当前位置:文档之家› 一种可供选择的对交通数据建模和仿真的方法:人工神经网络

一种可供选择的对交通数据建模和仿真的方法:人工神经网络

一种可供选择的对交通数据建模和仿真的

方法:人工神经网络

论文出处:Simulation Modelling Practice and Theory 12 (2004) 351–362 原文作者:S. Figen Kalyoncuoglu, Mesut Tigdemir

作者单位:SDU, Civil Engineering Department, Isparta 32260, Turkey

原文相关时间:Received 25 November 2002;

Received in revised form 9 March 2004;

Accepted 20 April 2004;

Available online 15 June 2004

摘要

假定在驾驶员特性和交通事故之间有复杂的关系。而与交通事故有关的这些驾驶员特性的影响是很难仿真的。由于人工神经网络 (ANN)的方法是一种更有可塑性和想象空间的方法,本文提出使用该方法来训练和预报数据库。网络被组织成不同的结构体系并且为了确定最合适的那一个已经对结果进行了比较。最后,最可能的结构体系被选来作为对调查数据和事故百分比的预报的更好的表示。对于在对ANN的训练中未曾用到的那些输入的输出的预报提供了数据库中没有的驾驶员的信息。预报结果是十分令人满意的,而ANN也已经被证明是对交通数据的估计进行建模和仿真的可靠的处理系统。

关键词:神经网络,交通建模问题,辨识,数据挖掘,探测数据集分析,仿真

1.绪论:

由交通事故引起的人身伤亡和物质损失是全球日益发展的科技的负面影响之一。当我们将高速公路上的交通密度考虑在内,就不会为土耳其是交通事故发生率最高的国家之一而感到惊讶。正是由于如此高的事故发生率,找到造成人身伤亡和物质损失的事故发生的主要因素并作必要的防范就显得十分必要。

虽然引起交通事故的因素很多,但通过相关的统计,驾驶员的因素是造成交通事故高发生率的主要因素。因此,所有影响驾驶员行为的特性都必须进行分析。在确定这些因素时有很多方法可以使用,最有效的方法是对人们进行的面对面的调查。通过这些调查可以建立庞大的数据库并且运用不同的方法对数据进行分析。

数据库由每个驾驶员的信息组成,他们卷入交通事故的百分比可以用那些具有相同特性的驾驶员的数据库来进行预报。而对那些数据库中没有的驾驶员,卷入交通事故的百分比就不能仅仅利用数据库来预报。为了能作如此的预报,驾驶员特性和卷入交通事故之间的关系就必须在数据库中建立/记录。因此,该数据

库肯定是典型的。目前在建模时可以使用统计等若干种方法。上世纪末使用得相当频繁的人工神经网络(ANN)就为很多信息处理程序提供了一种可选择的方法。由于ANN是一种更有可塑性和想象空间的方法并且不要求统计学上的专门技术,本文使用其来进行可靠的数据处理及随后的解释。要对该数据库建模,必须拥有一个基本数据库、ANN软件工具箱和关于建立ANN体系结构的软件的足够的知识。

因为这个原因,一些驾驶员特性和它们对卷入交通事故的影响被选来显示关于驾驶员的数据库是如何很容易的用ANN的方法来建立的。本文中关于涉及交通事故的驾驶员特性(包括年龄、性别、受教育程度、驾龄、每天驾驶的平均里程)以及它们的影响的那些数据来自于曾经在本文第一作者的博士论文[1]中使用过的一项专门研究报告。该报告通过对考虑了人口密度的30个城市(如图1所示)的5520名驾驶员进行的面对面的问卷调查获得上述的数据。由于在交通事故中有影响的驾驶员特性很多,笔者随机的选取了其中的五个来作研究。

图1 30个城市的位置地图

2.驾驶员特性数据

尽管对交通事故有影响的驾驶员特性很多,在本研究中,只有那些用来建模的特性是有依据的。涉及的特性在下面给出并作了概要的解释以支持数据库的建立。

2.1驾驶员的年龄

年龄和发生交通事故的概率之间的关系是在各种文献中调查频率最高的课题之一。

总的来说,在25岁之前发生交通事故的比率比较高,而尽管在该年龄之后事故比率有所下降,一旦超过60岁该比率又开始上升。对于年轻驾驶员的事故高发生率可以解释为他们没有经验,粗心,训练不足,过于自信和没有家庭责任感。而对于老年驾驶员,他们身体机能的下降引起了交通事故。关节组织变得不牢固,敏捷性下降,对于新情况的的反应时间随着年龄的增长而变长等诸如此类的原因引起事故发生率的增长[2]。

与性别和年龄相对的驾驶员比率在那些快到二十岁和刚超过二十岁的,尤其是男性的驾驶员中是引人注目的更高。

2.2驾驶员的性别

不同性别间的特性差异在交通事故的发生上是有影响的。男性驾驶员应该比

女性驾驶员为更多的交通事故负责,因为在实际驾驶中他们没感觉的、竞争性的、好斗的、喜欢冒险的、不受约束的本性就会显现出来。尽管男性对于汽车和驾驶的兴趣使他们更有能力和经验,但不幸的是,这还不足以降低事故的比率。根据经验的分析揭露了男性驾驶员和女性驾驶员特性之间的重要差异,他们各自的交通事故危险度已经在Mannering的文章中提到[4]。

由于男性驾驶员和女性驾驶员很少工作在相同的领域因此很难对他们进行比较。然而,一项对于出租车驾驶员的研究结果显示女性驾驶员卷入交通事故的比率比男性驾驶员多3.5倍。

2.3驾驶员的受教育程度

正如在很多领域一样,受教育程度是另一项对交通安全来说是十分重要的因数。观察的重点、认知的特性、理解和说明的方式、对规则的服从度等是与受教育程度同步的。一个受过教育的人不会走由未受教育引起的两个极端——畏缩和无畏——并且行为更有逻辑性。

2.4驾龄

经验会使驾驶员对环境的观察更好从而降低危险水平。调查显示经验和交通事故的频率之间有各种各样的关系。研究结果显示年龄在16到18岁之间的拿了驾照还不到一年的人引起更多的交通事故。而由于有更多的经验,在18到24这一年龄段的人引发的事故相对于16到18岁年龄段的人来说就更少[5]。驾驶员的经验和能力越高,发生交通事故的可能性就越少[6]。

2.5 每天驾驶的平均里程

旅行者的社会-经济参数被频繁的用来对其旅行行为作解释。一个人每天驾驶的时间越长,发生交通事故的可能性就越高。当驾驶时间变长,驾驶员由于疲劳和感觉上的困难而变得更粗心。

Greenshields研究了驾驶的持续时间和驾驶员的表现之间的关系并得出结论:随着连续的长时间驾驶而引起的驾驶员表现恶化和失常是被交通和安全工程师所公认的在高速公路上引发事故和死亡的一个主要原因[7]。

3.人工神经网络(ANN)

从网络展开的视角对人类行为进行的分析在过去的十年中已经获得了很多科学上的注意。网络模型将他们的分析集中在将个体的空间行为聚集成一个由节点和连接组成的有组织的模式上[8]。有些网络模型与社会的行为基础和经济决策有关。神经网络是基于对人类大脑机能的类比,它尝试借助于人类行为基础的学习机制并用计算机化的方法来反映这些机能。

ANN的方法在过去的十年中已经在各种交通运输工程学所涉及问题的通信中得到运用。Belgarovi和Blosseville研究了ANN在道路交通的自动测量中的应用[9]。特别的,他们还利用ANN来建立了一条道路的交通状况的样例。他们使用的网络包括18个输入层的神经元、2个隐藏层和4个不同种类的输出层的神经元。Huang和Part以ANN模型作为界面发展了一种新的仿真模型[10]。Chin和其他人用ANN来综合处理了一个循环的OD(初始点-目的地)流[11]。最后,一股研究用组合模糊逻辑的ANN方法来模拟旅行行为的新潮流是值得提及的[12,13]。ANN在旅

