当前位置:文档之家› 刻蚀工艺

刻蚀工艺

硅片工艺程
集成电路工艺之
Materials
IC Fab Metallization CMP Dielectric deposition Test
Wafers
刻蚀
Thermal Processes Masks
Implant
Etch PR strip
Packaging
Photolithography Design
Final Test
刻蚀
1、基本介绍 2、湿法刻蚀 3、干法刻蚀 4、刻蚀工艺
刻蚀的定义
基于光刻技术的腐蚀:刻蚀 湿法称腐蚀?干法称刻蚀? 将光刻胶上的IC设计图形转移到硅片 表面 腐蚀未被光刻胶覆盖的硅片表面,实 现最终的图形转移 化学的,物的或者两者的结合

栅极光刻对准
栅极光刻掩膜
光刻胶 多晶硅
STI P-Well
USG
栅极光刻曝光
Gate Mask
显影/后烘/检验
Photoresist Polysilicon STI P-Well USG STI
PR Polysilicon USG P-Well

多晶硅刻蚀(1)
Polysilicon
多晶硅刻蚀(2)
Gate Oxide Polysilicon
PR STI P-Well USG STI
PR USG P-Well
去除光刻胶
Gate Oxide Polysilicon
离子注入
Gate Oxide Dopant Ions, As Polysilicon
+
STI P-Well
USG
STI
n+ P-Well
n+
USG Source/Drain

快速热退火
Gate Oxide Polysilicon Gate
刻蚀术语
Etch rate 刻蚀速 Selectivity选择比 Etch uniformity均匀性 Etch profile侧墙轮 Wet etch湿法刻蚀 Dry etch干法刻蚀 Endpoint 终点检测
STI
n+ P-Well
n+
USG Source/Drain
刻蚀速率
刻蚀速是指单位时间内硅片表面被刻蚀的材 去除
d0
刻蚀速率
刻蚀后膜厚的变化 刻蚀速 = 刻蚀时间 PE-TEOS PSG 膜,在 22 °C 6:1 BOE 中湿刻1分钟, 刻蚀前, d = 1.7 μm, 刻蚀后, d = 1.1 μm 17000-11000 ----------------1
Δd
d1
刻蚀前
Etch Rate =
刻蚀后
Δd
t (/min)
Δd = d0 - d1 () 是材膜厚的变化, t 刻蚀时间 (分)
ER =
= 6000 /min

均匀性
刻蚀的均匀性是衡刻蚀工艺 在硅片内和硅 片间的可重复性 刻蚀本身的均匀性和材膜厚的均匀性 特征尺寸的负载效应(loading effect) 通常用标准偏差来定义 同的定义给出同的结果
非均匀性标准偏差
测N 点
σ=
( x1 x ) 2 + ( x2 x ) 2 + ( x3 x ) 2 + + ( x N x ) 2 N
x=
x1 + x 2 + x3 + + x N N
非均匀性表达式
刻蚀的非均匀性(NU)可由下 面的公式计算(称为Max-Min uniformity, 适用于超净厂房的作业)
NU(%) = (Emax - Emin)/ 2Eave Emax = 测量到的最大刻蚀速率 Emin = 测量到的最小刻蚀速率 Eave = 刻蚀速率平均值
选择比 Selectivity
选择比是同的材的刻蚀速的比值 在有图形的刻蚀中是非常重要的 对下层材质和光刻胶的选择性 E1 S= BPSG 对 Poly-Si的选择比: E2
PR BPSG Poly-Si Si Gate SiO2 E2 PR BPSG Poly-Si Si E1

选择比Selectivity
Etch rate 1 Selectivity = Etch rate 2 对于PE-TEOS PSG 膜刻蚀速是 6000 /min, 对于硅的刻蚀速是30 /min, PSG 对 silicon
6000 Selectivity = ----------------30
刻蚀
1、基本介绍 2、湿法刻蚀 3、干法刻蚀 4、刻蚀工艺
= 200: 1
湿法刻蚀
化学溶液溶解硅片表面的材质 刻蚀后产品是气体,液体或是可溶解在刻 蚀溶液中的材质。 三个基本步骤:腐蚀,清洗,干燥。
蚀刻剂浸泡 去离子水清洗 旋转甩干
湿法刻蚀-2
纯化学性工艺,各向同性的侧壁形貌,高选 择比 在特征尺寸大于3微米时曾被广泛应用于IC制 造业。目前已被干法(等离子)刻蚀取代。 仍被应用在先进的IC厂
– 硅片的清洗 – 无图形的薄膜去除,如氮化硅和钛的去除。 – 测试硅片的薄膜去除和清洗。 – 应用于 CVD膜质的控制 (缓冲氧化层刻蚀剂或 BOE)

