当前位置:文档之家› 电磁场频率对CaCO3型污垢结晶的影响

电磁场频率对CaCO3型污垢结晶的影响

电磁场频率对CaCO3型污垢结晶的影响
电磁场频率对CaCO3型污垢结晶的影响

电磁场频率对CaCO3型污垢结晶的影响

作者:王建国, 刘高生, 孙伟, WANG Jian-guo, LIU Gao-sheng, SUN Wei 作者单位:东北电力大学,吉林吉林,132012

刊名:

化工自动化及仪表

英文刊名:Control and Instruments in Chemical Industry

年,卷(期):2013,40(3)

本文链接:https://www.doczj.com/doc/314731580.html,/Periodical_hgzdhjyb201303010.aspx

电磁场名词解释

电场:任何电荷在其所处的空间中激发出对置于其中别的电荷有作用力的物质。 磁场:任一电流元在其周围空间激发出对另一电流元(或磁铁)具有力作用的物质。 标量场:物理量是标量的场成为标量场。 矢量场:物理量是矢量的场成为矢量场。 静态场:场中各点对应的物理量不随时间变化的场。 有源场:若矢量线为有起点,有终点的曲线,则矢量场称为有源场。 通量源:发出矢量线的点和吸收矢量线的点分别称为正源和负源,统称为通量源。 有旋场:若矢量线是无头无尾的闭曲线并形成旋涡,则矢量场称为有旋场。 方向导数:是函数u (M )在点 M0 处沿 l 方向对距离的变化率。 梯度:在标量场 u (M ) 中的一点 M 处,其方向为函数 u (M )在M 点处变化率最大的方向,其模又恰好等于此最大变化率的矢量 G ,称为标量场 u (M ) 在点 M 处的梯度,记作 grad u (M )。 通量:矢量A 沿某一有向曲面S 的面积分为A 通过S 的通量。 环量:矢量场 A 沿有向闭曲线 L 的线积分称为矢量 A 沿有向闭曲线 L 的环量。 亥姆霍兹定理:对于边界面为S 的有限区域V 内任何一个单值、导数连续有界的矢量场,若给定其散度和旋度,则该矢量场就被确定,最多只相差一个常矢量;若同时还给出该矢量场的边值条件,则这个矢量场就被唯一确定。(前半部分又称唯一性定理) 电荷体密度: ,即某点处单位体积中的电量。 传导电流:带电粒子在中性煤质中定向运动形成的电流。 运流电流:带电煤质本身定向运动形成形成的电流。 位移电流:变化的电位移矢量产生的等效电流。 电流密度矢量(体(面)电流密度):垂直于电流方向的单位面积(长度)上的电流。 静电场:电量不随时间变化的,静止不动的电荷在周围空间产生的电场。 电偶极子:有两个相距很近的等值异号点电荷组成的系统。 磁偶极子:线度很小任意形状的电流环。 感应电荷:若对导体施加静电场,导体中的自由带电粒子将向反电场方向移动并积累在导体表面形成某种电荷分布,称为感应电荷。 导体的静电平衡状态:把静电场中导体内部电场强度为零,所有带电粒子停止定向运动的状态称为导体的静电平衡状态。 电壁:与电力线垂直相交的面称为电壁。 磁壁:与磁力线垂直相交的面称为磁壁。 介质:(或称电介质)一般指不导电的媒质。 介质的极化:当把介质放入静电场中后,电介质分子中的正负电荷会有微小移动,并沿电场方向重新排列,但不能离开分子的范围,其作用中心不再重合,形成一个个小的电偶极子。这种现象称为介质的极化。 媒质的磁化:外加磁场使煤质分子形成与磁场方向相反的感应磁矩 或使煤质的固有分子磁矩都顺着磁场方向定向排列的现象。 极性介质:若介质分子内正负电荷分布不均匀,正负电荷的重心不重合的介质。 极化强度:定量地描述介质的极化程度的物理量。 介质的击穿:若外加电场太大,可能使介质分子中的电子脱离分子的束缚而成为自由电子,介质变成导电材料,这种现象称为介质的击穿。 dV dq V q V =??=→?0lim ρ

电缆的内屏蔽和外屏蔽的作用

电缆的内屏蔽和外屏蔽的作用 屏蔽就是对两个空间区域之间进行金属的隔离,以控制电场、磁场和电磁波由一个区域对另一个区域的感应和辐射。具体讲,就是用屏蔽体将元部件、电路、组合件、电缆或整个系统的干扰源包围起来,防止干扰电磁场向外扩散;用屏蔽体将接收电路、设备或系统包围起来,防止它们受到外界电磁场的影响。因为屏蔽体对来自导线、电缆、元部件、电路或系统等外部的干扰电磁波和内部电磁波均起着吸收能量(涡流损耗)、反射能量(电磁波在屏蔽体上的界面反射)和抵消能量(电磁感应在屏蔽层上产生反向电磁场,可抵消部分干扰电磁波)的作用,所以屏蔽体具有减弱干扰的功能。 (1)当干扰电磁场的频率较高时,利用低电阻率的金属材料中产生的涡流,形成对外来电磁波的抵消作用,从而达到屏蔽的效果。(2)当干扰电磁波的频率较低时,要采用高导磁率的材料,从而使磁力线限制在屏蔽体内部,防止扩散到屏蔽的空间去。 (3)在某些场合下,如果要求对高频和低频电磁场都具有良好的屏蔽效果时,往往采用不同的金属材料组成多层屏蔽体。 许多人不了解电磁屏蔽的原理,认为只要用金属做一个箱子,然后将箱子接地,就能够起到电磁屏蔽的作用。在这种概念指导下结果是失败。因为,电磁屏蔽与屏蔽体接地与否并没有关系。真正影响屏蔽体屏蔽效能的只有两个因素:一个是整个屏蔽体表面必须是导电连续