行行为、交通流和交通管理方面有很多的应用[8]。

4.实现方法

用ANN来对数据库建模,首先要决定输入和输出部分。驾驶员特性和子群中的驾驶员数目作为输入,涉及交通事故的百分比作为输出。因此,在ANN模型中有六个输入和一个输出。

依照驾驶员特性,参与问卷调查的驾驶员按详细的说明(表1)被分为487个子群。为了使驾驶员更容易的填写调查表以及能很快地将其作为结果的数据库转移到计算机中,调查表上的问题被分为小类,举个例子来说,男性(小类编号;性别:1),二十五岁以下(年龄:1),高中毕业(受教育程度:4),驾车两年(驾龄:2),每天行驶里程在二十公里以下(日行驶里程:1)就是一个编号为11421的特殊子群。如果对于详细说明表中的每个子群都有驾驶员的话,一共将被分为2×5×5×5×5=1250个子群。

一个确定的子群卷入交通事故的百分比是由涉及交通事故的驾驶员的数目占该子群的驾驶员的总数目的比例来决定。

为了预报各个子群在卷入交通事故的百分比上的影响和找到用最好的方式模拟数据库体系结构,不同的ANN被组织起来。这些ANN使用具有反馈传播的前馈方法进行训练。激发的传播以一种前馈的方式从输入转移到输出层,而误差的反向传播从输出返回到输入层。网络先提供了一种初步的输出,它接着与期望输出进行比较,为使其与预期输出的误差最小化直到误差被限制在预先确定的容许范围之内,该误差会在反馈传播的处理中改变各连接的权值。

表1 驾驶员特性的子群

驾驶员特

驾驶员特性的小类编号

1 2 3 4 5

性别

年龄

受教育程度

驾龄

日行驶里程男性(93%)

<25(22%)

文盲

(5%)

0-1(17%)

<20(21%)

女性(7%)

26-35(40%)

小学文化

(33%)

1-5(21%)

20-50(29%)

-

36-55(34%)

初中文化

(19%)

6-10(27%)

51-150(27%)

-

56-65(3%)

高中文化

(28%)

11-20(24%)

151-300(16%)

-

>65(1%)

大学以上

文化(15%)

〉20(11%)

>300(7%)

在该ANN的模型中(图2和图3),隐藏层的神经元数量,激发函数和隐藏层的数量均已被改变以获得对调查数据(表2)的最好的模拟。

数据库被划分为两个部分,拥有400个子群的第一部分作为训练数据,而拥有87个子群的另一部分作为预报数据。

图2 单隐藏层的ANN模型

图3 双隐藏层的ANN模型

表2 ANN模型及其详细说明

ANN模型隐藏层数量隐藏层神经激发函数 500个初项实际值和

元数目 的均方误差和 预报值间

(SSE ) 的相关系

ANN1

ANN2

ANN3

ANN4

ANN5

ANN6

ANN7

ANN8

ANN9 1 2 2 4 8 16 4-2 8-2 16-2 6-2 6-2 6-2 Tansig Tansig Tansig Tansig Tansig Tansig Tansig-tansig- Purelin Lansig-purelin- Purelin Tansig-tansig- Logsig 0.1012 0.0573 0.0567 0.0556 0.0311 0.0236 0.0399 0.0509 0.0372

0.5639 0.6535 0.6544 -0.6085 0.7355 0.7620 0.8820 0.9251 0.9122 TANSIG 是双曲线型正切S 形传递函数x

x x

x e e e e x f --+-=)( LOGSIG 是log 型S 形传递函数x

e x

f -+=11)( PURELIN 是直线型传递函数x x f =)(

SSE 为均方误差和

对于只有一个隐藏层的模型来说隐藏层中神经元数量的增长使SSE 从0.1012降到了0.0567,由此可知,为了降低SSE 和提高相关系数,ANN 结构应为双隐藏型的,在这种ANN 结构中,ANN9模型给出了对于SSE 和相关系数两方面都是最好的结果。

建模的目标是获得最小的SSE ,而上面提到的相关系数是指实际值和预报值之间的相关系数。

模型使用包含在训练用数据中的那些数据来进行训练。训练的水平用实际数据和训练好的数据之间的相关系数来进行评估。训练好的ANN 模型用来进行预报,

也就是说,将数据输入ANN 模型中,它就会根据输入和输出之间的存在的逻辑关系计算出输出数据。

在ANN 模型输入和输出变量之间的隐藏层中包含了一个具有高度非线性的神经元泛函结构。每一个神经元或者处理元素接收到若干由前面的节点引发的输入信号j x 然后根据他们的连接权值ij w 对各个信号进行处理。输入信号和处理元素的内部活性水平之间的关系由它的输入的权值总和给出,其形式如下:

∑-=n

i j ij i x w N θ)(

其中i N 是指节点i 中的网络输入信号(内部活性水平),ij w 是指人工神经元i 和j 之间的连接权值,j x 是指来自于先前节点j 的信号的值,i θ是指节点i 的偏差项,n 使指来自先前的节点的输入信号的数目。

当输入信号的权值和超过了激发阈值i θ,人工神经元输出一个通过传递函数)(x f 得到的信号i y 。输出信号可以粗略的表示为输入信号i N 的函数: )(i i N f Y = 其中x e

x f -+=

11)(是一个输入范围在),(+∞-∞之间而输出i y 范围在[0,1]之间的的单值S 形函数。在期望输出和实际输出之间的误差最小化之前,ANN 需修改各层之间的连接权值而各节点也在随后的累积中偏移以容许进行对网络的一种类型的学习。 对于数据来说最适合的ANN 体系结构具有最低的SSE 和最高的相关系数。在上面的ANN 体系结构中,ANN9满足了这种要求。ANN9具有两个隐藏层,他们的激发函数分别是tansig (第一个隐藏层)-tansig (第二个隐藏层)-logsig(输出层)。对这个ANN 模型的训练因为其对训练数据高达0.97的相关系数而令人满意。与卷入交通事故的百分比相对的子群数目用图表来进行评估(图4)。在该图中,X 轴代表各个驾驶员子群的子群编号,Y 轴为与之对应的子群卷入交通事故的百分比。用于训练的预报和实际值之间的关系为离散的,如图5所示。除此之外,在训练中累积的输入的预报值由ANN9模型给出,图6可作为对约为0.9122的相关系数的一种图解,而均方误差和大约为0.0372(如图7)。除了包括对检测数据的预报之外图6与图4的图解基本相同。

图4 用ANN9模型进行训练后的训练值评估

图5用于训练的卷入交通事故的值的离散图

图6 用ANN9模型进行预报后的预报值评估

图7 训练中累积的均方误差和

图8 卷入交通事故的预报值和实际值的离散图

图7显示了500个初相在训练中累积的均方误差和(SSE),在前十个初相时该值是完全下降的,而在此后则逐渐只是趋于下降直到最后达到0.0372。图8显示了用于测试系统的预报和实际值的分布。从该图可看出,在用于测试的预报值

和实际值之间由于其确定的达到0.9122的相关系数(2R)而具有很好的关系。

本文采用Matlab神经网络工具箱来对数据库进行建模。在这个工具箱中,输入、输出和ANN体系结构已写在一个标准文件中,运行该神经网络工具箱即可进行训练和预报。

5.结语

本文的目的是对与交通事故中有关的驾驶员特性的影响进行建模以及使用人工神经网络来对那些训练中未曾使用的和数据库中不存在的输入数据的输出进行预报。由于人工神经网络是一种更有可塑性和想象空间的方法而且具有对所有的驾驶员特性进行相互评估/比较的能力,其被选来对驾驶员特性数据进行建模。无论如何,这些特性对交通事故的影响已经以0.97的相关系数建立了用于训练的模型,而对于那些训练中未曾使用的数据的输出则以0.91的相关系数进行了预报。

在交通仿真方面使用此模型的可能情况是:一个包括个体的某些与其经历有关的、生理的和心理的特征并且能够在一定程度上反映可以建立和模拟的社会的数据库。模型也可以给出数据库中不曾包括的人的信息。随着研究中模型的建立,人们由于他们的特性而卷入交通事故的风险度在不利用诸如花费大量时间来进行研究的心理学上的应用成果的基础上就可以被确定。随着信息的获得关于驾驶员的选择的前期方案就可以形成。在获得驾驶执照和稍后的实际行驶过程中一些

控制就可以在某个特定的时间段内实施,因而该方法对相关的人和机构是有用的。

目前已有的数据库还可以用本研究中已经展示了的ANN的一个应用建成一个更全面的数据库。当根据人们的可能使他们卷入交通事故的个人特性将他们分成若干个风险群体时也可以为他们准备不同的训练方案并应用于每一个群体。换句话说,个体卷入交通事故的风险度可以在事故真正发生之前确定并且其可以通过他们所属的群体得到一个训练方案。这样的方法会比让所有人在交通安全方面进行相同的驾驶培训更为有效。

本文通过一个交通工程方面的例子来使神经网络分析的巨大潜能得到发挥和应用。

参考文献:

[1] S.F. Kalyoncuoglu, Analysis of driver behaviors influencing traffic safety in Turkey, I.T.U. Natural and Applied Science Institute, Ph.D. thesis, Istanbul, 1999 (in Turkish).