二氧化硅的湿法刻蚀
氢氟酸溶液 (HF),极高的选择比。 通常用缓冲剂或去离子水稀释减少刻蚀速 SiO2 + 6HF → H2SiF6 + 2H2O 广泛的应用于 CVD长膜质控制 BOE: Buffered oxide etch缓冲氧化层腐蚀液 NH4F (6Vol 40%) : HF(1Vol 49wt%) BSG > CVDSiO2 > 热SiO2 > PSG?
硅或多晶硅的湿法刻蚀
硅刻蚀通常使用混合的硝酸 (HNO3) 和氢 氟酸(HF)。 HNO3氧化硅的同时,氢氟酸移去氧化硅。 去离子水或乙酸可作为稀释剂,低刻蚀 速。
Si + 2HNO3 + 6HF → H2SiF6 + 2HNO2 + 2H2O
腐蚀速强依赖掺杂浓以及腐蚀液配比
氮化硅的湿法刻蚀
热 (150 to 200 °C) 磷酸 H3PO4溶液。 对硅、二氧化硅有高选 择比。 应用于 LOCOS 和 STI 氮化硅去除。 Si3N4 + 4 H3PO4 → Si3(PO4)4 + 4NH3
铝的湿法刻蚀
80% 磷酸, 5% 乙酸, 5% 硝酸, 和 10 % 水 加热溶液 (42 to 45°C) 硝酸使铝氧化, 同时磷酸移除被氧化的 铝。. 乙酸减低硝酸的氧化速。

钛的湿法刻蚀
1:1 双氧水 (H2O2) 和酸 (H2SO4) 混 合溶液。 H2O2将钛氧化成 TiO2 H2SO4 和 TiO2 反应同时移除它 H2O2将硅和硅化物氧化 成 SiO2 H2SO4 和 SiO2反应
n+ nTi
自对准钛硅化物的形成
Ti TiSi2
Polysilicon gate
Polysilicon gate
TiSi2
TiSi2 Polysilicon gate
TiSi2
Gate oxide
nn+
nn+
Gate oxide
nn+
n+
n-
Gate oxide
nn+
钛淀积
硅化物退火
湿法去除钛
化学溶液的危险性
HF 、H3PO3、HNO3 侵蚀、氧化、特殊的危害 HF : 即使接触也会感觉到 损伤骨头,中和钙 剧疼痛 要心存侥幸. 视IC工厂中所有 未知的溶液为HF.

湿法刻蚀的优缺点
高选择比。 相对宜的 设备。 批处,高 产出。 各向同性的形貌 能形成3微米以下的图形 化学剂用大 化学剂的危害性
刻蚀
1、基本介绍 2、湿法刻蚀 3、干法刻蚀 4、刻蚀工艺
干法刻蚀
主要为等离子体刻蚀 等离子体中含有高活性自由基和离子 自由基具有强的氧化性 离子具有一定的动能 仅用活性自由基的纯化学刻蚀:PE 同时化学和物反应:RIE 目前大部分图形刻蚀都采用RIE
Etch Bias Etch Profile Etch rate Selectivity Equipment cost Throughput Chemical usage
干湿法刻蚀的比较
Wet Etch Unacceptable for < 3μm Isotropic High High Low High (batch) High Dry Etch Minimum Anisotropic to isotropic, controllable Acceptable, controllable Acceptable, controllable High Acceptable, controllable Low

干法刻蚀的三种方式
化学 (PE,用活性自由基) 物(IBE,用赋能离子) 化学+物(RIE,同时用 活性自由基和离子)
化学方式
纯化学反应 反应产物是气体 高选择比 各向同性的形貌 如:
– 干法去胶 – LOCOS 和STI 的氮化硅去除
物理方式
物反应:从表面移走材 惰性离子如Ar+轰击表面进溅射 等离子体工艺 各向异性形貌 低选择比 如:
– 氩溅射刻蚀
物理/化学混合方式 (反应离子刻蚀 (RIE) )
结合物和化学的刻蚀 等离子体:离子轰击加上自由基反应 名字的误导, 应该称为离子辅助刻蚀 (IAE) 高速可控的刻蚀速 各向异性可控的形貌 好的可控的选择比 在8英寸厂所有的图形刻蚀都使用RIE工艺。