的,另一个是不能有直接穿透屏蔽体的导体。屏蔽体上有很多导电不连续点,最主要的一类是屏蔽体不同部分结合处形成的不导电缝隙。这些不导电的缝隙就产生了电磁泄漏,如同流体会从容器上的缝隙上泄漏一样。解决这种泄漏的一个方法是在缝隙处填充导电弹性材料,消除不导电点。这就像在流体容器的缝隙处填充橡胶的道理一样。这种弹性导电填充材料就是电磁密封衬垫。 在许多文献中将电磁屏蔽体比喻成液体密封容器,似乎只有当用导电弹性材料将缝隙密封到滴水不漏的程度才能够防止电磁波泄漏。实际上这是不确切的。因为缝隙或孔洞是否会泄漏电磁波,取决于缝隙或孔洞相对于电磁波波长的尺寸。当波长远大于开口尺寸时,并不会产生明显的泄漏。因此,当干扰的频率较高时,这时波长较短,就需要使用电磁密封衬垫。具体说,当干扰的频率超过10MHz时,就要考虑使用电磁密封衬垫。 凡是有弹性且导电良好的材料都可以用做电磁密封衬垫。按照这个原理制造的电磁密封衬垫有: 导电橡胶:在硅橡胶内填充占总重量70~ 80%比例的金属颗粒,如银粉、铜粉、铝粉、镀银铜粉、镀银铝粉、镀银玻璃球等。这种材料保留一部分硅橡胶良好弹性的特性,同时具有较好的导电性。 金属编织网:用铍铜丝、蒙乃尔丝或不锈钢丝编织成管状长条,外形很像屏蔽电缆的屏蔽层。但它的编织方法与电缆屏蔽层不同,电缆屏

电磁场与电磁波概念复习资料

一、判断 1. 安培环路定理中,其电流I 是闭合曲线所包围的电流; 2. 恒定磁场是无源、有旋场; P111 3. 体电荷密度的单位是C/m3; P34 4. 面电荷密度的单位是C/m2; P35 5. 线电荷密度的单位是C/m ; P35 6. 体电流密度的单位是A/m2 ;P36 7. 面电流密度的单位是A/m ; P37 8. 矢量场A 的散度是一个标量; 9. 如果0F ??=,则F A =??; P27 10. 如果0F ??=,则F u =-? ;P26 11. 判断回路中是否会出现感应电动势,则看回路所围面积的磁通是否变化; P63 12. 静电场的电容C 比拟恒定电场的电导G ; 13. 静电场的电位移矢量D 比拟恒定电场的电流密度J ;P108 14. 静电场的介电常数ε比拟恒定电场的电导率σ;P108 15. 时变电磁场的能量以电磁波的形式进行传播; P172 16. 在无源空间中,电流密度和电荷密度处处为0; P172 17. 坡印延定理描述的是电磁能量守恒关系; P176 18. 电导率为有限值的导电煤质存在损耗; P205 19. 在理想导体内不存在电场强度和磁场强度; 20. 弱导电煤质的损耗很小; P208 21. 在两种煤质的分界面上,存在面电流分布时,磁场强度H 的切向分量不连续; P79 22. 在两种煤质的分界面上,不存在面电流分布时,磁场强度H 的切向分量连续; P79 23. 在两种煤质的分界面上,电场强度E 切向分量连续; P79 24. 在两种煤质的分界面上,磁感应强度B 的法向分量连续; P79 25. 在两种煤质的分界面上,存在面电荷时,电位移矢量D 的法向分量不连续; P79 26. 在两种煤质的分界面上,不存在面电荷时,电位移矢量D 的法向分量连续; P79 27. 无旋场,其场量可以表示为另一个标量场的梯度; P26

电磁场仿真软件简介

电磁场仿真软件简介 随着电磁场和微波电路领域数值计算方法的发展,在最近几年出现了大量的电磁场和微波电路仿真软件。在这些软件中,多数软件都属于准3维或称为2.5维电磁仿真软件。例如,Agilent公司的ADS(Advanced Design System)、AWR公司的Microwave Office、Ansoft公司的Esemble、Serenade和CST公司的CST Design Studio等。目前,真正意义上的三维电磁场仿真软件只有Ansoft公司的HFSS、CST公司的Mafia、CST Microwave Studio、Zeland公司的Fidelity和IMST GmbH公司的EMPIRE。从理论上讲,这些软件都能仿真任意三维结构的电磁性能。其中,HFSS(HFSS是英文高频结构仿真器(High Frequency Structure Simulator)的缩写)是一种最早出现在商业市场的电磁场三维仿真软件。因此,这一软件在全世界有比较大的用户群体。由于HFSS进入中国市场较早,所以目前国内的电磁场仿真方面HFSS的使用者众多,特别是在各大通信技术研究单位、公司、高校非常普及。 德国CST公司的MicroWave Studio(微波工作室)是最近几年该公司在Mafia软件基础上推出的三维高频电磁场仿真软件。它吸收了Mafia软件计算速度快的优点,同时又对软件的人机界面和前、后处理做了根本性的改变。就目前发行的版本而言,CST 的MWS的前后处理界面及操作界面比HFSS好。Ansoft也意识到了自己的缺点,在刚刚推出的新版本HFSS(定名为Ansoft HFSS V9.0)中,人机界面及操作都得到了极大的改善。在这方面完全可以和CST媲美。在性能方面,两个软件各有所长。在速度和计算的精度方面CST和ANSOFT成绩相差不多。值得注意的是,MWS采用的理论基础是FIT(有限积分技术)。与FDTD(时域有限差分法)类似,它是直接从Maxwell 方程导出解。因此,MWS可以计算时域解。对于诸如滤波器,耦合器等主要关心带内参数的问题设计就非常适合;而HFSS采用的理论基础是有限元方法(FEM),这是一种微分方程法,其解是频域的。所以,HFSS如果想获得频域的解,它必须通过频域转换到时域。由于,HFSS是用的是微分方法,所以它对复杂结构的计算具有一定的优势。 另外,在高频微波波段的电磁场仿真方面也应当提及另一个软件:ANSYS 。ANSYS是一个基于有限元法(FEM)的多功能软件。该软件可以计算工程力学、材料力学、热力学和电磁场等方面的问题。它也可以用于高频电磁场分析(应用例如:微波辐射和散射分析、电磁兼容、电磁场干扰仿真等)。其功能与HFSS和CST MWS类似。但由于该软件在建模和网格划分过程中需要对该软件的使用规则有详细的了解,因此,对一般的工程技术人员来讲使用该软件有一定困难。对于高频微波波段通信、天线、器件封装、电磁干扰及光电子设计中涉及的任意形状三维电磁场仿真方面不如HFSS更专业、更理想。实际上,ANSYS软件的优势并不在电磁场仿真方面,而是结构静力/动力分析、热分析以及流体动力学等。但是,就其电磁场部分而言,它也能对任意三维结构的电磁特性进行仿真。 虽然,Zeland公司的Fidelity和IMST GmbH公司的EMPIRE也可以仿真三维结构。