[2] I. Efil, The role of psychotechnique to minimize of work accidents, II. Seminar fur Verkehrssicherheit und Psychotechnische Anwendungen, Universitat Uludag, Bursa, 1990, pp.75–100 (in Turkish).

[3] L. Evans, Traffic Safety and The Driver, Van Nostrand Reinhold, New York, NY, 1991.

[4] F.L. Mannering, Male/female driver, characteristics and accident risk, Accident Anal. Prev. 25 (1993)77–84.

[5] C. Labergenadeau, U. Maag, R. Bourbeau, The effects of age and experience on accidents with injuries-should the licensing age be raised?, Accident Anal. Prev. 24 (1992) 107–116.

[6] W.E. Woodson, B. Tillman, P. Tillman, Human Factors Design Handbook, Mc Graw Hill, New York, NY, 1992, pp. 696–710.

[7] B.D. Greenshields, Changes in driver performance with time in driving, Highway Res. Record 9(1996) 11–18.

[8] V. Himanen, P. Nijkamp, A. Reggiani, J. Raitio, Neural Networks In Transport Applications,Ashgate, USA, 1998.

[9] B. Belgarovi, J.M. Blosseville, A Road Traffic Application of Neural Techniques, Recherche Tranports Sec. Eng., No. 9, Washington, DC, 1993, 53–65.

[10] V.P. Huang, D. Prahlad Pant, A simulation neural network model for evaluating dilemma zone problems, in: 73rd Annual Meeting of Transportation Research Board, Washington, DC, 1994, pp. 9–13.

[11] S.M. Chin, H.L. Huang, T. Per, Using neural networks to synthesize origin–destination flows in a traffic circle, in: 73rd Annual Meeting Of Transportation Research Board, Washington, DC, 1994, pp.9–13.

[12] C.T. Lin, C.S. Lee, Neural network based fuzzy logic control and decision systems, IEEE https://www.doczj.com/doc/354663835.html,p. 40 (12) (1991) 1320–1336.

[13] T. Loton, H.N. Koutsopoulos, Approximate reasoning models for route charce behaviour in the presence of information in Daganzo, in: Proceedings of 12th International Symposium on Transportation and Traffic Theory, 1993, pp. 71–88.

人工神经网络原理及实际应用

人工神经网络原理及实际应用 摘要:本文就主要讲述一下神经网络的基本原理,特别是BP神经网络原理,以及它在实际工程中的应用。 关键词:神经网络、BP算法、鲁棒自适应控制、Smith-PID 本世纪初,科学家们就一直探究大脑构筑函数和思维运行机理。特别是近二十年来。对大脑有关的感觉器官的仿生做了不少工作,人脑含有数亿个神经元,并以特殊的复杂形式组成在一起,它能够在“计算"某些问题(如难以用数学描述或非确定性问题等)时,比目前最快的计算机还要快许多倍。大脑的信号传导速度要比电子元件的信号传导要慢百万倍,然而,大脑的信息处理速度比电子元件的处理速度快许多倍,因此科学家推测大脑的信息处理方式和思维方式是非常复杂的,是一个复杂并行信息处理系统。1943年Macullocu和Pitts融合了生物物理学和数学提出了第一个神经元模型。从这以后,人工神经网络经历了发展,停滞,再发展的过程,时至今日发展正走向成熟,在广泛领域得到了令人鼓舞的应用成果。本文就主要讲述一下神经网络的原理,特别是BP神经网络原理,以及它在实际中的应用。 1.神经网络的基本原理 因为人工神经网络是模拟人和动物的神经网络的某种结构和功能的模拟,所以要了解神经网络的工作原理,所以我们首先要了解生物神经元。其结构如下图所示: 从上图可看出生物神经元它包括,细胞体:由细胞核、细胞质与细胞膜组成;

轴突:是从细胞体向外伸出的细长部分,也就是神经纤维。轴突是神经细胞的输出端,通过它向外传出神经冲动;树突:是细胞体向外伸出的许多较短的树枝状分支。它们是细胞的输入端,接受来自其它神经元的冲动;突触:神经元之间相互连接的地方,既是神经末梢与树突相接触的交界面。 对于从同一树突先后传入的神经冲动,以及同一时间从不同树突输入的神经冲动,神经细胞均可加以综合处理,处理的结果可使细胞膜电位升高;当膜电位升高到一阀值(约40mV),细胞进入兴奋状态,产生神经冲动,并由轴突输出神经冲动;当输入的冲动减小,综合处理的结果使膜电位下降,当下降到阀值时。细胞进入抑制状态,此时无神经冲动输出。“兴奋”和“抑制”,神经细胞必呈其一。 突触界面具有脉冲/电位信号转换功能,即类似于D/A转换功能。沿轴突和树突传递的是等幅、恒宽、编码的离散电脉冲信号。细胞中膜电位是连续的模拟量。 神经冲动信号的传导速度在1~150m/s之间,随纤维的粗细,髓鞘的有无而不同。 神经细胞的重要特点是具有学习功能并有遗忘和疲劳效应。总之,随着对生物神经元的深入研究,揭示出神经元不是简单的双稳逻辑元件而是微型生物信息处理机制和控制机。 而神经网络的基本原理也就是对生物神经元进行尽可能的模拟,当然,以目前的理论水平,制造水平,和应用水平,还与人脑神经网络的有着很大的差别,它只是对人脑神经网络有选择的,单一的,简化的构造和性能模拟,从而形成了不同功能的,多种类型的,不同层次的神经网络模型。 2.BP神经网络 目前,再这一基本原理上已发展了几十种神经网络,例如Hopficld模型,Feldmann等的连接型网络模型,Hinton等的玻尔茨曼机模型,以及Rumelhart 等的多层感知机模型和Kohonen的自组织网络模型等等。在这众多神经网络模型中,应用最广泛的是多层感知机神经网络。 这里我们重点的讲述一下BP神经网络。多层感知机神经网络的研究始于50年代,但一直进展不大。直到1985年,Rumelhart等人提出了误差反向传递学习算法(即BP算),实现了Minsky的多层网络设想,其网络模型如下图所示。它可以分为输入层,影层(也叫中间层),和输出层,其中中间层可以是一层,也可以多层,看实际情况而定。

数据分析算法与模型一附答案

精品文档 数据分析算法与模型模拟题(一) 一、计算题(共4题,100分) 1、影响中国人口自然增长率的因素有很多,据分析主要因素可能有:(1)从宏观经济上看,经济整体增长是人口自然增长的基本源泉;(2)居民消费水平,它的高低可能会间接影响人口增长率。(3)文化程度,由于教育年限的高低,相应会转变人的传统观念,可能会间接影响人口自然增长率(4)人口分布,非农业与农业人口的比率也会对人口增长率有相应的影响。为了全面反映中国“人口自然增长率”的全貌,选择人口增长率作为被解释变量,以反映中国人口的增长;选择“国名收入”及“人均GDP”作为经济整体增长的代表;选择“居民消费价格指数增长率”作为居民消费水平的代表。暂不考虑文化程度及人口分布的影响。 从《中国统计年鉴》收集到以下数据(见表1): 表1 中国人口增长率及相关数据 人口自然增长率国民总收入居民消费价格指数增长人均GDP 年份(元)率((亿元) CPI(%。))% 1366 15037 1988 15.73 18.8 1519 1989 18 17001 15.04 1644 18718 1990 14.39 3.1 1893 21826 3.4 1991 12.98 2311 26937 11.6 6.4 1992 2998 35260 14.7 11.45 1993 4044 48108 1994 24.1 11.21 5046 17.1 10.55 59811 1995 5846 70142 1996 10.42 8.3 6420 10.06 1997 2.8 78061 -0.8 1998 9.14 83024 6796 8.18 7159 1999 88479 -1.4 7858 2000 0.4 7.58 98000 精品文档. 精品文档

