当前位置:文档之家› 符合通讯协议(SBS)智能型电芯计量集成电路

符合通讯协议(SBS)智能型电芯计量集成电路

bq2060A

符合通讯协议(SBS)智能型电芯计量集成电路

●功能

提供镍镉、镍氢、锂离子和铅酸可充电电芯准确电量测量

符合通讯协议(SBS)智能型电芯数据规格v1.1

支持具PEC接口之双线SMBus v1.1或一线的HDQ16

提供各个电芯电压报告

在充放电时监控并提供控制锂离子保护电路的MOSFET

对电压、温度及电流的测量提供15位的分辨率

用误差校准少于16uV的VF转换器来测量充电电流

操作功耗小于0.5mW

可驱动4或5个区段LED来显示剩余容量

28-pin、150-mil的SSOP封装

●一般说明

符合SBS通讯协议的bq2060A计量集成电路,可对安装于系统内可重复充电的电芯或电芯组,提供精确的剩余电量记录。bq2060A不但可以监控镍镉、镍氢、锂离子及铅酸电池的容量,同时也监控其它关键电芯参数。bq2060A是使用一个具有自动偏移误差修正的VF(V-to-F)转换器来计算的。bq2060A使用一个模拟对数字转换器(A-to-D)来读取电压、温度及电流值。扳子上的模拟对数字转换器也会监控着锂离子电芯组中电芯的个别电压,而且bq2060A也可产生控制信号,可用来配合电池包保护电路并联控制,来加强电芯组的安全性。

bq2060A支持智能型电芯数据(SBData)指令和充电控制指令功能。使用双线的系统管理总线(SMBus)或Benchmarq单线的HDQ16协议来沟通数据。这些有效数据包括电芯的剩余容量、温度、电压、电流及预估可使用剩余时间等。bq2060A提供LED驱动和一个按键输入,可以选择使用4或5个LED显示器,以20%或25%的增加量来显示电芯组从满到空的剩余容量。

bq2060A需配合外接的EEPROM一起工作。此EEPROM储存着bq2060A的结构信息,如电芯的化学特性、自我放电率、补偿因素、量测校正、设计的电压和容量。bq2060A可程序化的自我放电率和其它储存在EEPROM内的补偿因素,配合时间、电流量及温度,精确的调整使用中或待命状态的剩余容量。bq2060A 也会自动依EEPROM设定来修正电芯容量,或经由从接近满电量到接近空电量的一个放电周期来修正真正的电芯容量。

REG脚位的输出是用来调节外部JFET的控制电压,使bq2060A可在正确的电压下工作。

●引脚名称

HDQ16 串行通信输入/输出引脚 ESCL EEPROM时序

ESDA EEPROM数据和地址 RBI 寄存器备份输入

REG 调整输出

VOUT EEPROM电源供应输出 VCC 供电电压

VSS 接地

DISP LED显示控制输入

LED1-

LED5 LED显示段输出 DFC 放电FET控制输出

CFC 充电FET控制输出

CVON 单个电芯分压控制

THON 热敏电阻偏移控制

TS 热敏电阻电压输入

SRC 电流感应电阻电压输入 SR1-SR2 充电电流感应电阻电压

输入

VCELL1-

VCELL4 单个电芯电压输入

SMBD SMBus数据

SMBC SMBus时钟

HDQ16 串行通信输入/输出引脚

开漏的双向通信接口

ESCL EEPROM时序

bq2060A与外部非易失性

EEPROM数据传输时钟输出 ESDA EEPROM数据和地址

bq2060A与外部非易失性

EEPROM传输与发送地址与

数据的双向引脚

RBI 寄存器备份输入

为bq2060A的寄存器在低操

作电压下提供备份的输入引

脚。RBI可接一个电容或电芯

的输入。

REG 调整输出

输出控制一个N沟道JFET,

用来调整它的控制电压,使

bq2060A可以在正确的电压

下工作。

VOUT EEPROM电源供应输出

外部非易失性EEPROM的电

源供应

VCC 供电电压

VSS 接地

DISP LED显示控制输入

控制LED驱动LED1-LED5

输出

LED1-

LED5 LED显示段输出

每个输出能驱动一个外部

LED DFC 放电FET控制输出

锂离子电池包保护电路放电

FET控制输出

CFC 充电FET控制输出

锂离子电池包保护电路充电

FET控制输出

CVON 单个电芯分压控制

在单个电芯电压监控时,控制

外部FET输出导通外部电压

分压器

THON 热敏电阻偏移控制

在温度监控时,控制外部FET

输出连接热敏电阻

TS 热敏电阻电压输入

监控温度时了解热敏电阻输

SRC 电流感应电阻器电压输入

监控瞬时电流输入

SR1-SR2 充电电流感应电阻器电压输入

连接小值电流检测电阻监控

电芯充放电电流输入

VCELL1-

VCELL4 单个电芯电压输入

各个电芯串联电压监控输入 SMBD SMBus数据

开漏双向引脚用来向和从

bq2060A传输和接收地址和

数据

SMBC SMBus时钟

开漏双向引脚为bq2060A传

输和发送地址和数据提供时

? 一般操作

bq2060A 通过监控充电输入量或者可充电电芯使用量来计算剩余容量。除了监控充放电,bq2060A 也监控电芯电压、温度、电流、电芯自我放电率,还监控电芯低电压门限。bq2060A 通过监控串联在电芯负极和电芯组负极之间的小值电流检测电阻的电压,来检测充放电活动。有效的电芯充电是通过监控这个电压和校正对环境和操作条件的测量来决定的。

图1提供一种bq2060A 的典型应用线路。这个线路图包括LED 显示器,电压和温度测量网络,EEPROM 连接,一个串行口和电流检测电阻。EEPROM 存储着电芯组基本的结构信息测量修正值。EEPROM 必须要合适地编程来为bq2060A 操作。表9提供了EEPROM 的内存映射,并且概要的描述了在bq2060A 里有效的可编程功能。

bq2060A 需要一个负温度系数(NTC)的热敏电阻(Semitec 103AT)来进行温度测量。bq2060A 利用热敏电阻的温度来监控电池包的温度,检测一个电芯的满充电情况,调整自放电和电芯充放电的效率。

? 测量运作

bq2060A 利用完全微分, 动态平衡电源频率转换器(VFC)来进行充电监控,用∑?模拟数字转换器(ADC)来进行电芯电压、电流和温度监控。

依据bq2060A 的操作模式,电压、电流和温度监控每2-2.5s 进行一次。最大时间发生在EDV ,mWh 模式和最大允许放电率。任何的AtRate 估计请求或者预定(每20s)会增加0.5s 的时间间隔。

? 充电和放电计数

VFC 通过监控一个接着SR1和SR2引脚之间(见图1)的小值电流检测电阻来测量电芯的充放电电流。VFC 测量双向信号可达250mV 。当12SR SR SR V V V -=为正时bq2060A 侦测为充电活动,当12SR SR SR V V V -=为负时为放电活动。bq2060A

对此信号用内部计数器连续对时间积分。计数器的基本速率为6.25uVh 。 ? 误差修正

bq2060A 提供一种自动修正特点来消除SR1和SR2在最大充电测量时的电压精度误差。修正程序通过发送一个指令到ManufacturerAccess()来启动的。bq2060A 的自动误差修正可以低到6.25uV 。误差消除小于1uV 。

? 数字滤波器

低于数字滤波器门坎,bq2060A 不会判断充电或放电。数字滤波器门坎放在EEPROM 内, 此值应该被设定到足够高,以避免当没有充放电流通过感应电阻器时的错误讯号侦测。

? 电压

当监测SR1和SR2充放电电流时,bq2060A 同时也通VCELL1-VCELL2引脚监测电池包的剩余容量和个别串联电芯电压。bq2060A 监测电池包的电压,并将其值写入V oltage()。bq2060A 也可以测量电池包里4节串联电芯的电压。个别电芯电压被存储在可选择的Manufacturer Function 里面。