【通俗易懂】从电路到电磁场

直流电长期以来,我们了解电路是从回路开始的,以直流稳恒回路为例,电池把化学能转换成电能,电能通过导线传递到负载上,如下图: 电池中,化学能把电子从一极移向另一极,缺少电子一极为正极,获得电子一极为负极,两端形成了电势差(Vdc),也就存在了电场,方向从正极指向负极,化学能要驱动电子克服这个电场从正极移动到负极,电池内部的电流移动跟电场方向相反。 传统对于电子的理解是带负电荷量为e的一个实体,往往指起本身,但是,这个理解是不够准确的,电子除了本身,还应该包括它激发的负电场,电子与电子等作用,根本上是它们各自激发的电场与电场的作用。举个例子一块砖头从天空加速掉下来,是这块砖头激发的引力场与地球的引力场之间的作用导致砖头掉下来的,电子也是这个概念。所以对电子的认知,以前都是基于它的实体认知,现在更多的可以基于它激发的电场来认知,两者是等价的,但基于电场的认知,有助于理解高频、电磁场。 当用导线连接电池与负载构成一个电路回路,假设为理想导线,内阻为0,则导线跟所连接的正负极等电势,于是在导线之间也形成了电场,负载两端也有这个电势差(Vdc),所以负载内部也有电场。 很多人可能对于导线之间的电场无法理解,因为以前很少有提到的,所以往往无视,这是重点指出的。我们换一种思维想这个问题,把正负极之间的两根导线看作是一个电容,这个电容两端接在电源上,那么就很好理解了,这个电容被充电了,正负两端就集聚了正负电荷,两极之间就充满了电场,红色矩阵表示正极导线,绿色矩阵表示负极导线,里面的颜色表示内部的电荷分布,要靠近两电极边缘,这样保证导体整个形成等势体,理想导体内部是没有电场的,因为是等 势体

电磁场近远区区分方法电磁辐射频率范围

三、电磁辐射物理原理 1、电磁场的产生及性质 ⑴产生 根据电磁学基本理论,带电粒子周围会有相应的电场分布,随时间变化的带电粒子产生变化的电场。由于带电粒子周围电位不同的两点之间存在电位差,因此在两点间形成了电压。 当大量的带电粒子定向移动时形成了电流,电流周围产生磁场,随时间变化的电流产生变化的磁场。 电磁场是一种特殊的物质形态,可以单独在空间中传播。变化的电场能产生磁场,反之,变化的磁场也能产生电场, 对电磁场的测量通常有:电场强度v/m,磁场强度A/m,功率密度W/m2。 对于工频磁场,常用磁感应强度B表示磁场强弱,磁感应强度B与磁场强度的关系为,B=μ0H,μ0为真空磁导率,μ0=4π×10-7,当磁场强度H以(A/m)为单位,磁感应强度B以μT(微特斯拉)为单位时,B=1.2566H。 ⑵性质 矢量 电场与磁场是矢量,不但有量值大小,还有方向,所以对于非各向同性的测量天线,测量时必须调整天线方向,直到读数为最大值为止。从目前情况来看,一般情况下,综合场强仪都是各向同性天线(探头)。 电磁场的迭加 电磁场有可迭加的性质,空间任一点的电场(或磁场)为不同电荷(或电流)在该点产生的电场(或磁场)的矢量和。理想导体内及所严密包围的空间内的电场强度为零,理想导体上各个位置的电位相等,理想导体表面的电场方向垂直理想导体表面。(如果不垂直,则电场有沿导体表面的分量,导体表面成了非等位面)。 电磁波的干涉、绕射、反射、透射 由惠更斯-菲涅耳原理,包括电磁波在内的一切波有干涉、绕射、镜面反射、漫反射(散射)、透射等特性。 当辐射源与测量点之间有障碍物时,电磁波可通过绕射方式达监测点,但强度能量有很大的损失。

利与弊的电磁场解读

电磁场的利与弊 摘要:随着科学技术和理论的发展,电磁场的应用更加普遍。然而在利用电磁场为我们服务的时候,电磁场同时也给我们带来很多危害。 关键词:电磁场电磁辐射电磁波危害利用 电场和磁场的传播过程生成一个作用力场,这个作用力场就叫做电磁场,而这样的传播过程就叫做电磁辐射。如手机、电话机、输配电线等都有电流,有电流肯定就存在辐射的问题。所以在我们应用电磁场就会带来电磁辐射和电磁波,这就带来危害。 二十世纪被誉为电气时代,发电站、输电线越建越多,各种各样的电器大量深入工厂、实验室、办公室以及普通居民家庭。人们不得不考虑:电磁场,特别是(50~60赫)工业频率的电磁场对人体健康是否有影响?1960年代初,有关专家们开始研讨这个问题。起初,专家们的注国家的有关卫生保健标准中只规定工业频率电磁场中可以容许的电场分量意力全部集中于电场的作用而忽略了磁场的作用。因为当时人们误以为这种电磁场中的磁场分量很小,它不可能对人体健康产生可以感觉出来的影响。许多的标准;在制造各种电气设备和电器以及架设输电线时,只考虑对电场分量规定的标准,而没有考虑对磁场分量可以容许的最高限额。但后来进行大量的调查与统计分析却表明,可能影响人体健康的正是我们没有考虑的磁场。 欧美各国进行了大量调查与统计分析,每次调查的规模大小不

等,一次被调查者的数量有数千人,数万人、数十万人甚至数百万人。调查地点有在野外的,例如,在输电线附近、变电站附近、地铁站、电气火车内;或在工厂厂房、实验室、办公室以及居民家庭。调查跨越的时间有长达十多年甚至数十年的。大量调查结果令人确信,人体发生多种肿瘤病变的概率与所受到的低频磁场辐射密切相关。欧美许多国家的专家和一些政府机构确信,低频磁场会显著增大下列疾病的发生率:白血球增生与白血病(特别是对儿童危害更大),癌症,新生儿形体缺陷,乳腺癌,脑瘤,恶性淋巴瘤,神经系统肿瘤,星形细胞的发展,慢性骨髓细胞样的白血病,染色体畸变等。有些报告还指出,在电磁场作用下某种激素的分泌减少,还可能是引起乳腺肿瘤发展的原因。某些调查报告还指出,经常接触电磁辐射的人,若再受到高温作用,则他们体内发生乳腺癌变的危险就更大。不少调查报告指出,从事"电气职业"者、儿童以及不适当使用家庭电器者(常玩视频游戏的儿童,常使用电热毯和其他电加热器的妇女与儿童等)受低频磁场损害的危险较大。低频磁场辐照的强度和累积量就都会影响致病的概率。并且,有些人是在潜伏期长达10~15年以后才发病的。国际卫生标准中规定,可以容许的磁感应强度上限为100微特斯拉。但大量调查、统计分析的结果表明,0.2~0.4微特斯拉的250~500倍!英国国家辐射保护委员会和美国一些专家们已于1995年提出,把国际卫生标准中规定的标准(100微特斯拉)修改为0.2微特斯拉。总之,许多迹象都使研究人员强烈地怀疑低频磁场的辐射对人体健康会产生严重后果,但人们目前的知识水平又不足以对此作用充分

