当前位置:文档之家› 超高温瞬时灭菌在食品工业中的应用剖析

超高温瞬时灭菌在食品工业中的应用剖析

超高温瞬时灭菌在食品工业中的应用剖析
超高温瞬时灭菌在食品工业中的应用剖析

超高温瞬时灭菌在食品应用中的概述

(冯帆 2013级科工三班 222013324022010)

摘要:超高温杀菌技术是目前研究开发的高新技术之一,它具有节能高效、安全、经济以及更大限度保持食品天然的色、香、味的特点。文中概述了超高温杀菌技术的原理以及其分类,简述了其在食品中的应用。

关键词:超高温瞬时灭菌食品加工杀菌设备

一、超高温瞬时灭菌的定义

超高温瞬时灭菌,又名UHT杀菌法,是英国于1956年首创,在1957~1965年间,通过大量的基础理论研究和细菌学研究后,才用于生产。超高温杀菌最早用于乳品工业牛奶的杀菌作业。1965年英国Burton 提出了详细的理论技术报告。UHT杀菌装置的开发是由荷兰的斯托克公司在20世纪50年代初率研制,随后国际上又出现了许多类型的超高温处理装置。20世纪60年代初,无菌装罐技术获得成功,促进了超高温杀菌与无菌装罐技术相结合,从而发展了灭菌乳生产工艺。20世纪80年代后,UHT技术得到了更大的发展,其应用范围不仅仅限于液体产品,目前已可应用于固液混合产品和固体粉状产品等。杀菌装置也有很大的发展,如欧姆加热装置、气流式杀菌装置、塔式杀菌装置等的开发,进一步促进了超高温杀菌技术的发展。超高温瞬时灭菌设备适用于鲜乳、果汁、饮料、棒冰、及冰淇淋浆料、酱油、豆浆、炼乳、酒类等液体物料的瞬时灭菌.

二、超高温灭菌的基本原理

超高温灭菌是把加热温度为135-150、加热时间为2-8s、加热后产品达到商业无菌要求的杀菌过程叫做超高温杀菌或者UHT杀菌。其基本原理包括微生物热致死原理和如何最大限度地保持食品的原有风味及品质原理。按照微生物的一般热致死原理,当微生物在高于其耐受温度的热环境中,必然受到致命的伤害,且这种伤害随着时间的延长而加剧,直到死亡。大量实验证明,微生物的热致死率是加热温度和受热时间的函数[1]

三、超高温瞬时灭菌使微生物致死的理论依据

微生物的热致死率是加热温度和加热时间的函数。

3.1微生物的耐热性

微生物的耐热性受到下列因素的影响

(1)菌种和菌株;

(2)菌龄、培育条件、贮存环境;

(3)热处理的介质、食品成分如酸度;

(4)原始活菌数;

(5)热处理温度和时间(主导因素)。

3.2微生物的致死速率与D 值

在一定环境和温度下,微生物随时间而死亡时的活菌残存数是按指数递减或按对数周期下降的。细菌任意时刻的致死速率可以用它残存活菌数下降一个对数周期所需的时间来表示,这便是图中D 值的概念。D 值是这一直线斜率绝对值的倒数,即:

()

D D C C C B /1/10log 10log /23=-=''=斜率

D 值反映了细菌死亡的快慢。D 值越大,细菌死亡的速度越慢,即细菌的耐热性越强;反之则死亡速度越快,耐热性越强。D 值随其它影响微生物耐热性的因素而异,只有在这些因素固定不变的条件下,才能稳定不变。如下图

3.3微生物的热力致死时间与Z 值

热力致死时间(Thermal Death Time=TDT)——表示热力致死温度保持不变的条件

下,完全杀灭某菌种的细胞或芽孢所必需的最短热处理时间。

微生物热力致死的时间随致死温度而异,两者的关系曲线称为热力致死时间曲线,下图表达了不同热力致死温度下细菌芽孢的相对耐热性。

Z 值表达了热致死时间缩短一个对数周期所要求的热处理温度升高的度数,它在数值上等于热力致死时间曲线的直线斜率绝对值的倒数。即:

Z Z Z TDT TDT A A /1/)10log 10(log /)'log (log 12=-=-=斜率

如果某种微生物在121℃时的TDT 值为F ,则该微生物在任何杀菌温度下的TDT 值可表示为

Z T F TDT /)121()(log -=-

四、超高温杀菌技术的分类

按照物料与加热介质直接接触与否UHT 杀菌过程可分为 间接式加热法和直接混合式加热法两类:

4.1直接混合式加热可按两种方式进行。一是注射式,即将高压蒸汽注射到待杀菌物料中,二是喷射式,即将待杀菌的物料喷射到蒸汽中。

4.2间接加热UHT 瞬时杀菌是通过采用高压蒸汽和加热介质,热量经过壁面传递给物料。间接式加热超高温杀菌的换热器的传热率至关重要。通常的间壁式换热器有板式、管式、和搅拌式等。

4.3两种方式的优缺点

直接式:高粘度,固体也可以。因直接加热,加工制品会变薄。时间短,品质高;因局部加热会产生变性;同时因直接加热,加工制品会变薄。

间接式:以中粘度,小制品为对象;适用性广。效率高,运转费低,降低物料粘度。高粘度,固体也可以;有时会产生滞留;设备投资大,运转费用高。直接式加热和间接式加热超高温杀菌有着不同的温度变化规律,直接式加热超高温杀菌实现了瞬间加热和冷却,食品品质的热破坏更小,但也存在加热蒸气成为食品成分的问题[2]。

五、超高温瞬时灭菌在食品工业中的应用

5.1超高温杀菌在果酒加工中的应用

果酒酒精度低,糖度较高,营养丰富,微生物容易生长、繁殖,预防果酒生物危害是保证产品质量的重要环节。果酒加热时间过长感官指标变差,通常果酒不采用瓶装后巴氏灭菌,而通过灌装前高温瞬时灭菌,适当添加防腐剂控制生物危害。

5.2超高温杀菌在豆奶加工的应用

近年来, 随着研究的不断深入, 大豆对人体健康的良好作用不断被发现和证实, 豆制品受到了前所未有的重视, 很多国家正在出现豆制品消费热潮。豆浆作为传统豆制品中一个重要品种,其营养丰富,蛋白质消化率高;不含乳糖, 弥补了牛奶会引起乳糖不耐症的不足;不含胆固醇,具有多种生理活性物质, 特别适合于受“富贵病”困扰的现代人。因此,越来越受到重视,销售量快速增长。但是豆浆属于高蛋白产品,各种氨基酸组成齐全,微生物极易生长繁殖。刚生产的豆浆在常温下保质时间不超过4 h,此后其pH 值开始下降,豆浆开始变质,逐步变得黏稠,最后呈现豆花状。豆浆的保鲜问题一直是业内的技术难题。产品保质期短,不利于远距离销售,并且安全性较低,容易腐败变质,抑制了豆浆企业的发展和壮大,成为制约豆浆大规模产业化的瓶颈之一。为了延长豆浆的保质期,一是添加防腐剂,二是高温杀菌。

经超高温瞬间灭菌后, 豆奶中的细菌在瞬间高温下全部被杀死, 并且最大限度地保存了豆奶中的营养成分。无菌包装控制了产品的微生物数量, 所得到的产品可在室温下保存3 个月, 在4 ℃条件下保存4 个月到6个月。产品由于不需要添加任何防腐剂, 流通过程中不需要冷藏环境, 因此降低了成本, 更为重要的是避免了因为冷链发生意外导致的产品变质问题, 极大地提高了企业的经济效益[3-4]。