VCELL1-VCELL2引脚被精密电阻分压降压后接到个别电芯上,如图1所示。

VCELL1-VCELL2相对Vss的最大输入电压为1.25V。电阻分压器必须被设置,这样在所有的操作条件下电压输入将不会超过 1.25V的限制。同样,VCELL1-VCELL2的分压比必须是VCELL3-VCELL4的一半。为了减少电芯的电流消耗,CVON只在测量的时候接通各个电芯的分压器。当电芯被测量的时候,CVON保持250ms的高阻,否则就被置低。

bq2060A的SRC引脚用来测量电芯的充放电电流。来自串联感应电阻的信号经过SRC的ADC转换后被存在Current()里。由表2所示,SRC的满量程输入范围为mV

250

图1.电池包应用图――LED显示和串联电芯监测

表1.VCELL1-VCELL2的分压和输入范围举例

表2.SRC输入范围

?温度

如图1所示,当进行电芯温度测量的时候,bq2060A的TS输入要和一个负温度系数(NTC)的热敏电阻相连。bq2060A在Temperature()里报告温度。当bq2060A采样TS输入时,THON将被用来导通到热敏电阻的基本供电电压输入。在测量温度时,THON将保持60ms的高阻,其它情况下将被置低。

●通信

bq2060A包括两种通信接口:系统管理总线(SMBus)和HDQ16。SMBus接口是双线双向协议,使SMBC(时钟)和SMBD(数据)引脚。HDQ16接口为一线双向协议,使用HDQ16引脚。所有的三条通信线是独立于Vcc的,可以被上拉高于Vcc。同样,如果Vcc到这部分为0,那么bq2060A将不会把这些线拉低。HDQ16如果不用,必须用100

K的电阻下拉。

这些通信口允许一个主机、一个与SMBus兼容的设备或其它的处理器来访问bq2060A的内存寄存器。用这种方法,一个系统可以有效地监控和管理电芯。

◆SMBus

SMBus接口是基于指令的协议。一个处理器扮演总线管理员,通过产生一个START信号来开始向bq2060A的通信。一个START信号由一个SMBD线由高到低的变化组成,此时SMBC为高。然后,处理器发送bq2060A设备地址0001011(位7-1)加一位读/写位(位0),后面跟着一个SMBus指令码。读/写位和指令码指示bq2060A要么把发送来的数据存入SMBus指令码指定的寄存器中,要么从指定寄存器输出数据。处理器由STOP信号完成访问。STOP信号由一个SMBD线由低到高的变化,此时SMBC为高。在SMBus中,数据字节中最重要的位将被第一个传送。

在一些实例中,bq2060A作为总线管理员。这个发生在当bq2060A广播充电需要和报警条件的设备地址0x12(智能电池充电器)和0x10(智能电池主控制器)。

?SMBus协议

bq2060A支持以下SMBus协议:

?读取字符协议

?写入字符协议

?读取区块协议

作为总线主机的处理器利用这三条协议来和bq2060A来通信。而作为总线主机的bq2060A用写入字符协议。

SMBD和SMBC引脚是开漏的,需要外部上拉电阻。

?SMBus协议包出错校验

bq2060A支持协议包出错校验机制来确认它本身和另一个SMBus设备的准确通信。协议包出错校验需要发送者和接收者为每次通信消息计算一个协议包出错码(PEC)。设备提供的最后一个通信消息的字节里跟随一个这个消息的PEC。接收者比较发送的和它自己的PEC来检测是否出现通信出错。

?PEC协议

bq2060A可以接收或发送带有或者不带有PEC的数据。图4所示为读取字符、写入字符和读取区块消息的通信协议无PEC。图5为有PEC。

图4. 无PEC的SMBus通信协议

图5.有PEC的SMBus通信协议

在写入字符协议中,从主机发送来的最后位数据之后,bq2060A 就会等待接收PEC 。如果主机不支持PEC ,最后的字符数据会跟随着一个STOP 信号。在收到PEC 之后,bq2060A 会比较这个值跟自己计算的值。如果PEC 是正确的,bq2060A 会响应一个ACKNOWLEDGE 。如果不正确,bq2060A 会响应一个NOT ACKNOWLEDGE ,并且设定一个错误码。

在读取字符协议和读取区块协议中,在bq2060A 发送的数据的最后位,主机会产生一个ACKNOWLEDGE 。bq2060A 就发送PEC ,而作为接收的主机会产生一个NOT ACKNOWLEDGE 和一个STOP 信号。

? PEC 计算 PEC 计算的基本原理是一个基于多项式1)(128+++=X X X X C 的8位循环冗余核对器。PEC 计算包括传输中的所有字节,地址、指令和数据。PEC 计算不包括ACKNOWLEDGE 、NOT ACKNOWLEDGE 、START 、STOP 和RepeatedSTART 位。

例如,主机向bq2060A 请求RemainingCapacity()。这个包括在读取字符协议下的主机。bq2060A 根据以下5个字节的数据来计算PEC ,假设电芯的剩余容量为1001mAh 。

? 电芯读/写地址=0:0x16

? RemainingCapacity()的指令码:0x0f

? 电芯读/写地址=0:0x17

? RemainingCapacity():0x03e9

对于0x160f17e903,bq2060A 传输一个0xe8的PEC 给主机。

? 在控制模式中的PEC 允许

PEC 可以广播给充电器、主机或者两者都可以通过控制模式中的HPE 和CPE 位来设置允许和不允许。

? SMBus 开启和关闭状态

bq2060A 通过监控SMBC 和SMBD 线来侦测SMBus 是否进入关闭状态。当两个信号持续为低至少2.5s ,bq2060A 侦测其为关闭状态。当SMBC 和SMBD 线变高,bq2060A 侦测其为开启状态,可以在1ms 之内开始通信。为了可靠的侦测关闭状态,推荐1ΩM 的电阻下拉SMBC 和SMBD 线。

◆ HDQ16

HDQ16接口协议是基于指令的协议。(见图6)一个处理器发送指令码给bq2060A 。这个8位的指令码由两部分组成,7位HDQ16指令码(位0-6)和1位读/写指令。读/写指令指示bq2060A 存储接下来的16位数据到一个指定的寄存器,或者从指定的寄存器输出16位数据。在HDQ16里,数据字节(指令)或者字(数据)的最不重要的位会先传输。

一个块的传输包括三个不同的部分。第一部分经由主机或者bq2060A 把HDQ16引脚置逻辑低状态一个B STRH t :时间后开始发送。接下来是部分是真正的

数据传输,数据位在B DSU t :时间间隔里是有效的,负边界用来开始通信。数据位

被保持一个DV DH t :时间间隔,以便允许主机或bq2060A 采样数据位。

在负边界用来开始通信后,最后一部分通过返回给HDQ16引脚一个逻辑高

状态,至少保持B SSU t :时间间隔来停止传输。最后一个逻辑高状态必须保持一个

B CYCH t :时间间隔,以便有时间让块传输完全地停止。

如果发生通信错误(e.g.,s t CYCB μ250>),

主机就发送给bq2060A 一个BREAK 信号,让其控制串行接口。当HDQ16引脚在一个时间间隔B t 或者更长时间里为

逻辑低状态,bq2060A 就会侦测BREAK 。然后HDQ16引脚回到其正常预设高逻辑状态一个BR t 时间间隔。然后bq2060A 就准备从主机那里接收指令。

HDQ16引脚是开漏的,需要一个外部的上拉电阻。

◆ 指令码

SMBus 的指令码在()里,HDQ16的[]l 里。Temperature(),V oltage(),Current()和AverageCurrent(),执行说明可调整Vcc ,工作温度在0-70°C 。

? ManufacturerAccess() (0x00); [0x00–0x01]

? 描述

在电芯组正常工作和制造过程中,此指令提供控制bq2060A 的可写指令码。如果在设备重启后,在1s 内发送的这些指令可以被忽略。以下副指令可使用: ? 0x0618 允许低电压存储模式:激活低电压存储模式。5-8s 延迟后,bq2060A