电磁场与电磁波-知识点总结

已经将文本间距加为 24磅 第18章:电磁场与电磁波 、知识网络 LC 回路中电磁振荡过程中电荷、电场。 电路电流与磁场的变化规律、电场能与磁场能相互变化。 分类:阻尼振动和无阻尼振动。 <振荡周期:T 2 JLC 。改变L 或C 就可以改变T 。 、重、难点知识归纳 1 ?振荡电流和振荡电路 (1) 大小和方向都随时间做周期性变化的电流叫振荡电流。能够产生振荡电流的电路 叫振荡电路。自由感线圈和电容器组成的电路, 是一种简单的振荡电路, 简称LC 回路。 在振荡电路里产生振荡电流的过程中,电容器极板上的电荷,通过线圈的电流以及跟电 荷和电流相联系的电场和磁场都发生周期性变化的现象叫电磁振荡。 (2) LC 电路的振荡过程:在LC 电路中会产生振荡电流,电容器放电和充电,电路中的 电流强度从小变大,再从大变小,振荡电流的变化符合正弦规律.当电容器上的带电量 变小时,电路中的电流变大,当电容器上带电量变大时,电路中的电流变小 ⑶LC 电路中能量的转化 : a 电磁振荡的过程是能量转化和守恒的过程?电流变大时,电场能转化为磁场能, 麦克斯 韦电磁 场理论 {变化的电场产生磁场 变化的磁场产生电场 特点:为横波,在真空中的速度为 3.0 x 108m/s r 目的:传递信息 发射J 调制:调幅和调频 发射电路:振荡器、调制器和开放电路。 电磁波遇到导体会在导体中激起同频率感应电流 电谐振 从接收到的电磁波中“检”出需要的信号。 原理 选台 检波 I 接收电路:接收天线、调谐电路和检波电路 应用:电视、雷达。 场与电磁波

电流变小时,磁场能转化为电场能。 b、电容器充电结束时,电容器的极板上的电量最多,电场能最大,磁场能最小;电容器放电结束时,电容器的极板上的电量为零,电场能最小,磁场能最大. c、理想的LC回路中电场能E电和磁场能E磁在转化过程中的总和不变。回路中电流越大时,L中的磁场能越大。极板上电荷量越大时,C中电场能越大(板间场强越大、两板间电压越高、磁通量变化率越大) 。 (4) LC电路的周期公式及其应用LC回路的固有周期和固有频率,与电容器带电量、极板间电压及电路中电流都无关,只取决于线圈的自感系数L及电容器的电容C。 周期的决定式:T 2x, LC 1 频率的决定式:f ——1一 2n'LC 2、电磁场 麦克斯韦电磁理论:变化的磁场能够在周围空间产生电场(这个电场叫感应电场或涡旋场,与由电荷激发的电场不同,它的电场线是闭合的,它在空间的存在与空间有无导体无关),变化的电场能在周围空间产生磁场。 a、均匀变化的磁场产生稳定的电场,均匀变化的电场产生稳定的磁场; b、不均匀变化的磁场产生变化的电场,不均匀变化的电场产生变化的磁场。 c、振荡的(即周期性变化的)磁场产生同频率的振荡电场,振荡的电场产生同频率的振荡磁 场。 d、变化的电场和变化的磁场总是相互联系着、形成一个不可分离的统一体,称为电磁场。 电场和磁场只是这个统一的电磁场的两种具体表现。 3、电磁波: (1)变化的电场和变化的磁场不断地互相转 化,并且由近及远地传播出去。这种变化的电磁场在空间以一定的速度传播的过程叫做电磁波。 (2)电磁波是横波。E与B的方向彼此垂直,而且都跟波的传播方向垂直,因此电磁波是横 波。电磁波的传播不需要靠别的物质作介质,在真空中也能传播。在真空中的波速为c=3.0 x 108m/s。振荡电路发射电磁波的过程,同时也是向外辐射能量的过程. (3)电磁波三个特征量的关系:v=入f

电磁学在电力系统中的应用

电磁学在电力系统中的应用 任何一门科学的诞生和发展都离不开科学内部知识的继承和外部社会历史条件的制约,1 9世纪电磁学的崛起正是科学发展的内在逻辑与当时电力技术革命相互影响相互推动的结果。近年来,传统的电工理论、电磁场理论与电子科学、信息科学、控制科学、材料科学以及生命科学的交叉融合,产生了许多对社会经济发展和人类生活有重大影响的新兴学科,如生物电工学、生物电磁学、纳米磁学等。其中电磁兼容技术是一门迅速发展的交叉学科,涉及电子、计算机、通信、航空航天、铁路交通、电力、军事以至人民生活各个方面。另一方面,高频电磁场在电厂中的除垢技术也是当前重点研发的项目之一。本文将主要讨论电磁兼容技术和高频电磁场除垢技术在电力系统中的应用。 一、电磁兼容技术 电磁兼容( EMC)是指设备或系统在所处的电磁环境中能正常工作且不对该环境中任何其他事物构成不能承受的电磁骚扰的能力。在当今信息社会,随着电子技术、计算机技术的发展,一个系统中采用的电气及电子设备数量大大增加,而且电子设备的频带日益加宽,功率逐渐增大,灵敏度提高,联接各种设备的电缆网络也越来越复杂,因此,电磁兼容问题日显重要。 电力系统电磁兼容的主要内容包括:: (1)电磁环境评价。即通过实测或数字仿真等手段,对设备在运行时可能受到的电磁干扰水平(幅值、频率、波形等)进行估计。例如,利用可移动的电磁兼容测试车对高压输电线路或变电站产生的各种干扰进行实测,或通过电磁暂态计算程序对可能产生的瞬变电磁场进行数字仿真。电磁环境评价是电磁兼容技术的重要组成部分,是抗干扰设计的基础。 (2)电磁干扰耦合路径。弄清干扰源产生的电磁搔扰通过何种路径到达被干扰的对象。一般来说,干扰可分为传导型干扰和辐射型干扰两大类。传导干扰是指电磁搔扰通过电源线路,接地线和信号线传播到达对象所造成的干扰,例如,通过电源线传入的雷电冲击源产生的干扰;辐射干扰是指通过电磁源空间传播到达敏感设备的干扰。例如,输电线路电晕产生的无线电干扰或电视干扰即属于辐射型的干扰。研究干扰的耦合途径, 对制定抗干扰的措施, 消除或抑制干扰有重要的意义。 (3)电磁抗扰性评价。研究电力系统中各种敏感的设备仪表,如继电保护、自动

