当前位置:文档之家› 沉淀法制备纳米ZnO

沉淀法制备纳米ZnO

沉淀法制备纳米ZnO
沉淀法制备纳米ZnO

设计性实验2 沉淀法制备纳米ZnO

摘要:本实验以Zn(NO

3)

2

·6H

2

O和NH

4

HCO

3

为原料,聚乙二醇(PEG600)为模板,采用

直接沉淀法制备纳米氧化锌,并计算产率和晶粒尺寸,讨论影响纳米ZnO晶粒大小的影响因素。

关键词:纳米氧化锌;直接沉淀法;产率;晶粒尺寸

1.直接沉淀发制备纳米ZnO的理论基础

氧化锌俗称锌白,常作白色颜料,是一种重要的工业原料,它广泛应用于涂料、橡胶、陶瓷、玻璃等多种工业。纳米氧化锌与普通氧化锌相比显示出诸多特殊性能,如:压电性、荧光性、非迁移性、吸收和散射紫外线能力等,因而其用途大大扩展,如可用于压敏材料、压电材料、荧光体、化妆品、气体传感器、吸湿离子传导温度计、图象记录材料、磁性材料、紫外线屏蔽材料、高效催化剂和光催化剂。国内外专家学者一致认为,纳米氧化锌必将逐步取代传统的氧化锌系列。

纳米材料是指晶粒(或组成相)在任一维的尺寸小于100nm的材料,是由粒径尺寸介于1

~

100nm之间的超细微粒组成的固体材料,按空间形态可分为一维纳米丝、二维纳米膜和三维纳米粒。

纳米材料的制备方法分类如下表:

本实验采用化学沉淀法里的直接沉淀法制备纳米ZnO ,直接沉淀法的原理是在可溶性锌盐溶液中加入沉淀剂后,于一定条件下生成沉淀从溶液中析出,将阴离子洗去,经分离、干燥、热处理后,得到纳米氧化锌。该方法操作简单,对设备和技术要求不太苛刻,产品纯度高,不易引入杂质,成本低。

X-射线衍射仪可以利用衍射原理,精确测定物质的晶体结构,织构及应力,精确的进行物相分析,定性分析,定量分析.利用谢乐公式:Dc = 0.89λ /(B cos θ) (λ为X 射线波长, B 为衍射峰半高宽, θ 为衍射角) ,根据粉体X-射线衍射图可以得到相关数据,计算得到粒子的尺寸。

2.实验

2.1实验药品及仪器

Zn(NO 3)2·6H 2O 、 NH 4HCO 3、聚乙二醇(PEG600)、无水乙醇、去离子水

烘箱、500ml 烧杯、250ml 烧杯两个、玻璃棒、PH 计、马弗炉、X 射线衍射仪,胶头滴管。

2.2制备原理及实验步骤

配制0.8mol/l 的聚乙二醇(PEG600)溶液,称取23.8g 的 Zn(NO 3)2·6H 2O 溶于100ml 去离子水,并加入1g 上述配制的聚乙二醇(PEG600)溶液。称取31.6g NH 4HCO 3定容至200ml 配制成2.0mol/l 的溶液。然后将NH 4HCO 3溶液缓慢滴加到锌盐溶液中。调节反应体系的终点PH 值为7.5.将所得的沉淀物减压抽滤,用1mol/L 的NH 4HCO 3溶液无水乙醇分别洗涤3次,60-80℃烘干后放于马弗炉400℃煅烧2h ,即得纳米ZnO 粉体。

主要反应历程如下:

Zn 2++2CO 3→ZnCO 3(↓)+CO 2↑+H 2O ZnCO 3→ZnO+CO 2(↑)

3.结果与分析

3.1终点PH=7.45 3.2称量,计算产率

m

理论

=6.512g

m

实际

5.21g

产率= m

实际/ m

理论

×100%=80.00%

3.3X射线物相测定

Peak Search Report (9 Peaks, Max P/N = 36.8)

PEAK: 55-pts/Parabolic Filter, Threshold=3.0, Cutoff=0.1%, BG=3/1.0, Peak-Top=Summit 3.4产品X-射线衍射数据:

晶粒尺寸D=0.89λ/ρCOSθ

式中:D为晶粒度;

λ为X射线的波长:

θ为衍射角;

θ=36.081°/2=18.0405°

β= 0.61°=1.065×10-2rad

D=0.89×1.5406?/(1.065×10-2rad×cos18.0405°)=13.545nm

3.4分析

由以上结果可知,纳米ZnO的产率是80.00%,有点偏低,而且纳米颗粒较小。分析可能的原因是(1)试剂在实验过程中经几步转移,这其中会有一部分损失。(3)抽滤时因为纳米ZnO颗粒较小,而所铺滤纸层数不够,致使少量纳米ZnO颗粒透过滤纸而进入母液中。(2)①化学沉淀法中采用二步法,前驱物大多为胶状物,存在阴离子洗涤与去除的问题;②沉淀剂易作为杂质混入;③沉淀过程中各种成分可能发生偏析,水洗时部分沉淀物易发生溶解:④合成的纳米氧化锌有团聚现象。(4)该方法由于沉淀剂直接加入,而来不及扩散,造成局部溶度过高,使溶液中同时进行着均相成核与非均相成核作用,造成合成出的纳米氧化锌粒径分布宽。影响X射线衍射仪测量的准确性。(5)煅烧温度的影响:煅烧温度和时间也影响产品氧化锌的粒径,煅烧温度与时间过低、过短,则煅烧不完全,产品的纯度不够;而煅烧温度过高,煅烧时间越长,得到的粒径越大。我们的沉淀放入烘箱的是较短,可能并没有全部烘干,或者没有达到所需的水平,导致最后粒径较小。(6)聚乙二醇的影响:加入一定量的高分子聚合物有利于形成溶胶,使之得到较好的分散。微粒表面吸附了一层高分子聚合物后,即形成了一层保护膜,由于空间阻位作用,抑制微粒进一步长大,很好地控制了合成粒子的大小。粒子较小可能跟所加聚乙二醇(PEG600)的加入量有关。(7)溶液终点PH值对粒子本身的形貌有影响。

