当前位置:文档之家› 第15章 时间序列回归

第15章 时间序列回归

第十五章时间序列回归

本章我们讨论分析时间序列数据(检验序列相关性,估计ARMA模型,使用分布滞后,非平稳时间序列的单位根检验)的单方程回归方法。

§15.1 序列相关理论

时间序列回归中的一个普遍现象是:残差和它自己的滞后值相关。这种序列相关性违背了回归理论的标准假设:不同时点的扰动项互不相关。与序列相关相联系的主要问题有:

①在线性估计中OLS不再是有效的;

②使用OLS公式计算出的标准差不正确;

③如果在方程右边有滞后因变量,OLS估计是有偏的且不一致。

EViews提供了检测序列相关和估计方法的工具。但首先必须排除虚假序列相关。虚假序列相关是指模型的序列相关是由于省略了显著的解释变量而引起的。例如,在生产函数模型中,如果省略了资本这个重要的解释变量,资本对产出的影响就被归入随机误差项。由于资本在时间上的连续性,以及对产出影响的连续性,必然导致随机误差项的序列相关。所以在这种情况下,

平稳性定义:

如果随机过程的均值和方差、自协方差都不取决于t ,则称Y t 是协方差平稳的或弱平稳的:

},,,,,,,,{12101 +-=T T t y y y y y y Y μ

=)(t Y E 2)(σ=t Y Var 对所有的t 对所有的t

对所有的t 和s 注意,如果一个随机过程是弱平稳的,则Y t 与Y t -s 之间的协方差仅取决于s ,即仅与观测值之间的间隔长度s 有关,而与时期t 无关。一般所说的“平稳性”含义就是上述的弱平稳定义。给定一个样本值为T 的时间序列可s

s t t Y Y E γμμ=---))((

一、一阶自回归模型

最简单且最常用的序列相关模型是一阶自回归AR(1)模型。定义如下:

t

t t u x y +'=βt

t t u u ερ+=-1参数是一阶序列相关系数,实际上,AR(1)模型是将以前观测值的残差包含到现观测值的回归模型中。ρ二、高阶自回归模型

更为一般,带有p 阶自回归的模型,AR(p)误差由下式给出:

t

t t u x y +'=βt

p t p t t t u u u u ερρρ++++=--- 2211

§15.2检验序列相关

在使用估计方程进行统计推断(如假设检验和预测)之前,一般应检验残差(序列相关的证据),EViews 提供了几种方法来检验当前序列相关。

§15.2.1 Dubin-Waston 统计量

EViews 将D-W 统计量视为标准回归输出的一部分。

D-W 统计量用于检验一阶序列相关,还可估算回归模型邻近残差的线性联系。D-W 统计量是在下面定义中检验原假设:0

=ρt

t t u u ερ+=-1如果序列不相关,D-W 值在2附近。如果存在正序列相关,D-W 值将小于2(最小为0),如果存在负序列相关,D-W 值将在2-4之间。

正序列相关最为普遍,根据经验,对于有大于50个数据和较少的解释变量,D-W 值小于1.5的情况,说明存在强正一阶序列相关。参考Johnston and

Dubin-Waston统计量检验序列相关有三个主要不足:

1.D-W统计量的扰动项在原假设下依赖于数据矩阵X。

2.回归方程右边如果存在滞后因变量,D-W检验不再有效。

3.仅仅检验原假设(无序列相关)与备选假设(一阶序列相关)。

其他两种检验序列相关方法:Q-统计量和Breush-Godfrey LM检验克服了上述不足,应用于大多数场合。

例子:工作文件15_1\eq_cs

§15.2.2 相关图和Q -统计量

在方程工具栏选择View/Residual Tests/correlogram-Q -statistics 。EViews 将显示残差的自相关和偏自相关函数以及对应于高阶序列相关的Ljung-Box Q 统计量。如果残差不存在序列相关,在各阶滞后的自相关和偏自相关值都接近于零。所有的Q -统计量不显著,并且有大的P 值。k 阶滞后的Q -统计量是原假设为序列没有k 阶自相关的统计量。计算式如下

()∑=-+=k

j j LB j

T r T T Q 122是j 阶自相关系数,T 是观测值的个数。

j r

例子:

下面是这些检验程序应用的例子,考虑用普通最小二乘估计的简单消费函数的结果:

浏览这些结果:系数在统计上是很显著的,并且拟合得很好。但是,如果误差项是序列相关的,那么估计OLS标准误差将是无效的,并且估计系数由于在方程右端有滞后因变量会发生偏倚和不一致。在这种情况下D-W统计量作为序列相关的检验是不合适的,因为在方程右端存在着一个滞后因变量。选择View/Residual test/Correlogram-Q-statistice会产生如下情况

§15.2.3 序列相关LM 检验

选择View/Residual Tests/Serial correlation LM Test ,一般地对高阶的,含有ARMA 误差项的情况执行Breush-Godfrey LM (Lagrange multiplier ,拉格朗日乘数检验)。在滞后定义对话框,输入要检验序列的最高阶数。

检验的原假设是:至给定阶数,残差不具有序列相关。EViews 将给出两个统计量:F 统计量和NR 2(观测值个数乘以R 2),NR 2在原假设下服从分布。F 统计量分布未知,但常用来对原假设进行非正规检验。

2

上一例子中相关图在滞后值3时出现峰值。Q统计量在各阶滞后值中都具有显著性,它显示的是残差中的显著序列相关。

进行序列相关的LM检验,选择View/Residual Tests/Serial Correlation LM Test,输入滞后2产生如下结果:

此检验拒绝直至2阶的无序列相关的假设。Q-统计和LM检验都表明:残差是序列相关的,并且方程在被用于假设检验和预测之前应该重新定义。

§15.3 估计AR 模型

在使用本章描述的工具之前,可以首先检验模型其他方面的错误。误差存在序列相关是模型定义存在的严重问题。特别地,应注意使用OLS 得出的过分限制的定义。有时,在回归方程中添加不应被排除的变量会消除序列相关。

§15.3.1 一阶序列相关

在EViews 中估计一个AR(1)模型,选择Quick/Estimate Equation 打开一个方程,用列表法输入方程后,最后将AR(1)项加到列表中。例如:估计一个带有AR(1)误差的简单消费函数

t

t t u u ερ+=-1应定义方程为:cs c gdp cs(-1) ar(1)。例子:工作文件15_1\eq_cs_ar1t

t t t u cs c GDP c c cs +++=-1321cs t = -22.35 + 0.0924 * GDP t + 0.874 * cs t-1

§15.3.2 高阶序列相关

估计高阶AR 模型稍稍复杂些,为估计AR(k ),应输入模型的定义和所包括的各阶AR 值。如果想估计一个有1-5阶自回归的模型

t

t t t u u u ερρ+++=--5511 应输入:cs c gdp cs(-1)ar(1)ar(2)ar(3)ar(4)ar(5)

例子:工作文件15_1\eq_cs_ar5

可以输入在模型中想包括的各个自回归,EViews 在消除序列相关时给予很大灵活性。例如,如果有季度数据而且想用一个单项来说明季节自回归,t

t t t u cs c GDP c c cs +++=-1321

§15.3.5 含有AR 项模型的估计输出

当估计某个含有AR 项的模型时,在解释结果时一定要小心。在用通常的方法解释估计系数,系数标准误差和t-统计量时,涉及残差的结果会不同于OLS 的估计结果。

要理解这些差别,记住一个含有AR 项的模型有两种残差:

第一种是无条件残差

b x y u

t t t '-=?通过原始变量以及估计参数算出。在用同期信息对y t 值进行预测时,这些残差是可以观测出的误差,但要忽略滞后残差中包含的信息。

β

第二种残差是估计的一期向前预测误差。如名所示,这种残差代表预测误差。如果使用前期数据残差和当前信息作预测,实际上,通过利用滞后残差的预测能力,改善了无条件预测和残差。

对于含有AR 项的模型,基于残差的回归统计量,如R 2(回归标准误差)和D-W 值都是以一期向前预测误差为基础的。含有AR 项的模型独有的统计量是

估计的AR 系数。对于简单AR(1)模型,是无条件残差的序列相关系数。

对于平稳AR(1)模型,在-1(极端负序列相关)和+1(极端正序列相关)之间。一般AR(p )平稳条件是:滞后算子多项式的根的倒数在单位圆内。

EViews 在回归输出的底部给出这些根:Inverted AR Roots 。如果存在虚根,根的模应该小于1。

i ρ?ρ?ρε?

§15.3.6 EViews如何估计AR模型

课本上经常描述估计AR模型的技术。探讨最多的方法,如Cochrane-Orcutt(科克兰内-奥克特)、Prais-Winsten、Hatanaka以及Hildreth-Lu程序都是使用标准线性回归进行估计的多步方法。当使用滞后因变量作为回归自变量或使用高阶AR项定义模型时所有这些方法都有严重的缺点。见Davidson&MacKinnon(1994,pp.329-341),Greene(1997,p.600-607)。

EViews估计AR模型采用非线性回归方法。这种方法的优点在于:易被理解,应用广泛,易被扩展为非线性定义的模型。注意:非线性最小二乘估计渐进等于极大似然估计且渐进有效。

试验一异方差的检验与修正-时间序列分析

案例三 ARIMA 模型的建立 一、实验目的 了解ARIMA 模型的特点和建模过程,了解AR ,MA 和ARIMA 模型三者之间的区别与联系,掌握如何利用自相关系数和偏自相关系数对ARIMA 模型进行识别,利用最小二乘法等方法对ARIMA 模型进行估计,利用信息准则对估计的ARIMA 模型进行诊断,以及如何利用ARIMA 模型进行预测。掌握在实证研究如何运用Eviews 软件进行ARIMA 模型的识别、诊断、估计和预测。 二、基本概念 所谓ARIMA 模型,是指将非平稳时间序列转化为平稳时间序列,然后将平稳的时间序列建立ARMA 模型。ARIMA 模型根据原序列是否平稳以及回归中所含部分的不同,包括移动平均过程(MA )、自回归过程(AR )、自回归移动平均过程(ARMA )以及ARIMA 过程。 在ARIMA 模型的识别过程中,我们主要用到两个工具:自相关函数ACF ,偏自相关函数PACF 以及它们各自的相关图。对于一个序列{}t X 而言,它的第j 阶自相关系数j ρ为它的j 阶自协方差除以方差,即j ρ=j 0γγ ,它是关于滞后期j 的函数,因此我们也称之为自相关函数,通常记ACF(j )。偏自相关函数PACF(j )度量了消除中间滞后项影响后两滞后变量之间的相关关系。 三、实验内容及要求 1、实验内容: (1)根据时序图的形状,采用相应的方法把非平稳序列平稳化; (2)对经过平稳化后的1950年到2007年中国进出口贸易总额数据运用经典B-J 方法论建立合适的ARIMA (,,p d q )模型,并能够利用此模型进行进出口贸易总额的预测。 2、实验要求: (1)深刻理解非平稳时间序列的概念和ARIMA 模型的建模思想; (2)如何通过观察自相关,偏自相关系数及其图形,利用最小二乘法,以及信息准则建立合适的ARIMA 模型;如何利用ARIMA 模型进行预测; (3)熟练掌握相关Eviews 操作,读懂模型参数估计结果。 四、实验指导 1、模型识别 (1)数据录入 打开Eviews 软件,选择“File”菜单中的“New --Workfile”选项,在“Workfile structure type ”栏选择“Dated –regular frequency ”,在“Date specification ”栏中分别选择“Annual ”(年数据) ,分别在起始年输入1950,终止年输入2007,点击ok ,见图3-1,这样就建立了一个工作文件。点击File/Import ,找到相应的Excel 数据集,导入即可。