进入存储模式。在进入低电压存储模式的时间间隔里,bq2060A 接受ManufacturerAccess()的指令。因为显示模式仍然没有被改变,所以在进入低电压存储模式时,LED 必须被关闭。

当其响应允许低电压存储指令后,bq2060A 会在900ms 内清除ManufacturerAccess()指令。在SMBus 响应允许低电压存储指令后,VFC 校准指令会在900-5000ms 内送出。因为这样,bq2060A 延迟进入存储模式直到校准过程完成,然后bq2060A 把新的校准值存储在EEPROM 里。 ? 0x062b 封缄:指示bq2060A 对表3所列出的那些功能的限制访问。bq2060A

完成封缄功能,响应指令后在900ms 内清除ManufacturerAccess()。 ? 0x064d 充电同步:指示bq2060A 更新RM 所占FCC 的百分比,正如快速充

电终端里定义的一样。Bq2060A 更新RM ,在响应指令后清除ManufacturerAccess()。

? 0x0653 允许VFC 校准:指示未封缄的bq2060A 开始VFC 校准。在这个指

令下,bq2060A 取消选择SR1和SR2的输入,只校正IC 的误差。这样在校准过程中避免了充放电电流经过感应电阻。

? 0x067e 轮换VFC 校准:指示未封缄的bq2060A 开始VFC 校准。在这个指

令下,bq2060A 不取消选择SR1和SR2的输入,同时对IC 和PCB 进行误差校准。在这个过程中,没有充放电电流。

在VFC 校准中,bq2060A 不允许LED 显示,只接受VFC 校准停止指令和对ManufacturerAccess()的封缄指令。bq2060A 忽视所有其它指令。在VFC 校准中,SMBus 通信应该保持最小值以减少噪声水平,并且允许更加精确的校准。

一旦开始,VFC 校准程序就自动完成。完成之后,bq2060A 把校准值保存在EEPROM 里。校准一般持续8-10分钟。校准时间与bq2060A 的VFC(和

PCB)误差成反比。当校准到0误差,bq2060A就在一个小时里完成校准。因为在去除测试设置后校准能自动完成,所以VFC校准可以在电芯组测试程序的最后一步来完成。

在响应指令后,bq2060A在900ms内清除ManufacturerAccess(),并且在

3.2s内开始校准。

?0x0660 停止VFC校准:指示bq2060A中VFC校准程序。如果被中止,bq2060A禁止误差修正。在响应指令后,bq2060A在20ms内停止校准。

?0x0606 编程EEPROM:指示未封缄的bq2060A连接SMBus和EEPROM 的C

I2总线。在响应指令后,bq2060A在900ms内给EEPROM提供供应电压。在发出编程EEPROM指令后,bq2060A的监控功能将被禁止,直到C

I2总线断开。当bq2060A侦测到Battery Address 0x16发送到SMBus之后,就断开C

I2总线的Battery Address 0x16应该在对EEPROM I2总线。用来断开C

的最后一个写操作之后10ms发送。

?举例:以下例子说明了如何使用ManufacturerAccess()指令的顺序。说明了如何对电芯组进行除VFC校准外的所有有效测试和校准。并且为在封缄状态和低电压存储模式下出仓做准备:

1.用存储在EEPROM里的期望的最终值来完成测试和校准。这个过程包

括设置Pack Configuration里的SEAL位。在测试的时候向bq2060A发

送一个重启指令,以确保RAM里的值与EEPROM里的最终值相符合。

2.如果RemainingCapacity()的初始值必须为非0 ,那么可以在电芯组未封

缄状态下将期望值写入Command 0x26。发送一个重启在这步重新设置

RM为0后。

3.发送允许低电压存储模式指令。

4.在发送允许低电压存储模式指令后的900-1600ms内,发送允许VFC校

准指令。这个将延迟低电压存储模式直到VFC校准完成。

5.在VFC校准指令后发送SEAL指令。Bq2060A必须在VFC校准完成之

前接收SEAL指令。在校准开始的时候,bq2060A重新设置Pack Status

的OCE位,在其成功完成校准之后再设置这一位。

在VFC校准自动完成之后,bq2060A将VFC误差消除值存储在EEPROM 里,并且在大约20s内进入低电压存储模式。另外,bq2060A被封缄,只允许访问表3所示的部分。

?用途:

ManufacturerAccess()指令提供系统主机访问bq2060A那些没有被SBD定义的功能。

?SMBus协议:读取和写入字符协议。

?输入/输出:字符。

STPM01计量芯片资料

1/9 September 2004 s INTEGRATED LINEAR VREGS TO SUPPLY THE DIGITAL AND ANALOG CORES s ADVANCED BICMOS TECHNOLOGY FOR HIGH PERFORMANCE s OTP FOR CALIBRATION AND CONFIGURATION s INTEGRATED OSCILLATOR WITH EXTERNAL RESISTOR OR CRYSTAL s MONITOR BOTH LIVE AND NEUTRAL FOR TAMPER DETECTION s SIGMA DELTA 1st ORDER CONVERTER s POWER SUPPLY CURRENT LESS THAN 6mA s SUPPORT 50 ÷ 60 Hz – IEC 62052-11, IEC 62053-2X SPECIFICATION FOR CLASS 0.5 AC WATT METERS s PRECISION VOLTAGE REFERENCE ON CHIP: 1.25 V AND 30 ppm/°C MAX s TSSOP20 PACKAGE DESCRIPTION The STPM01 is designed for effective measurement of active energy in a power line system using the Rogowski and/or Shunt principle. This device can be implemented as a single chip 1-phase energy meter or as a peripheral measurement in a microprocessor based 1-phase or 3-phase energy meter. The STPM01 consists, essentially, of two parts:the analog part and the digital part. The former, is composed by preamplifier and 1st order ΣD AD converter blocks, Bandgap voltage reference,Lowdrop voltage regulator and a pair of DC buffer,the latter, is composed by system control, clock generator, hard wired DSP and SPI interface.There is also a OTP block, which is controlled through the SPI by means of a dedicated command set. The configured bits are used for testing, configuration and calibration purpose.From a pair of ΣD output signals coming from analog section, a DSP unit computes the amount of consummated active, reactive and apparent energy, RMS values of voltage and current value.The results of computation are available as pulse frequency and states on the digital outputs of the device or as data bits in a data stream, which can be read from the device by means of SPI interface. This system bus interface is used also during production testing of the device and/or for temporary or permanent programming of bits of internal OTP. In the STPM01 the calibration is very easy: an output signal with pulse frequency proportional to energy is generated, this signal is used to enable the calibration of the energy meter. When the device is fully configured and calibrated,a dedicated bit of OTP block, can be written permanently in order to prevent accidental entering into some test mode or changing any configuration. Table 1: Order Codes Type Temperature Range Package Comments STPM01 -40 to 85 °C TSSOP20 (Tape & Reel) 2500 parts per reel STPM01 PROGRAMMABLE SINGLE PHASE ENERGY METERING IC WITH TAMPER DETECTION This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to change without notice. PRELIMINARY DATA Rev. 1

集成电路IC设计完整流程详解及各个阶段工具简介

IC设计完整流程及工具 IC的设计过程可分为两个部分,分别为:前端设计(也称逻辑设计)和后端设计(也称物理设计),这两个部分并没有统一严格的界限,凡涉及到与工艺有关的设计可称为后端设计。 前端设计的主要流程: 1、规格制定 芯片规格,也就像功能列表一样,是客户向芯片设计公司(称为Fabless,无晶圆设计公司)提出的设计要求,包括芯片需要达到的具体功能和性能方面的要求。 2、详细设计 Fabless根据客户提出的规格要求,拿出设计解决方案和具体实现架构,划分模块功能。 3、HDL编码 使用硬件描述语言(VHDL,Verilog HDL,业界公司一般都是使用后者)将模块功能以代码来描述实现,也就是将实际的硬件电路功能通过HDL语言描述出来,形成RTL(寄存器传输级)代码。 4、仿真验证 仿真验证就是检验编码设计的正确性,检验的标准就是第一步制定的规格。看设计是否精确地满足了规格中的所有要求。规格是设计正确与否的黄金标准,一切违反,不符合规格要求的,就需要重新修改设计和编码。设计和仿真验证是反复迭代的过程,直到验证结果显示完全符合规格标准。仿真验证工具Mentor公司的Modelsim,Synopsys的VCS,还有Cadence的NC-Verilog均可以对RTL级的代码进行设计验证,该部分个人一般使用第一个-Modelsim。该部分称为前仿真,接下来逻辑部分综合之后再一次进行的仿真可称为后仿真。 5、逻辑综合――Design Compiler 仿真验证通过,进行逻辑综合。逻辑综合的结果就是把设计实现的HDL代码翻译成门级网表netlist。综合需要设定约束条件,就是你希望综合出来的电路在面积,时序等目标参数上达到的标准。逻辑综合需要基于特定的综合库,不同的库中,门电路基