5.3超高温灭菌在牛奶加工中的应用

超高温灭菌牛奶是杀死所有能导致产品变质的微生物,并采用无菌灌装,因而产品具有卫生、安全、保质期长又无需冷藏等优点。但是超高温牛奶佑质期一般长达6个月,从营养的角度,超高温牛奶采用高温瞬时杀菌、无菌灌装工艺,虽然热处理温度高,但灭菌时间只有2-4秒,因而牛奶中的营养成分损失不大;又因为超高温产品采用阻光、阻氧化和阻水的包装,因而产品在储存期内,营养成分基本上也可以保证稳定。从风味方面,超高温产品在刚加工好后的1-2周里,会有比较明显的蒸煮味,这主要是由于牛奶中的部分蛋白加热后生成少量的含硫化合物造成。但是这种蒸煮味在生产后2-3周后逐渐消失,此后进入饮用的最佳时期[5-6]。

5.4超高温杀菌在饮料加工中的应用

在饮料中的杀菌,需要快速有效的热传导,通常采用刮板式或管式热交换器。在饮料杀菌采用超高温杀菌有:①温度控制准确②设备精密温度高,杀菌时间极短,杀菌效果显著,③引起的化学变化少,适于连续自动化生产[7]。

5.5超高温杀菌在茶饮料加工中的应用

由于微生物对高温的敏感性远大于大多数食品成分对高温的敏感性,故UHT杀菌能在很短的时间内有效地杀死微生物,能保持食品应有的品质。采用UHT杀菌可避免茶饮料杀菌后色泽加深和风腐剂也可增强杀菌效果或减少杀菌时间。杀菌罐装时充人氮气或二氧化碳、排除氧气,可稳定茶汤中的儿茶素物质。在热灌装过程中采用UHT杀菌,没有密封后的二次杀菌,故可以减少产品的受热时间,降低对风味和营养成分的热破坏,同时降低了本道味劣变,加人维生素C 可加强杀菌效果,加人防腐剂也可增强杀菌效果或减少杀菌时间。杀菌后罐装时充人氮气或二氧化碳、排除氧气,可稳定茶汤中的儿茶素物质。在热灌装过程中采用UHT杀菌,没有密封后的二次杀菌,故可以减少产品的受热时间,降低对风味和营养成分的热破坏,同时降低了本道工序中易发生的瓶破和跳盖等[8]。

六、超高温瞬时灭菌设备

超高温瞬时灭菌设备适用于鲜乳、果汁、饮料、棒冰、及冰淇淋浆料、酱油、豆浆、炼乳、酒类等液体物料的瞬时灭菌,也可以用于流体物料的灭菌。设备的进料与出料均采用三通旋塞,流量可以根据需要调节。

6.1 设备特点

1)结构紧凑,占地面积小。

2)清洗系统CIP清洗。(见四)

3)连续生产,物料受热时间极短,故可获得优质产品。

4)采用超高温灭菌,灭菌效果特佳。

5)与高压均质机串联使用,应用范围广,比如适宜于高粘度物料灭菌。

6)由于设计上采用冷、热料的两次热交换具有很高的热能再利用率。

6.2杀菌流程

根据被处理物料性质的不同,UHT灭菌的工艺流程也不完全相同,但主要的关键步骤相同,即物料都由泵送至预热器预热,然后进入直接蒸汽喷射杀菌器,杀菌后的物料经闪蒸去除部分水分和降低温度之后进入下道工序。下面以消毒牛乳为例介绍一下直接混合式加热UHT过程的若干典型装置流程。

原料乳由输送泵送经第一预热器进入第二预热器。牛乳升温至75~80℃。然后在压力下由泵抽送,经调节阀送到直接蒸汽喷射杀菌器。在该处,向牛乳喷入压力为1MPa的蒸汽,牛乳瞬间升温至150℃。在保温管中保持这一温度2到4s 时间,然后进入真空膨胀罐中闪蒸,使牛乳温度急剧冷却到77℃左右。热的蒸汽由水冷凝器冷凝,真空泵使真空罐始终保持一定的真空度。真空罐内部汽化时,喷入牛乳的蒸汽也部分连同闪蒸的蒸汽一起从真空罐中排出,同时带增可能存在于牛乳中的一些臭味。另外,从真空罐排出的热蒸汽中的一部分进入管式热交换的第一预热器中用来预热原料。

6.3设备清洗方法

6.3..1水洗:

当物料行将结束时,即用水清洗,以排除残余物料,同时更有利于下一步的清水液清洗,当设备流出的水变清时,水洗可停止。

6.3.2碱洗:

在贮槽中将苛性钠(烧碱NaOH)配制成2%浓度碱性洗涤液,加热至80℃,循环约30分钟。碱液能溶解蛋白质、乳脂肪并使积垢发泡松散。如积垢比较严重,可适当提高溶液的浓度。

6.3.3水洗:

排除碱液后用水冲洗约15分钟。

6.3.4酸洗:

将硝酸(HNO3)配制成2%浓度的酸性洗涤剂加热至80℃,循环约30分钟。6.3.5水洗:

排除酸液后用水冲洗约15分钟,以防再生产时物料受到残留酸液的污染。

冲洗完毕,应清水注满,以备下次操作。

6.3.6洗涤注意事项:

在洗涤过程中,切勿使用氯化物配制洗涤剂。清水要求含氯量小于50mg/L,水质较差地区、洗涤时必须将水净化。

七、超高温灭菌工艺的最新研究

连续式液体-颗粒无菌工艺是在液体超高温杀菌工艺基础上试图扩展应用范围,用于处理固体食品。超高温杀菌原理应用与固体和高粘度食品存在困难,因为热传递会增加达到商业无菌的时间。

连续式液体-颗粒无菌工艺基本方法是将固体颗粒与液体混合后再管道内运动,通过热交换器、保温管和冷却器,完成超高温杀菌流程。加热器和冷却器通常是板式换热器或者套管式换热器。但是以下几个问题限制了它的应用:(1)由于运动颗粒中心温度是无法测定、载流使用非流体以及表面换热器系数的预测和分析计算困难,目前还没有可靠的杀菌参数计算方法;(2)即使使用高粘度液体,流动中的颗粒与液体、颗粒与颗粒之间的运动仍不能够完全同步,形成了停留时间分布,使得不同位置和不同形状得颗粒的处理时间不同,大大增加了杀菌计算和控制的复杂性,目前还没有可靠的停留时间分布计算方法;(3)由于液体颗粒同时运动,相对运动速度较小,同时液体粘度较大,液体颗粒间的表面换热系数相对较小,使得颗粒升温速度受到限制,增加传热时间,降低了产品品质;(4)为了使液体-颗粒同时运动,需要较大的液体粘度,同时固液比和颗粒尺寸也受到限制,限制了可加工品种的范围:连续式液体-颗粒无菌工艺的杀菌效果验证方法一直不被DFA承认。作为一种关系到公众健康的生产技术,没有可靠验证方法是一种致命缺陷,致使该技术长时期处于试用阶段,没有获得进一步的发展。所知被FDA承认的液体-颗粒无菌工艺仅有一种[9]。

主要参考文献:

[1] 高福成等现代食品工程高新技术北京中国轻工业出版社,1997,282~287

[2] 李玉锋,马涛.食品杀菌新技术[J].农产品加工学刊,2007,1(1):89~91.

[3] 芝崎勋许有成译新编食品杀菌工艺学北京农业出版社,1990,66~77

[4] 关秀丽.高新技术在食品杀菌工艺中的应用[J]. 食品与机械,1994,33~34.

