期. (2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正 数就叫做f(x)的最小正周期.

1.判断下面结论是否正确(请在括号中打“√”或“×”) (1)函数f (x )=0,x ∈(0,+∞)既是奇函数又是偶函数.( × ) (2)若函数y =f (x +a )是偶函数,则函数y =f (x )关于直线x =a 对称.( √ ) (3)若函数y =f (x +b )是奇函数,则函数y =f (x )关于点(b,0)中心对称.( √ ) (4)若函数f (x )=x (x -2)(x +a ) 为奇函数,则a =2.( √ ) (5)函数f (x )在定义域上满足f (x +a )=-f (x ),则f (x )是周期为2a (a >0)的周期函数.( √ ) (6)函数f (x )为R 上的奇函数,且f (x +2)=f (x ),则f (2 014)=0.( √ ) 2.(2013·山东)已知函数f (x )为奇函数,且当x >0时,f (x )=x 2+1 x ,则f (-1)等于( ) A .-2 B .0 C .1 D .2 答案 A 解析 f (-1)=-f (1)=-(1+1)=-2. 3.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是() A .-13B.13C.12D .-12 答案 B 解析 依题意b =0,且2a =-(a -1), ∴a =13,则a +b =13 . 4.已知f (x )在R 上是奇函数,且满足f (x +4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (2 015)等于( ) A .-2 B .2 C .-98 D .98 答案 A 解析 ∵f (x +4)=f (x ), ∴f (x )是以4为周期的周期函数,

函数的奇偶性与周期性专题练习

函数的奇偶性与周期性专题练习 一、选择题 1.(2019·肇庆三模)在函数y =x cos x ,y =e x +x 2,y =lg x 2-2,y =x sin x 中,偶函数的个数是( ) A.3 B.2 C.1 D.0 解析 y =x cos x 为奇函数,y =e x +x 2为非奇非偶函数,y =lg x 2-2与y = x sin x 为偶函数. 答案 B 2.(2019·湖南卷)设函数f (x )=ln(1+x )-ln(1-x ),则f (x )是( ) A.奇函数,且在(0,1)内是增函数 B.奇函数,且在(0,1)内是减函数 C.偶函数,且在(0,1)内是增函数 D.偶函数,且在(0,1)内是减函数 解析 易知f (x )的定义域为(-1,1),且f (-x )=ln(1-x )-ln(1+x )=-f (x ),则y =f (x )为奇函数, 又y =ln(1+x )与y =-ln(1-x )在(0,1)上是增函数, 所以f (x )=ln(1+x )-ln(1-x )在(0,1)上是增函数. 答案 A 3.已知函数f (x )=x ? ?? ??e x -1e x ,若f (x 1)x 2 B.x 1+x 2=0 C.x 10时,f ′(x )>0,∴f (x )在[0,+∞)上为增函数,

函数的奇偶性与周期性

函数的奇偶性与周期性 1.函数的奇偶性 奇函数偶函数 定义 一般地,如果对于函数f(x)的定义域内任意一个x 都有f(-x)=-f(x),那么函数 f(x)就叫做奇函数 都有f(-x)=f(x),那么函数f(x)就叫做 偶函数 图象特征关于原点对称关于y轴对称 2. (1)周期函数 对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期. (2)最小正周期 如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期. 3.判断下列结论的正误(正确的打“√”,错误的打“×”) (1)若f(x)是定义在R上的奇函数,则f(-x)+f(x)=0.(√) (2)偶函数的图象不一定过原点,奇函数的图象一定过原点.(×) (3)如果函数f(x),g(x)为定义域相同的偶函数,则F(x)=f(x)+g(x)是偶函数.(√) (4)定义域关于原点对称是函数具有奇偶性的一个必要条件.(√) (5)若T是函数的一个周期,则nT(n∈Z,n≠0)也是函数的周期.(√) (6)函数f(x)在定义域上满足f(x+a)=-f(x),则f(x)是周期为2a(a>0)的周期函数.(√) (7)函数f(x)=0,x∈(0,+∞)既是奇函数又是偶函数.(×) (8)若函数y=f(x+a)是偶函数,则函数y=f(x)关于直线x=a对称.(√) (9)若函数y=f(x+b)是奇函数,则函数y=f(x)关于点(b,0)中心对称.(√) (10)若某函数的图象关于y轴对称,则该函数为偶函数;若某函数的图象关于(0,0)对称,则该函数为奇函数.(√) 考点一判断函数的奇偶性