三种干法刻蚀方式的比较
Chemical Etch Examples Etch rate Selectivity Etch profile Endpoint PR strip High to low Very good Isotropic By time or visual RIE Plasma patterned etches High, controllable Reasonable, controllable Anisotropic, controllable Optical Physical Etch Argon sputtering
Silicon Etch Rate (/min) 70 60
三种干法刻蚀速度比较
PE
XeF2
Only
RIE
XeF2 + Ar +
IBE
Ar
+ Only
Low Very poor Anisotropic By time
50 40 30 20 10 0 Time
侧墙形貌控制
通过应用离子轰击可得到可控的 各向异性形貌。 各向异性产生机: 损伤机 保护机
损伤机理
强的离子轰击破坏化学键。 在表面的原子和自由基反 应。 离子轰击是垂直方向的。 各向异性刻蚀—垂直方向的刻蚀速 远大于水平方向。

损伤机理图示
PR Exposed atom Ions PR Broken bonds
保护机理
溅出光刻胶和/或化学反应生 成副产品。 副产品物质淀积在表面。 离子轰击是垂直方向的。 底部淀积会发生。 刻蚀主要是垂直方向的。 侧壁淀积保护侧壁。
Etched Atom or molecule
Etchant free radical
Etch Byproduct
保护机理图示
PR Knocked away bottom deposition Ions Sidewall deposition
No ion bombardment PR strip Ti strip
刻蚀的机理和应用
纯化学 Reactive Ion Etch (RIE) Blocking mechanism Light ion bombardment Damaging mechanism Heavy ion bombardment Only ion bombardment Pure Physical Etch
PR
Single crystal silicon etch Polysilicon etch Metal etch Oxide etch Nitride etch Sputtering etch
Etched Atom or molecule
Etchant free radical
Etch Byproduct
Nitride strip

等离子刻蚀腔
批处理系统 单片处理系统 高密度等离子系统
–ICP –ECR –Helicon
批处理PE系统
高产出 较老的系统 较小的硅片直径, <150 mm 或 6 inch 顺流和桶式刻蚀系统
–两者都是纯化学刻蚀没有离子轰 击
顺流(down-stream)等离子(PE) 刻蚀系统
Microwave or RF Process gases Free Radicals Byproducts to Vacuum Pump Etch Gas In Etch Chamber Wafers
桶式PE刻蚀系统
RF Plasma Wafer To Pump RF
Plasma Remote Plasma Chamber
RF
Etch Tunnel
RF

批处理RIE系统
Chamber Lid Wafers
单片RIE系统图示
Process gases
Process chamber Wafer
Plasma
Magnet coils
Plasma By-products to the pump To Vacuum Pump
Chuck RF Power
Helium For backside cooling
刻蚀腔的气压要求
超深亚微米后,要求低气压系统。 低压下: 自由基更长的平均自由程,较少的 碰撞高离子能量, 低离子散射和更好的 各向异性形貌。 有助于去除刻蚀副产物。 刻蚀腔通常都希望在低压状态下运行。 但低压下,难以离化!
磁场增强离化
低压下长的平均自由程, 离化碰撞 低 在磁场中, 电子被迫旋转 电子必须运行更长的距离 碰撞的几率增加 在低压下增加了等离子体的密度

高密度等离子 (HDP)源
刻蚀工艺要求低压 在长的平均自由程中电子很容因为碰撞 电极或腔壁而丢失,较难产生等离子体 平板系统或电容耦合系统能产生高密 的等离子体 在低压下生成高密的等离子体需要新的 系统: 感应耦合等离子体 (ICP) 电子回旋加速谐振 (ECR)
Process chamber Wafer
ICP 腔图示
Process gases Source RF
Plasma
RF coils
E-Chuck Byproducts to the pump Bias RF Helium backside cooling

感应耦合 RF power 变化的磁场产生电场 电子在一定的方向上被加速 可在低压下得到高密的等离子体

腔上部: 陶瓷或石英 源 RF 产生等离子体并且控制离子 密 射频偏压控制离子轰击能 离子能和密独受控
ECR腔图示
Microwave
磁场 中,电子回旋频 Ωe (MHz) = 2.80 B (Gauss) 如果入射微波频等 于 Ωe ωMW = Ωe 产生谐振,电子从微 波得到能 电子能被加速到高能 用以离子碰撞 在低压下生成高密 等离子体
刻蚀
1、基本介绍 2、湿法刻蚀 3、干法刻蚀 4、刻蚀工艺
Magnetic Coils Magnetic field line ECR Plasma Wafer
E-chuck Helium
Bias RF