4.结论

参考文献

[1]汤国虎均相沉淀法合成纳米氧化锌的研究,成都理工大学学位论文,2004.5

[2]王振希等,直接沉淀法制备纳米氧化锌工艺研究,南昌大学化学工程系。

[3]雷闫盈李晓娥祖庸,西安大学化工系,西安710096

[4]徐燕莉编.表面活性剂的功能北学工业出版社,2000.06

[5]沈文霞等,物理化学第五版下册,高等教育出版社,2005.07

实验7--沉淀法制备纳米氧化锌粉体

实验七 沉淀法制备纳米氧化锌粉体 一、实验目的 1、了解沉淀法制备纳米粉体的实验原理。 2、掌握沉淀法制备纳米氧化锌的制备过程和化学反应原理。 3、了解反应条件对实验产物形貌的影响,并对实验产物会表征分析。 二、实验原理 氧化锌是一种重要的宽带隙(3.37 eV)半导体氧化物,常温下激发键能为60 meV 。近年来,低维(0维、1维、2维)纳米材料由于具有新颖的性质已经引起了人们广泛的兴趣。氧化锌纳米材料已经应用在纳米发电机、紫外激光器、传感器和燃料电池等方面。通常的制备方法有蒸发法、液相法。我们在这里主要讨论沉淀法。 沉淀法是指包含一种或多种离子的可溶性盐溶液,当加入沉淀剂(如OH --,CO 32-等)后,或在一定温度下使溶液发生水解,形成不溶性的氢氧化物、氧化物或盐类从溶液中析出,并将溶剂和溶液中原有的阴离子洗去,得到所需的化合物粉料。 均匀沉淀法是利用化学反应使溶液中的构晶离子由溶液中缓慢均匀地释放出来。而加入的沉淀剂不是立即在溶液中发生沉淀反应,而是通过沉淀剂在加热的情况下缓慢水解,在溶液中均匀地反应。 纳米颗粒在液相中的形成和析出分为两个过程,一个是核的形成过程,称为成核过程;另一个是核的长大,称为生长过程。这两个过程的控制对于产物的晶相、尺寸和形貌是非常重要的。 制备氧化锌常用的原料是可溶性的锌盐,如硝酸锌Zn(NO 3)2、氯化锌ZnCl 2、醋酸锌。常用的沉淀剂有氢氧化钠(NaOH )、氨水(NH 3. H 2O )、尿素(CO(NH 2)2)。一般情况下,锌盐在碱性条件下只能生产Zn(OH)2沉淀,不能得到氧化锌晶体,要得到氧化锌晶体通常需要进行煅烧高温。均匀沉淀法通常使用尿素作为沉淀剂,通过尿素分解反应在反应过程中产生NH 3 H 2O 与锌离子反应产生沉淀。反应如下: O H NH CO O H NH CO 23222223)(?+→+ (1) OH -的生成: -+ +→?OH NH O H NH 423 (2) CO 32-的生成: O H CO NH CO O H NH 223422322++→+?-+ (3)

沉淀法制备纳米ZnO

设计性实验2 沉淀法制备纳米ZnO 摘要:本实验以Zn(NO 3) 2 ·6H 2 O和NH 4 HCO 3 为原料,聚乙二醇(PEG600)为模板,采用 直接沉淀法制备纳米氧化锌,并计算产率和晶粒尺寸,讨论影响纳米ZnO晶粒大小的影响因素。 关键词:纳米氧化锌;直接沉淀法;产率;晶粒尺寸 1.直接沉淀发制备纳米ZnO的理论基础 氧化锌俗称锌白,常作白色颜料,是一种重要的工业原料,它广泛应用于涂料、橡胶、陶瓷、玻璃等多种工业。纳米氧化锌与普通氧化锌相比显示出诸多特殊性能,如:压电性、荧光性、非迁移性、吸收和散射紫外线能力等,因而其用途大大扩展,如可用于压敏材料、压电材料、荧光体、化妆品、气体传感器、吸湿离子传导温度计、图象记录材料、磁性材料、紫外线屏蔽材料、高效催化剂和光催化剂。国内外专家学者一致认为,纳米氧化锌必将逐步取代传统的氧化锌系列。 纳米材料是指晶粒(或组成相)在任一维的尺寸小于100nm的材料,是由粒径尺寸介于1 ~ 100nm之间的超细微粒组成的固体材料,按空间形态可分为一维纳米丝、二维纳米膜和三维纳米粒。 纳米材料的制备方法分类如下表:

本实验采用化学沉淀法里的直接沉淀法制备纳米ZnO ,直接沉淀法的原理是在可溶性锌盐溶液中加入沉淀剂后,于一定条件下生成沉淀从溶液中析出,将阴离子洗去,经分离、干燥、热处理后,得到纳米氧化锌。该方法操作简单,对设备和技术要求不太苛刻,产品纯度高,不易引入杂质,成本低。 X-射线衍射仪可以利用衍射原理,精确测定物质的晶体结构,织构及应力,精确的进行物相分析,定性分析,定量分析.利用谢乐公式:Dc = 0.89λ /(B cos θ) (λ为X 射线波长, B 为衍射峰半高宽, θ 为衍射角) ,根据粉体X-射线衍射图可以得到相关数据,计算得到粒子的尺寸。 2.实验 2.1实验药品及仪器 Zn(NO 3)2·6H 2O 、 NH 4HCO 3、聚乙二醇(PEG600)、无水乙醇、去离子水 烘箱、500ml 烧杯、250ml 烧杯两个、玻璃棒、PH 计、马弗炉、X 射线衍射仪,胶头滴管。 2.2制备原理及实验步骤 配制0.8mol/l 的聚乙二醇(PEG600)溶液,称取23.8g 的 Zn(NO 3)2·6H 2O 溶于100ml 去离子水,并加入1g 上述配制的聚乙二醇(PEG600)溶液。称取31.6g NH 4HCO 3定容至200ml 配制成2.0mol/l 的溶液。然后将NH 4HCO 3溶液缓慢滴加到锌盐溶液中。调节反应体系的终点PH 值为7.5.将所得的沉淀物减压抽滤,用1mol/L 的NH 4HCO 3溶液无水乙醇分别洗涤3次,60-80℃烘干后放于马弗炉400℃煅烧2h ,即得纳米ZnO 粉体。 主要反应历程如下: Zn 2++2CO 3→ZnCO 3(↓)+CO 2↑+H 2O ZnCO 3→ZnO+CO 2(↑)

液相沉淀法在材料合成中应用进展

液相沉淀法合成纳米粉体的应用进展 材料科学与工程赵小龙2011201307 摘要:液相沉淀法是一种合成纳米粉体最为普遍的方法。本文将介绍液相沉淀法的三种方法:直接沉淀法、共沉淀法和均匀沉淀法。对液相沉淀法合成纳米粉体的沉淀反应过程、洗涤过程、干燥过程以及煅烧过程等环节的控制方法及原理作了详述。由于纳米TiO2粉体具有是优良的光催化活性,且具有极大的商业价值,本文还将介绍一下纳米TiO2粉体制备工艺。 关键词:液相沉淀;控制;洗涤;干燥;煅烧;制备工艺 纳米粉体是指线度处于1 nm~100 nm的粒子聚合体,包括金属、金属氧化物、非金属氧化物和其他各种各类的化合物。与普通粉体相比,纳米粉体的特异结构使其具有小尺寸效应、量子尺寸效应、表面效应及宏观量子隧道效应[1],因而在催化、磁性材料、医学、生物工程、精细陶瓷和化妆品等众多领域显示出广泛的应用前景,成为各国竞相开发的热点。纳米粉体的制备方法很多,可归纳为固相法、气相法和液相法三大类。其中液相化学法是目前实验室和工业上采用最为广泛的合成纳米粉体的方法,包括沉淀法、醇盐水解法、溶胶-凝胶法和水热合成法等[2]。本文主要讨论了液相沉淀法合成纳米粉体的分类、方法、控制过程及原理。 1 液相沉淀法介绍 液相沉淀法是液相化学反应合成金属氧化物纳米材料最普通的方法。它是利用各种溶解在水中的物质反应生成不溶性氢氧化物、碳酸盐、硫酸盐和乙酸盐等,再将沉淀物加热分解,得到最终所需的纳米粉体。液相沉淀法可以广泛用来合成单一或复合氧化物的纳米粉体,其优点是反应过程简单,成本低,便于推广和工业化生产。液相沉淀法主要包括直接沉淀法、共沉淀法和均匀沉淀法。 1.1 直接沉淀法 直接沉淀法是使溶液中的金属阳离子直接与沉淀剂,如OH-、C 2O 2 -4、CO 2 -3, 在一定条件下发生反应而形成沉淀物,并将原有的阴离子洗去,经热分解得到纳 米粉体。直接沉淀法操作简便易行,对设备、技术要求不太苛刻,不易引入其他杂质,有良好的化学计量性,成本较低,因而对其研究也较多,只不过其合成的纳米粉体粒径分布较宽。廖莉玲等[3]以硝酸镁、碳酸钠为原料,用直接沉淀法合成得到纳米氧化镁,其平均粒径为30 nm。文献[4]报道了用一定溶度的ZrOCl 2 和氨水溶液在聚乙二醇水溶液中混合反应,经抽滤、洗涤、干燥、煅烧后得到纳米 ZrO 2 。其中聚乙二醇起到保护胶粒的作用。 1.2 共沉淀法 共沉淀法是在混合的金属盐溶液(含有两种或两种以上的金属离子)中加入合适的沉淀剂,反应生成均匀沉淀,沉淀热分解后得到高纯纳米粉体材料。它是制备含有两种以上金属元素的复合氧化纳米粉体的主要方法。其在制备过程中完成了反应及掺杂过程,因而得到的纳米粉体化学成分均一、粒度小而且均匀。共沉淀法已被广泛用于制备钙钛矿型材料、尖晶石型敏感材料、铁氧体及荧光材料。 文献[5]报道了用Al(NO 3) 3 和ZrO(NO 3 ) 2 混合溶液,加氨水共沉淀制备了一系列Al 2 O 3 含量由低到高的ZrO 2-Al 2 O 3 纳米复合氧化物。焦正等[6]采用喷射共沉淀法制备了 尖晶石型ZnGa 2O 4 纳米晶,晶粒细小均匀,形状完整,粒径小于10nm,无ZnO杂 相峰。