单相电能计量芯片MCP3906及其应用

单相电能计量芯片MCP3906及其应用 引言电能表作为电能计量的专用仪表,在电能管理仪器仪表中占有很大比例,其性能直接影响着电能管理的效率和科技水平。从产品的功能、性能及经济效益等多方面来看,全电子电能表与传统的感应式电能表相比,存在着明显的优势。而且电能表作为计量管理和用电管理的终端,它所提供的各种功能是实现电力系统自动化管理必不可少的。传统的测量都是采用A/D转换电路,但这种方法使部分电参量测量精度欠佳,性价比不理想,且软件编程相对复杂,微控制器必须对采样电路进行数据处理(如电压、电流的平均值、有效值,有功、无功计算等)。而随着现代电子产业的高速发展,测量电路的集成化、模块化成为未来发展的趋势,各大器件公司也纷纷推出自己的电能计量芯片。这种集成芯片不仅精确度高,而且硬件、软件设计简单,价格便宜,性价比高,极具市场潜力。本文给出了基于Microchip公司的MCP3906单相电能计量芯片,并以AVR公司的ATMega16为MCU设计开发的一款新型单相电能表实现方案。与以往电能表相比,该方案具有设计接口简单、结构紧凑、可靠性高等特点。 1 MCP3906单相电能计量芯片 MCP3906是Microch ip公司推出的单相电能计量芯片,它支持国际电能计量标准技术规范IEC62053,可提供与平均有功功率成比例的频率输出,以及与瞬时功率成比例的高频输出用于电表校准。MCP3906内部包含两个16位△-∑ADC,可用于各种IB和IMAX电流和小分流器(<200μΩ )的电表设计。该芯片还包含一个超低温漂(<15ppm/℃)参考电压,通过特殊设计的带隙温度曲线,可在整个工业级温度范围内使温度梯度达到最小。固定功能的片上DSP模块可用于计算有功功率,此外,片上还有驱动机械计数器的高输出驱动器,可以减少现场故障和机械计数器咬合。芯片的空载门限模块可防止任何电流潜变(Creep)测量,而上电复位(Power on Reset,POR)模块则可在低电压时限制电表测量。因此,MCP3906是具备高现场可靠性的精密电能计量IC,并采用业界标准的引脚配置。 1.1 MCP3906的内部结构及工作原理 MCP3906是混合模拟/数字信号的CMOS集成电路,其内部结构框图。 MCP3906可提供与有功功率成比例的频率输出和与瞬时功率成比例的高频输出来用于校准。它的两个通道均使用16位二阶△-∑ADC,能以MCLK/4的频率对输入进行采样,同时允许对动态范围很宽的输入信号进行采样。可编程增益放大器(Programmable Gain Amplifier,PGA)扩大了电流输入通道(通道0)的可用范围。其有功功率的计算以及与计算有关的滤波均可在数字域中完成,从而提高了其稳定性和温漂性能。 MCP3906的两个数字高通滤波器(HPF1和HPF2)可以滤除两个通道的系统偏移量,因此,有功功率的计算不含任何电路或系统偏移量。经过高通滤波后,电压和电流信号相乘,即可得出瞬时功率信号。此信号不含直流偏移分量,因此可有效利用求平均法(Averaging Technique)计算出所需的有功功率输出。 瞬时功率信号包含的有功功率信息就是瞬时功率的直流分量。求平均法可用于计算正弦和非正弦波形,以及所有功率因数。瞬时功率经过低通滤波器(LPF)就可以产生瞬时有功功率信号。 通过MCP3906的DTF转换器可对瞬时有功功率信息进行累加,以产生输出脉冲,此脉冲的频率与平均有功功率成比例。FOUT0和FOUT1输出的低频脉冲可用于设计驱动机电式计数器和双相步进电机,以便显示实际消耗的有功功率。每个脉冲对应于一个固定的有功电量值,其功能可由F2、F1和F0的逻辑进行选择。HFOUT输出具有较高的频率设定和较低的积分周

各种集成电路简介

各种集成电路简介 转帖]三.(精华)各种集成电路简介第一节三端稳压IC 电子产品中常见到的三端稳压集成电路有正电压输出的 78××系列和负电压输出的79××系列。故名思义,三端IC是指这种稳压用的集成电路只有三条引脚输出,分别是输入端、接地端和输出端。它的样子象是普通的三极管,TO-220的标准封装,也有9013样子的TO-92封装。用78/79系列三端稳压IC来组成稳压电源所需的外围元件极少,电路内部还有过流、过热及调整管的保护电路,使用起来可靠、方便,而且价格便宜。该系列集成稳压IC型号中的78或79后面的数字代表该三端集成稳压电路的输出电压,如7806表示输出电压为正6V,7909表示输出电压为负9V。78/79系列三端稳压IC有很多电子厂家生产,80年代就有了,通常前缀为生产厂家的代号,如TA7805是东芝的产品,AN7909是松下的产品。(点击这里,查看有关看前缀识别集成电路的知识)有时在数字78或79后面还有一个M或L,如78M12或79L24,用来区别输出电流和封装形式等,其中78L调系列的最大输出电流为 100mA,78M系列最大输出电流为1A,78系列最大输出电流为1.5A。它的封装也有多种,详见图。塑料封装的稳压电路具有安装容易、价格低廉等优点,因此用得比较多。

79系列除了输出电压为负。引出脚排列不同以外,命名方法、外形等均与78系列的相同。因为三端固定集成稳压电路的使用方便,电子制作中经常采用,可以用来改装分立元件的稳压电源,也经常用作电子设备的工作电源。电路图如图所示。注意三端集成稳压电路的输入、输出和接地端绝不能接错,不然容易烧坏。一般三端集成稳压电路的最小输入、输出电压差约为2V,否则不能输出稳定的电压,一般应使电压差保持在4-5V,即经变压器变压,二极管整流,电容器滤波后的电压应比稳压值高一些。在实际应用中,应在三端集成稳压电路上安装足够大的散热器(当然小功率的条件下不用)。当稳压管温度过高时,稳压性能将变差,甚至损坏。当制作中需要一个能输出1.5A以上电流的稳压电源,通常采用几块三端稳压电路并联起来,使其最大输出电流为N个1.5A,但应用时需注意:并联使用的集成稳压电路应采用同一厂家、同一批号的产品,以保证参数的一致。另外在输出电流上留有一定的余量,以避免个别集成稳压电路失效时导致其他电路的连锁烧毁。第二节语音集成电路电子制作中经常用到音乐集成电路和语言集成电路,一般称为语言片和音乐片。它们一般都是软包封,即芯片直接用黑胶封装在一小块电路板上。语音IC一般还需要少量外围元件才能工作,它们可直接焊到这块电路板上。别看语音IC应用电路很简单,但是它确确实实是一片含有成千上万个晶体管芯的