人工神经网络复习题

《神经网络原理》 一、填空题 1、从系统的观点讲,人工神经元网络是由大量神经元通过极其丰富和完善的连接而构成的自适应、非线性、动力学系统。 2、神经网络的基本特性有拓扑性、学习性和稳定收敛性。 3、神经网络按结构可分为前馈网络和反馈网络,按性能可分为离散型和连续型,按学习方式可分为有导师和无导师。 4、神经网络研究的发展大致经过了四个阶段。 5、网络稳定性指从t=0时刻初态开始,到t时刻后v(t+△t)=v(t),(t>0),称网络稳定。 6、联想的形式有两种,它们分是自联想和异联想。 7、存储容量指网络稳定点的个数,提高存储容量的途径一是改进网络的拓扑结构,二是改进学习方法。 8、非稳定吸引子有两种状态,一是有限环状态,二是混沌状态。 9、神经元分兴奋性神经元和抑制性神经元。 10、汉明距离指两个向量中对应元素不同的个数。 二、简答题 1、人工神经元网络的特点? 答:(1)、信息分布存储和容错性。 (2)、大规模并行协同处理。 (3)、自学习、自组织和自适应。 (4)、人工神经元网络是大量的神经元的集体行为,表现为复杂

的非线性动力学特性。 (5)人式神经元网络具有不适合高精度计算、学习算法和网络设计没有统一标准等局限性。 2、单个神经元的动作特征有哪些? 答:单个神经元的动作特征有:(1)、空间相加性;(2)、时间相加性;(3)、阈值作用;(4)、不应期;(5)、可塑性;(6)疲劳。 3、怎样描述动力学系统? 答:对于离散时间系统,用一组一阶差分方程来描述: X(t+1)=F[X(t)]; 对于连续时间系统,用一阶微分方程来描述: dU(t)/dt=F[U(t)]。 4、F(x)与x 的关系如下图,试述它们分别有几个平衡状态,是否为稳定的平衡状态? 答:在图(1)中,有两个平衡状态a 、b ,其中,在a 点曲线斜率|F ’(X)|>1,为非稳定平稳状态;在b 点曲线斜率|F ’(X)|<1,为稳定平稳状态。 在图(2)中,有一个平稳状态a ,且在该点曲线斜率|F ’(X)|>1,为非稳定平稳状态。

数据分析建模简介

数据分析建模简介 观察和实验是科学家探究自然的主要方法,但如果你有数据,那么如何让这些数据开口说话呢?数据用现代人的话说即信息,信息的挖掘与分析也是建模的一个重要方法。 1.科学史上最有名的数据分析例子 开普勒三定律 数据来源:第谷?布拉赫(1546-1601,丹麦人),观察力极强的天文学家,一辈子(20年)观察记录了750颗行星资料,位置误差不超过0.67°。 观测数据可以视为实验模型。 数据处理:开普勒(1571-1630,德国人),身体瘦弱、近视又散光,不适合观天,但有一个非常聪明的数学头脑、坚韧的性格(甚至有些固执)和坚强的信念(宇宙是一个和谐的整体),花了16年(1596-1612)研究第谷的观测数据,得到了开普勒三定律。 开普勒三定律则为唯象模型。 2.数据分析法 2.1 思想 采用数理统计方法(如回归分析、聚类分析等)或插值方法或曲线拟合方法,对已知离散数据建模。 适用范围:系统的结构性质不大清楚,无法从理论分析中得到系统的规律,也不便于类比,但有若干能表征系统规律、描述系统状态的数据可利用。 2.2 数据分析法 2.2.1 基础知识 (1)数据也称观测值,是实验、测量、观察、调查等的结果,常以数量的形式给出; (2)数据分析(data analysis)是指分析数据的技术和理论; (3)数据分析的目的是把隐没在一大批看来杂乱无章的数据中的信息集中、萃取和提炼出来,以找出所研究对象的内在规律;

(4)作用:在实用中,它可帮助人们作判断,以采取适当行动。 (5)实际问题所涉及的数据分为: ①受到随机性影响(随机现象)的数据; ②不受随机性影响(确定现象)的数据; ③难以确定性质的数据(如灰色数据)。 (6)数理统计学是一门以收集和分析随机数据为内容的学科,目的是对数据所来自的总体作出判断,总体有一定的概率模型,推断的结论也往往一概率的形式表达(如产品检验合格率)。 (7)探索性数据分析是在尽量少的先验假定下处理数据,以表格、摘要、图示等直观的手段,探索数据的结构及检测对于某种指定模型是否有重大偏离。它可以作为进一步分析的基础,也可以对数据作出非正式的解释。 实验者常常据此扩充或修改其实验方案(作图法也该法的重要方法,如饼图、直方图、条形图、走势图或插值法、曲线(面)拟合法等)。 2.2.2 典型的数据分析工作步骤 第一步:探索性数据分析 目的:通过作图、造表、用各种形式的方程拟合、计算某些特征量等手段探索规律性的可能形式,即往什么方向和用何种方式去寻找和揭示隐含在数据中的规律性。 第二步:模型选定分析 目的:在探索性分析的基础上,提出一类或几类可能的模型(如进一步确定拟合多项式(方程)的次数和各项的系数)。 第三步:推断分析 目的:通常用数理统计或其它方法对所选定的模型或估计的可靠程度或精确程度作出推断(如统计学中的假设检验、参数估计、统计推断)。3.建模中的概率统计方法 现实世界存在确定性现象和随机现象,研究随机现象主要由随机数学来承担,随机数学包括十几个分支,但主要有概率论、数理统计、试验设计、贝叶

人工神经网络的发展及应用

人工神经网络的发展与应用 神经网络发展 启蒙时期 启蒙时期开始于1980年美国著名心理学家W.James关于人脑结构与功能的研究,结束于1969年Minsky和Pape~发表的《感知器》(Perceptron)一书。早在1943年,心理学家McCulloch和数学家Pitts合作提出了形式神经元的数学模型(即M—P模型),该模型把神经细胞的动作描述为:1神经元的活动表现为兴奋或抑制的二值变化;2任何兴奋性突触有输入激励后,使神经元兴奋与神经元先前的动作状态无关;3任何抑制性突触有输入激励后,使神经元抑制;4突触的值不随时间改变;5突触从感知输入到传送出一个输出脉冲的延迟时问是0.5ms。可见,M—P模型是用逻辑的数学工具研究客观世界的事件在形式神经网络中的表述。现在来看M—P 模型尽管过于简单,而且其观点也并非完全正确,但是其理论有一定的贡献。因此,M—P模型被认为开创了神经科学理论研究的新时代。1949年,心理学家D.0.Hebb 提出了神经元之间突触联系强度可变的假设,并据此提出神经元的学习规则——Hebb规则,为神经网络的学习算法奠定了基础。1957年,计算机学家FrankRosenblatt提出了一种具有三层网络特性的神经网络结构,称为“感知器”(Perceptron),它是由阈值性神经元组成,试图模拟动物和人脑的感知学习能力,Rosenblatt认为信息被包含在相互连接或联合之中,而不是反映在拓扑结构的表示法中;另外,对于如何存储影响认知和行为的信息问题,他认为,存储的信息在神经网络系统内开始形成新的连接或传递链路后,新 的刺激将会通过这些新建立的链路自动地激活适当的响应部分,而不是要求任何识别或坚定他们的过程。1962年Widrow提出了自适应线性元件(Ada—line),它是连续取值的线性网络,主要用于自适应信号处理和自适应控制。 低潮期 人工智能的创始人之一Minkey和pape~经过数年研究,对以感知器为代表的网络系统的功能及其局限性从数学上做了深入的研究,于1969年出版了很有影响的《Perceptron)一书,该书提出了感知器不可能实现复杂的逻辑函数,这对当时的人工神经网络研究产生了极大的负面影响,从而使神经网络研究处于低潮时期。引起低潮的更重要的原因是:20世纪7O年代以来集成电路和微电子技术的迅猛发展,使传统的冯·诺伊曼型计算机进入发展的全盛时期,因此暂时掩盖了发展新型计算机和寻求新的神经网络的必要性和迫切性。但是在此时期,波士顿大学的S.Grossberg教授和赫尔辛基大学的Koho—nen教授,仍致力于神经网络的研究,分别提出了自适应共振理论(Adaptive Resonance Theory)和自组织特征映射模型(SOM)。以上开创性的研究成果和工作虽然未能引起当时人们的普遍重视,但其科学价值却不可磨灭,它们为神经网络的进一步发展奠定了基础。 复兴时期 20世纪80年代以来,由于以逻辑推理为基础的人工智能理论和冯·诺伊曼型计算机在处理诸如视觉、听觉、联想记忆等智能信息处理问题上受到挫折,促使人们