溶胶-凝胶法在制备纳米材料方面的应用

溶胶-凝胶法在制备纳米材料方面的应用 前言 纳米科技是一个跨学科的研究与开发领域,涉及纳米电子学、纳米材料学、纳米物理学、纳米化学、纳米生物学、纳米加工及表征等。纳米材料的合成与制备一直是纳米科学领域内 一个重要的研究课题,新材料制备工艺过程的研究与控制对纳米材料的微观结构和性能具有 重要的影响。最早是采用金属蒸发凝聚"原位冷压成型法制备纳米晶体,相继又发展了各种 物理、化学方法,如机械球磨法、非晶晶化法、水热法、溶胶-凝胶法等 溶胶-凝胶法是上个世纪6、70年代发展起来的一种制备无机材料的新工艺,近年来多 被用于制备纳米微粒和薄膜。溶胶-凝胶法具有反应条件温和通常不需要高温高压,对设备 技术要求不高,体系化学均匀性好,可以通过改变溶胶-凝胶过程的参数裁剪控制纳米材料 的显微结构等诸多优点。不仅可用于制备超微粉末和薄膜,而且成功应用于颗粒表面包覆, 成为目前合成无机纳米材料的主要技术,引起了材料科学技术界的广泛关注,是一个具有挑战性和应用前景非常广阔的领域。 1.溶胶-凝胶法的工艺原理: 溶胶凝胶法的工艺原理是:以液体化学试剂配制成金属无机盐或金属醇盐的前驱体,前驱体溶于溶剂中形成均匀的溶液(有时加入少量分散剂)加入适量的凝固剂使盐水解、 醇解或发生聚合反应生成均匀、稳定的溶胶体系,再经过长时间放置(陈化)或干燥处理使 溶质聚合凝胶化,再将凝胶干燥、焙烧去除有机成分、最后得到无机纳米材料。因此,也有 人把溶胶凝胶法归类为前驱化合物法。 根据原料的不同,溶胶凝胶法一般可分为两类,即无机盐溶胶凝胶法和金属醇盐水解法。(1)在无机盐溶胶凝胶法中,溶胶的制备是通过对无机盐沉淀过程的控制,使生成的颗粒 不团聚成大颗粒而生成沉淀,直接得到溶胶;或先将部分或全部组分用适当的沉淀剂沉淀出 来,经解凝,使原来团聚的沉淀颗粒分散成胶体颗粒溶胶的形成主要是通过无机盐的水解来 完成。反应式如下 (2)金属醇盐水解法通常是以金属有机醇盐为原料! 通过水解与缩聚反应而制得溶胶’首先将金属醇盐溶入有机溶剂! 加水则会发生如下反应: 式中M为金属R为有机基团,如烷基。经加热去除有机溶液得到金属氧化物材料。 2.溶胶-凝胶法的工艺过程: 溶胶凝胶法制备无机纳米材料过程主要包括5个步骤 (1)均相溶液的制备:溶胶凝胶法的第一步是制取包含醇盐和水均相溶液,以确保醇盐的 水解反应在分子级水平上进行。在此过程中,溶剂的选择和加入量是关键。 (2)溶胶的制备:在溶胶凝胶法中,最终产品的结构在溶胶形成过程中即已初步形成,后 续工艺均与溶胶的性质直接相关,因此溶胶制备的质量是十分重要的。有两种方法制备溶胶,一是先将部分或全部组分用适当沉淀剂先沉淀出来,经解凝,使原来团聚的沉淀颗粒分散成 原始颗粒。这种颗粒的大小一般在溶胶体系中胶核大小的范围内,因而可制得溶胶;另一种方法是由同样的盐溶液,通过对沉淀过程的严格控制,使首先形成的颗粒不致团聚为大颗粒 而沉淀,从而直接得到胶体溶液。 (3)凝胶化过程:缩聚反应形成的聚合物或粒子聚集体长大为小粒子簇,后者逐渐相互连 接成为一个横跨整体的三维粒子簇连续固体网络。在陈化过程中,胶体粒子聚集形成凝胶, 由于液相被包裹于固相骨架中,整个体系失去活动性,随着胶体粒子逐渐形成网络结构, 溶胶也从Newton体向Bingham体转变,并带有明显的触变性。在许多实际应用中,制品的成型就是在此期间完成的。