时间序列分析——最经典的

【时间简“识”】 说明:本文摘自于经管之家(原人大经济论坛) 作者:胖胖小龟宝。原版请到经管之家(原人大经济论坛) 查看。 1.带你看看时间序列的简史 现在前面的话—— 时间序列作为一门统计学,经济学相结合的学科,在我们论坛,特别是五区计量经济学中是热门讨论话题。本月楼主推出新的系列专题——时间简“识”,旨在对时间序列方面进行知识扫盲(扫盲,仅仅扫盲而已……),同时也想借此吸引一些专业人士能够协助讨论和帮助大家解疑答惑。 在统计学的必修课里,时间序列估计是遭吐槽的重点科目了,其理论性强,虽然应用领域十分广泛,但往往在实际操作中会遇到很多“令人发指”的问题。所以本帖就从基础开始,为大家絮叨絮叨那些关于“时间”的故事! Long long ago,有多long估计大概7000年前吧,古埃及人把尼罗河涨落的情况逐天记录下来,这一记录也就被我们称作所谓的时间序列。记录这个河流涨落有什么意义当时的人们并不是随手一记,而是对这个时间序列进行了长期的观察。结果,他们发现尼罗河的涨落非常有规律。掌握了尼罗河泛滥的规律,这帮助了古埃及对农耕和居所有了规划,使农业迅速发展,从而创建了埃及灿烂的史前文明。

好~~从上面那个故事我们看到了 1、时间序列的定义——按照时间的顺序把随机事件变化发展的过程记录下来就构成了一个时间序列。 2、时间序列分析的定义——对时间序列进行观察、研究,找寻它变化发展的规律,预测它将来的走势就是时间序列分析。 既然有了序列,那怎么拿来分析呢 时间序列分析方法分为描述性时序分析和统计时序分析。 1、描述性时序分析——通过直观的数据比较或绘图观测,寻找序列中蕴含的发展规律,这种分析方法就称为描述性时序分析 描述性时序分析方法具有操作简单、直观有效的特点,它通常是人们进行统计时序分析的第一步。 2、统计时序分析 (1)频域分析方法 原理:假设任何一种无趋势的时间序列都可以分解成若干不同频率的周期波动 发展过程: 1)早期的频域分析方法借助富里埃分析从频率的角度揭示时间序列的规律 2)后来借助了傅里叶变换,用正弦、余弦项之和来逼近某个函数 3)20世纪60年代,引入最大熵谱估计理论,进入现代谱分析阶段 特点:非常有用的动态数据分析方法,但是由于分析方法复杂,结果抽象,有一定的使用局限性 (2)时域分析方法

统计学第四版贾俊平人大_回归与时间序列stata

回归分析与时间序列 一、一元线性回归 11.1 (1)编辑数据集,命名为linehuigui1.dat 输入命令scatter cost product,xlabel(#10, grid) ylabel(#10, grid),得到如下散点图,可以看到,产量和生产费用是正线性相关的关系。 (2)输入命令reg cost product,得到如下图: 可得线性函数(product为自变量,cost为因变量):y=0.4206832x+124.15,即β0=124.15,β1=0.4206832 (3)对相关系数的显著性进行检验,可输入命令pwcorr cost product, sig star(.05) print(.05),得到下图:

可见,在α=0.05的显著性水平下,P=0.0000<α=0.05,故拒绝原假设,即产量和生产费用之间存在显著的正相关性。 11.2 (1)编辑数据集,命名为linehuigui2.dat 输入命令scatter fenshu time,xlabel(#4, grid) ylabel(#4, grid),得到如下散点图,可以看到,分数和复习时间是正线性相关的关系。 2)输入命令cor fenshu time计算相关系数,得下图: 可见,r=0.8621,可见分数和复习时间之间存在高度的正相关性。 11.3 (1)(2)对于线性回归方程y=10-0.5x,其中β0=10,表示回归直线的截距为10;β1=-0.5,表示x变化一单位引起y的变化为-0.5。 (3)x=6时,E(y)=10-0.5*6=7。 11.4 (1) ,判定系数 测度了回归直线对观测数据的拟合程度,即在分数的变差中,有90%可以由分数与复习时间之间的线性关系解释,或者说,在分数取值的变动中,