基于功率测量芯片HLW8012的功率显示表设计

基于功率测量芯片HLW8012的功率显示表设计 [摘要] 功率显示表是一种用于显示电量数据的仪表,是针对电力系统、公共设施、智能大厦的电力监控需求而设计的。 本文主要讲述功率显示表的主要功能、硬件原理图等。该功率显示表可以对单相交流电路中的用电设备进行功率、电压和电流等参数的检测。仪表采用HLW7021作为控制MCU,以专用电能计量集成电路芯片HLW8012为电量采集的核心器件,显示电路由芯片SM1642驱动4位数码管显示。 [关键词] 功率显示模块,功率计量,功率检测,功率计量模块,,功率计量方案,HLW8012,智能家电,功率监测模块 [正文] 一、功率显示表原理 为了能够测量单相电路中的电流、电压、功率、电量和功率因系素等有效值,本次设计的采样电路以电能计量芯片HLW8012为主,不需使用复杂的设计电路和编写复杂的软件。因为HLW8012内置了晶振和参考电源,所以外围电路非常简单。 HLW8012主要特性 ●高频脉冲CF,指示有功功率,在1000:1范围内达到±0.3%的精度 ●高频脉冲CF1,指示电流或电压有效值,使用SEL选择,在500:1范围内达到±0.5%的精 度 ●内置晶振、2.43V 电压参考源及电源监控电路 ●5V单电源供电,工作电流小于3mA HLW8012输入输出 图1 芯片引脚图 功率显示表是对负载设备的用电情况进行实时的检测,将负载设备的用电数据进行收集,提供给控制终端,并通过4位数码管进行显示。使用HLW8012设计的功率检测模块的测量精度<0.3%,可以准确的测量功率、用电量等信息,具有性能稳定、设计简单等特点。 功率检测模块主要包含以下几个系统模块:电源模块,功率采集模块,主控制器模块和显示模块。 功率显示表的原理框图如下:

基于功率计量芯片HLW8012的计量插座方案

基于功率计量芯片HLW8012计量插座方案 【摘要】 计量插座是一种插座转换装置,可以显示电量、功率、电压、电流、时钟等参数,是针对于家庭电器节能要求而设计。 本文主要讲述计量插座的主要功能、硬件原理图等。该计量插座可以对单相交流用电的电器进行电量、功率、电压及电流等参数的测量。此方案采用HLW7031作为控制MCU,以专用功率计量芯片HLW8012为电量采集器件,HT1621为LCD驱动芯片,DS1302作为时钟记录芯片。【关键词】 计量插座,功率计量,功率计量,节能插座,智能插座,HLW8012,智能家电 【正文】 一、计量插座原理 计量插座需要测量功率、电量、电流和电压等参数,同时计量插座产品内部空间小,本次设计使用功率计量芯片HLW8012作为各个电参数的测量器件。因为HLW8012可以测量功率、电量、电流和电压值,内置晶振、参考源,SOP8封装,外围电路简单,在满足性能要求的同时,可以做到体积更小。 ●HLW8012主要特性 (1)高频脉冲CF,指示有功功率,在1000:1范围内达到±0.3%的精度 (2)高频脉冲CF1,指示电流或电压有效值,使用SEL选择,在500:1范围内达到±0.5%的精度(3)内置晶振、2.43V电压参考源及电源监控电路 (4)5V单电源供电,工作电流小于3mA ●HLW8012输入输出 VIP SEL CF CF1输出 电流/电压值 /电压值 图1 HLW8012芯片引脚图 (1)V1P,V1N输入电流采样信号:峰峰值V P-P:±43.75mV,最大有效值:±30.9mV。

(2)V2P输入电压采样信号:峰峰值V P-P:±700mV,最大有效值:±495mV。 (3)高频脉冲CF(PIN6):指示功率,计算电能;输出占空比为1:1的方波。 (4)高频脉冲CF1(PIN7):指示电流或电压有效值,SEL选择;输出占空比为1:1的方波。 计量插座实际上是一个插座转接设置,电器通过计量插座之后再连接到电网。MCU从功率计量模块获取用电器的电量、功率、电压、电流等参数,从时钟模块获取当前时钟,MCU将这些数据通过LCD驱动芯片显示在LCD屏上。MCU可以打开或关闭插座孔的电源,通过按键直接操作或设置定时自动操作,电源的打开与关闭是通过MCU控制继电器的闭合与切断实现。 时钟设置是通过按键进行设置,可以设置日期、小时、分、秒,自动设置星期。可以设置一星期内哪几天定时打开或关闭插座孔的电源,实现无人自动控制插座孔的电源。一般在出厂前会设置好时间。计量插座结构框图如图2所示。 图2 计量插座方案结构框图 二、计量插座硬件设计 计量插座硬件设计相对应于结构框图,有6部分模块电路:电源管理电路、功率计量电路、显示模块电路、继电器控制电路、时钟电路及按键。 所有功率计量测量,电压、电流通道的采样方式有2种:互感器采样方式(隔离采样)、电阻采样方式(非隔离采样)。互感器采样方式成本高,本设计使用电阻采样方式。 1、电源管理电路 使用LNK304设计的AC-DC非隔离电源,L与N分别是交流火线与零线,以零线作为地线。此电路无需变压器,稳压5V,可以提供150mA左右的电流,能够保证在AC85V~265V的交流范围内,实现稳定的电压输出,纹波也很小,在50mV左右。此电源为所有模块提供工作电压。

电能计量芯片

电能计量芯片 ADE7755是ADI公司生产的一款用于电能计量的芯片,其技术指标超过了IEC1036规定的准确度要求[7]。它将有功功率的信息以频率的形式输出。在50 / 60Hz 输入信号时都能满足IEC687 / 1036标准规定的测试精度要求,在1000:1的输入动态范围内,测试误差小于0.1%。其功能框图如图3.1所示,实物图如图3.2所示。 图3.1 ADE7755功能框图 图3.2 ADE7755芯片实物图 3.1 ADE7755的特点 ADE7755 应用了过采样ADC和DSP相结合的技术,对温度的敏感度很低,即使在很高的环境温度下也能维持较高的测试精度。ADE7755只在ADC和基准源中使用模拟电路,所有其他信号处理(如相乘和滤波)都使用数字电路,这使其在恶劣的环境条件下仍能保持极高的准确度和长期稳定性。

其主要特点如下: (1)工作温度范围-40~85℃。 (2)低阈值启动,启动电流小于 0.2%Ib。 (3)低成本 CMOS 工艺。 (4)片内设有电源监控电路。 (5)片内带有防潜动功能(空载阈值)。 (6)片内带有抗混叠滤波器。 (7)+5V 单电源、低功耗(典型值 15mW)。 (8)具有负功率或错线指示功能。 (9)5V 单电源工作,正常工作时芯片功耗 30Mw。 (10)1Vpeak-peak 的最大模拟信号输入范围。 (11)电流通道具有 1/2/8/16 四种增益选择,以便灵活选用不同大小的锰铜采样电阻。 (12)2.5V 片内高精度参考电压源,绝对偏差小于!4%,温漂小于!20ppm/℃。 (13)片内基准电压 2.5V±8%(温度系数典型值 30ppm/℃),能为外部电路提供基准。 (14)带有电源电压检测功能,当电源电压降低到 80%VDD 时芯片自动复位。 (15)灵活的模拟信号输入电路,既可单端输入也可全差分输入并且输入共模电压可在 0V 和2V 之间选择,由管脚 SCOM 控制。 (16)有功功率平均值从 ADE7755 引脚 F1 和 F2 以频率方式输出,且F1、F2能直接驱动步进电机。 (17)有功功率瞬时值从引脚 CF 以较高频率方式输出,能用于仪表校验;逻辑输出引脚 REVP 能指示负功率或错线;FI 和 F2 能直接驱动机电式计度 器和两相步进电机;电流通道中的可编程增益放大器(PGA)使仪表能使 用小阻值的分流电阻。 3.2 ADE7755工作原理 ADE7755内部拥有两个16位的二阶∑-△模数转换器,这两个ADC对来自电流 和电压传感器的电压信号进行数字化,过采样速率达900KHz。AD7755的模拟 输入结构具有宽动态范围,大大简化了传感器接口(可以与传感器直接连接),也