大数据与建模

大数据与建模 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

1、SQL用于访问和处理数据库的标准的计算机语言。用来访问和操作数据库系统。SQL语句用于取回和更新数据库中的数据。SQL可与数据库程序系统工作。比如MS Access,DB2,Infermix,MS SQL Server,Oracle,Sybase以及其他数据库系统。SQL可以面向数据库执行查询,从数据库取回数据,在数据库中插入新的记录,更新数据库中的数据,从数据库删除记录,创建新数据库,在数据库中创建新表,在数据库中创建存储过程,在数据库中创建视图和设置表、存储过程和视图的权限等。 2、Hadoop是一个能够对大量数据进行分布式处理的软件框架。但是Hadoop是以一种可靠、高效、可伸缩的方式进行处理的。Hadoop是可好的,因为他假设计算单元和存户会失败,因此他维护多个工作数据副本,确保能够针对失败的节点重新分布处理。Hadoop是高效的,因为他以并行的方式工作,通过并行处理加快处理速度。Hadoop还是可伸缩的,能够处理PB级数据。此外,Hadoop

依赖于社区服务器,因此他的成本较低,任何人都可以使用。 3、HPCC(high performance computinggand communications)高性能计算与通信的缩写。1993年,由美国科学、工程技术联邦协调理事会向国会提交了“重大挑战项目”高性能计算与通信的报告,也就是被称为HPCC计划的报告,及美国总统科学战略项目,其目的是通过加强研究与开发解决一批重要的科学与技术挑战问题。HPCC是美国实施信息高速公路而上实施的计划,该计划的实施将耗资百亿美元,其主要目标要达到:开发可扩展的计算系统及相关软件,以支持太位级网络传输性能,开发千兆比特网络技术,扩展研究和教育机构及网络连接能力。 4、Strom是自由的开源软件,一个分布式的、容错的实时计算系统。Strom可以非常可靠的处理庞大的数据流,用于处理Hadoop的批量出具,Strom很简单,支持许多种编程语言,使用起来非常有趣。Strom由Twitter开元而来,其他知名的应用企业包括Groupon、淘宝、支付宝、阿里巴巴、乐元素、Admaster等等。Strom有许多应用领域:实时分析、在线机器学习、不停顿的计算,分布式RPC(员过程调用协议,一种通过网络

人工神经网络题库

人工神经网络 系别:计算机工程系 班级: 1120543 班 学号: 13 号 姓名: 日期:2014年10月23日

人工神经网络 摘要:人工神经网络是一种应用类似于大脑神经突触联接的结构进行信息处理的数学模型。在工程与学术界也常直接简称为神经网络或类神经网络。神经网络是一种运算模型,由大量的节点(或称神经元)之间相互联接构成,由大量处理单元互联组成的非线性、自适应信息处理系统。它是在现代神经科学研究成果的基础上提出的,试图通过模拟大脑神经网络处理、记忆信息的方式进行信息处理。 关键词:神经元;神经网络;人工神经网络;智能; 引言 人工神经网络的构筑理念是受到生物(人或其他动物)神经网络功能的运作启发而产生的。人工神经网络通常是通过一个基于数学统计学类型的学习方法(Learning Method )得以优化,所以人工神经网络也是数学统计学方法的一种实际应用,通过统计学的标准数学方法我们能够得到大量的可以用函数来表达的局部结构空间,另一方面在人工智能学的人工感知领域,我们通过数学统计学的应用可以来做人工感知方面的决定问题(也就是说通过统计学的方法,人工神经网络能够类似人一样具有简单的决定能力和简单的判断能力),这种方法比起正式的逻辑学推理演算更具有优势。 一、人工神经网络的基本原理 1-1神经细胞以及人工神经元的组成 神经系统的基本构造单元是神经细胞,也称神经元。它和人体中其他细胞的关键区别在于具有产生、处理和传递信号的功能。每个神经元都包括三个主要部分:细胞体、树突和轴突。树突的作用是向四方收集由其他神经细胞传来的信息,轴突的功能是传出从细胞体送来的信息。每个神经细胞所产生和传递的基本信息是兴奋或抑制。在两个神经细胞之间的相互接触点称为突触。简单神经元网络及其简化结构如图2-2所示。 从信息的传递过程来看,一个神经细胞的树突,在突触处从其他神经细胞接受信号。 这些信号可能是兴奋性的,也可能是抑制性的。所有树突接受到的信号都传到细胞体进行综合处理,如果在一个时间间隔内,某一细胞接受到的兴奋性信号量足够大,以致于使该细胞被激活,而产生一个脉冲信号。这个信号将沿着该细胞的轴突传送出去,并通过突触传给其他神经细胞.神经细胞通过突触的联接形成神经网络。 图1-1简单神经元网络及其简化结构图 (1)细胞体 (2)树突 (3)轴突 (4)突触

人工神经网络的发展及应用

人工神经网络的发展及应用 西安邮电学院电信系樊宏西北电力设计院王勇日期:2005 1-21 1 人工神经网络的发展 1.1 人工神经网络基本理论 1.1.1 神经生物学基础生物神经系统可以简略地认为是以神经元为信号的处理单元,通过广泛的突触联系形成的信息处理集团,其物质结构基础和功能单元是脑神经细胞,即神经元(neuron) 。 (1)神经元具有信号的输人、整合、输出三种主要功能作用行为,结构如图1 所示: (2)突触是整个神经系统各单元间信号传递驿站,它构成各神经元之间广泛的联接。 (3)大脑皮质的神经元联接模式是生物体的遗传性与突触联接强度可塑性相互作用的产物,其变化是先天遗传信息确定的总框架下有限的自组织过程。 1.1.2 建模方法神经元的数量早在胎儿时期就已固定,后天的脑生长主要是指树突和轴突从神经细胞体中长出并形成突触联系,这就是一般人工神经网络建模方法的生物学依据。人脑建模一般可有两种方法:①神经生物学模型方法,即根据微观神经生物学知识的积累,把脑神经系统的结构及机理逐步解释清楚,在此基础上建立脑功能模型;②神 经计算模型方法,即首先建立粗略近似的数学模型并研究该模型的动力学特性,然后冉与真实对象作比较(仿真处理方法)。1.1.3 概