第十三章 时间序列回归

第十三章 时间序列回归 本章讨论含有ARMA 项的单方程回归方法,这种方法对于分析时间序列数据(检验序列相关性,估计ARMA 模型,使用分布多重滞后,非平稳时间序列的单位根检验)是很重要的。 §13.1序列相关理论 时间序列回归中的一个普遍现象是:残差和它自己的滞后值有关。这种相关性违背了回归理论的标准假设:干扰项互不相关。与序列相关相联系的主要问题有: 一、一阶自回归模型 最简单且最常用的序列相关模型是一阶自回归AR(1)模型 定义如下:t t t u x y +'=β t t t u u ερ+=-1 参数ρ是一阶序列相关系数,实际上,AR(1)模型是将以前观测值的残差包含到现观测值的回归模型中。 二、高阶自回归模型: 更为一般,带有p 阶自回归的回归,AR(p)误差由下式给出: t t t u x y +'=β t p t p t t t u u u u ερρρ++++=--- 2211 AR(p)的自回归将渐渐衰减至零,同时高于p 阶的偏自相关也是零。 §13.2 检验序列相关 在使用估计方程进行统计推断(如假设检验和预测)之前,一般应检验残差(序列相关的证据),Eviews 提供了几种方法来检验当前序列相关。 1.Dubin-Waston 统计量 D-W 统计量用于检验一阶序列相关。 2.相关图和Q-统计量 计算相关图和Q-统计量的细节见第七章 3.序列相关LM 检验 检验的原假设是:至给定阶数,残差不具有序列相关。 §13.3 估计含AR 项的模型 随机误差项存在序列相关说明模型定义存在严重问题。特别的,应注意使用OLS 得出的过分限制的定义。有时,在回归方程中添加不应被排除的变量会消除序列相关。 1.一阶序列相关 在EViews 中估计一AR(1)模型,选择Quick/Estimate Equation 打开一个方程,用列表法输入方程后,最后将AR(1)项加到列表中。例如:估计一个带有AR(1)误差的简单消费函数 t t t u GDP c c CS ++=21 t t t u u ερ+=-1 应定义方程为: cs c gdp ar(1) 2.高阶序列相关 估计高阶AR 模型稍稍复杂些,为估计AR(k ),应输入模型的定义和所包括的各阶AR 值。如果想估计一个有1-5阶自回归的模型 t t t u GDP c c CS ++=21 t t t t u u u ερρ+++=--5511 应输入: cs c gdp ar(1) ar(2) ar(3) ar(4) ar(5) 3.存在序列相关的非线性模型 EViews 可以估计带有AR 误差项的非线性回归模型。例如: 估计如下的带有附加AR(2)误差的非线性方程 t c t t u GDP c CS ++=21

R语言时间序列函数整理_光环大数据培训

https://www.doczj.com/doc/394039683.html, R语言时间序列函数整理_光环大数据培训 【包】 library(zoo) #时间格式预处理 library(xts) #同上 library(timeSeires) #同上 library(urca) #进行单位根检验 library(tseries) #arma模型 library(fUnitRoots) #进行单位根检验 library(FinTS) #调用其中的自回归检验函数 library(fGarch) #GARCH模型 library(nlme) #调用其中的gls函数 library(fArma) #进行拟合和检验 【基本函数】 数学函数 abs,sqrt:绝对值,平方根 log, log10, log2 , exp:对数与指数函数 sin,cos,tan,asin,acos,atan,atan2:三角函数 sinh,cosh,tanh,asinh,acosh,atanh:双曲函数 简单统计量 sum, mean, var, sd, min, max, range, median, IQR(四分位间距)等为统计量,sort,order,rank与排序有关,其它还有ave,fivenum,mad,quantile,stem等。

https://www.doczj.com/doc/394039683.html, #具体说明见文档1 #转成时间序列类型 x = rnorm(2) charvec = c(“2010-01-01”,”2010-02-01”) zoo(x,as.Date(charvec)) #包zoo xts(x, as.Date(charvec)) #包xts timeSeries(x,as.Date(charvec)) #包timeSeries #规则的时间序列,数据在规定的时间间隔内出现 tm = ts(x,start = c(2010,1), frequency=12 ) #12为按月份,4为按季度,1为按年度 zm = zooreg(x,start = c(2010,1), frequency=12 ) #包zoo xm = as.xts(tm) #包xts sm = as.timeSeries(tm) #包timeSeries #判断是否为规则时间序列 is.regular(x) #排序 zoo()和xts()会强制变换为正序(按照时间名称) timeSeries不会强制排序;其结果可以根据sort函数排序,也可以采用rev()函数进行逆序;参数recordIDs,可以给每个元素(行)标记一个ID,从而可以找回原来的顺序 #预设的时间有重复的时间点时

时间序列分析法原理及步骤

时间序列分析法原理及步骤 ----目标变量随决策变量随时间序列变化系统 一、认识时间序列变动特征 认识时间序列所具有的变动特征, 以便在系统预测时选择采用不同的方法 1》随机性:均匀分布、无规则分布,可能符合某统计分布(用因变量的散点图和直方图及其包含的正态分布检验随机性, 大多服从正态分布 2》平稳性:样本序列的自相关函数在某一固定水平线附近摆动, 即方差和数学期望稳定为常数 识别序列特征可利用函数 ACF :其中是的 k 阶自 协方差,且 平稳过程的自相关系数和偏自相关系数都会以某种方式衰减趋于 0, 前者测度当前序列与先前序列之间简单和常规的相关程度, 后者是在控制其它先前序列的影响后,测度当前序列与某一先前序列之间的相关程度。实际上, 预测模型大都难以满足这些条件, 现实的经济、金融、商业等序列都是非稳定的,但通过数据处理可以变换为平稳的。 二、选择模型形式和参数检验 1》自回归 AR(p模型

模型意义仅通过时间序列变量的自身历史观测值来反映有关因素对预测目标的影响和作用,不受模型变量互相独立的假设条件约束,所构成的模型可以消除普通回归预测方法中由于自变量选择、多重共线性的比你更造成的困难用 PACF 函数判别 (从 p 阶开始的所有偏自相关系数均为 0 2》移动平均 MA(q模型 识别条件

平稳时间序列的偏相关系数和自相关系数均不截尾,但较快收敛到 0, 则该时间序列可能是 ARMA(p,q模型。实际问题中,多数要用此模型。因此建模解模的主要工作时求解 p,q 和φ、θ的值,检验和的值。 模型阶数 实际应用中 p,q 一般不超过 2. 3》自回归综合移动平均 ARIMA(p,d,q模型 模型含义 模型形式类似 ARMA(p,q模型, 但数据必须经过特殊处理。特别当线性时间序列非平稳时,不能直接利用 ARMA(p,q模型,但可以利用有限阶差分使非平稳时间序列平稳化,实际应用中 d (差分次数一般不超过 2. 模型识别 平稳时间序列的偏相关系数和自相关系数均不截尾,且缓慢衰减收敛,则该时间序列可能是 ARIMA(p,d,q模型。若时间序列存在周期性波动, 则可按时间周期进