化学沉淀法制备纳米二氧化硅

化学沉淀法制备纳米二氧化硅 摘要:采用硅酸钠为硅源,氯化铵为沉淀剂制备纳米二氧化硅。研究了硅酸钠的浓度、乙醇与水的体积比以及pH 值对纳米二氧化硅粉末比表面积的影响,并用红外、X射线衍射和透射电镜对二氧化硅粉末进行了表征。研究结 果表明在硅酸钠浓度为0. 4 mol/L,乙醇与水体积比为1B8, pH值为8. 5时可制备出粒径为5~8 nm分散性好的无 定形态纳米二氧化硅。 关键词:沉淀法;纳米SiO2;制备 1 引言 纳米二氧化硅为无定型白色粉末,是一种无毒、无味、无污染的材料,其颗粒尺寸小,比表面积大,是纳米 材料中的重要一员。近年来,随着纳米二氧化硅制备技术的发展及改性研究的深入,纳米二氧化硅在橡胶、 塑料、涂料、功能材料、通讯、电子、生物学以及医学等诸多领域得到了广泛的应用[1, 2]。目前,纳米二氧化硅主要制备方法有以硅烷卤化物为原料的气相法[3];以硅酸钠和无机酸为原料的化 学沉淀法[4];以及以硅酸酯等为原料的溶胶-凝胶法[5-7]和微乳液法[8-10]。在这些方法中,气相法原料昂贵, 设备要求高,生产流程长,能耗大;溶胶-凝胶法原料昂贵,制备时间长;而微乳液法成本高、有机物难以去除 易对环境造成污染。与上述三种方法相比,化学沉淀法具有原料来源广泛、价廉,能耗小,工艺简单,易于工 业化等优点,但同时也存在产品粒径大或分布范围较宽的问题,这是由于产品性状在制备过程中受许多可变 因素的影响。近年来,许多研究通过各种控制手段来改善沉淀法产品的性状,如郑典模[11]、贾东舒[12]、孙道 682 研究快报硅酸盐通报第29卷 兴[13]等对反应条件加以分别制得了平均粒径为76 nm、30~50 nm和20~40 nm的二氧化硅,何清玉[14]引入 了超重力技术制得了小于20 nm的二氧化硅。 本文以硅酸钠为硅源,氯化铵为沉淀剂,加入表面活性剂十六烷基三甲基溴化铵(CTAB)和乙醇,通过 化学沉淀法合成了粒径小且分布窄的纳米二氧化硅。 在硅酸钠溶液中,简单的偏硅酸离子并不存在,偏硅酸钠的实际结构为Na2(H2SiO4)和Na (H3SiO4),因 此溶液中的负离子H2SiO2-4为和H3SiO-4。二者在溶液中皆可与氢离子结合生成硅酸。氯化铵是一种强酸 弱碱盐,能缓慢地释放出H+,可以有效避免pH变化过大。另外反应在碱性条件下进行,反应所生成的粒子 带负电,可吸引NH+4和溶液中的Na+形成双电层,通过双电层之间库仑排斥作用,平衡离子表面电荷,从而

纳米材料制备方法

纳米微粒制备方法研究进展 刘伟 (湘潭大学材料科学与工程学院,13材料二班,2013701025) 摘要:纳米微粒一般是指粒径在1nm到100nm之间,处在原子簇和宏观物体交接区域内的粒子,或聚集数从十到几百范围的物质。纳米材料具有表面效应、体积效应、量子尺寸效应、宏观量子隧道效应等特点,因而有许多与传统的晶体和非晶体不同的独特性质,也与组成它们的分子或原子差异很大,在材料学、物理学、化学、催化、环境保护、生物医学等领域具有十分广阔的应用前景。本文综述目前纳米微粒的主要的制备方法, 比较和评述了每种方法的特点,以期这一新材料能得以更为深入地研究和更广泛地应用。 关键词:纳米微粒;制备;方法 1.引言 纳米微粒的制备方法从物料的状态来分,可归纳为固相法、液相法、气相法3大类;从物料是否发生化学反应而分为物理法、化学法及近年迅速发展的模板合成法、仿生法等;随着科技的不断发展及对不同物理、化学特性超微粒子的需求,又派生出许多新的技术,下面就着重介绍固相法、液相法和气相法。 2.固相法 固相法是一种传统的粉化工艺,具有成本低、产量高、制备工艺简单的优点。固相法分为固相机械粉碎法和固相反应法。固相机械粉碎法借用诸如搅拌磨、球磨机、气流磨、塔式粉碎机等多种粉碎机,利用介质和物料之间的相互研磨和冲击的原理,使物料粉碎,常用来制备微米级粒径的粉体颗粒。此法存在能耗大、颗粒粒径分布不均匀、易混入杂质、颗粒外貌不规则等缺点,因而较少用以制备纳米微粒。固相反应法是将固体反应物研细后直接混合,在研磨等机械作用下发生化学反应,然后通过后处理得到需要的纳米微粒。该方法一般要加入适量表面活性剂,所以有时也称湿固相反应。该方法具有工艺简单、产率高、颗粒粒子稳定化好、易操作等优点,尤其是可减少或避免液相中易团聚的现象。[4] 3.液相法 液相法是目前实验室和工业生产中较为广泛采用的方法。通常是让溶液中的不同分子或离子进行反应,产生固体产物。产物可以是单组分的沉淀,也可以是多组分的共沉淀。其涉及的反应也是多种多样的,常见的有:复分散反应、水解反应、还原反应、络合反应、聚合反应等。适当控制反应物的浓度、反应温度和搅拌速度,就能使固体产物的颗粒尺寸达到纳米级。液相法具有设备简单、原料易得、产物纯度高、化学组成可准确控制等优点。下面主要介绍其中的沉淀法和微乳液法。 3.1 沉淀法 沉淀法是液相法制备金属氧化物纳米微粒最早采用的方法。沉淀法基本过程是:可溶性化合物经沉淀或水解作用形成不溶性氢氧化物、水合氧化物或盐类而析出,经过滤、洗涤、煅烧得到纳米微粒粉末。沉淀法又分为均相沉淀法和共沉淀法。沉淀法工艺简单、成本低、反应时间短、反应温度低,易于实现工业化生产。但是,沉淀物通常为胶状物,水洗、过滤较困难;所制备的纳米微粒易发生团聚,难于制备粒径小的纳米微粒。沉淀剂容易作为杂质混入产物之中。此外,还由于大量金属不容易发生沉淀反应,因而这种方法适用面较窄。[3]