[5] 夏震超高温灭菌乳加工系统及其灭菌原理中国乳品工业,1988,26(2)28~31

[6] 徐守渊乳品超高温杀菌和无菌包装北京轻工业出版社,1986,14~174

[7] 张华.食品杀菌高新技术及其应用[J].饮料,2007,4:20~22.

[8] 王志岚,李书魁,许勇泉,尹军峰. 茶饮料灭菌技术概述.蚕桑茶叶通讯.2009

[9] 王云阳,岳田利等. 食品杀菌新技术[J]. 西北农林科技大学学报(自然科学版),2002,9:99~102.

超高温杀菌技术

超高温杀菌技术 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

新型商业杀菌技术 蔡晨 1010821238 1、超高温杀菌技术 (1)基本原理:按照微生物的一般致死原理,微生物在高于其生长温度区域最大值的热环境中,必然受到致命的损害,且随着受热时间的延长而加剧,直至死亡。 (2)优缺点:UTH使产品达到较长保质期的基本条件是达到杀菌效率和钝化酶,此外需尽量减小产品在高温处理下可能发生的营养损失、产品褐变、蛋白质凝固沉淀等物理化学变化。产生褐变及其它缺陷的危险性较小,生产工艺条件较易控制,能更好地保存食品的品质和风味。但强烈的热处理对产品的外观、味道和营养价值都会产生一定的不良影响。 应用领域:乳制品、果汁制品的灭菌加工。高温杀菌现在分两种一种是饮料,豆浆等液体物料包装前杀菌,这种一般用的是管式超高温瞬时杀菌设备,还有一种高温杀菌技术是用的杀菌锅,适应于食品耐热包装之后的杀菌。 2、欧姆加热法超高温杀菌技术 (1)基本原理:欧姆加热就是利用物料本身的电阻特性直接把电能转化为热能的一种加热方式,它克服了传统加热方式(对流加热,热传导,热辐射)中物料内部的传热速度取决于传热方向上的温度梯度等不足,实现了物料的均匀快速加热。当物料的两端施加电场时,物料中有电流通过,在电路中把物料做为一段导体,由于物料的电阻特性,利用它本身在导电时所产生的热量达到加热的目的。 (2)优点:加热速度快、容易控制;加热均匀;能量利用率高。 缺点:目前该技术在研究应用中存在几个主要问题,加热速度的控制;对于非均质的复杂食品物质,各部分电阻都不同,在通电时内部电流能否均匀分布成为影响加工品质的关键;在接触式欧姆加热解冻中,应研制一种耐腐、无污染的电极与物料接触,避免产生电流集中现象,引起局部过热;在浸泡式欧姆加热解冻中,浸泡介质的电导率是影响解冻速率和物料内部温度分布均匀性的重要因素,其影响机理尚不明确,有待进一步研究;颗粒杀菌值的评估与计算问题尚未很好解决;颗粒食品的输送、混合及如何平均地充填于每一容 器中等技术问题;含颗粒食品的密度过大或过小难以保障加热效果;利用欧姆加热时的欧姆加热设备的投资较大,现在的电力价格还相当高,欧姆加热目前仅对酸性食品的加热人们对欧姆加热的高质量产品还没有充分的认识,商业应用尚不广泛。 (3)应用领域:欧姆加热法是一项新技术,可用于食品中的杀菌、解冻、漂烫。根据欧姆

超高温瞬时灭菌设备的应用现状讲解

2013~2014学年第一学期 《食品无菌加工技术》课后作业 论文题目:超高温瞬时灭菌设备的应用现状 学院:生物与农业工程学院 专业:食品科学与工程 班级:XXXXX 学号:XXXXX 姓名:XXXXX 任课教师:XXXXX

超高温瞬时灭菌设备的应用现状 (生物与农业工程学院XXX XXX) 摘要:随着人们对食品安全问题的日益关注及科学技术的发展, 食品杀菌技术不断得到研究与应用。超高温瞬时灭菌技术作为一种高效的杀菌技术而备受推崇,超高温瞬时灭菌设备也在流体食品生产中得到广泛应用。文章介绍了超高温瞬时灭菌设备的灭菌原理及应用现状。 关键词:超高温瞬时灭菌技术;超高温瞬时灭菌设备;应用现状 “十一五”以来,我国食品工业持续快速增长。据统计,2011年,全国规模以上食品企业已达3.1万家,占全国工业产值的比重9.1%,支柱地位不断强化[1]。随着经济的发展和人民生活水平的提高,各种饮料、乳品的消费日益增大,自然对食品质量提出更高要求:保质期长,口味不变。超高温瞬时灭菌技术是达到这一要求的不二途径。 自上世纪中期研究出超高温瞬时灭菌技术后,各种式样的超高温瞬时灭菌机应运而生,并在食品行业中被广泛应用。究其杀菌原理可分为直接加热和间接加热两种。国内生产的超高温灭菌机大多采用间接加热,较常见的设备有波纹管式成套灭菌系统和板式成套灭菌系统。目前,超高温瞬时灭菌机已广泛应用在乳品、果蔬汁类饮料、乳酸菌类饮料、咖啡饮料、酒类、冰淇淋及调味品等流体食品生产中,尤其是管式超高温灭菌机,还可以处理略带有颗粒与纤维的其他液态食品,具有其他设备无可比拟的优越性,受到食品生产企业的青睐[2]。文章就超高温瞬时灭菌设备的灭菌原理、特点以及应用现状进行综述。 1超高温瞬时灭菌(UHT)技术 1.1 超高温瞬时灭菌技术的定义 超高温瞬时灭菌是指将流体或半流体在2~8s内加热到135℃~150℃,然后再迅速冷却到30℃~40℃。这个过程中,微生物细菌的死亡速度远比食品质量受热发生化学变化而劣变的速度快,因而瞬间高温可完全杀死细菌,但对食品的质量影响不大,几乎可完全保持食品原有的色香味[3]-[6]。 1.2 超高温瞬时灭菌原理

超高温杀菌技术

新型商业杀菌技术 蔡晨 38 1、超高温杀菌技术 (1)基本原理:按照微生物的一般致死原理,微生物在高于其生长温度区域最大值的热环境中,必然受到致命的损害,且随着受热时间的延长而加剧,直至死亡。 (2)优缺点:UTH使产品达到较长保质期的基本条件是达到杀菌效率和钝化酶,此外需尽量减小产品在高温处理下可能发生的营养损失、产品褐变、蛋白质凝固沉淀等物理化学变化。产生褐变及其它缺陷的危险性较小,生产工艺条件较易控制,能更好地保存食品的品质和风味。但强烈的热处理对产品的外观、味道和营养价值都会产生一定的不良影响。 应用领域:乳制品、果汁制品的灭菌加工。高温杀菌现在分两种一种是饮料,豆浆等液体物料包装前杀菌,这种一般用的是管式超高温瞬时杀菌设备,还有一种高温杀菌技术是用的杀菌锅,适应于食品耐热包装之后的杀菌。 2、欧姆加热法超高温杀菌技术 (1)基本原理:欧姆加热就是利用物料本身的电阻特性直接把电能转化为热能的一种加热方式,它克服了传统加热方式(对流加热,热传导,热辐射)中物料内部的传热速度取决于传热方向上的温度梯度等不足,实现了物料的均匀快速加热。当物料的两端施加电场时,物料中有电流通过,在电路中把物料做为一段导体,由于物料的电阻特性,利用它本身在导电时所产生的热量达到加热的目的。 (2)优点:加热速度快、容易控制;加热均匀;能量利用率高。 缺点:目前该技术在研究应用中存在几个主要问题,加热速度的控制;对于非均质的复杂食品物质,各部分电阻都不同,在通电时内部电流能否均匀分布成为影响加工品质的关键;在接触式欧姆加热解冻中,应研制一种耐腐、无污染的电极与物料接触,避免产生电流集中现象,引起局部过热;在浸泡式欧姆加热解冻中,浸泡介质的电导率是影响解冻速率和物料内部温度分布均匀性的重要因素,其影响机理尚不明确,有待进一步研究;颗粒杀菌值的评估与计算问题尚未很好解决;颗粒食品的输送、混合及如何平均地充填于每一容 器中等技术问题;含颗粒食品的密度过大或过小难以保障加热效果;利用欧姆加热时的欧姆加热设备的投资较大,现在的电力价格还相当高,欧姆加热目前仅对酸性食品的加热人们对