念人工神经网络用物理町实现系统采模仿人脑神经系统的结构和功能,是一门新兴的前沿交义学科,其概念以T.Kohonen.Pr 的论述 最具代表性:人工神经网络就是由简单的处理单元(通常为适应性神经元,模型见图2)组成的并行互联网络,它的组织能够模拟生物神 经系统对真实世界物体所作出的交互反应。 1.2 人工神经网络的发展 人工神经网络的研究始于40 年代初。半个世纪以来,经历了兴起、高潮与萧条、高潮及稳步发展的较为曲折的道路。1943 年,心理学家W.S.Mcculloch 和数理逻辑学家W.Pitts 提出了M—P 模型, 这是第一个用数理语言描述脑的信息处理过程的模型,虽然神经元的功能比较弱,但它为以后的研究工作提供了依据。1949 年,心理学家D. O. Hebb提出突触联系可变的假设,根据这一假设提出的学习规律为神经网络的学习算法奠定了基础。1957 年,计算机科学家Rosenblatt 提出了著名的感知机模型,它的模型包含了现代计算机的一些原理,是第一个完整的人工神经网络。1969 年,美国著名人工智能学者M.Minsky 和S.Papert 编写了影响很大的Perceptron 一书,从理论上证明单层感知机的能力有限,诸如不能解决异或问题,而且他们推测多层网络的感知能也不过如此,在这之后近10 年,神经网络研究进入了一个缓慢发展的萧条期。美国生物物理学家J.J.Hopfield 于1982年、1984 年在美国科学院院刊发表的两篇文章,有力地推动了神经网络的研究,引起了研究神经网络的

大数据建模与分析挖据课程大纲

时 间 内容提要授课详细内容实践训练 第一天业界主流的 数据仓库工 具和大数据 分析挖掘工 具 1.业界主流的基于Hadoop和Spark的大数据分析挖掘项目 解决方案 2.业界数据仓库与数据分析挖掘平台软件工具 3.Hadoop数据仓库工具Hive 4.Spark实时数据仓库工具SparkSQL 5.Hadoop数据分析挖掘工具Mahout 6.Spark机器学习与数据分析挖掘工具MLlib 7.大数据分析挖掘项目的实施步骤 配置数据仓库工具 Hadoop Hive和 SparkSQL 部署数据分析挖掘 工具Hadoop Mahout 和Spark MLlib 大数据分析 挖掘项目的 数据集成操 作训练 1.日志数据解析和导入导出到数据仓库的操作训练 2.从原始搜索数据集中抽取、集成数据,整理后形成规范 的数据仓库 3.数据分析挖掘模块从大型的集中式数据仓库中访问数 据,一个数据仓库面向一个主题,构建两个数据仓库 4.同一个数据仓库中的事实表数据,可以给多个不同类型 的分析挖掘任务调用 5.去除噪声 项目数据集加载 ETL到Hadoop Hive 数据仓库并建立多 维模型 基于Hadoop 的大型数据 仓库管理平 台—HIVE数 据仓库集群 的多维分析 建模应用实 践 6.基于Hadoop的大型分布式数据仓库在行业中的数据仓库 应用案例 7.Hive数据仓库集群的平台体系结构、核心技术剖析 8.Hive Server的工作原理、机制与应用 9.Hive数据仓库集群的安装部署与配置优化 10.Hive应用开发技巧 11.Hive SQL剖析与应用实践 12.Hive数据仓库表与表分区、表操作、数据导入导出、客 户端操作技巧 13.Hive数据仓库报表设计 14.将原始的日志数据集,经过整理后,加载至Hadoop + Hive 数据仓库集群中,用于共享访问 利用HIVE构建大型 数据仓库项目的操 作训练实践 Spark大数据 分析挖掘平 台实践操作 训练 15.Spark大数据分析挖掘平台的部署配置 16.Spark数据分析库MLlib的开发部署 17.Spark数据分析挖掘示例操作,从Hive表中读取数据并 在分布式内存中运行

人工神经网络及其应用实例_毕业论文

人工神经网络及其应用实例人工神经网络是在现代神经科学研究成果基础上提出的一种抽 象数学模型,它以某种简化、抽象和模拟的方式,反映了大脑功能的 若干基本特征,但并非其逼真的描写。 人工神经网络可概括定义为:由大量简单元件广泛互连而成的复 杂网络系统。所谓简单元件,即人工神经元,是指它可用电子元件、 光学元件等模拟,仅起简单的输入输出变换y = σ (x)的作用。下图是 3 中常用的元件类型: 线性元件:y = 0.3x,可用线性代数法分析,但是功能有限,现在已不太常用。 2 1.5 1 0.5 -0.5 -1 -1.5 -2 -6 -4 -2 0 2 4 6 连续型非线性元件:y = tanh(x),便于解析性计算及器件模拟,是当前研究的主要元件之一。

离散型非线性元件: y = ? 2 1.5 1 0.5 0 -0.5 -1 -1.5 -2 -6 -4 -2 2 4 6 ?1, x ≥ 0 ?-1, x < 0 ,便于理论分析及阈值逻辑器件 实现,也是当前研究的主要元件之一。 2 1.5 1 0.5 0 -0.5 -1 -1.5 -2 -6 -4 -2 2 4 6

每一神经元有许多输入、输出键,各神经元之间以连接键(又称 突触)相连,它决定神经元之间的连接强度(突触强度)和性质(兴 奋或抑制),即决定神经元间相互作用的强弱和正负,共有三种类型: 兴奋型连接、抑制型连接、无连接。这样,N个神经元(一般N很大)构成一个相互影响的复杂网络系统,通过调整网络参数,可使人工神 经网络具有所需要的特定功能,即学习、训练或自组织过程。一个简 单的人工神经网络结构图如下所示: 上图中,左侧为输入层(输入层的神经元个数由输入的维度决定),右侧为输出层(输出层的神经元个数由输出的维度决定),输入层与 输出层之间即为隐层。 输入层节点上的神经元接收外部环境的输入模式,并由它传递给 相连隐层上的各个神经元。隐层是神经元网络的内部处理层,这些神 经元在网络内部构成中间层,不直接与外部输入、输出打交道。人工 神经网络所具有的模式变换能力主要体现在隐层的神经元上。输出层 用于产生神经网络的输出模式。 多层神经网络结构中有代表性的有前向网络(BP网络)模型、

大数据风控建模标准流程

大数据风控建模标准流程 一、风控建模标准过程 (一)数据采集汇总 2、评估数据真实性和质量,数据质量好的变量进入后续步骤 (二)模型设计 1、时间窗和好坏客户定义 时间窗:根据获取数据的覆盖周期,将数据分为用来建模的观察期数据,和后面用来验证表现的表现期数据; 好坏客户定义:分析客户滚动和迁移率,来定义什么程度逾期的为“坏客户”,例如定义M3为坏客户就是定义逾期3个月的才是坏 客户; 2、样本集切分和不平衡样本处理 样本集切分:切分为训练集和测试集,一般7/3或8/2比例; 不平衡样本:最理想样本为好坏各50%,实际拿到的样本一般坏 客户占比过低,采取过采样或欠采样方法来调节坏样本浓度。 3、模型选择 评分卡模型以逻辑回归为主。 (三)数据预处理及变量特征分析 1、变量异常值、缺失值处理:使用均值、众数等来平滑异常值,来填补缺失,缺失率过高的变量直接丢弃; 2、变量描述性统计:看各个变量的集中或离散程度,看变量的 分布是否对样本好坏有线性单调的相关性趋势; (四)变量筛选

1、变量分箱:变量取值归入有限个分组中,一般5个左右的分 箱数量,来参加后面的算法模型计算。分箱的原则是使得各箱内部 尽量内聚,即合并为一箱的各组坏样本率接近;使得相邻分箱的坏 样本率呈现单调趋势。从方法上一版采取先机器分箱,后人工微调。 2、定量计算变量对于识别坏样本的贡献度(WOE和IV) (1)WOE是统计一个变量的各分箱区间之间的好占总好比值坏 占总坏之比,不同分箱之间差异明显且比例成单调趋势,说明分箱 的区分度好; (2)IV是在WOE基础上进一步加权计算这个变量整体上对于区 分好坏样本的识别度,也就是变量影响因子。数越大说明用这个变 量进行区分的效果越好,但IV值过大容易引起模型过拟合,即模型 过于依赖单一变量,造成使用过程中平衡性健壮性不好; 3、计算变量之间的相关性或多重共线性,相关性高于0.5甚至0.7的两个变量里,就要舍弃一个,留下iv值较高的那个。例如 “近一个月查询次数”、“近三个月查询次数”、“近六个月查询 次数”这三个变量显然明显互相相关度高,只保留其中一个变量进 入模型即可。 (五)变量入模计算 1、以最终选定的若干变量,进入回归模型算法,机器自动计算 其中每一个X就是一种变量,这个计算就是为了算出每种变量的最终权重,也就是算出所有的b。 2、客户违约概率映射为客户分数。以上公式一旦计算确定,则 给出一个确定的客户,就可以算出其违约概率,下面公式是把概率 进一步再映射计算成一个客户总评分。 3、计算确定每种变量每个分箱所应该给的得分 某一变量在一个分箱的得分该组WOE 1、模型区分好坏客户能力评价