电缆通信干扰的分析和对策

UCN 电缆通信干扰的分析和对策 钟耀球 (江西铜业公司贵溪冶炼厂,贵溪 335424) 摘 要:概要介绍了一个典型的DCS 系统配置情况,并对UCN 电缆干扰产生来源及传播途径进行了较详细的分析。同时阐述了EMI 电磁干扰、接地对UCN 电缆干扰的机理。提出了几种有效的解决抗干扰技术的方案措施和对策。经过两年多的实践运行,该项目解决了DCS 系统通信的故障问题, 关键词:DCS 系统 UCN 电缆 EMI 电磁干扰 屏蔽 接地 0 引言 贵冶闪速炉TDC-3000自控系统配置情况如图1所示,共有6台US 万能工作站,3台打字机,1台拷 贝机。2001年三期改造后,系统增加一套HPM23/24 控制单元,同时增加3台GUS 工作站,通过以上系统达到对贵冶熔炼闪速炉车间生产作业的自动化过 程控制方案的实现。 但由于外界环境的电磁干扰导致的UCN 电缆报 警一直是困扰Honeywell TDC3000/TPS 系统在我厂正常运行的问题。特别是2001年三期改造后,尤其螺旋给料机使用变频器以来,闪速炉DCS 系统UCN 电缆检测到每小时数以千计的UCN 冗余A/B 电缆噪音和通信数据包丢失报警。使得DCS 系统UCN 通信 频繁出现通信中断故障,系统无法投入正常运行。如果不及时解决UCN 电缆噪音问题,一旦主导UCN 通信的两根电缆同时故障则会造成整个DCS 系统通信瘫痪,由此引起整个DCS 终止运行,造成整个系统瘫痪,从而影响整个闪速炉生产作业。为确保DCS 系统安全顺序运行,因此提出了对熔炼DCS 系统UCN 通信故障攻关这一课题。 1 干扰的主要来源及途径 1.1 电磁干扰源的产生与类型 共模干扰是信号对地的电位差,主要由电网串入、地电位差及空间电磁辐射在信号线上感应的共态(同方向)电压迭加所形成。共模电压通过不对称电路可转换成差模电压,直接影响测控信号,造成元器件损坏(这就是一些系统I/O 模件损坏率较高的主要原因),这种共模干扰可为直流、亦可为交流。 差模干扰是指作用于信号两极间的干扰电压,主要由空间电磁场在信号间耦合感应及由不平衡电路转换共模干扰所形成的电压,这种干扰叠加在信号上,直接影响测量与控制精度。 1.2 UCN 通信电缆干扰的主要来源及途径 1.2.1 来自空间的辐射干干扰 空间的辐射电磁场(EMI )主要是由电力网络、电气设备的暂态过程、雷电、无线电广播、电视、雷达、高频感应加热设备等产生的,通常称为辐射干扰,其分布极为复杂。若TDC3000/TPS 系统置于所射频场内,就回收到辐射干扰,其影响主要通过两条路径:一是直接对TDC3000/TPS 内部的辐射,由电路感应产生干扰;而是对UCN 电缆通信内网络的辐射,由通信线路的感应引入干扰。辐射干扰与现场设备布置(距离)及设备所产生的电磁场强弱有关,特别是频率有关,一般通过设置屏蔽电缆和TDC3000/TPS 系统局部屏蔽及高压泄放元件进行保护。 1.2.2 来自系统外引线的干扰 ①来自电源的干扰 TDC3000/TPS 电源通常采用UPS 隔离电源。由于电网覆盖范围广,它将受到所有空间电磁干扰而在线路上感应电压和电路。尤其是电网内部的变化,大型电力设备起停、变频器、交直流传动装置引起的谐波、电网短路暂态过电压冲击等产生的电磁干扰都会通过电源线路进行传播; ②来自信号线引入的干扰 与TDC3000/TPS 控制系统连接的各类信号传输线,除了传输有效的各类信息之外,总会有外部干扰信号侵入。此干扰主要有两种途径:一是通过变送器供电电源或共用信号仪表的供电电源串入的电网干扰,这往往被忽视;二是信号线受空间电磁辐射感应的干扰,即信号线上的外部感应干扰,这是很严重的。由信号引入干扰会引 图1 自控系统

电磁场简答题

简答题: 1、请说明在空心金属波导内能否存在TEM 波(结论及原因)。(10%) 解: 不能。(3分) 若存在TEM 波,z H 0=,则磁场在横截面内闭合,沿磁场闭合路径积分必不等于零(2分),由广义安培环路定律,该闭合路径必然包含电流(3分),而空心波导中心无导体,只能存在纵向位移电流,即z E 0≠(2分)。故TEM 波无法存在 1、 体电流密度J 的定义是什么?单位是什么?s J 与J 是什么关系?流过某一曲面的电流 I 与J 有什么关系?说明在σ有限的导电媒质表面传导电流0s J = (A/m 2) 当在σ有限时,导电媒质表面传导电流 2、 试写出下列物理量的单位:电场强度、电位移矢量、磁感应强度、磁场强度;介电常数、 磁导率、电导率。 答:电场强度的单位 N/C(牛顿/库仑) 或 V/m(伏特/米) 电位移矢量的单位 C/m 2(库仑/米2) 磁感应强度的单位 T(特斯拉) 或 Wb/m 2(韦伯/米2) 磁场强度的单位 安培/米 (A/m ) 介电常数的单位 F/m (法/米) 磁导率的单位 H/m (亨/米) 电导率的单位 S/m (西门子/米) 3、 分别写出高斯定理和安培环路定理的数学表达式。并说明在什么条件下可由高斯定理求0d lim d n n S i i S S ?→⊥⊥?==?J e e d S I =? J S 0lim S h h →=J J 00lim lim 0S h h h h σ→→===J J E