超高温瞬时灭菌在食品工业中的应用

超高温瞬时灭菌在食品应用中的概述 (冯帆 2013级科工三班 222013324022010) 摘要:超高温杀菌技术是目前研究开发的高新技术之一,它具有节能高效、安全、经济以及更大限度保持食品天然的色、香、味的特点。文中概述了超高温杀菌技术的原理以及其分类,简述了其在食品中的应用。 关键词:超高温瞬时灭菌食品加工杀菌设备 一、超高温瞬时灭菌的定义 超高温瞬时灭菌,又名UHT杀菌法,是英国于1956年首创,在1957~1965年间,通过大量的基础理论研究和细菌学研究后,才用于生产。超高温杀菌最早用于乳品工业牛奶的杀菌作业。1965年英国Burton 提出了详细的理论技术报告。UHT杀菌装置的开发是由荷兰的斯托克公司在20世纪50年代初率研制,随后国际上又出现了许多类型的超高温处理装置。20世纪60年代初,无菌装罐技术获得成功,促进了超高温杀菌与无菌装罐技术相结合,从而发展了灭菌乳生产工艺。20世纪80年代后,UHT技术得到了更大的发展,其应用范围不仅仅限于液体产品,目前已可应用于固液混合产品和固体粉状产品等。杀菌装置也有很大的发展,如欧姆加热装置、气流式杀菌装置、塔式杀菌装置等的开发,进一步促进了超高温杀菌技术的发展。超高温瞬时灭菌设备适用于鲜乳、果汁、饮料、棒冰、及冰淇淋浆料、酱油、豆浆、炼乳、酒类等液体物料的瞬时灭菌. 二、超高温灭菌的基本原理 超高温灭菌是把加热温度为135-150、加热时间为2-8s、加热后产品达到商业无菌要求的杀菌过程叫做超高温杀菌或者UHT杀菌。其基本原理包括微生物热致死原理和如何最大限度地保持食品的原有风味及品质原理。按照微生物的一般热致死原理,当微生物在高于其耐受温度的热环境中,必然受到致命的伤害,且这种伤害随着时间的延长而加剧,直到死亡。大量实验证明,微生物的热致死率是加热温度和受热时间的函数[1] 三、超高温瞬时灭菌使微生物致死的理论依据 微生物的热致死率是加热温度和加热时间的函数。 3.1微生物的耐热性

超高温(UHT)灭菌.

第十五章超高温(UHT)灭菌 杀菌是食品加工中极为重要的一道工序,在原始社会里,人类就不知不觉地对食品进行了杀菌处理。在科学技术飞速发展的今天,人们对食品杀菌意义的认识和应用也得到了不断地完善和提高。 第一节超高温灭菌的基本原理 关于超高温(UHT)灭菌,尚没有十分明确的定义。习惯上,把加热温度为135~150℃,加热时间为2~8s,加热后产品达到商业无菌要求的杀菌过程称为UHT灭菌。 UHT灭菌的理论基础涉及两个方面。一是微生物热致死的基本原理;二是如何最大限度保持食品的原有风味及品质。 一、UHT灭菌的微生物致死理论依据 按照微生物的一般热致死原理,当微生物在高于其耐受温度的热环境中时,必然受到致命的伤害。加热促使微生物死亡的原因是由于高温导致蛋白质的不可逆变化,随后一些球蛋白变得不溶解,酶失去活力,从而造成新陈代谢能力的丧失,因此,细胞内蛋白质凝固变性的难易程度直接关系到微生物的耐热性,而且这与杀菌条件的选择密切相关。大量实验证明,微生物的热致死率是加热温度和受热时间的函数。 (—)微生物的耐热性 腐败菌是食品杀菌的对象,其耐热性与食品的杀菌条件有直接关系。 影响微生物耐热性的因素有如下几方面: (1)菌种和菌株 (2)热处理前菌龄、培育条件、贮存环境 (3)热处理时介质或食品成分,如酸度或PH值 (4)原始活菌数 (5)热处理温度和时间,作为热杀菌,这是主导的操作因素。 (二)微生物的致死速率与D值 在一定的环境条件和一定温度下,微生物随时间而死亡时的活菌残存数是按指数递减或按对数周期下降的。这一规律为通常大量的试验结果所证实。若以纵坐标表示单位物料内随时间而残存的活细胞或芽孢数的对数值,横坐标表示热处理时间,则可获得如图15-1所示的微生物致死速率曲线。 图15-1 微生物致死速率曲线 如图所示,设A为加热开始时活菌数所代表的点,B为加热后菌数下降1个对数周期时的点,其相应的加热时间为3.5min,C为加热后菌数下降2个对数周期时的点,其相应的加热时间为7.0min。

利乐瞬时超高温灭菌技术让液体食品快速发展

利乐瞬时超高温灭菌技术让液体食品快速发展 超高温瞬时灭菌于1949年随着斯托克装置的出现而问世,其后国际上出现了多种类型的超高温灭菌装置。超高温瞬时灭菌技术其实就是鲜奶加工处理的一种灭菌工艺,通过将鲜奶在135℃-140℃处理4-10秒,从而达到灭菌的效果。 常温牛奶可以保鲜很久会让很多市民怀疑是不是在里面添加了防腐剂,其实不然。利乐利用超高温瞬时灭菌技术创新的无菌加工技术以及无菌包装,可以使得鲜奶即使不在冷藏条件以及添加防腐剂的情况下也可以维持更长的保质期,市民们可以放心饮用。 利乐是一家提供食品加工与包装的完整解决方案的公司,50年来,利乐始终把自己定位于一个食品行业的积极参与者。安全与创新是相辅相成的两个支柱,共同促进了利乐的成长。 在1972的时候,利乐进入了中国市场,从此打开了中国液态食品快速发展的局面。 利乐对中国的改变,还包括它对乳品巨头的帮助。伊利是利乐在中国的关键客户,它曾是服务于呼和浩特周边地区的一家小公司,由于鲜奶的保质期比较短,如果想要从北方将牛奶运输到南方就不得不花上高额的低温运输费用,此外也无法保证不添加防腐剂的牛奶能够在保质期内安全送达。因此,伊利一直在寻找能够将质优价廉的本地牛奶运输到全国各地的方案。而利乐的出现则恰恰解决了这一难题,利乐通过运用超高温瞬时灭菌技术将乳品和包装进行了高温灭菌,同时利乐所生产的由纸、铝、塑六层复合纸组合而成的无菌包装也能够有效的阻隔外界的空气、光线,避免内容物遭到外界因素的污染而发生变质,真正实现了“北奶南调”的梦想。 利乐公司一直以来都着眼于在中国的长期发展,致力于“通过多元化的产品满足中国市场多元化的需求”,不断将先进的技术设备和完善的配套服务引进中国,积极推进生产服务的本地化进程,在中国液体食品包装领域发挥着重要的作用。