横截面大数据、时间序列大数据、面板大数据

横截面数据、时间序列数据、面板数据 横截面数据:(时间固定) 横截面数据是在同一时间,不同统计单位相同统计指标组成的数据列。横截面数据是按照统计单位排列的。因此,横截面数据不要求统计对象及其范围相同,但要求统计的时间相同。也就是说必须是同一时间截面上的数据。 如: 时间序列数据:(横坐标为t,纵坐标为y) 在不同时间点上收集到的数据,这类数据反映某一事物、现象等随时间的变化状态或程度。 如: 面板数据:(横坐标为t,斜坐标为y,纵坐标为z) 是截面数据与时间序列数据综合起来的一种数据类型。其有时间序列和截面两个维度,当这类数据按两个维度排列时,是排在一个平面上,与只有一个维度的数据排

在一条线上有着明显的不同,整个表格像是一个面板,所以把panel data译作“面板数据”。 举例: 如:城市名:北京、上海、重庆、天津的GDP分别为10、11、9、8(单位亿元)。这就是截面数据,在一个时间点处切开,看各个城市的不同就是截面数据。 如:2000、2001、2002、2003、2004各年的北京市GDP分别为8、9、10、11、12(单位亿元)。这就是时间序列,选一个城市,看各个样本时间点的不同就是时间序列。 如:2000、2001、2002、2003、2004各年中国所有直辖市的GDP分别为: 北京市分别为8、9、10、11、12; 上海市分别为9、10、11、12、13; 天津市分别为5、6、7、8、9; 重庆市分别为7、8、9、10、11(单位亿元)。 这就是面板数据。 关于面板数据的统计分析

启动Stata11.0,Stata界面有4个组成部分,Review(在左上角)、Variables (左下角)、输出窗口(在右上角)、Command(右下角)。首先定义变量,可以输入命令,也可以通过点击Data----Create new Variable or change variable。 特别注意,这里要定义的变量除了因素1、因素2、……因素6、盈余管理影响程度等,还要定义年份和公司名称两个变量,这两个变量的数据类型(Type)最好设置为int(整型),公司名称不要使用中文名称或者字母等,用数字代替。定义好变量之后可以输入数据了。数据可以直接导入(File-Import),也可以手工录入或者复制粘贴(Data-Data Edit(Browse)),手工录入数据和在excel中的操作一样。 以上面说的为例,定义变量 year、 company、 factor1、 factor2、 factor3、factor4、 factor5、 factor6、 DA。

时间序列中回归模型的诊断检验

时间序列中回归模型的诊断检验 【摘要】:时间序列是指被观测到的依时间次序排列的数据序列。从经济、金融到工程技术,从天文、地理到气象,从医学到生物,几乎在各个领域中都涉及到时间序列。对时间序列数据进行统计分析及推断,被称为时间序列分析。近几十年来,金融时间序列分析得到了人们广泛的关注。Engle在1982年对英国的通货膨胀率数据进行分析时提出一种统计建模思想:时间序列自回归模型误差的条件方差不一定是常数,可以随时间的变化而不同。基于这个思想,Engle首次提出了条件异方差模型,即人们熟知的ARCH(p)模型。由于Engle出色的开创性工作,金融时间序列条件异方差模型很快在学术界和实际应用中得到了极大的关注。许多专家学者根据实际中经济、金融数据的各种特征,提出了各种各样的条件异方差模型,并研究各种参数或非参数估计方法。但是,提出的模型是否合理?或者说,观测数据是否真的来自这一模型?人们往往不太关心。这个问题实际上是所谓的模型检验问题。对于著名的Box-Jenkins时间序列建模三步曲:模型的建立、模型的参数估计和模型的检验,理论上他们具有同等重要的地位。但是,正如专著Li所述,人们关注更多的是前面两步工作,而第三步(即模型的检验)常常得不到应有的重视。对于近二十年来受到广泛关注的条件异方差模型,模型检验问题同样没有得到应有的关注,相关的研究寥寥无几。对传统的回归模型,文献中主要有两大类模型检验方法:局部光滑方法和整体光滑方法。局部光滑方法涉及用非参数

估计方法估计其均值函数从而有可能导致维数问题。为了避免维数问题,学者们提出了各种各样的整体光滑方法用于模型检验,构造的检验不需要非参数光滑,但是对高频备择不敏感。上述两种方法各有优缺点。另外,这两种方法基本上都是针对因变量为一元情形。因此,本文提出一些新的方法来处理时间序列自回归模型的模型检验问题。需要特别指出的是,本文考虑的时间序列包括一元和多元情形,回归函数形式可以非常一般,自回归变量可以有多个后置项。本文首先研究了一元时间序列一般形式的自回归模型(包括条件异方差模型的均值模型和方差模型)的模型检验问题。通过模型的残差或标准化的残差进行加权平均,我们构造了一个得分型检验统计量。该检验具有许多优良性质,比如:在零假设模型下是渐近卡方分布的,处理起来简单;对备择假设敏感,能检测到以参数的速度收敛到原假设的备择假设模型;通过权函数的选择可以构造功效高的检验。在方向备择情形,我们研究得到了最优(功效最高)的得分型检验。当备择不是沿着某一方向而是多个可能的方向趋于原假设时,我们构造了极大极小(maximin)检验,该检验是渐近分布自由的,并具有许多优良性质。另外,对备择完全未知(即完全饱和备择)情形,我们也基于得分型检验的思想提出了一个构造万能检验(omnibustest)的可行性方案。需要指出的是,关于时间序列回归模型的诊断检验问题,本文是第一篇理论上研究检验的功效性质的文章。另外,在进行功效研究的过程中,我们得到了当模型被错误指定时参数估计(拟极大似然估计)的渐近性质。注意到得分型检验在构造过程中涉及渐近方差的插入估计