出给定电荷分布的电场?为什么? 答:高斯定理 d d S V V ρ=??D S 安培环路定理 d d c S =??H l J S 在电荷和介质分布都具有对称性(平面对称、球对称和无限长轴对称)时,才可由高斯定理求出给定电荷分布的电场。只有在此条件下,才可能方便计算出适应对称性的闭合面上的电位移的通量,再由与面内的总电量的关系计算出电位移,再由本构关系计算出电场强度。 4、 极化强度的定义是什么?极化电荷体密度P ρ与P 是什么关系?电位移矢量D 是如何 定义的?若已知介电常数和电场强度,如何计算P 和D ?两种不同介质分界面上的极化电荷面密度与介质分界面两侧的1P 、2P 有什么关系? 答: ε=D E 5、 试从产生的原因、存在的区域及引起的效应比较传导电流与位移电流。 答: 产生的方式:传导电流与自由电荷定向运动有关,位移电流可以与电荷运动无关(由变化的电场),或只与束缚电荷的定向运动有关。 存在的区域:传导电流存在于电导率不为零的媒质中,位移电流不存在于电导率无限大的媒质中。 引起的效应:都有磁效应,位移电流在高频时有热效应。 1.平面电磁波在媒质分界面上的反射特性和透射特性与哪些因素有关? 答:与界面两侧媒质的电磁特性参数(2分)、入射波的极化特性和入射角有关(3分)。 1. 试说明为什么单导体波导不能传播TEM 波。 答:对TEM 波,有E z =0和H z =0 由 d d d c S S t ?=+????D H l J S S 和 d d c S t ?=-???B E l S 对于横向的任意闭合回路C 有 0=lim i i V V ?→?∑p P P ρ=-?P 0ε=+D E P 21SP n n P P ρ=-

电磁场深度解析

1、波长 波长是描述信号在一个波长内的变化情况,其实就是相位和幅度变化情况,理想情况下电压、电流按正弦波规律变化,对应的电场和磁场也是按这个变化,在一个长的均匀平行传输线中,每隔一个波长位置信号电压是完全相同的,每隔半个波长位置信号电压是完全相反的 2、波长和器件尺寸问题 若信号的频率是50Hz,那么它的波长就是6000Km,那么所有器件尺寸在此波长下都不足为奇,所以信号在经过某个器件时基本上认为其相位和幅度没有变化;如果信号频率是3000MHz,那么波长为10cM,如果一个两根传输线同时传输此信号,若一根信号比另一根短5CM,那么其信号相位差90°,因该说信号频率越高,其波长越短,其对于所走路径的尺寸越敏感。 3、信号与能量 信号只是一个信息或者说事件,其本身不具备什么意义,能量是信号的载体,信号的传递即为能量的传递,能量是以电场和磁场的形式存在的(比如在平衡传输线中,我们更喜欢使用两根平衡传输线上面分布了正负电荷形成的电场来分析,这个电场到哪儿了,与其相垂直的电荷就到哪了了),电场分布于两个导线之间(存在压差即存在电场),磁场环绕于导线外围(存在电流即存在磁场)。 4、导线电场 理想的导线连接电池和负载时,因导线是理想导体,故其正负极的导线得电压就等于电池的正负极电压,因为存在电位差,故两导线之间存在电场。 5、理想导体内部不存在电场,因为其出处等电势,这只是针对直流电或者低频电路来说的,对于高频电路其实存在电压差,即存在电场。 6、在闭合电路里面电路能量形式: 7、四分之一周期信号变化形式: 假设一个300MHz的正弦波信号,其波长为1m,四分之一波长即为0.25m,从电压的角

考研专业介绍:电磁场与微波技术

非统考专业介绍:电磁场与微波技术 一、专业介绍 电磁场与微波技术隶属于电子科学与技术一级学科。 1、研究方向 目前,各大院校与电磁场与微波技术专业相关的研究方向都略有不同的侧重点。以西安电子科技大学为例,该专业研究方向有: 01电磁兼容、电磁逆问题、计算微波与计算电磁学 04计算电磁学、智能天线、射频识别 07宽带天线、电磁散射与隐身技术 08卫星通信、无线通信、智能天线、信号处理 09天线理论与工程及测量、新型天线 10电磁散射与微波成像 11天线CAD、工程与测量 13移动卫星通信天线 14天线理论与工程 16电磁散射与隐身技术 17电磁兼容、微波测量、信号完整性分析 20移动通信中的相控阵、共形相控阵天线技术 21计算微波与计算电磁学、微波通信、天线工程、电磁兼容 22电阻抗成像、电磁兼容、非线性电磁学 23天线工程与CAD、微波射频识别技术、微波电路与器件 24电磁场、微波技术与天线电磁兼容 25天线测量技术与伺服控制 26天线理论与工程技术 27天线近远场测试技术及应用、无线网络通讯技术 28天线工程及数值计算 29微波电路与微波工程 30近场辐射及散射测量理论与技术 31微波系统和器件设计、电磁场数值计算 32电磁新材料、计算电磁学、电磁兼容 33计算电磁学、电磁兼容、人工合成新材料 34计算电磁学 35电磁隐身技术、天线理论与工程 36宽带小型化天线及电磁场数值计算 37射频识别、多天线技术 38天线和微波器件的宽带设计、小型化设计 2、培养目标 本专业培养德、智、体全面发展,在电磁信号(高频、微波、光波等)的产生、交换、发射、传输、传播、散射及接收等有关的理论与技术和信息(图像、语音、数据等)的获取、处理及传输的理论与技术两大方面具有坚实的理论基础和实验技能,了解本学科发展前沿和动态,具有独立开展本学科科学研究工作能力的高层次人才。 3、专业特色