均匀沉淀法制备 ZnO 纳米材料

实验3 均匀沉淀法制备ZnO 纳米材料 ZnO 是一种重要的II-VI 族半导体氧化物,属于宽带隙直接带材料(E g ≥ 2.3 eV ),广泛地应用于日常用品、塑料橡胶、太阳能电池、陶瓷工业、探测材料、压电材料、光波导以及军事隐形等方面。ZnO 的研究主要集中在光电性质、光催化性质、气体探测器以及应用陶瓷等方面。纳米材料的兴起,使ZnO 纳米材料的制备与应用方面的研究受到了广泛地关注。本实验以尿素为沉淀剂,利用均匀沉淀法来制备纳米ZnO 粉体材料。 一、实验目的 (1)、了解均匀沉淀法的基本原理,利用均匀沉淀法制备ZnO 纳米材料; (2)、了解X 射线粉末衍射(XRD)仪的组成,熟悉测试的一般步骤; (3)、掌握利用Jade 软件进行物相检索的一般步骤。 二、实验原理 均匀沉淀法是利用某一化学反应使溶液中的构晶离子由溶液中缓慢地、均匀地释放出来。所加入的沉淀剂不直接与被沉淀组分发生反应,而是通过化学反应使沉淀剂在整个溶液中均匀地、缓慢地析出。均匀沉淀法制备得到的产物粒子粒径分布较窄,分散性好。本实验以硝酸锌为原料,尿素为沉淀剂,制备ZnO 纳米粉体材料。制备过程可分为如下三个方面: (1)、尿素分解反应:()22322 2ΔCO NH + 3H O 2NH H O + CO ??→↑i ; (2)、沉淀反应:()2++3242Zn + 2NH H O Zn OH + 2NH ??→↓i ; (3)、热分解反应:()2 2ΔZn OH ZnO + H O ??→↑ 三、实验仪器与试剂 (1)、仪器 恒温磁力搅拌器,磁子,电子天平,电热鼓风干燥箱,马弗炉,电动离心机,烧杯,量筒(50 mL),坩埚,圆底烧瓶(150 mL),球形冷凝管,胶管; (2)、试剂 硝酸锌,尿素,蒸馏水,乙醇。 四、实验步骤 (1)、按硝酸锌浓度~0.1 mol/L 、尿素浓度~0.4 mol/L ,配置50 mL 混合溶液(其中硝酸锌称取4 g ,尿素2.4 g 溶于蒸馏水中,总体积调为~50 mL ),将混合

沉淀法制备纳米粉体

实验名称:沉淀法制备纳米BaTiO3粉体钛酸钡具有高介电常数、低介质损耗等优异的性能,广泛地应用于多层陶瓷电容器、热敏电阻、光电器件等电子元件,是电子工业中应用最广泛的陶瓷材料之一。随着电子工业的发展,对陶瓷电子元件提出了高精度、高可靠性、小型化的要求,其关键之一就是要实现粉末原料的超细、高纯和粒径分布均匀,因而对传统的钛酸钡粉体的制备提出了新的要求。制备超细,高纯和粒径分布均匀的纳米BaTiO3粉体的制备成为了纳米材料制备领域的研究热点之一。 一.实验目的 本文旨在通过对化学沉淀法制备纳米钛酸钡的工艺研究,提出制备颗粒粒度小且分布均匀、结晶度和分散性较好的工艺条件。 二.实验原理 沉淀作用表示一个新的凝结相的形成过程,或由于加入沉淀剂使某些离子成为难溶化合物而沉积的过程。产生沉淀的化学反应称为沉淀反应。物质的沉淀和溶解是一个平衡过程,通常用溶度积常数Ksp来判断难溶盐是沉淀还是溶解。溶度积常数是指在一定温度下,在难溶电解质的饱和溶液中,组成沉淀的各离子浓度的乘积为一常数。分析化学中经常利用这一关系,借加入同离子而使沉淀溶解度降低,使残留在溶液中的被测组分小到可以忽略的程度。三.实验器材: 实验仪器:反应釜;循环水式多用真空泵;X-射线衍射仪;真空干燥箱;磁力搅拌器等。 实验原料:氯化钡(分析纯);氢氧化钠(分析纯);四氯化钛(化学纯);浓盐酸(分析纯);无水乙醇(分析纯); 四.实验过程

① 取2mlTiCl 4加入7ml 冰水中配成2.5mol/LTiOCl 2溶液。 ② 将5.0gBaCl 2加入到21ml 水中配成1.2mol/LBaCl 2。 ③ 将1、2产品混合加热到60℃左右,滴加6mol/LNaOH ,使pH>=13,反应15—20min 。 ④ 沉淀过滤分离,洗涤,烘干,称重,表征。 五.五.数据记录与处理 以下为实验测得的XRD 衍射图谱及其晶面指数 (100) (110)(111) (200)(210) (211)(220)(300) (310) (311)2030405060702-T heta(°0 50 100150 I n t e n s i t y (C o u n t s )[张秋华BaTiO3.tx t] 实验日期:20 31-0174> BaT iO3 - Barium T itanium Oxide 1.)从图中可以看出:1.衍射峰向右平均偏移了0.50—10 2.与PDF 卡片对照,丢失了某些峰 原因可能有下: 1.可能做衍射时样品没有放平; 2.掺有杂质离子 3晶格常数发生了变化,可能形成了固溶体。 4.衍射峰整体向右偏移,根据 λθ=sin 2d 可知:角度变大,晶面间距增大。 5.产率低,可能在过滤时方法不当,造成了产品损失。 2).实验所得钛酸钡样品m=1.6448g ; 查文献可知TiCl 4的密度为1.762g/ml,分子量为189.71,钛酸钡分子量为233.2

共沉淀制备四氧化三铁纳米磁性材料.