UHT(超高温瞬时灭菌系统)简介

UHT(超高温瞬时灭菌系统)简介 产品是在一个完全密封的系统中连续进行短时急热急冷处理,在杀死所有的有害微生物的同时,对产品风味,营养成分影响极小,而且防止产品的二次污染,一般有管式和板式两种,管式因其在高温及较高蒸汽压力下的可靠性而获得广泛的应用,该系统主要有以下特点: 1.处理过的食品可保鲜数月,无需冷藏储运. 2.食品风味,色泽,营养成分等破坏极小, 3.采用管式,能量利用率高; 4.适应不同物料,连续运行时间长. 设备简介 管式换热器是由一根壳管内套多根小管而成复合管,再将多段复合管连接起来,每一段为一程.各程的内管用U形管相连接,而外管则用支管相连接.这种换热器的程数较多,一般都是上下排列,固定于支架上,制品在内管内流动,加热介质在外管内逆向流动,通过内管壁进行热交换. 适用范围: 管式换热器适用于各种不同的产品特别是:高黏度的产品,含有纤维及果肉颗粒较大的产品,酸度较高,对死角有腐蚀性的产品,低酸无菌含颗粒的产品,例如:番茄酱,果汁,咖啡饮料,人造奶油.冰淇淋等. 另外,管式灭菌系统在巴氏,高温,超高温灭菌奶生产中有广泛的应用. 主要特点: 不易结焦,工作时间长,易于清洗,维护费用低,材质可靠,承受压力高,结构独特,热应力降低,设计合理,适用范围广. 我们的技术 我公司设计制造的管式换热器,每根壳管中的管子数量和直径可以变化,以满足制品性质和对热量的要求,为了避免热应力,这些管组独立地"浮"在外壳上. 从结构形式上可分为: 全管式:即整个换热过程都在复合管内完成,系统内没有其他的换热单元,若物料较粘稠或含有颗粒时,应选择这种形式. 混合式:即高温段换热在复合管内完成,生物料预热段和熟物料的某一冷却段可结合起来在一段板式内进行热交换,这种形式耗能较少,可大大降低冰水和冷却水的用量,在稀薄类物料的生产上,选择这种形式较为合适. 从控制形式上可分为: 全自动控制 (配置PLC控制,彩色触摸屏,清洗,生产消毒全部自动完成) 半自动控制 (配置普通电气柜,回流阀和蒸汽调节阀自动控制,其余流量控制阀手动调节) 从零部件配置上可分为: 进口型: 主要部件如流量调节阀,换向阀,控制仪表等均采用进口型 国产型: 主要部件如流量调节阀,换向阀,控制仪表等均采用国产型 从灭菌温度上可分为: 巴氏灭菌系统: 适用于产品最终灭菌温度为85℃-95℃的工况, 高温灭菌系统: 适用于产品最终灭菌温度为117℃-125℃的工况.

超高温瞬时灭菌机

编号:TS05CJ-022R04 超高温瞬时灭菌机 再验证文件 版次:□新订□替代: 起草:年月日审阅会签: (验证领导小组) 批准:年月日

xxxx有限公司 目录 1、概述 2、目的 3、依据及范围 4、职责 4、1验证领导小组 4、2设备验证小组 4、3责任 5、验证 5.1、再验证范围 5.2、运行确认(OQ): 5.3、性能确认(PQ): 6、异常情况处理程序 7、附件

1、概述: 安装场所:合剂车间的灭菌岗位 1.1本设备是液体制剂的灭菌等专用设备,它采用瞬时灭菌,可以进行快速、有效的灭菌等工作。 1.2本设备的运行及其性能的如何对产品质量有着直接的影响,在D级洁净区的环境中,对其有更高的要求,按照验证管理文件的规定,对其进行了再验证,决定对其性能进行再次确认。 2、目的: 检查并确认超高温瞬时灭菌机安装及运行的正确性,符合GMP规定, 以及其对工艺的适应性。证实该设备能达到设计要求及规定的技术指标。 3、依据及范围: 3.1 依据: 《药品生产质量管理规范》 《中华人民共和国药典》 《药品生产验证指南》(2003) 《超高温瞬时灭菌机使用说明书》

3.2 范围: 本方案适用于超高温瞬时灭菌机再次验证。 4、职责 验证小组提出完整的再验证计划,经批准后实施,整个验证活动分两个阶段完成(运行确认和性能确认)。 4.1验证领导小组: 组长:质量副总 副组长:质量部长、动力部长、生产部长、供应部长 成员:QA主管及QA成员、QC主管及QC成员、动力维修成员、供应部成员、车间负责人、各岗位负责人等。 4.2设备验证实施小组: 组长:动力部长 成员:动力部成员、QA主管、QA成员、车间负责人、各岗位负责人、QC主管、QC成员。 4.3责任: 4.3.1验证领导组长职责 负责验证方案与报告的最终批准及总体调控。 4.3.2领导小组成员职责 (1)完成与其区域相关的验证申请、验证立项的确认; (2)执行验证总体规划和阶段性验证计划,组织各项验证工作的实施,协调验证过程; (3)参与起草、审核、评估和批准特定部门的验证文件,对有关验证实施小组成员进行验证知识培训。

第九章超高温杀菌技术

第十章 超高温杀菌 第一节 基本原理 超高温杀菌是把加热温度为135-150℃、加热时间为2-8s 、加热后产品达到商业无菌要求的杀菌过程叫做超高温杀菌或者UHT 杀菌。其基本原理包括微生物热致死原理和如何最大限度地保持食品的原有风味及品质原理。因为微生物对高温的敏感性远远大于多数食品成分对高温的敏感性,故超高温短时杀菌,能在很短时间内有效地杀死微生物,并较好地保持食品应有的品质。 一、UHT 杀菌的微生物致死理论依据 微生物的热致死率是加热温度和加热时间的函数。 (一)微生物的耐热性 微生物的耐热性受到下列因素的影响 1.菌种和菌株; 2.菌龄、培育条件、贮存环境; 3.热处理的介质、食品成分如酸度; 4.原始活菌数; 5.热处理温度和时间(主导因素)。 (二)微生物的致死速率与D 值 在一定环境和温度下,微生物随时间而死亡时的活菌残存数是按指数递减或按对数周期下降的。细菌任意时刻的致死速率可以用它残存活菌数下降一个对数周期所需的时间来表示,这便是图中D 值的概念。D 值是这一直线斜率绝对值的倒数,即: () D D C C C B /1/10log 10log /23=-=''=斜率 D 值反映了细菌死亡的快慢。D 值越大,细菌死亡的速度越慢,即细菌的耐热性越强;反之则死亡速度越快,耐热性越强。D 值随其它影响微生物耐热性的因素而异,只有在这些因素固定不变的条件下,才能稳定不变。 图10-1

(三)微生物的热力致死时间与Z值 热力致死时间(Thermal Death Time=TDT)——表示热力致死温度保持不变的条件下,完全杀灭某菌种的细胞或芽孢所必需的最短热处理时间。 微生物热力致死的时间随致死温度而异,两者的关系曲线称为热力致死时间曲线,图 10-2表达了不同热力致死温度下细菌芽孢的相对耐热性。