电能计量芯片CS5460及其应用

电能计量芯片CS5460及其应用 1. 概述 CS5460是CRYSTAL公司最新推出的带有串行接口的单相双向功率/电能计量集成电路芯片。与目前在电子式电度表应用中广泛使用的 AD7750和AD7755(见《国外电子元器件》1999年第3期文章)相比较,CS5460增加了以下功能: ●具有片内看门狗定时器(Watch Dog Timer)与内部电源监视器; ●具有瞬时电流、瞬时电压、瞬时功率、电流有效值、电压有效值、功率有效值测量及电能计量功能; ●提供了外部复位引脚; ●双向串行接口与内部寄存器阵列可以方便地与微处理器相连接; ●外部时钟最高频率可达20MHz; ●具有功率方向输出指示。 这些增加的功能更加便于与微处理器(MPU)接口,并能方便地实现电压、电流、功率的测量和用电量累积等功能。

2. 基本结构与技术指标 2.1 内部结构 CS5460内部集成了两个△-∑A/D转换器、高、低通数字滤波器、能量计算单元、串行接口、数字-频率转换器、寄存器阵列和看门狗定时器等模拟、数字信号处理单元,其内部结构框图如图1所示。 2.2 引脚排列及功能 CS5460的引脚排列如图2所示。各引脚的功能如下: 1脚XOUT:晶体振荡器输出; 2脚CPUCLK:CPU时钟输出; 3脚VD+:数字电路电源正极; 4脚DGND:数字地; 5脚SCLK:串行时钟输入; 6脚SDO:串行数据输出; 7脚CS:片选; 8脚NC:空脚; 9脚VIN+:差分电压正输入端; 10脚VIN-:差分电压负输入端;

11脚VREFOUT:参考电压输出;12脚VREFIN:参考电压输入; 13脚VA-:模拟地; 14脚VA+:模拟电源正极; 15脚IIN-:差分电流负输入端;16脚IIN+:差分电流正输入端;17脚PFMON:电源掉电监视输出;18脚NC:空脚; 19脚RESET:复位输入; 20脚INT:中断输出; 21脚EOUT:电能脉冲输出; 22脚EDIR:功率方向指示输出;23脚SDI:串行数据输入; 24脚XIN:晶体振荡器输入。 2.3 主要技术指标 ●差分电压输入范围:150mV; ●温度系数:<60ppm/℃

集成电路简介

集成电路简介 11121708 张海蛟 一、集成电路简介 1、什么是集成电路 集成电路是采用半导体制作工艺,在一块较小的单晶硅片上制作上许多晶体管及电阻器、电容器等元器件,并按照多层布线或遂道布线的方法将元器件组合成完整的电子电路。它在电路中用字母"IC"(也有用文字符号"N"等)表示。图一给出了部分集成电路的成型图。 图1 各类型号的集成电路 2、集成电路的发展史 1952年5月,英国科学家达默第一次提出了集成电路的设想。 1958年以德克萨斯仪器公司的科学家基尔比为首的研究小组研制出了世界上第一块集成电路 1959年美国仙童/飞兆公司(Fairchilds)的R.Noicy 诺依斯开发出用于IC的Si平面工艺技术,从而推动了IC制造业的大发展。 60年代TTL、ECL出现并得到广泛应用。 70年代MOS LSI得到大发展, 典型产品64K DRAM ,16位MPU 80年代VLSI出现,使IC进入了崭新的阶段,典型产品4M DRAM 90年代ASIC、ULSI和巨大规模集成GSI等代表更高技术水平的IC不断涌现,并成为IC应用的主流产品1G DRAM 3、集成电路的集成度 小规模集成电路(SSI):10~100元件/片如各种逻辑门电路、集成触发器 中规模集成电路(MSI):100~1000元件/片,如译码器、编码器、寄存器、计数器大规模集成电路(LSI):1000 ~105元件/片,如中央处理器,存储器。 超大规模集成电路(VLSI):105元件以上/片如CPU(Pentium)含有元件310万~330万个 特大规模集成电路(Ultra Large Scale IC,ULSI) 巨大规模集成电路(Gigantic Scale IC,GSI) 二、集成电路的工艺指标 1、集成度 以一个IC芯片所包含的元件(晶体管或门/数)来衡量,(包括有源和无源元件)。随着集成度的提高,使IC及使用IC的电子设备的功能增强、速度和可靠性提高、功耗降低、体

电能计量芯片汇总

电能计量SA9904B, 1引言新型集成芯片不仅精确度高,而且硬件软件设计简单性价比高 1引言 新型集成芯片不仅精确度高,而且硬件软件设计简单、性价比高。着重介绍SA9904B,ATT7026A及CS54633种三相电能计量芯片的工作原理,比较其性能指标,为合理选择电能芯片提供了有力的帮助。 2电能计量芯片 SA9904B是南非微电子系统有限公司设计开发的一种电能计量芯片, ATY7026A是珠海炬力集成电路设计有限公司开发的电能计量芯片,CS5463是美国CRYSTAL公司推出的带有串行接口的单相双向功率/电能计量集成电路芯片。这三者都用于三相多功能电能计量,均适用于三相三线制的具有50Hz 或60Hz标准频率的电网,支持电阻网络校表和软件校表两种方式。由于电能计量、参数测量和数据读取是电能芯片的核心部分。下面主要从有功计量、无功计量、视在功率/电能计量、有效值测量、中断和SPI接口6个方面介绍芯片原理。 2.1SA9904B简介 SA9904B有20个引脚,PDIP封装,12个元暂存器。SA9904B包含9个代表各相的有功电能、无功电能与电源电压的24位元暂存器。第10个24位元暂存器代表任何有效相位的市频,包含3个位址以保存与SA9604A的兼容性。3个位址的任何其一可用于存取频率暂存器。每相位的有功与无功功率被积存于24位元暂存器。被测电路的电能或功率不直接提供给用户,但是可以通过公式计算。计算每相的有功或无功电能:电能每计数=(VRATED×IRATED)/320 000;计算每相的有功或无功功率:功率=VRATED×IRATED×N/INTTIME/320 000。其中:VRATED为电表的额定电源电压,IRATED为电表的额定电源电流,N=相继读数间的暂存器数值差数(△值),INTTIME为相继读数间的时间差值(单位为秒)。若要求合相有功电能,只能通过程序对三相有功电能求和,或通过有功功率脉冲输出F50计数。芯片内的3个电压暂存器包含各相位测得的RMS电压值.用户可以直接从暂存器中读取。SA9904B不具有中断功能。串行周边的接口汇流排(SPI)为一同步汇流排,使用于微控器与SA9904B之间的数据传输。引脚D0(串行数据出端),DI(串行数据入端),CS(芯片选项)与SCK(串行时脉)用于此汇流排的应用。SA9904B为从器件,。而微控器为汇流排主器件。CS 输入启始与终止数据传输。SCK信号(微控器发送的)选通微控器与SA9904B的SCK引脚间的数据。DI与DO引脚为SA9904B的串行数据输入与输出引脚。2.2ATT7026A简介 ATT7026A44个引脚,QFP44封装,102个寄存器翻。有功功率通过求瞬时功率代数均值获得。分相、合相有功功率分别存入指定寄存器,供用户读取。。无功功率是通过将电压采样信号作一90°相移,再求瞬时功率的代数均值获得。分相、合相无功功率同样提供给用户。芯片中有电能累加寄存器,能够提供分相、合相有功、无功电能,但不提供电网周期累加模式。芯片通过能量脉冲生成器,提供校表脉冲CFl和驱动步进电机的低频脉冲F1/F2。由于芯片提供电流和电压有效值,用户也可用公式S=VRMS×IRMS,通过MCU计量分相、合相视在功率。有效值测量通过对电压、电流的采样数据求均方值实现。能够同时计算6通道的有效值,结果存在指定的寄存器中供用户读取。此外,芯片不仅提供分相电流、电压有效值.还提供三相电流、电压矢量和的有效值,用户可在指定寄存