电磁波频率

电磁波频率、周期与波长 电磁波在日常生活中无时不在无刻不在,从物理学的角度看,电磁波是电磁场的一种运动形态。电可以生成磁,磁也能带来电,变化的电场和变化的磁场构成了一个不可分离的统一的场,这就是电磁场,而变化的电磁场在空间的传播形成了电磁波,所以电磁波也常称为电波。1864年,英国科学家麦克斯韦在总结前人研究电磁现象的基础上,建立了完整的电磁波理论。他断定电磁波的存在,并推导出电与光具有同样的传播速度。1887年德国物理学家用赫兹用实验证实了电磁波的存在。之后,人们又进行了许多实验,不仅证明光是一种电磁波,而且发现了更多形式的电磁波,它们的本质完全相同,只是波长和频率有很大的差别。按照波长或频率的顺序把这些电磁波排列起来,就是电磁波谱。如果把每个波段的频率由低至高依次排列的话,它们是无线电波、微波、红外线、可见光、紫外线、X射线及γ射线。 在气温是15摄氏度的时候,声音在空气中传播的速度约是每秒340米;声音传到1000米远的地方大致是3秒钟,而电磁波传到1000米远的地方,只需三十万分之一秒,折合传播速度约为300,000,000米/秒。 电磁波被发现后,人们使用了多种名词和方式来叙述及表达它,其中频率或者波长是表达一个电磁波其内在性质的重要单位,前者指的是电磁波在一秒钟内电磁波振动方向改变的次数,而波长则是电磁波的另一个表达单位,指的是电磁波每个周期的相对距离,它可以通过电磁波的传输速度除以频率算出。低频率的电磁波有着较长的波长,较高频率的电磁波有着较短的波长。如果以频率来表达具体的电磁波,其单位有Hz(赫)KHz(千赫)MHZ(兆),他们之间的关系是1MHz=1,000KHz=1000,000Hz。下面是一个换算电磁波频率与波长的小程序,改变其中“传输速度”的取值,它同样适合于声波波长与频率的换算,你

电路与电磁场知识总结

一电路的基本概念和基本定律 各元器件的基本特性: ①电阻(服从欧姆定律) G为电导,等于电阻的倒数,单位S(西门子) ②电容: 电容元件在任何时刻t所储存的电场能量为: ③电感: 电感元件在任何时刻t所储存的磁场能量为: ④耦合电感器: 1)电压一电流关系: 注意:自感一定为正,互感可正可负。当M为正时,自感磁通链和互感磁通链 相互增强;当M为负时,自感磁通链和互感磁通链相互抵消。 2)同名端: 当两个线圈的电流i和i同时流进或流出这两个端钮时,它们产生的磁通链是互 相增强的。 3)耦合系数:

⑤理想变压器: 外接负载电阻时,输入电阻值是原电阻R乘以匝数比的二次方: ⑥电压源、电流源: ?独立电压源串联: ?独立电压源并联:

?独立电流源的串联 ?独立电流源的并联 ?受控电压源串联

?受控电流源并联 关联参考方向及功率(是电压、电流的关系): ①定义如果指定流过元件的电流的参考方向是从标以电压正极性的一 端指向负极性的一端,即两者采用相同的参考方向称关联参考方向;当两者不一致时,称为非关联参考方向。 注意:电流电压方向可以任意选定,如果计算为正,说明实际方向与选定的参考方向相同,计算为负,说明实际方向与选定的参考方向相反。 ②功率:单位时间内电场力所做的功称为电功率。P=UI (电流电压关联参考方向时,元件吸收功率) 串并联分压公式: ①串联:流过同一个电流就叫作串联。

串联等效电阻R=R+R2 ②并联:承受同一个电压就叫作并联。 基尔霍夫定律: ①基尔霍夫电流定律KCL: 在集总电路中,任何时刻,对任一节点,(KCL也适用于包围几个节点的闭合面,称为广义节点)所有支路电流的代数和恒等于零。 广义节点: ②基尔霍夫电压定律KV L: 在集总电路中,任何时刻,沿任一回路所有支路电压的代数和恒等于零,即有 注意:集总电路(Lumped circuit):在一般的电路分析中,电路的所有参数,如阻抗、容抗、感抗都集中于空间的各个点上、各个元件上,各点之间的信号是瞬间

电缆上的干扰与对策

电缆上的干扰与对策 电缆是系统中导致电磁兼容问题的最主要因素。因此,在实际中经常发现:当将设备上的外拖电缆取下来时,设备就可以顺利通过试验,在现场中遇到电磁干扰现象时,只要将电缆拔下来,故障现象就会消失。这是因为电缆是一根高效的接收和辐射天线。另外,电缆中的导线平行传输的距离最长,因此导线之间存在较大的分部电容和互电感,这会导致导线之间发生信号的串扰。 解决电缆问题的主要方法之一是对电缆进行屏蔽,但是屏蔽电缆应该怎样端接,怎样的屏蔽电缆才是有效的,等一系列问题是普遍关心而模糊的问题。本节讨论电缆的辐射问题、电磁场对电缆的干扰问题、导线之间的信号串扰问题,以及这些问题的对策。 电缆的辐射问题 电缆的辐射问题是工程中最常见的问题之一,90%以上的设备(主要是含脉冲电路的设备)不能通过辐射发射试验都是由于电缆辐射造成的。电缆产生辐射的机理有两种,一种是电缆中的信号电流(差模电流)回路产生的差模辐射,另一种是电缆中的导线(包括屏蔽层)上的共模电流产生的。电缆的辐射主要来自共模辐射。共模辐射是由共模电流产生的,共模电流的环路面积是由电缆与大地(或邻近其它大型导体)形成的,因此具有较大的环路面积,会产生较强的辐射。 共模电流是如何产生的往往是许多人困惑的问题。要理解这个问题,首先明确共模电压是导致共模电流的根本原因,共模电压就是电缆与大地(或邻近的其它大型导体)之间的电压。从共模电压出发,寻找导致共模电流的原因就