盘管式UHT灭菌机

UHT超高温瞬时灭菌机简介(免费赠送关键设备盘管机技术)(免费赠送盘管制作工艺技术) 盘管结构图

为了推动乳品工业的发展,响应国家提出的“一杯牛奶强壮一个民族”的号召,使人民群众饮用到高品质、低价位的优质鲜奶,参照世界著名的STORK(斯托克)公司的先进技术有西安轻工机械研究所开发的鲜奶超高温瞬时灭菌机技术(图纸低价转让:微信号 ;WX九七二四五八三六零)。 一、技术参数: (一)、性能参数: 1、生产能力:4520l/h 2、生产范围:1000~4520l/h 3、超高温灭菌时间2s 4、主加热器长度:21.9m 5、热回收利用率:86% 6、UHT外形尺寸:直径:Φ1600mm,高:1800mm 7、重量:UHT约1800 kg 平衡罐约875kg (二)、能源消耗: 1、蒸汽消耗:160~300kg/h 8bar 2、压缩空气消耗:100l /min 6bar 3、水压力消耗: 3 bar

4、 均质机最高操作压力: 250 bar 5、 功率消耗: 3kw (不含均质机) 6、 电压: 380V 7、 频率: 50Hz 二、 机器的构成:(见附页图1) 1 · 气动元件箱 2· 平衡罐 3· 电控柜 4· 1~4层盘管(杀 菌机)5· 均质机 4杀菌机 5均质机 3电器柜 2平衡罐 图1-"灭菌机"系统平面配置图 三、 工作原理及结构特点: (一) 工作原理: 从储料罐来的原料奶经过平衡罐进行准备后,先进入盘管第三层进行预热,经过预热的牛奶进入均质机作第一次均质,均质压力为40Kgf/cm 2,预均质后的牛奶进入第四层作第二次预热,然后直接进入超高温灭菌段(第一层盘管,蒸汽进行加热),灭菌时间为2s (牛奶在不低于135℃的管内流动的时间),再进入第四层和第三层进行热能回收再利用,消毒奶在第三层进入均质机进行第二次均质,均质压力为250kgf/cm 2(第二次均质也可省去),再进入第二层盘管进行冷

UHT超高温瞬时灭菌机简介

UHT超高温瞬时灭菌机简介 为了推动乳品工业的发展,响应国家提出的“一杯牛奶强壮一个民族”的号召,使人民群众饮用到高品质、底价位的优质鲜奶,我们轻工机械研究所机械五室参照世界著名的STORK公司的先进技术开发了鲜奶超高温瞬时灭菌机技术。 一、技术参数: (一)、性能参数: 1、生产能力:4520l/h 2、生产范围:1000~4520l/h 3、超高温灭菌时间2s 4、主加热器长度:21.9m 5、热回收利用率:86% 6、UHT外形尺寸:直径:Φ1600mm,高:1800mm 7、重量:UHT约1800 kg 平衡罐约875kg (二)、能源消耗: 1、蒸汽消耗:160kg/h 8bar 2、压缩空气消耗:100l /min 6bar 3、水压力消耗: 3 bar 4、均质机最高操作压力:250 bar 5、功率消耗:1kw(不含均质机) 6、电压:380V 7、频率:50Hz 二、机器的构成:(见附页图) 1, 蒸汽及冷却水管道 2 ,气动元件箱 3 ,外罩4, 1~4层盘管5, 冷凝水处理管道6, 平衡罐7, 均质机8, 泵 三、工作原理及结构特点: (一)工作原理:

从储料罐来的原料奶经过平衡罐进行准备后,先进入盘管第三层进行预热,经过预热的牛奶进入均质机作第一次均质,均质压力为40Kgf/cm2,预均质后的牛奶进入第四层作第二次预热,然后直接进入超高温灭菌段(第一层盘管,蒸汽进行加热),灭菌时间为2s(牛奶在不低于135℃的管内流动的时间),再进入第四层和第三层进行热能回收再利用,消毒奶在第三层进入均质机进行第二次均质,均质压力为250kgf/cm2,再进入第二层盘管进行冷却,出料温度30℃以下,从第二层盘管出来的成品奶进入包装阶段。 (二)设备特点: 1、结构紧凑,占地面积小。 2、清洗系统CIP清洗。(见四) 3、连续生产,物料受热时间极短,故可获得优质产品。 4、采用超高温灭菌,灭菌效果特佳。 5、与高压均质机串联使用,应用范围广,比如适宜于高粘度物料灭 菌。 6、由于设计上采用冷、热料的两次热交换具有很高的热能再利用率。 7、经两次均质的牛奶口感好。 四、清洗过程: 本机的清洗过程分为两种模式:中间CIP程序和主要CIP程序。 中间CIP程序伺服于两次生产运行中间而无需设备消毒,在整个清洗过程中系统的主要温度与正常条件生产过程中的一样,便于确保机器的杀菌力没有削弱,它是一个固定程序,主要由碱液清洗、酸液清洗、最后冲洗组成。 主要CIP程序用于当机器关闭后或当机器到达特别持续操作时期,在此CIP过程中,管道、平衡罐及其所有设备都按主要CIP程序清洗:予清洗,碱液循环、酸液循环,冲洗。 特殊的CIP清洗程序,保证本机在任何时候,所有部分都在无菌监护状态。

超高温杀菌装置的分类

9.4超高温杀菌装置 前面介绍的各种杀菌机都是在传统包装工艺中,对产品包装件进行热杀菌处理的设备。而先进的包装过程是将灭菌的制品,在无菌环境下装人无菌容器再进行封口的无菌包装过程。其中对灌装前的液体制品,特别是乳制品饮料的灭菌操作,一般采用高温短时(HTST)杀菌装置和超高温(UHT)杀菌装置。由于超高温杀菌具有灭菌效率高,杀菌时间短,经处理的制品营养价值高,风味损失小,耐热性强,在常温下保质期长,经济效益较好等优点,目前有取代前者而被广泛采用的趋势。 9.4.1超高温杀菌装置的分类 超高温杀菌法的杀菌温度一般在130℃~150℃:,杀菌时间仅为2s~8s。其加热方法有直接加热法和间接加热法。 直接加热法是指先用蒸汽直接加热乳制品,接着急剧冷却的杀菌过程。此法又可分为采用喷射器,将蒸汽喷射到乳品流体中的喷射式和采用注人器将乳品注人到蒸汽氛围中的注入式。两者比较,喷射器体积小,价格低;而使用注人器蒸汽工作压力低,蒸汽与制品温差小,更适应对热敏感制品的杀菌。无论哪一种类型,在加热过程中制品和蒸汽必定要相互混合。因此,加热蒸汽必须适于饮用,而且对加热前后的含水量还应严格控制。直接加热法的最大优点是快速加热和快速冷却,这就最大限度地减少了杀菌过程中的物理变化和化学变化,如产生焦煮味、蛋白质变性、褐变等。 间接加热法是指利用热交换器器壁间的介质间接加热、冷却乳制品的杀菌过程。加热介质有蒸汽、热水和加压热水,冷却剂常用冷水或冰水等。此法通常采用片式、环形管式和刮面式热交换器。片式热交换器处理能力大,结构紧凑。无缝环形管式热交换器强度高、可承受高压。刮面式热交换器适用于对高黏度制品的杀菌。 9. 4. 1. 1直接蒸汽喷射式UHT杀菌装置 在直接蒸汽喷射式UHT杀菌装置中,蒸汽喷射是保证乳制品瞬时达到杀菌温度的核心部件。其结构如图9-11所示,主要由内、外套管组成。内套管圆周方向开有许多直径小于1mm 的细孔,外套管为一非对称三通。蒸汽由外套管侧壁孔,经内套管细孔,强制喷射到乳制品中去。为防止乳制品沸腾和使蒸汽顺利喷人,乳制品和蒸汽均处于一定压力下。一般乳制品压力为390kPa左右,蒸汽压力在470kPa ~490kPa之间。喷射器选用不锈钢材质,以尽量避免产生高温处理的沉积物。