6.函数的奇偶性与周期性考点及题型

第三节 函数的奇偶性与周期性 ? 基础知识 1.函数的奇偶性? ?函数的定义域关于原点对称是函数具有奇偶性的前提条件. ?若f (x )≠0,则奇(偶)函数定义的等价形式如下: (1)f (-x )=f (x )?f (-x )-f (x )=0?f (-x ) f (x )=1?f (x )为偶函数; (2)f (-x )=-f (x )?f (-x )+f (x )=0?f (-x ) f (x )=-1?f (x )为奇函数. 2.函数的周期性 (1)周期函数 对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数f (x )为周期函数,称T 为这个函数的周期. 周期函数定义的实质 存在一个非零常数T ,使f (x +T )=f (x )为恒等式,即自变量x 每增加一个T 后,函数值就会重复出现一次. (2)最小正周期 如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期. ? 常用结论 1.函数奇偶性常用结论 (1)如果函数f (x )是奇函数且在x =0处有定义,则一定有f (0)=0;如果函数f (x )是偶函数,那么f (x )=f (|x |). (2)奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性. (3)在公共定义域内有:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇. 2.函数周期性常用结论 对f (x )定义域内任一自变量x :

(1)若f (x +a )=-f (x ),则T =2a (a >0). (2)若f (x +a )= 1 f (x ) ,则T =2a (a >0). (3)若f (x +a )=-1 f (x ),则T =2a (a >0). 3.函数图象的对称性 (1)若函数y =f (x +a )是偶函数,即f (a -x )=f (a +x ),则函数y =f (x )的图象关于直线x =a 对称. (2)若对于R 上的任意x 都有f (2a -x )=f (x )或f (-x )=f (2a +x ),则y =f (x )的图象关于直线x =a 对称. (3)若函数y =f (x +b )是奇函数,即f (-x +b )+f (x +b )=0,则函数y =f (x )关于点(b,0)中心对称. 考点一 函数奇偶性的判断 [典例] 判断下列函数的奇偶性: (1)f (x )=36-x 2 |x +3|-3; (2)f (x )=1-x 2+x 2-1; (3)f (x )=log 2(1-x 2) |x -2|-2 ; (4)f (x )=???? ? x 2+x ,x <0,x 2-x ,x >0. [解] (1)由f (x )=36-x 2 |x +3|-3,可知????? 36-x 2≥0,|x +3|-3≠0?????? -6≤x ≤6,x ≠0且x ≠-6, 故函数f (x )的定义域为(-6,0)∪(0,6],定 义域不关于原点对称,故f (x )为非奇非偶函数. (2)由? ???? 1-x 2≥0, x 2-1≥0?x 2=1?x =±1,故函数f (x )的定义域为{-1,1},关于原点对称,且f (x )=0,所以f (- x )=f (x )=-f (x ),所以函数f (x )既是奇函数又是偶函数. (3)由? ???? 1-x 2>0,|x -2|-2≠0?-10的图象如图所示,图象关于y 轴对称,故f (x )为偶函数.

函数对称性、周期性和奇偶性规律总结.

函数对称性、周期性和奇偶性 关岭民中数学组 (一)、同一函数的函数的奇偶性与对称性:(奇偶性是一种特殊的对称性) 1、奇偶性:(1)奇函数关于(0,0)对称,奇函数有关系式0) ()(x f x f (2)偶函数关于y (即x=0)轴对称,偶函数有关系式 )()(x f x f 2、奇偶性的拓展 : 同一函数的对称性 (1)函数的轴对称: 函数)(x f y 关于a x 对称)()(x a f x a f )()(x a f x a f 也可以写成)2() (x a f x f 或)2()(x a f x f 若写成: )()(x b f x a f ,则函数)(x f y 关于直线22)() (b a x b x a x 对称 证明:设点),(11y x 在)(x f y 上,通过)2()(x a f x f 可知,)2()(111x a f x f y ,即点)(),2(11x f y y x a 也在上,而点 ),(11y x 与点),2(11y x a 关于x=a 对称。得证。说明:关于a x 对称要求横坐标之和为2a ,纵坐标相等。∵1111(,)(,)a x y a x y 与关于x a 对称,∴函数)(x f y 关于a x 对称 )()(x a f x a f ∵1111(,)(2,)x y a x y 与关于x a 对称,∴函数)(x f y 关于a x 对称 )2()(x a f x f ∵1111(,)(2,)x y a x y 与关于x a 对称,∴函数)(x f y 关于a x 对称 )2()(x a f x f (2)函数的点对称: 函数)(x f y 关于点),(b a 对称b x a f x a f 2)()(

相关主题
文本预览
相关文档 最新文档