人工神经网络作业MATLAB仿真(共3篇)

人工神经网络作业M A T L A B 仿真(共3篇) -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

人工神经网络仿真作业(3篇) 人工神经网络仿真作业1: 三级倒立摆的神经网络控制 人工神经网络仿真作业2: 基于模型整体逼近的机器人RBF网络自适应控制 人工神经网络仿真作业3: 基于RBF的机械手无需模型自适应控制研究

神经网络仿真作业1:三级倒立摆的神经网络控制 摘要:建立了基于人工神经网络改进BP 算法的三级倒立摆的数学模型,并给 出了BP 网络结构,利用Matlab 软件进行训练仿真,结果表明,改进的BP 算法控制倒立摆精度高、收敛快,在非线性控制、鲁棒控制等领域具有良好的应用前景。 1.引言 倒立摆系统的研究开始于19世纪50年代,它是一个典型的非线性、高阶次、多变量、强耦合和绝对不稳定系统.许多抽象的控制概念,如系统的稳定性、可控性、系统的收敛速度和抗干扰能力都可以通过倒立摆直观地表现出来。随着现代控制理论的发展,倒立摆的研究对于火箭飞行控制和机器人控制等现代高科技的研究具有重要的实践意义。目前比较常见的倒立摆稳定控制方法有线性控制,如LQR,LQY 等;智能控制,如变论域自适应模糊控制,遗传算法,预测控制等。 2.系统的数学模型 2.1三级倒立摆的模型及参数 三级倒立摆主要由小车,摆1、摆2、摆3组成,它们之间自由链接。小车可以在水平导轨上左右平移,摆杆可以在铅垂平面内运动,将其置于坐标系后如图1 所示: 规定顺时针方向的转角和力矩均为正。此外,约定以下记号:u 为外界作用力,x 为小车位移,i (i =1,2,3)为摆i 与铅垂线方向的夹角, i O 分别为摆i 的链接点位置。其它的系统参数说明如下:

业绩数据分析模型(终审稿)

业绩数据分析模型 TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】

营销总经理的业绩数据分析模型--营销总经理的工作模型(一) 前言 营销总经理这个职位压力大而且没有安全 感——天气变化、竞品动态、本品产品质量、 公司的战略方向、费用投入、经销商的突然变 化、行业动荡、上游采购成本等等诸多因素影 响业绩。营销行业没有常胜将军,但是这个行业以成败论英雄。 营销总经理这个职位事情多而且杂乱琐碎:营销总经理要遥控管理庞大的营销团队,服务于全国几千万家经销商和终端。工作千头万绪,哪怕每天干25个小时,工作还是俄罗斯方块一样堆积。 压力和杂务干扰之下,就容易迷失,做营销总经理需要热情、能力、经验、更需要固化的可复制的工作模型,帮助自己脱身庶务,联系市场实际,提升管理绩效。 营销总经理工作模型一:数据分析模型 一、营销总经理数据分析流程概述 数据分析好像“业绩体检报告”,告诉营销总经理哪里有问题。营销总经理要每天按照固定的数据分析模型对当日发货量、累计业绩进度、发货客户数、

发货品项数、产品结构、区域结构等关键指标进行全方位多维次的实时监控。随时关注整体业绩达成的数量和质量。 如果公司整体业绩分析没问题就下延看区域业绩有没问题,没问题就结束分析。如果公司整体业绩有问题;就要思考有没有特殊原因——比如:天气下雨造成三天发货量下滑,天晴后业绩会恢复。公司上半月集中力量乡镇市场压货,所以低价产品业绩上升高价产品业绩下滑是计划内正常现象。如果没有特殊原因,确实属于业绩异常,就要立刻从这个指标着手深度分析:通常是从产品、区域、客户三条主线来研究。发现问题产品(哪个产品需要重点管理)、发现问题区域(哪个区域需要重点巡查)、发现问题客户(哪个重点零售ka系统重点经销商的业绩不正常)。除非问题非常严重,一般营销总经理的数据分析下延到直接下级(大区或者省区层面)即可,然后要求问题区域的大区经理做出解释,拿出整改方案。大区省区经理再做区域内数据分析,寻找问题产品、问题片区和问题经销商。 数据分析得出结论就找到了管理重点,接下来营销总经理要采取针对性有的放失的管理动作——比如立刻去巡检重点问题区域、要求问题区域限期改善、更改当月的促销投入或者产品价格、设立新的工作任务(比如乡镇铺货)等等,整个分析流程图示如下:

人工神经网络概述及其在分类中的应用举例

人工神经网络概述及其在分类中的应用举例 人工神经网络(ARTIFICIAL NEURAL NETWORK,简称ANN)是目前国际上一门发展迅速的前沿交叉学科。为了模拟大脑的基本特性,在现代神经科学研究的基础上,人们提出来人工神经网络的模型。人工神经网络是在对人脑组织结构和运行机智的认识理解基础之上模拟其结构和智能行为的一种工程系统。 神经网络在2个方面与人脑相似: (1) 人工神经网络获取的知识是从外界环境中学习得来的。 (2) 互连神经元的连接强度,即突触权值,用于存储获取的信息。他既是高度非线性动力学系统,又是自适应组织系统,可用来描述认知、决策及控制的智能行为。神经网络理论是巨量信息并行处理和大规模并行计算的基础。 一人工神经网络的基本特征 1、并行分布处理:人工神经网络具有高度的并行结构和并行处理能力。这特别适于实时控制和动态控制。各组成部分同时参与运算,单个神经元的运算速度不高,但总体的处理速度极快。 2、非线性映射:人工神经网络具有固有的非线性特性,这源于其近似任意非线性映射(变换)能力。只有当神经元对所有输入信号的综合处理结果超过某一门限值后才输出一个信号。因此人工神经网络是一

种具有高度非线性的超大规模连续时间动力学系统。 3、信息处理和信息存储合的集成:在神经网络中,知识与信息都等势分布贮存于网络内的各神经元,他分散地表示和存储于整个网络内的各神经元及其连线上,表现为神经元之间分布式的物理联系。作为神经元间连接键的突触,既是信号转换站,又是信息存储器。每个神经元及其连线只表示一部分信息,而不是一个完整具体概念。信息处理的结果反映在突触连接强度的变化上,神经网络只要求部分条件,甚至有节点断裂也不影响信息的完整性,具有鲁棒性和容错性。 4、具有联想存储功能:人的大脑是具有联想功能的。比如有人和你提起内蒙古,你就会联想起蓝天、白云和大草原。用人工神经网络的反馈网络就可以实现这种联想。神经网络能接受和处理模拟的、混沌的、模糊的和随机的信息。在处理自然语言理解、图像模式识别、景物理解、不完整信息的处理、智能机器人控制等方面具有优势。 5、具有自组织自学习能力:人工神经网络可以根据外界环境输入信息,改变突触连接强度,重新安排神经元的相互关系,从而达到自适应于环境变化的目的。 6、软件硬件的实现:人工神经网络不仅能够通过硬件而且可借助软件实现并行处理。近年来,一些超大规模集成电路的硬件实现已经问世,而且可从市场上购到,这使得神经网络具有快速和大规模处理能力的实现网络。许多软件都有提供了人工神经网络的工具箱(或软件包)如Matlab、Scilab、R、SAS等。 二人工神经网络的基本数学模型