实验型超高温杀菌机

设备介绍: 宇砚实验室微型超高温杀菌机是我公司利用多项尖端科技研发出的国内高端实验型杀菌设备,打破了欧美日本品牌长期在国内的垄断地位。有效解决了饮料新品开发中废时、废料、废力的弊端,架设由实验室通向工业化生产的桥梁,加速科研成果转化为生产力。本设备的进料与出料均采用三通旋塞,流量可以根据需要调节,使用可靠。本设备采用电加热方式,自动化程度高,配备CIP清洗,符合GMP医药标准,本设备主要适用于高校、研究所和企事业单位实验室研发及中小试生产线。 适用范围: 适用产品:牛奶、果汁、调味品、添加剂、茶饮料、啤酒等其他饮料及各种类似液体产品。功能:该设备可用于流体产品的原始配方确定/更新、口味甄别、颜色评估、稳定剂/乳化剂应用、货架期实验和制作批量样品。 设备特点: 1.微型可移动,占地仅2-3平方米,外设仅需自来水和电 2.本系统充填室安装在UHT杀菌机之后,用于杀菌后物料的灌装,为一独立工作单元。 系统内装有夹套缓冲罐,臭氧发生器、电磁阀、单头充填阀等使得灌装过程操作简单,仅需通过脚踏开关及手持包材即可实现连续式灌装。内置式单头旋盖装置可选,用于批量制作样品。 3.完全模拟工业化生产,实验数据准确,可直接放大到工业化生产 4.精确模拟调配、均质、老化、巴氏杀菌、高温杀菌、超高温瞬时杀菌及无菌灌装等多 种工艺 5.自动控制,自动化程度高,体现世界尖端的控制技术和机械制造技术 6.与电脑连接,试验数据可打印、在线纪录、下载并永久保存系统内置过热水发生器可选 配冰水机和在线均质及无菌充填,设备结构紧凑并自成系统 7.实时调控PID恒温控制技术,控温准确,控温精度±0.5℃ 8.工艺参数可直接在控制面板上设置,实时读取各项参数变化,直观了解系统工作状况 设备参数: 型号Y-GS-10L Y-GS-20L Y-GS-50L Y-GS-100L Y-GS200L 加热器最高温度160°C 160°C 160°C 160°C 160°C 最高杀菌温度145°C 145°C 145°C 145°C 145°C 工作压力10bar 10bar 10bar 10bar 10bar 额定流速10l/hr 20l/hr 50l/hr 100l/hr 200l/hr 过程流速10-60l/hr 10-60l/hr 20-100l/hr 50-200l/hr 100-300l/hr CIP流速150l/hr 150l/hr 200l/hr 500l/hr 800l/hr 产品尺寸W*D*H mm 1000 x 890 x 1600 1000 x 890 x 1600 1400 x 890 x 1800 1400 x 890 x 1800 1600 x 1000 x 1800

第十四章杀菌设备

第十四章杀菌设备 本章学习目标 掌握加热杀菌设备的基本类型、基本构成和应用特点 了解换热器的基本结构和提高换热效率的措施 掌握后包装加热杀菌设备的配置原则、基本构成即其配置特点 掌握罐装食品杀菌设备的操作原理即要点 概述 杀菌目的:杀死食品中的致病菌、腐败菌等有害微生物,并且钝化酶活性二防止在特定环境中食品发生腐败变质,使之有一定的保存期;尽可能保护食品中营养成分和风味 杀菌方法:物理杀菌和化学杀菌 物理方法:加热杀菌、辐射杀菌、欧姆杀菌、超高压杀菌 化学杀菌:药物杀菌 应用:果汁、啤酒、葡萄酒、乳品、肉制品、调料、果蔬等 第一节加热杀菌设备类型 原理:利用加热,使得食品中的有害微生物数量减少到某种程度或完全致死,以及某些酶失去活性。 操作要求:食品物料的所有部分均能够达到必需的最低温度并保持必需的时间,同时为了保持其中的营养成分和风味,需要被加热的食品尽可能少的出现温度过高或受热时间过长现象。

分类 按食品杀菌与包装工序分: 先杀菌后包装杀菌设备:食品加工过程中或包装前进行杀菌操作,适用于牛乳、果汁等液态食品; 先包装后杀菌杀菌设备:应用于各类固体物料的罐头,如罐装或灌制肉制品、果蔬制品等固态或半液态食品,也用于液体饮料和酒类等液态食品,如啤酒、葡萄酒、果汁饮料等。 按杀菌温度/压力分: 常压杀菌设备:100℃以下,用于pH低于4.5的酸性食品 加压杀菌设备:操作压力高于0.1MPa,用于肉类罐头制品的杀菌温度在120 ℃左右,一般为密闭设备;用于乳液、果汁等液态食品的超高温瞬时杀菌设备,其杀菌温度可达135~150 ℃ 按操作方式: 间隙式:批量杀菌设备 连续式:物料可连续进出 按设备结构形态:板式杀菌设备、管式杀菌设备、刮板式杀菌设备、釜式杀菌设备和塔式杀菌设备 第二节后包装加热杀菌设备 应用:用于尚未实施包装的料液 特点:通过形成三维流动,有效破坏边界滞留层,强化对流传热,传热效率高、流动阻力小;有足够的强度,解哦故可靠,设备紧凑;便于制造、安装、清洗及检修

超高温瞬时灭菌机

目录 1、概述 2、目的 3、依据及范围 4、职责 4、1验证领导小组 4、2设备验证小组 4、3责任 5、验证 5.1、再验证范围 5.2、运行确认(OQ): 5.3、性能确认(PQ): 6、异常情况处理程序 7、附件

1、概述: 安装场所:合剂车间的灭菌岗位 1.1本设备是液体制剂的灭菌等专用设备,它采用瞬时灭菌,可以进行快速、有效的灭菌等工作。 1.2本设备的运行及其性能的如何对产品质量有着直接的影响,在D级洁净区的环境中,对其有更高的要求,按照验证管理文件的规定,对其进行了再验证,决定对其性能进行再次确认。 2、目的: 检查并确认超高温瞬时灭菌机安装及运行的正确性,符合GMP规定, 以及其对工艺的适应性。证实该设备能达到设计要求及规定的技术指标。 3、依据及范围: 3.1 依据: 《药品生产质量管理规范》 《中华人民共和国药典》 《药品生产验证指南》(2003) 《超高温瞬时灭菌机使用说明书》 3.2 范围: 本方案适用于超高温瞬时灭菌机再次验证。 4、职责 验证小组提出完整的再验证计划,经批准后实施,整个验证活动分两个阶段完成(运行确认和性能确认)。 4.1验证领导小组: 组长:质量副总 副组长:质量部长、动力部长、生产部长、供应部长 成员:QA主管及QA成员、QC主管及QC成员、动力维修成员、供应部成员、车间负责人、各岗位负责人等。 4.2设备验证实施小组: 组长:动力部长 成员:动力部成员、QA主管、QA成员、车间负责人、各岗位负责人、QC