【原创】sas季节性时间序列ARIMA建模报告论文

季节性时间序列ARIMA 建模 摘要:研究随机数据序列的统计规律性,可以预测其发展,解决实际问题。时间序列理论在处理动态数据的问题上已经很成熟,无论是金融方面的数据,还是生活生产中的数据,只要是带有时间变量的数据,时间序列在处理上都具有无可比拟的优越性。 关键词:季节性时间序列 ARMA 模型 SARMA 模型 季节效应分析 在现实生活中,很多事物都呈现出季节变动规律,如购买火车票的数量,每年的1月或者2月就会出现购票的最高峰,因为这个季节就到了春季返乡高峰时间,这就是季节变动规律的。通过时序图,构造季节指数从而就可以用季节效应分析对所收集的数据进行季节效应分析。 季节变动:季节变动是指事物发展规律随着季节的转变发生周期性的波动,这种周期可以是一年,一个季度,一个月,一周,甚至是一天,一小时等。季节变动是有规律性的,它的每个周期都会重复出现,具体表现为相邻周期内每个时间段的变化方向和趋势大致相同。具有季节变动的时间序列可以很容易从时间序列的时间走势图上看出。在现实生活中,很多事物都具有季节变动规律,如购买机票的数值,每年的1月或2月就会出现购买机票的最高峰,也是机票价格的最高峰,因为这个季节就到了春节返乡高峰,这是呈现季节规律的。若在分析时间序列的过程中,对季节变化的规律现象不进行分析和研究,就会使预测的结果不够准确,也不能正确反映事物的正常发展趋势,从而也就丧失了预测其中的作用。 季节指数:季节指数是指经济行为或经济现象在某一特定季节(观察时域)观测值的平均值与总体平均值的比率,用来测度季节变动的大小,主要适用于定量数据,不适用与定性数据。季节模型在经济学领域使用的比较广泛,很多概念都是以经济学学位背景来定义的,它也适用与别的领域,不仅仅只有经济领域。季节指数概念中提到的某一特定季节,不一定就是真正意义上的四季,它可以是一年,一个季度,也可以是一个月,一周,一天等,它广义的指代一个观察周期。季节指数能定量显示季节变动的大小,季节指数越大表示同季平均变动越大,反之,若季节指数小则同季平均变动越小。 季节指数的计算分为三步: ① 计算周期内各期平均指数,得到长期以来该时期的平均水平。 根据公式:假定序列的数据结构为m 期为一周期,共有n 个周期。则m k n x x n i k k ,,2,1,1 =∑== ② 计算总平均数 根据公式 : nm x x n i m k ik ∑∑=== 11 ③ 用时期平均数除以总平均数就可以得到各时期的季节指数,..)3,2,1(=k S k 。

8时间序列回归模型——R实现

时间序列回归模型 1干预分析 1.1概念及模型 Box和Tiao引入的干预分析提供了对于干预影响时间序列的效果进行评估的一个框架,假设干预是可以通过时间序列的均值函数或者趋势而对过程施加影响,干预可以自然产生也可以人为施加的,如国家的宏观调控等。 其模型可以如下表示: 其中mt代表均值的变化,Nt是ARIMA过程。 1.2干预的分类 阶梯响应干预

脉冲响应干预 1.3干预的实例分析 1.3.1模型初探 对数化航空客运里程的干预模型的估计

> data(airmiles) > acf(diff(diff(window(log(airmiles),end=c(2001,8)),12))),=48)#用window得到在911事件以前的未爱干预的时间序列子集 对暂用的模型进行诊断 >fitmode<-arima(airmiles,order=c(0,1,1),seasonal=list(order=c(0,1,0))) > tsdiag(fitmode)

从诊断图可以看出存在三个异常点,acf在12阶存在高度相关因此在季节中加入MA(1)系数。 1.3.2拟合带有干预信息的模型 函数: arimax(x, order = c(0, 0, 0), seasonal = list(order = c(0, 0, 0), period = NA), xreg = NULL, = TRUE, = TRUE, fixed = NULL, init = NULL, method = c("CSS-ML", "ML", "CSS"), , = list(), kappa = 1e+06, io = NULL, xtransf, transfer = NULL) arimax函数扩展了arima函数,可以处理时间序列中干扰分析及异常值。假设干扰影响过程的均值,相对未受干扰的无价值函数的偏离用一些协变量的ARMA滤波器的输出这种来表示,偏差被称作传递函数。构造传递函数的协变量通过xtransf参数以矩阵或者的形式代入arimax函数。 =arimax(log(airmiles),order=c(0,1,1),seasonal=list(order=c(0,1,1), period=12),xtransf=(I911=1*(seq(airmiles)==69),

太阳黑子数时间序列分析资料报告大数据

Re:【求助】请问谁有太阳黑子数据 只有1700-1987年的 年份黑子数: 1700 5.0 1701 11.0 1702 16.0 1703 23.0 1704 36.0 1705 58.0 1706 29.0 1707 20.0 1708 10.0 1709 8.0 1710 3.0 1711 0.0 1712 0.0 1713 2.0 1714 11.0 1715 27.0 1716 47.0 1717 63.0 1718 60.0 1719 39.0 1720 28.0 1721 26.0 1722 22.0 1723 11.0 1724 21.0 1725 40.0 1726 78.0 1727 122.0 1728 103.0 1729 73.0 1730 47.0 1731 35.0