大数据建模与挖掘应用

关于举办“大数据建模与分析挖掘应用”实战培训班的通知地点北京上海 时间12月 23-26 1月 12-15 一、课程简介 大数据建模与分析挖掘技术已经逐步地应用到新兴互联网企业(如电子商务网站、搜索引擎、社交网站、互联网广告服务提供商等)、银行金融证券企业、电信运营等行业,给这些行业带来了一定的数据价值增值作用。 本次课程面向有一定的数据分析挖掘算法基础的工程师,带大家实践大数据分析挖掘平台的项目训练,系统地讲解数据准备、数据建模、挖掘模型建立、大数据分析与挖掘算法应用在业务模型中,结合主流的Hadoop与Spark大数据分析平台架构,实现项目训练。 结合业界使用最广泛的主流大数据平台技术,重点剖析基于大数据分析算法与BI技术应用,包括分类算法、聚类算法、预测分析算法、推荐分析模型等在业务中的实践应用,并根据讲师给定的数据集,实现两个基本的日志数据分析挖掘系统,以及电商(或内容)推荐系统引擎。 本课程基本的实践环境是Linux集群,JDK1.8, Hadoop 2.7.*,Spark 2.1.*。 学员需要准备的电脑最好是i5及以上CPU,4GB及以上内存,硬盘空间预留50GB(可用移动硬盘),基本的大数据分析平台所依赖的软件包和依赖库等,讲师已经提前部署在虚拟机镜像(VMware镜像),学员根据讲师的操作任务进行实践。 本课程采用技术原理与项目实战相结合的方式进行教学,在讲授原理的过程中,穿插实际的系统操作,本课程讲师也精心准备的实际的应用案例供学员动手训练。 二、培训目标 1.本课程让学员充分掌握大数据平台技术架构、大数据分析的基本理论、机器学习的常用算法、国内外主流的大数据分析与BI商业智能分析解决方案、以及大数据分析在搜索引擎、广告服务推荐、电商数据分析、金融客户分析方面的应用案例。 2.本课程强调主流的大数据分析挖掘算法技术的应用和分析平台的实施,让学员掌握主流的基于大数据Hadoop和Spark、R的大数据分析平台架构和实际应用,并用结合实际的生产系统案例进

人工神经网络基本概念

《神经网络》讲稿 主讲人:谷立臣教授 2003年9月

第1章基本概念 ?作为自然实例的人脑 ?人工神经元模型 ●人工神经网络的拓扑结构及其学习规则?神经网络的学习策略 ?人工神经网络与生物神经网络的比较?人工神经网络的发展与现状 ?人工神经网络与自动控制 ?人工神经网络与设备故障诊断 ?参考文献

?脑神经生理学家告诉我们:人脑借以记忆与思维的最基本单元是神经元,其数量 约为个; ?每一神经元约有个突触; ?神经元间通过突触形成的网络,传递着彼此间的兴奋与抑制;全部大脑神经元构成拓扑上极其复杂的网络群体,由这一网络群体实现记忆与思维。见图1-1。 111210~103410~10

每一个神经元包括细胞体(Cell body或Soma)和突起(Process)两部分。 ◆细胞体是神经元新陈代谢的中心,还是接收与处理信息的部件 ◆突起有两类,即轴突(Axon)与树突(Dendrite)。轴突的长度相差很大,长的可达1米。轴突的末端与树突进行信号传递的界面称为突触(synapse),通过突触向其他神经元发送出生物信息,在轴突中电脉冲的传导速度可达到10~100米/秒。另一类突起——树突(输入),一般较短,但分枝很多,它能接收来自其他神经元的生物电信号,从而与轴突一起实现神经元之间的信息沟通。突起的作用是传递信息。 ◆通过“轴突---突触――树突”这样的路径,某一神经元就有可能和数百个以至更多的神经元沟通信息。那些具有很长轴突的神经元,更可将信息从一脑区传送到另一脑区。

?绝大多数神经元不论其体积﹑形状﹑功能如何,不论是记忆神经元还是运动神经元,均可分为一个输入(或感知)器官,一个代数求和器官,一个长距离传递器官和一个输出器官。见图1-2。 ?既然所有神经元的功能均是相近的,那么何以实现复杂的功能呢?答案是:无一功能是由单个神经元实现的,而是由许多神经元以不同的拓扑结构所共同产生的。这一平行处理性提高了神经网路系统的冗余度与可靠性。

数据分析和数据建模

数据分析和数据建模 大数据应用有几个方面,一个是效率提升,帮助企业提升数据处理效率,降低数据存储成本。另外一个是对业务作出指导,例如精准营销,反欺诈,风险管理以及业务提升。过去企业都是通过线下渠道接触客户,客户数据不全,只能利用财务数据进行业务运营分析,缺少围绕客户的个人数据,数据分析应用的领域集中在企业内部经营和财务分析。 大数据应用有几个方面,一个是效率提升,帮助企业提升数据处理效率,降低数据存储成本。另外一个是对业务作出指导,例如精准营销,反欺诈,风险管理以及业务提升。过去企业都是通过线下渠道接触客户,客户数据不全,只能利用财务数据进行业务运营分析,缺少围绕客户的个人数据,数据分析应用的领域集中在企业内部经营和财务分析。 数字时代到来之后,企业经营的各个阶段都可以被记录下来,产品销售的各个环节也被记录下来,客户的消费行为和网上行为都被采集下来。企业拥有了多维度的数据,包括产品销售数据、客户消费数据、客户行为数据、企业运营数据等。拥有数据之后,数据分析成为可能,企业成立了数据分析团队整理数据和建立模型,找到商品和客户之间的关联关系,商品之间关联关系,另外也找到了收入和客户之间的关联关系。典型的数据分析案例如沃尔玛啤酒和尿布、蛋挞和手电筒,Target的判断16岁少女怀孕都是这种关联关系的体现。

关联分析是统计学应用最早的领域,早在1846年伦敦第二次霍乱期间,约翰医生利用霍乱地图找到了霍乱的传播途径,平息了伦敦霍乱,打败了霍乱源于空气污染说的精英,拯救了几万人的生命。伦敦霍乱平息过程中,约翰医生利用了频数分布分析,建立了霍乱地图,从死亡案例分布的密集程度上归纳出病人分布同水井的关系,从而推断出污染的水源是霍乱的主要传播途径,建议移除水井手柄,降低了霍乱发生的概率。 另外一个典型案例是第二次世界大战期间,统计分析学家改造轰炸机。英美联盟从1943年开始对德国的工业城市进行轰炸,但在1943年年底,轰炸机的损失率达到了英美联盟不能承受的程度。轰炸军司令部请来了统计学家,希望利用数据分析来改造轰炸机的结构,降低阵亡率,提高士兵生还率。统计学家利用大尺寸的飞机模型,详细记录了返航轰炸机的损伤情况。统计学家在飞机模型上将轰炸机受到攻击的部位用黑笔标注出来,两个月后,这些标注布满了机身,有的地方标注明显多于其他地方,例如机身和侧翼。有的地方的标注明显少于其他地方,例如驾驶室和发动机。统计学家让军火商来看这个模型,军火商认为应该加固受到更多攻击的地方,但是统计学家建议对标注少的地方进行加固,标注少的原因不是这些地方不容易被击中,而是被击中的这些地方的飞机,很多都没有返航。这些标注少的地方被击中是飞机坠毁的一个主要原因。军火商按照统计学家的建议进行了飞机加固,大大提高了轰炸机返航的比率。以二战著名的B-17轰炸机为例,其阵亡率由26%降到了7%,帮助美军节约了几亿美金,大大提高了士兵的生还率。 一数据分析中的角色和职责 数据分析团队应该在科技部门内部还在业务部门内部一直存在争议。在业务部门内部,对数据场景比较了解,容易找到数据变现的场景,数据分析对业务提升帮助较大,容易出成绩。但是弊端是仅仅对自己部门的业务数据了解,分析只是局限独立的业务单元之内,在数据获取的效率上,数据维度和数据视角方面缺乏全局观,数据的商业视野不大,对公司整体业务的推动发展有限。业务部门的数据分析团队缺少数据技术能力,无法利用最新的大数据计算和分析技术,来实现数

相关主题
相关文档 最新文档