主管、QC成员。 4.3责任: 4.3.1验证领导组长职责 负责验证方案与报告的最终批准及总体调控。 4.3.2领导小组成员职责 (1)完成与其区域相关的验证申请、验证立项的确认; (2)执行验证总体规划和阶段性验证计划,组织各项验证工作的实施,协调验证过程; (3)参与起草、审核、评估和批准特定部门的验证文件,对有关验证实施小组成员进行验证知识培训。 4.3.3设备验证实施组长职责 (1)负责根据验证计划安排,负责项目验证立项提出; (2)指定验证实施小组人员并组织相关的验证培训; (3)组织验证小组人员起草验证方案并按方案要求实施验证; (4)各阶段验证结果汇总及评价,对整个项目验证负责; (5)对验证方案中验证方法、有关试验标准、验证过程及实施结果符合GMP 规范及有关标准进行审核,有关记录的审核、偏差的审核,验证结论的审核; (6)根据验证小结提出项目总结,整理验证档案。 4.3.4设备验证实施成员职责 (1)负责验证过程中仪器校验及设备的正常运行; (2)负责按照设备操作规程及验证要求进行操作; (3)负责验证记录中各岗位记录的规范填写; (4)负责验证过程的监督及取样工作; (5)负责按计划完成验证中的检验任务,确保检验结果正确可靠; (6)负责验证检验记录的规范填写。 5验证: 5.1再验证的范围 5.1.1运行确认(OQ) 5.1.2性能确认(PQ)

超高温杀菌技术

新型商业杀菌技术 蔡晨 1010821238 1、超高温杀菌技术 (1)基本原理:按照微生物的一般致死原理,微生物在高于其生长温度区域最大值的热环境中,必然受到致命的损害,且随着受热时间的延长而加剧,直至死亡。 (2)优缺点:UTH使产品达到较长保质期的基本条件是达到杀菌效率和钝化酶,此外需尽量减小产品在高温处理下可能发生的营养损失、产品褐变、蛋白质凝固沉淀等物理化学变化。产生褐变及其它缺陷的危险性较小,生产工艺条件较易控制,能更好地保存食品的品质和风味。但强烈的热处理对产品的外观、味道和营养价值都会产生一定的不良影响。 应用领域:乳制品、果汁制品的灭菌加工。高温杀菌现在分两种一种是饮料,豆浆等液体物料包装前杀菌,这种一般用的是管式超高温瞬时杀菌设备,还有一种高温杀菌技术是用的杀菌锅,适应于食品耐热包装之后的杀菌。 2、欧姆加热法超高温杀菌技术 (1)基本原理:欧姆加热就是利用物料本身的电阻特性直接把电能转化为热能的一种加热方式,它克服了传统加热方式(对流加热,热传导,热辐射)中物料内部的传热速度取决于传热方向上的温度梯度等不足,实现了物料的均匀快速加热。当物料的两端施加电场时,物料中有电流通过,在电路中把物料做为一段导体,由于物料的电阻特性,利用它本身在导电时所产生的热量达到加热的目的。 (2)优点:加热速度快、容易控制;加热均匀;能量利用率高。 缺点:目前该技术在研究应用中存在几个主要问题,加热速度的控制;对于非均质的复杂食品物质,各部分电阻都不同,在通电时内部电流能否均匀分布成为影响加工品质的关键;在接触式欧姆加热解冻中,应研制一种耐腐、无污染的电极与物料接触,避免产生电流集中现象,引起局部过热;在浸泡式欧姆加热解冻中,浸泡介质的电导率是影响解冻速率和物料内部温度分布均匀性的重要因素,其影响机理尚不明确,有待进一步研究;颗粒杀菌值的评估与计算问题尚未很好解决;颗粒食品的输送、混合及如何平均地充填于每一容 器中等技术问题;含颗粒食品的密度过大或过小难以保障加热效果;利用欧姆加热时的欧姆加热设备的投资较大,现在的电力价格还相当高,欧姆加热目前仅对酸性食品的加热人们对欧姆加热的高质量产品还没有充分的认识,商业应用尚不广泛。 (3)应用领域:欧姆加热法是一项新技术,可用于食品中的杀菌、解冻、漂烫。根据欧姆加热的特点,适合于带有一定粘度产品的加热和杀菌处理,目前,主要用于液体及固液混合物

超高温瞬时杀菌介绍

SPX – A FRESH APPROACH TO EXTENDING SHELF LIFE (UHT) technology can eliminate bacteria growth, minimize product mixing, and deliver the most natural, long lasting product possible. UHT technology can be implemented either directly, via inf usion or injection, or indirectly, through tubular, plate or scraped heat exchanger systems. It is offered as part of an easy to operate, complete sterilization solution; a continuous process for blending, heat treatment, and aseptic storage of beverage pr oducts. Infusion UHT, the most advanced process, creates an extremely flexible product that has been successfully implemented on processing lines for dairy, coffee creamer and nutritional supplement products. While most sterilization methods simply contr ol the amount of bacterial growth within milk, Infusion UHT technology also minimizes any nutritional degradation, ensuring the fresh taste of the milk remains. In today’s food and beverage market, expiration dates have never mattered more. Economic challenges and busier lifestyles have consumers seeking out products that won’t spoil after a few days in the fridge. Manufacturers are responding with cost -effective industrial food equipment that quickly gets products on the shelf, and keeps them there longer – a process that often results in food that contains chemical addit ives or preservatives. As this trend increases, SPX is finding new ways to restore a natural balance to the process: Utilizing years of experience in pasteurization, SPX’s flow technology group, a global leader in food & beverage technology solutions and fluid handling products , is working with top producers in the beverage industry to extend the shelf life of dairy products, without the use of additives. Evolving Sterilization, Naturally Through the use of High Temperature Short Time (HTST) sterilization, SPX’s Ultra High Temperature A Fresh Approach to Extending Shelf Life

超高温灭菌系统的原理及基本过程

超高温灭菌系统 一.超高温灭菌(Ultra High Temperature,简称UHT) UHT产品是指物料在连续流动的状态下通过热交换器加热至135~150℃,在这一温度下保持一定的时间以达到商业无菌水平,然后在无菌状态下灌装于无菌包装容器中的产品。UHT 产品能在非冷藏条件下分销,可保持相当时间而产品不变质。现在,UHT产品已从最初的牛奶拓展到了其它不同品种的饮料,如各类果汁、茶饮料等,灭菌温度为100~135℃。(一).目的:杀死所有能导致产品变质的微生物,使产品能在室温下贮存一段时间。(二).超高温灭菌加工的类型: 超高温灭菌系统所用的加热介质大都为蒸汽或热水,按物料与热介质接触与否,进一步可分为两大类,即直接加热系统和间接加热系统。根据实际的生产情况,这里主要介绍超高温间接加热系统,按热交换器传热面的不同又可分为板式热交换系统及管式热交换系统,某些特殊产品的加工使用刮板式加热系统。 1.板式热交换系统 板式热交换系统具有诸多的优点:a. 热交换器结构比较紧凑,加热段、冷却段和热回收段可有机地结合在一起。b. 热交换板片的优化组合和形状设计,大大提高了传热系数和单位面积的传热量。c. 易于拆卸,进行人工清洗加热板面,定期检查板面结垢情况及CIP清洗的效果。 2.管式热交换系统 管式热交换系统的优点是:a. 生产过程中能承受较高的温度及压力。b.有较大的生产能力。c. 对产品的适应能力强,能对高粘度的产品进行热处理,如布丁等。 3.板式与管式热交换系统的比较 对两种系统,从温度的变化情况来看比较接近,从机械设计的角度来看: a. 板式热交换器很小的体积就能提供较大的传热面积,为达到同样的传热量,板式加热系统是最经济的一种系统。 b. 管式加热系统因其结构的特性,更加耐高温和高压,而板式加热系统,则受到了板材及垫圈的限制。 c.板式热交换器,对加热表面的结垢比较敏感,因其流路较窄,垢层很快会阻碍产品的流动。为了保证流速不变,驱动压力就会增大,但压力的增大会受到结构特别是垫圈的限制;管式热交换器,由于产品与加热介质之间的温差较大,较板式热交换器可能更易结垢,但结

相关主题
文本预览
相关文档 最新文档