共沉淀法制备四氧化三铁纳米磁性材料 纳米磁性材料是在20世纪70年代后逐渐产生、发展和壮大起来的一种新型磁性材料。它不同于常规磁性材料的主要原因是关联于磁相关的特征物理长度恰好处于纳米量级,例如:磁单畴尺寸,超顺磁性临界尺寸,交换作用长度,以及电子平均自由路程等于大致处于1-100nm量级,当磁性体的尺寸与这些特征物理长度相当时,就会呈现反常的磁学性质。纳米磁性材料目前被广泛应用在磁性记忆材料、靶向药物载体、核磁共振造影增强剂及电化学生物传感器等方面。 一、实验目的 1.掌握共沉淀法制备纳米磁性材料的基本原理 2.掌握纳米磁性材料的表征方法 二、实验原理 将二价铁盐(Fe2+)和三价铁盐(Fe3+)按一定比例混合,加入沉淀剂(OH—),搅拌反应即得超微磁性Fe3O4粒子,反应式为:Fe2 + + Fe3 + + OH—→Fe (OH) 2 / Fe (OH) 3 (形成共沉淀) Fe (OH) 2 + Fe (OH) 3→FeOOH + Fe3O4(pH ≤7.5) FeOOH + Fe2 +→Fe3O4 + H+(pH ≥9.2) 总反应为:Fe2 + + 2Fe3 + + 8OH—→Fe3O4 +4H2O 实际制备中还有许多复杂的中间反应和副产物: Fe3O4 + 0.25O2 + 4.5H2O →3Fe (OH) 3 2Fe3O4 + 0.5O2→3Fe2O3 所以实验中二价铁适当过量,即[Fe3+]:[Fe2+]=1.75:1

此外,溶液的浓度、nFe2 +/Fe3 +的比值、反应和熟化温度、溶液的pH 值、洗涤方式等均对磁性微粒的粒径、形态、结构及性能有很大影响。 三、实验试剂与仪器 试剂: FeCL3。6 H2O FeSO4.7H2O NaOH 十二烷基苯磺酸钠 PH试纸无水乙醇 仪器:恒温水浴箱真空干燥箱 FA1604型电子天平激光粒度分布仪电子扫描显微镜 X射线分析仪离心机(强磁磁铁)100ml容量瓶、锥形瓶、烧杯、玻璃棒等玻璃仪器 四、实验步骤 1.称取13.90g FeSO4.7H2O,用一定的蒸馏水溶解,于100ml的容量瓶中配制Fe2+的溶液,置于65。C的恒温水浴中水浴加热; 称取23.67g FeCL3。6 H2O,用一定的蒸馏水溶解,于100ml的容量瓶中配制Fe3+ 的溶液,置于65。C的恒温水浴中水浴加热; 称取8gNaOH溶于一定的蒸馏水,于100ml容量瓶中配制NaOH溶液; 称取2g NaOH溶于一定的蒸馏水,于100ml容量瓶中配制NaOH溶液; 2.纳米Fe3O4的制备 1)取43.10ml 1.00mol/L Fe2+溶液和43.10ml 1.75 mol/L Fe3+溶液混合,保证[Fe3+]:[Fe2+]=1.75:1;快速搅拌, 滴加5 mol/L NaOH溶液至pH = 7,此时有棕色颗粒生成。再滴加0.5 mol/L NaOH溶液至规定

直接沉淀法制备纳米ZnO实验(论文)

沉淀法制备纳米ZnO与表征实验 ---以氯化锌为原料 系别:应用化学系 班级:1004班 姓名:刘凯强 学号:2010080401 指导教师:唐玉朋

直接沉淀法制备纳米氧化锌实验 作者:刘凯强 摘要:以氯化锌为原料, 直接沉淀法制备ZnO纳米粒子; 研究了制备过程中Zn离子浓度、焙烧温度等条件对ZnO纳米晶体粒径的影响, 并对其机理进行了分析。实验结果表明, 较小的反应浓度可以获得较小的晶体粒径; 在其它反应条件相同的情况下, 制备的纳米ZnO粒子, 其晶粒尺寸随着焙烧温度的增加, 晶粒逐渐增大, 为ZnO的应用开辟了更为广阔的前景。 关键词: 纳米氧化锌,直接沉淀法, 制备,表征。 引言 纳米氧化锌(粒子直径在1-100nm)是近年来已发现的一种高新技术材料,是一种新型的高功能精细无机材料,由于其具有量子尺寸效应,小尺寸效应、表面效应和宏观量子隧道效应[1],因而纳米ZnO产生了其体相材料所不具备的这些效应、展现了许多特殊的性质,由于其粒子的尺寸小,比表面积大,使其在化学,光学,生物和电学等方面表现出许多独特优异的物理和化学性能。与普通氧化锌相比,具有优良的光活性,电活性,烧结活性和催化活性,如无毒和非迁移性,荧光性,压电性,吸收和散射紫外线能力。 这一新的物质状态,赋予氧化锌这一古老产品在催化、滤光、光吸收、医药、磁介质、电等方面有着广阔的应用前景。如制造气体传感器,荧光体。紫外线屏蔽材料,变阻器,图像记录材料,压电材料,压敏电阻,磁性材料,高效催化剂和塑料薄膜等[2]。利用氧化锌的电阻变化,可制成气体报警器,吸湿离子传导温度计;利用纳米氧化锌的紫外屏蔽能力,可制成紫外线过滤器,化妆品;以氧化锌为主体,配以Bi2O3,Pb6O11,BaO等粉末材料烧结成型,可得变阻器;利用氧化锌半导体光敏理论,纳米氧化锌可作高效光催化剂,用于降解废水中的有机污染物,净化环境等。 氧化锌的结构性能 氧化锌(ZnO)晶体是纤锌矿结构,属六方晶系,为极性晶体。氧化锌晶体结构中,Zn原子按六方紧密堆积排列,每个Zn原子周围有4个氧原子,构成Zn-O4配位四面体结构,四面体的面与正极面C( 00001)平行,四面体的顶角正对向负极面(0001),晶格常数a=342pm, c=519pm,密度为5.6g/cm3,熔点为2070k,