容易了,而导致一个问题的原因一旦清楚,解决这个问题就不是很困难了。电缆上的共模电流产生的原因有以下几点:差模电流泄漏导致的共模电流.即使电缆中包含了信号回线,也不能保证信号电流100%从回线返回信号源,特别是在频率较高的场合,空间各种杂散参数为信号电流提供了第三条,甚至更多的返回路径。这种共模电流虽然所占的比例很小,但是由于辐射环路面积大,辐射是是不能忽视的。 不要试图通过将电路与大地“断开”(将线路板与机箱之间的地线断开,或将机箱与大地之间的地线断开)来减小共模电流,从而减小共模辐射。将电路与大地断开仅能够在低频减小共模电流,高频时寄生电容形成的通路已经阻抗很小。共模电流主要由杂散电容产生。当然,如果共模辐射的问题主要发生在低频,将线路板或机箱与大地断开会有一定效果。从共模电流产生的机理可知,减小这种共模电流的有效方法是减小差模回路的阻抗,从而促使大部分信号电流从信号地线返回。 一般信号线与回线靠得越近,则差模电流回路的阻抗越小。一个典型的例子就是同轴电缆,由于同轴电缆的回流电流均匀分布在外皮上,其等效电流与轴心重合,因此回路面积为零,差模阻抗接近为零,几乎100%的信号电流从同轴电缆的外皮返回信号源,共模电流几乎为零,所以共模辐射很小。另一方面,由于差模电流回路的面积几乎为零,差模辐射也很小,所以同轴电缆的辐射是很小的。对于高频信号,用同轴电缆传述可以避免辐射。实际上,这与我们传统上用同轴电缆传输高频信号,以减小信号的损耗的目的具有相同的本质。因为信号的损耗小了,自然说明泄漏的成份少了,而这部分泄漏就是电缆的辐射。 线路板的地线噪声导致的共模电流。信号地线就是信号的回流线,因此,地线上的两点之间必然存在电压,对于高频电路而言,这些就是高频噪声电压,它作为共模电压驱动电缆上的共模电流,导致共模辐射。线路板设计一章中提供的各种减小地线阻抗的设计方法,可以用来减小地线上的噪声,从而减小共模电压。一种推荐的方法是在电缆端口设置“干净地”。所谓干净地就是这块地线上没有可以产生噪声的电路,因此地线上的局部电位几乎相等。如果机箱

ANSYS电磁场分析指南 第十六章 电路分析

第十六章电路分析 16.1 什么是电路分析 电路分析可以计算源电压和源电流在电路中引起的电压和电流分布。分析方法由源的类型来决定: 源的类型分析方法 交流(AC)谐波分析 直流(DC)静态分析 随时间变化瞬态分析 要在电磁学分析中用有限元来模拟全部电势,就必须提供足够的灵活性来模拟载流电磁设备。ANSYS程序对于电路分析有如下性能: ·用经过改进的基于节点的分析方法来模拟电路分析 ·可以将电路与绕线圈和块状导体直接耦合 ·2-D和3-D模型都可以进行耦合分析 ·支持直流、交流和时间瞬态模拟 ANSYS程序中先进的电路耦合模拟功能精确地模拟多种电子设备,: ·螺线管线圈 ·变压器 ·交流机械 16.2 使用CIRCU124单元 ANSYS提供一种通用电路单元CIRCU124对线性电路进行模拟,该单元求解未知的节点电压(在有些情况下为电流)。电路由各种部件组成,如电阻、电感、互感、电容、独立电压源和电流源、受控电压源和电流源等,这些元件都可以用CIRCU124单元来模拟。 注:本章只描述CIRCU124单元的某些最重要的特性,对该单元的详细描述参见《ANSYS单元手册》。

16.2.1 可用CIRCU124单元模拟的电路元件 对CIRCU124单元通过设置KEYOPT(1)来确定该单元模拟的电路元件,如下表所示。例如,把KEYOPT(1)设置为2,就可用CIRCU124来模拟电容。对所有的电路元件,正向电流都是从节点I流向节点J。 表1CIRCU124单元能模拟的电路元件 注意:全部的电路选项如上表和下图图1所示,ANSYS的电路建模程序自动生成下列实常数:R15(图形偏置,GOFFST)和R16(单元识别号,ID)。本章下一节将详细讨论电路建模程序。

电磁场

电磁场是有内在联系、相互依存的电场和磁场的统一体的总称。随时间变化的电场产生磁场,随时间变化的磁场产生电场,两者互为因果,形成电磁场。电磁场可由变速运动的带电粒子引起,也可由强弱变化的电流引起,不论原因如何,电磁场总是以光速向四周传播,形成电磁波。电磁场是电磁作用的媒介,具有能量和动量,是物质的一种存在形式。电磁场的性质、特征及其运动变化规律由麦克斯韦方程组确定。 电磁波的传播有沿地面传播的地面波,还有从空中传播的空中波。波长越长的地面波,其衰减也越少。电磁波的波长越长也越容易绕过障碍物继续传播。中波或短波等空中波则是靠围绕地球的电离层与地面的反复反射而传播的(电离层在离地面50~400公里之间)。振幅沿传播方向的垂直方向作周期性变化,其强度与距离的平方成反比,波本身带有能量,任何位置之能量、功率与振幅的平方成正比,其速度等于光速(每秒30万公里)。 电可以生成磁,磁也能带来电,变化的电场和变化的磁场构成了一个不可分离的统一的场,这就是电磁场,而变化的电磁场在空间的传播即形成了电磁波,所以电磁波也常称为电波 对于电路来说变化的电流会产生电磁场,如果电磁场辐射出去,那么就会造成能量损失,这是我们不希望的结果,所以我们希望电磁场被包裹起来,但是对于通信来说最终我们希望能量能够传出去,所以我们希望电磁场暴漏在空气里面,如果电流变化过快,那么久会产生大量的电磁场,有利于能量传播。 按照麦克斯韦的电磁场理论,变化的电场(磁场)产生磁场(电场),周期性变化的电场(磁场)产生同频率的周期性变化的磁场(电场);变化的电场和磁场总是相互联系的,形成一个不可分离的统一的场,这就是电磁场;电磁场由近及远地传播,就形成电磁波.变化的磁场产生的电场,附合楞次定律,只不过需要把产生的感应电流方向改成感应电场的方向,且产生的感应电场是蜗旋状的,.此蜗旋电场和磁场的方向互相垂直.举个例子:垂直于磁场方向放一个闭合电路,如果磁场是增强的,则会在电路里产生感应电流,此感应电流的磁场和原磁场方向相反;如果磁场是减弱的,则电路里产生的感应电流的磁场方向和原磁场方向相同.产生的感电流(电流的流动是因为有电压)的方向就是感应电场的方向,它和磁场的方向是互相垂直的.变化的电场产生的磁场方向与此类似.电磁波是横波,横波的传播方向和振动方向是互相垂直的,故电场强度和磁感应强度总是相互垂直的. 在一个导线中流有变化电流,因为电流是变化的,比如其为正弦波,则电流有波峰和波谷,波峰就表示电流较大,电压很小,此时磁场占主要地位;波谷就表示电流很小,电压很大,此时电场占主要地位。

相关主题
文本预览
相关文档 最新文档