1733 5.0 1734 16.0 1735 34.0 1736 70.0 1737 81.0 1738 111.0 1739 101.0 1740 73.0 1741 40.0 1742 20.0 1743 16.0 1744 5.0 1745 11.0 1746 22.0 1747 40.0 1748 60.0 1749 80.9 1750 83.4 1751 47.7 1752 47.8 1753 30.7 1754 12.2 1755 9.6 1756 10.2 1757 32.4 1758 47.6 1759 54.0 1760 62.9 1761 85.9 1762 61.2 1763 45.1 1764 36.4 1765 20.9 1766 11.4 1767 37.8

回归分析时间序列分析答案.doc

回归分析时间序列分析答案 一、单项选择题 1、下面的关系中不是相关关系的是(D ) A、身高与体重之间的关系 B、工资水平与工龄之间的关系 C、农作物的单位面积产量与降雨量之间的关系 D、圆的面积与半径之间的关系 2、具有相关关系的两个变量的特点是(A ) A、一个变量的取值不能由另一个变量唯一确定 B、一个变量的取值由另一个变量唯一确定 C、一个变量的取值增大时另一个变量的取值也一定增大 D、一个变量的取值增大时另一个变量的取值肯定变小 3、下面的假定中,哪个属于相关分析中的假定(B) A、两个变量之间是非线性关系 B、两个变量都是随机变量 C、自变量是随机变量,因变量不是随机变量 D、一个变量的数值增大,另一个变量的数值也应增大 4、如果一个变量的取值完全依赖于另一个变量,各观测点落在一条直线上,则称这两个变量之间为(A ) A、完全相关关系 B、正线性相关关系 C、非线性相关关系 D、负线性相关关系 5、根据你的判断,下面的相关系数取值哪一个是错误的( C ) A、–0.86 B、0.78 C、1.25 D、0

x6、某校经济管理类的学生学习统计学的时间()与考试成绩(y)之间建立线性回归方程y x=a+b。经计算,方程为y =200—0.8x,该方程参数的计算(C) cc A a值是明显不对的 B b值是明显不对的 C a值和b值都是不对的 D a值和b值都是正确的 7、在回归分析中,描述因变量y如何依赖于自变量x和误差项ε的方程称为(B) A、回归方程 B、回归模型 C、估计回归方程 D、经验回归方程 ,,,x,,8、在回归模型y=中,ε反映的是(C ) 01 A、由于x的变化引起的y的线性变化部分 B、由于y的变化引起的x的线性变化部分 C、除x和y的线性关系之外的随机因素对y的影响 D、由于x和y的线性关系对y的影响 9、如果两个变量之间存在负相关关系,下列回归方程中哪个肯定有误(B) ,, A、=25–0.75x B、= –120+ 0.86x yy ,, C、=200–2.5x D、= –34–0.74x yy 10、说明回归方程拟合优度的统计量是(C ) A、相关系数 B、回归系数 C、判定系数 D、估计标准误差 211、判定系数R是说明回归方程拟合度的一个统计量,它的计算公式为(A ) SSRSSRSSESSTA、 B、 C、 D、 SSTSSESSTSSR 12、为了研究居民消费(C)与可支配收入(Y)之间的关系,有人运用回归分析的方法,得到以下方程:在该方程中0.76的含义是(B ) LnC,2.36,0.76LnY, A、可支配收入每增加1元,消费支出增加0.76元

时间序列分析课程设计(最终版)汇总

《时间序列分析》 课程设计报告 学院 专业 姓名 学号 评语: 分数 二○一二年十一月

目录 1.平稳序列分析(选用数据:国内工业同比增长率)-------------------------3 1.1 序列分析--------------------------------------------------------------3 1.2 附录(程序代码)------------------------------------------------------7 2.非平稳序列分析I(选用数据:国家财政预算支出)-------------------------8 2.1 使用ARIMA进行拟合-------------------------------------------------8 2.2 使用残差自回归进行拟合---------------------------------------------11 2.3 附录(程序代码)-----------------------------------------------------12 3.非平稳序列分析II(选用数据:美国月度进出口额)------------------------13 3.1序列分析--------------------------------------------------------------13 3.2附录(程序代码)------------------------------------------------------18

一、平稳序列分析(选用数据:国内工业同比增长率,2005年01月-2012年5月)绘制时序图 的趋势以及周期性,波动稳定,可以初步判定为平稳序列。下面进一步考察序列的自相关图。 认为该序列平稳。下面对序列进行白噪声检验。