化学沉淀法制备氧化锡纳米粉体

化学沉淀法制备氧化锡纳米粉体Chemical precipitation method preparation of tin oxide nano powder 内容摘要 采用溶液化学沉淀法,在不同温度,不同反应时间,不同浓度及添加剂条件下考察了氧化锡纳米材料的制备。分别用 SEM、XRD、TEM等手段对产物进行表征,结合其组成、结构、性能等分析评价,进行了全面深入的研究。通过优化制备条件,得到了纯的纳米氧化锡。 关键字:纳米粉体氧化锡溶液化学沉淀法制备 Abstract Using chemical precipitation method, SnO2 nano materials were prepared under the condition of different temperature, different reaction time, different concentration and different additives by simple equipment. The products were characterized by means of SEM, XRD, TEM respectively. All the results were analysed and evaluated through combining its related composition, structure, performance, which help us to conduct a comprehensive in-depth study. By optimizing the preparation technology, we are able to get the ideal composition and morphology of tin oxide. Key words: nanopowder tin oxide chemical precipitation preparation 化学沉淀法制备氧化锡纳米粉体 纳米材料因具有量子尺寸效应, 小尺寸效应和表面效应等特性, 在光、电、热、磁等方面具有很多的特殊性能并得到了广泛研发[1]。纳米氧化锡作为一种新型纳米功能材料[2,3],其空间结构特性、气敏性、光敏性、机械性能等在光电等许多领域都有极好的优越性,自1962 年以来,氧化锡在家庭、商业和工业领域都得到了广泛的应用[4], 诸如气敏探测器[5~8],电极材料[9]以及太阳能电池[10,11]等等。因此引起了广大研究者对氧化锡研究的广泛兴趣,在该材料的制备领域已取得了一定的成就。 但是利用简单设备,高产率的制备纳米氧化材料仍然存在挑战。制备 SnO 2

实验7--沉淀法制备纳米氧化锌粉体

实验七沉淀法制备纳米氧化锌粉体 一、实验目的 1、了解沉淀法制备纳米粉体的实验原理。 2、掌握沉淀法制备纳米氧化锌的制备过程和化学反应原理。 3、了解反应条件对实验产物形貌的影响,并对实验产物会表征分析。 二、实验原理 氧化锌是一种重要的宽带隙 eV)半导体氧化物,常温下激发键能为60 meV。近年来,低维(0维、1维、2维)纳米材料由于具有新颖的性质已经引起了人们广泛的兴趣。氧化锌纳米材料已经应用在纳米发电机、紫外激光器、传感器和燃料电池等方面。通常的制备方法有蒸发法、液相法。我们在这里主要讨论沉淀法。 沉淀法是指包含一种或多种离子的可溶性盐溶液,当加入沉淀剂(如OH--,CO 3 2-等)后,或在一定温度下使溶液发生水解,形成不溶性的氢氧化物、氧化物或盐类从溶液中析出,并将溶剂和溶液中原有的阴离子洗去,得到所需的化合物粉料。 均匀沉淀法是利用化学反应使溶液中的构晶离子由溶液中缓慢均匀地释放出来。而加入的沉淀剂不是立即在溶液中发生沉淀反应,而是通过沉淀剂在加热的情况下缓慢水解,在溶液中均匀地反应。 纳米颗粒在液相中的形成和析出分为两个过程,一个是核的形成过程,称为成核过程;另一个是核的长大,称为生长过程。这两个过程的控制对于产物的晶相、尺寸和形貌是非常重要的。 制备氧化锌常用的原料是可溶性的锌盐,如硝酸锌Zn(NO 3) 2 、氯化锌ZnCl 2 、醋酸锌。 常用的沉淀剂有氢氧化钠(NaOH)、氨水(NH 3.H 2 O)、尿素(CO(NH 2 ) 2 )。一般情况下,锌 盐在碱性条件下只能生产Zn(OH) 2 沉淀,不能得到氧化锌晶体,要得到氧化锌晶体通常需要进行煅烧高温。均匀沉淀法通常使用尿素作为沉淀剂,通过尿素分解反应在反应过 程中产生NH 3 H 2 O与锌离子反应产生沉淀。反应如下:

相关主题
文本预览
相关文档 最新文档