3-计量芯片应用心得之选型篇

电能计量芯片应用心得之选型篇 什么是计量芯片 计量芯片是测量交流电信号的一类芯片,因最早是使用于电表产品,所以在行业内也俗称电表芯片,它可以统计用电负载的用电量、测量用电负载的功率大小和电流大小,以及市电的电压。市电一般分为单相电和三相电,所以电表芯片有两大类,一类是单相计量芯片,一类是三相计量芯片。 随着近几年物联网行业的发展,许多智能产品除了增加无线通讯的功能外,在和市电使用相关的产品中,比如WIFI PLUG、充电桩、智能交通灯和火灾检设备等产品上面都增加了计量芯片,用于测量电能参数,因此电表芯片慢慢从工业应用产品走向了消费类应用产品。 计量芯片有哪些功能 计量芯片最基础的功能是测量用电量、功率大小、有效电流和有效电压,这是计量芯片最基础的测量功能。还有一些计量芯片除了基础的测量功能外,还可以测量功率因素、市电的线性频率、相角、过零点、视在功率等参数,这类计量芯片的功能比较多。下表是列举了几类计量芯片功能分类 下表是不同型号的计量芯片的性能和功能差异表

以上我们基本对于计量芯片有一个初步的了解,也了解到计量芯片可以测量哪些电参数。 现在要回到我们的产品本身,根据产品的定义,要选择合适的计量芯片。 要做一个什么样的产品 选定一款合适的计量芯片之前,我们要先知道我们需要设计一个什么样的产品,这个产品有哪些功能,需要用到计量芯片的哪些功能参数,才能实现这些功能。目前市面上的计量芯片一般都能满足产品的大部分功能,只需要我们关注几个细微的指标,就能够做出判断。 下面给出一个简单的方法,将产品的功能进行分解,然后根据这些功能进行 反向寻找,找出合适的计量芯片。

集成电路的介绍

概述集成电路是一种采用特殊工艺,将晶体管、电阻、 电容等元件集成在硅基片上而形成的具有一定功能的器件,英 文为缩写为IC,也俗称芯片。集成电路是六十年代出现的, 当时只集成了十几个元器件。后来集成度越来越高,也有了 今天的P-III。 分类 集成电路根据不同的功能用途分为模拟和数字两大派 别,而具体功能更是数不胜数,其应用遍及人类生活的方方 面面。集成电路根据内部的集成度分为大规模中规模小规模 三类。其封装又有许多形式。“双列直插”和“单列直插” 的最为常见。消费类电子产品中用软封装的IC,精密产品 中用贴片封装的IC等。 对于CMOS型IC,特别要注意防止静电击穿IC,最好也不要 用未接地的电烙铁焊接。使用IC也要注意其参数,如工作电压, 散热等。数字IC多用+5V的工作电压,模拟IC工作电压各异。 集成电路有各种型号,其命名也有一定规律。一般是由前缀、数 字编号、后缀组成。前缀表示集成电路的生产厂家及类别,后缀 一般用来表示集成电路的封装形式、版本代号等。常用的集成电 路如小功率音频放大器LM386就因为后缀不同而有许多种。 LM386N是美国国家半导体公司的产品,LM代表线性电路,N代表 塑料双列直插。 集成电路型号众多,随着技术的发展,又有更多的功能更强、集成度更高的集成电路涌现,为电子产品的生产制作带来了方便。在设计制作时,若没有专用的集成电路可以应用,就应该尽量选用应用广泛的通用集成电路,同时考虑集成电路的价格和制作的复杂度。在电子制作中,有许多常用的集成电路,如NE555(时基电路)、LM324(四个集成的运算放大器)、TDA2822(双声道小功率放大器)、KD9300(单曲音乐集成电路)、LM317(三端可调稳压器)等。 这里有些集成电路的样子:

功率计量芯片HLW8012介绍及应用

功率计量芯片HLW8012介绍与应用 一、引言 HLW8012是深圳市合力为科技推出的单相电能计量芯片,可以测量有功功率、电量、电压有效值、电流有效值;SOP8封装,体积小,广泛应用于智能家电、节能插座,智能路灯、智能LED 灯等应用场合。本文主要内容:1、HLW8012介绍;2、HLW8012应用硬件电路;3、HLW8012脉冲软件测量;4、HLW8012应用场合及展望。 二、、HLW8012介绍 1、HLW8012主要特性 (1)高频脉冲CF ,指示有功功率,在1000:1范围内达到±0.3%的精度 (2)高频脉冲CF1,指示电流或电压有效值,使用SEL 选择,在500:1范围内达到±0.5%的精度 (3)内置晶振、2.43V 电压参考源及电源监控电路 (4)5V 单电源供电,工作电流小于3mA 2、HLW8012引脚图 VDD VIP VIN CF1 SEL V2P CF 选择CF1输出 电流/电压值 /电压值 图1芯片引脚图 引脚序号 引脚名称 输入/输出 说明 1 VDD 芯片电源 芯片电源 2,3 V1P ,V1N 输入 电流差分信号输入端,最大差分输入信号为±43.75mV 4 V2P 输入 电压信号正输入端。最大输入信号±700mV 5 GND 芯片地 芯片地 6 CF 输出 输出有功高频脉冲,占空比50% 7, CF1 输出 SEL=0,输出电流有效值,占空比50%; SEL=1,输出电压有效值,占空比50%; 8 SEL 输入 配置有效值输出引脚,带下拉

● 模拟信号输入 (1)V1P ,V1N 输入电流采样信号:峰峰值V P-P :±43.75mV ,最大有效值:±30.9mV 。 (2)V2P 输入电压采样信号:峰峰值V P-P :±700mV ,最大有效值:±495mV 。 ● 数字信号输出 (1)高频脉冲CF (PIN6):指示功率,计算电能;输出占空比为1:1的方波。 (2)高频脉冲CF1(PIN7):指示电流或电压有效值,SEL 选择;输出占空比为1:1的方波。 注:MCU 与HLW8012的接口不是使用协议进行读取,而是通过测量CF 、CF1引脚输出高频脉冲的周期来计算功率、电流、电压值。 3、芯片内部框图 SEL CF1CF 图2 芯片内部框图 HLW8012内部带有2路PGA 及ADC ,对电流、电压采样信号进行模数转换,得到数字信号,芯片内部计算有功功率值、电流有效值、电压有效值,经过频率转换模块,HLW8012将有功功率值、电流有效值、电压有效值转换为方波脉冲输出(占空比1:1),各数值的大小与频率的大小成正比,与周期的大小成反比。 三、HLW8012应用硬件设计 所有电能计量测量,电压、电流通道的采样方式有2种:互感器采样方式、电阻采样方式。互感器采样方式成本高,本文只介绍电阻采样方式。外围硬件主要包含几部分:电源电源、功率计量电路、MCU 接口。 1、电源电路 为了配合电阻采样方式(即从电网直接采样,非隔离),电源电路必须为非隔离电源,非隔离电源有2种方式:AC-DC 非隔离电源、阻容降压电源。两者的比较如下:

各种集成电路介绍

第一节三端稳压IC 电子产品中常见到的三端稳压集成电路有正电压输出的78××系列和负电压输出的79××系列。故名思义,三端IC是指这种稳压用的集成电路只有三条引脚输出,分别是输入端、接地端和输出端。它的样子象是普通的三极管,TO-220的标准封装,也有9013样子的TO-92封装。 用78/79系列三端稳压IC来组成稳压电源所需的外围元件极少,电路内部还有过流、过热及调整管的保护电路,使用起来可靠、方便,而且价格便宜。该系列集成稳压IC型号中的78或79后面的数字代表该三端集成稳压电路的输出电压,如7806表示输出电压为正6V,7909表示输出电压为负9V。 78/79系列三端稳压IC有很多电子厂家生产,80年代就有了,通常前缀为生产厂家的代号,如TA7805是东芝的产品,AN7909是松下的产品。(点击这里,查看有关看前缀识别集成电路的知识) 有时在数字78或79后面还有一个M或L,如78M12或79L24,用来区别输出电流和封装形式等,其中78L调系列的最大输出电流为100mA,78M系列最大输出电流为1A,78系列最大输出电流为1.5A。它的封装也有多种,详见图。塑料封装的稳压电路具有安装容易、价格低廉等优点,因此用得比较多。79系列除了输出电压为负。引出脚排列不同以外,命名方法、外形等均与78系列的相同。 因为三端固定集成稳压电路的使用方便,电子制作中经常采用,可以用来改装分立元件的稳压电源,也经常用作电子设备的工作电源。电路图如图所示。 注意三端集成稳压电路的输入、输出和接地端绝不能接错,不然容易烧坏。一般三端集成稳压电路的最小输入、输出电压差约为2V,否则不能输出稳定的电压,一般应使电压差保持在4-5V,即经变压器变压,二极管整流,电容器滤波后的电压应比稳压值高一些。 在实际应用中,应在三端集成稳压电路上安装足够大的散热器(当然小功率的条件下不用)。当稳压管温度过高时,稳压性能将变差,甚至损坏。 当制作中需要一个能输出1.5A以上电流的稳压电源,通常采用几块三端稳压电路并联起来,使其最大输出电流为N个1.5A,但应用时需注意:并联使用的集成稳压电路应采用同一厂家、同一批号的产品,以保证参数的一致。另外在输出电流上留有一定的余量,以避免个别集成稳压电路失效时导致其他电路的连锁烧毁。 第二节语音集成电路 电子制作中经常用到音乐集成电路和语言集成电路,一般称为语言片和音乐片。它们一般都是软包封,即芯片直接用黑胶封装在一小块电路板上。语音IC一般还需要少量外围元件才能工作,它们可直接焊到这块电路板上。

最小尺寸的功率计量模块

最小尺寸的功率计量模块 [摘要] 合力为科技推出的电能计量芯片HLW8012,可以监测用电设备及系统的用电信息,包括功率、用电量、电压、电流及功率因素。而基于HLW8012设计的功率监测模块,在目前市场是体积可以做的最小的电能计量模块,最小尺寸可以做到20mm(L)*20mm(W),满足许多不同应用需求的应用场合,如智能插座、智能家电等产品。 [关键词] 功率计量,功率检测,功率计量模块,功率计量芯片,功率计量方案,HLW8012 [正文] 一、功率计量模块原理 功率检测模块是对负载设备的用电情况进行实时的检测,将负载设备的用电数据进行收集,提供给控制终端。使用HLW8012设计的功率检测模块的测量精度<0.3%,可以准确的测量功率、用电量等信息,具有性能稳定、设计简单等特点。 功率检测模块主要包含以下几个系统模块:电源模块,功率采集模块,主控制器模块和系统隔离模块。功率计量模块的功率大约在8mA左右,不仅体积小,功耗也很低。 功率检测模块的原理框图如下: 图1 功能检测模块原理框图 二、功率检计量模块硬件设计 电能检测有两种方法,一是隔离采样,二是非隔离采用。隔离采用是指采用互感器的方法进行采用,前端的电量信号使用电压互感器和电流互感器进行隔离并采样,此方法的缺点是造成模块的体积大且成本高。我们使用第二种方法进行采样。 1、电源模块 由于HLW8012的供电电压是5V,所以需要使用单独的电源供电,可以采用非隔离的AC-DC电源芯片输出5V。

图2 AC-DC 电路原理图 此电路可以提供50mA 以内的电流,具有较宽的电源输入范围,能够保证在AC85V~265V 的交流范围内,实现稳定的电压输出,纹波也很小,在50mV 左右。 2、功率检测模块 HLW8012内置了晶振及参考电源,所以外围采样电路非常精简,外围只需要12个电阻电容器件,即组成了对电量信息的采集电路。电压采样通过电阻分压的方法进行测量,将市电上的电压经5个电阻进行分压,降至100mV 左右进行采样。电流采样部分由0.002欧姆的鏮铜电阻,及R28,C11等滤滤阻容件组成。负载电流从鏮铜电阻流过,使得电流信号转换成电压信号,再通过HLW8012进行采集。图3是功率检测模块的原理图。 图3 功率检测原理图 HLW8012将功率、电压、电流等数据通过CF 、CF1脚以脉冲的方式输出。CF 脚输出的脉冲频率大小即表示有功功率值,CF 输出的脉冲个数表示的是用电量的信息。当SEL 为高电平时,CF1输出的脉冲频率表示电压有效值上,当SEL 为低电平时,CF1输出的是电流有效值。 HLW8012的CF 脚输出的脉冲频率的周期表示功率值P ,功率越大,CF 脚输出的脉冲频率越大,且成比例变化。即: = ;所以,己知Pref 、fref 和F ,就可以计算出当前负载的功率值。同理,电压及电流也适用于此公式。

基于电能计量芯片HLW8012的计量插座方案

基于电能计量芯片HLW8012计量插座方案 【摘要】 计量插座是一种插座转换装置,可以显示电量、功率、电压、电流、时钟等参数,是针对于家庭电器节能要求而设计。 本文主要讲述计量插座的主要功能、硬件原理图等。该计量插座可以对单相交流用电的电器进行电量、功率、电压及电流等参数的测量。此方案采用HLW7031作为控制MCU,以专用电能计量芯片HLW8012为电量采集器件,HT1621为LCD驱动芯片,DS1302作为时钟记录芯片。【关键词】 计量插座,电能计量,功率计量,节能插座,智能插座,HLW8012,智能家电 【正文】 一、计量插座原理 计量插座需要测量功率、电量、电流和电压等参数,同时计量插座产品内部空间小,本次设计使用电能计量芯片HLW8012作为各个电参数的测量器件。因为HLW8012可以测量功率、电量、电流和电压值,内置晶振、参考源,SOP8封装,外围电路简单,在满足性能要求的同时,可以做到体积更小。 ●HLW8012主要特性 (1)高频脉冲CF,指示有功功率,在1000:1范围内达到±0.3%的精度 (2)高频脉冲CF1,指示电流或电压有效值,使用SEL选择,在500:1范围内达到±0.5%的精度(3)内置晶振、2.43V电压参考源及电源监控电路 (4)5V单电源供电,工作电流小于3mA ●HLW8012输入输出 VIP SEL CF CF1输出 电流/电压值 /电压值 图1 HLW8012芯片引脚图 (1)V1P,V1N输入电流采样信号:峰峰值V P-P:±43.75mV,最大有效值:±30.9mV。

(2)V2P输入电压采样信号:峰峰值V P-P:±700mV,最大有效值:±495mV。 (3)高频脉冲CF(PIN6):指示功率,计算电能;输出占空比为1:1的方波。 (4)高频脉冲CF1(PIN7):指示电流或电压有效值,SEL选择;输出占空比为1:1的方波。 计量插座实际上是一个插座转接设置,电器通过计量插座之后再连接到电网。MCU从电能计量模块获取用电器的电量、功率、电压、电流等参数,从时钟模块获取当前时钟,MCU将这些数据通过LCD驱动芯片显示在LCD屏上。MCU可以打开或关闭插座孔的电源,通过按键直接操作或设置定时自动操作,电源的打开与关闭是通过MCU控制继电器的闭合与切断实现。 时钟设置是通过按键进行设置,可以设置日期、小时、分、秒,自动设置星期。可以设置一星期内哪几天定时打开或关闭插座孔的电源,实现无人自动控制插座孔的电源。一般在出厂前会设置好时间。计量插座结构框图如图2所示。 图2 计量插座方案结构框图 二、计量插座硬件设计 计量插座硬件设计相对应于结构框图,有6部分模块电路:电源管理电路、电能计量电路、显示模块电路、继电器控制电路、时钟电路及按键。 所有电能计量测量,电压、电流通道的采样方式有2种:互感器采样方式(隔离采样)、电阻采样方式(非隔离采样)。互感器采样方式成本高,本设计使用电阻采样方式。 1、电源管理电路 使用LNK304设计的AC-DC非隔离电源,L与N分别是交流火线与零线,以零线作为地线。此电路无需变压器,稳压5V,可以提供150mA左右的电流,能够保证在AC85V~265V的交流范围内,实现稳定的电压输出,纹波也很小,在50mV左右。此电源为所有模块提供工作电压。

相关主题
文本预览
相关文档 最新文档