一异方差的检验与修正-时间序列分析

案例三ARIMA模型的建立 一、实验目的 了解ARIMA模型的特点和建模过程,了解AR,MA和ARIMA模型三者之间的区别与联系,掌握如何利用自相关系数和偏自相关系数对ARIMA模型进行识别,利用最小二乘法等方法对ARIMA模型进行估计,利用信息准则对估计的ARIMA模型进行诊断,以及如何利用ARIMA模型进行预测。掌握在实证研究如何运用Eviews软件进行ARIMA模型的识别、诊断、估计和预测。 二、基本概念 所谓ARIMA模型,是指将非平稳时间序列转化为平稳时间序列,然后将平稳的时间序列建立ARMA模型。ARIMA模型根据原序列是否平稳以及回归中所含部分的不同,包括移动平均过程(MA)、自回归过程(AR)、自回归移动平均过程(ARMA)以及ARIMA过程。 在ARIMA模型的识别过程中,我们主要用到两个工具:自相关函数ACF,偏自相关函数PACF以及它们各自的相关图。对于一个序列{}t X而言,它的第j阶自相关系数jρ为它 γγ,它是关于滞后期j的函数,因此我们也称之为的j阶自协方差除以方差,即jρ=j0 自相关函数,通常记ACF(j)。偏自相关函数PACF(j)度量了消除中间滞后项影响后两滞后变量之间的相关关系。 三、实验内容及要求 1、实验内容: (1)根据时序图的形状,采用相应的方法把非平稳序列平稳化; (2)对经过平稳化后的1950年到2007年中国进出口贸易总额数据运用经典B-J方法论建p d q)模型,并能够利用此模型进行进出口贸易总额的预测。 立合适的ARIMA(,, 2、实验要求: (1)深刻理解非平稳时间序列的概念和ARIMA模型的建模思想; (2)如何通过观察自相关,偏自相关系数及其图形,利用最小二乘法,以及信息准则建立合适的ARIMA模型;如何利用ARIMA模型进行预测; (3)熟练掌握相关Eviews操作,读懂模型参数估计结果。 四、实验指导 1、模型识别 (1)数据录入 打开Eviews软件,选择“File”菜单中的“New--Workfile”选项,在“Workfile structure type”栏选择“Dated –regular frequency”,在“Date specification”栏中分别选择“Annual”(年数据) ,分别在起始年输入1950,终止年输入2007,点击ok,见图3-1,这样就建立了一个工作文件。点击File/Import,找到相应的Excel数据集,导入即可。

基于时间序列模型与线性回归模型的历史数据预测

基于时间序列模型与线性回归模型的历史数据预测 摘要:本文通过具体案例,简要说明根据时间序列数据建立和相应经济理论建立线性回归模型的简要步骤及基本原则,并着重介绍了在模型建立和模型有效性检验过程中需要注意的三个主要问题,最后简单介绍了进行模型修正的相应方法。 引言 多元线性回归模型的一般形式为: Y=β0+β1X1+β2X2+…+βkXk+μi (k,i=1,2,…,n) 其中k为解释变量的数目,βk(k=1,2,…,n)称为回归系数,上式也被称为总体回归函数的随机表达式。 从统计意义上说,所谓时间序列模型就是将某一个指标在不同时间上的不同数值,按照时间的先后顺序排列而成的数列。这种数列由于受到各种偶然因素的影响,往往表现出某种随机性,彼此之间存在着统计上的依赖关系。从数学意义上说,如果我们对某一过程中的某一个变量或一组变量X(t)进行观察测量,在一系列时刻t1,t2, …,tn(t为自变量,且t1

时间序列分析方法第11章向量自回归

第十一章 向量自回归 前一章我们讨论了向量随机过程的基本性质。本章我们将深入分析向量自回归模型,这种模型更适合于估计和预测。由于Sims(1980)年在经济中的出色运用,向量自回归模型在分析经济系统的动态性上得到了广泛的应用。 §11.1 无限制向量自回归模型的极大似然估计和假设检验 按照时间序列模型极大似然估计方法,我们首先分析向量自回归模型的条件似然估计。 11.1.1 向量自回归模型的条件似然函数 假设t y 表示一个包含时间t 时n 个变量的1?n 的向量。假设t y 的动态过程可以由下面的p 阶高斯向量自回归过程: t t t 1t 1εy Φy Φy Φc y +++++=---p p t 22,)(~Ω0,εt N 假设我们已经在)(p T +个时间间隔中观测到这些n 个变量的观测值。如同标量过程时的情形,最简单的方法是将前p 个样本(表示为021,,,y y y +-+-p p )做为条件,然后利用后面的T 个样本(表示为T y y y ,,,21 )形成参数估计。我们的目的是构造下面的条件似然函数: );(θy ,y ,y |y ,,y ,y 1p 1011T T Y ,Y ,Y |Y ,,Y ,Y 1p 1011T T +---+--- f 这里参数向量为)(Ω,Φ,,Φ,Φc,θp 21 =,我们在上述函数中相对于参数θ进行极大化。一般情形下,向量自回归模型是在条件似然函数基础上,而不是在无条件似然函数基础上进行估计的。为了简单起见,我们将上述“条件似然函数”称为“似然函数”,相应的“条件极大似然估计”称为“极大似然估计”。 向量自回归与标量自回归过程的似然函数的计算方法是类似的。基于时刻1-t 以前观测值,时刻t 的t y 值等于常数向量:p t p t t ---++++y Φy Φy Φc 2211,加上一个多元正态分布的随机向量)(~Ω0,εt N ,因此条件分布为: ),(~|22Ωy Φy Φy Φc y ,,y y t t 1t 11p p p t t t N -----++++ 我们可以将上述条件分布表示成为更为紧凑的形式。假设向量t x 是常数向量和t y 滞后值向量构成的综合向量: ),1(1'''≡--p t t t y ,,y x 这是一个维数为]1)1[(?+np 的列向量。假设Π'表示下述)]1([+?np n 维矩阵: ],,,,[21p ΦΦΦc Π ≡' 这时条件均值可以表示为t x Π',Π'的第j 行包含V AR 模型第j 个方程中的参数。使用这样的符号,我们可以把条件分布表示成为紧凑形式: ),(~|Ωx Πy ,,y y 1t p t t t N '-- 因此第t 个观测值的条件分布可以表示成为: )] ())(2/1exp{(||)2() ;,|(12/112/21|11t t t t n p t t t p t t f x Πy Ωx Πy Ωθy ,y ,y y 1Y ,,Y ,Y '-''--=---+---+--π 这是基于条件),,,{110+--p y y y 的观测值从1到t 的联合概率分布为:

相关主题
相关文档 最新文档