等离子刻蚀工艺
介质刻蚀 硅(单、多晶)刻蚀 属刻蚀
介质刻蚀
特点:主要利用损伤机理,物理反应比化 学反应多。较高的 RF power ,较低的压力。 氧化物刻蚀
– 掺杂或没掺杂的硅酸盐玻璃 – 接触孔 (PSG or BPSG) – 过孔 (USG, FSG or low-k 介质)
氮化物刻蚀
– LOCOS (LPCVD SiN) – 压焊点 (PECVD SiN)
介质刻蚀-2
强氧化剂:氟自由基 氟炭化合物(CF4 , C3F8 ,C4F8 ,CHF3)通常 被用来做为氟源 NF3 、SF6、 也被应用于氟源。 通常掺入O2或H2、N2等提高选择比 化学反应方程式: CF4 + e → CF3 + F (自由基)+ e F + SiO2 → SiF4 ↑ +O2 F + Si4N3 → SiF4 ↑ +N2 F/C 比
刻蚀与聚合
F/C > 3, 刻蚀占主导 F/C < 2, 聚合占主导 聚合物屏蔽进一步的刻蚀
C2F4 -200 Bias (Volts) C2F6 CF4
Etching -100 Polymerization 0 1 2 3 4 F/C Ratio

聚合反应的应用
氧化物刻蚀时, 生成物氧会与C反应释放 多的F 刻蚀硅或属硅化物时,没有氧生成,F 被消耗,F/C 比下至低于 2 时聚合物 的淀积开始 高BPSG-to-TiSi2 选择比
隔离侧墙(spacer)刻蚀
RIE 无掩模回刻SiO2或SiN等介质
– 可以和介质 CVD 设备同时在线使用
Sidewall Spacer
Polysilicon Gate
Sidewall Spacer
n- LDD
Gate Oxide
n- LDD
CVD O3-TEOS USG
O3-TEOS USG 回刻
Polysilicon Gate
Sidewall Spacer
Polysilicon Gate
Sidewall Spacer
n- LDD
Gate Oxide
n- LDD
n- LDD
Gate Oxide
n- LDD

接触孔刻蚀
连接器件和属线的孔(下页) 掺杂的硅酸盐玻璃, PSG或 BPSG CF4 作为主要的刻蚀剂 CHF3 提高对硅和属硅化物的选择比 可掺入 O2 or H2 要求对硅和属硅化物有高选择比
CMOS 截面图
Contact Etch
Titanium/Titanium Nitride TiN ARC Al-Cu Alloy W BPSG STI n+ n+ P-Well P-Epi P-Wafer USG p+ N-Well p+ Titanium
接触孔刻蚀的难点
接触孔深差 别很大,近一 倍差别。 要求高的 Δt (B)PSG 对 属硅化物选择 比
酒杯状接触孔
Photoresist Wet etch
Photoresist
BPSG
Dry etch
Oxide Metal
t STI n+ TiSi2

CMOS 截面图 通孔刻蚀
上下层属互连的通孔,(见下页) 开通孔,即刻蚀USG or FSG 要求对属有高的选择比。 可用CO 来控制 F/C 比 避免属的溅射 双大马士革刻蚀
Metal 2 IMD 1 M1 USG Al-Cu Alloy W BPSG STI n+ n+ P-Well P-Epi P-Wafer USG p+ N-Well p+
Via Etch
Al-Cu Alloy
硅(单、多晶)刻蚀
特点:主要用保护机, 化学反应比物反应起大作用 。较低的 RF power 。 活性剂:Cl系和Br系,F系对其 它材选择比低。
单晶硅刻蚀
主要应用: 浅槽隔离 (STI)-链接 生成深槽电容 -链接 采用硬掩膜(氮化硅/氧化硅),因为 光刻胶可能引起衬底玷污 溴化物(HBr) 是主要的刻蚀剂

单晶硅刻蚀的化学反应
plasma
多晶硅刻蚀
主要应用于:
– 栅电极,最重要的一步刻蚀, 最小CD – 多晶硅局部互连 – DRAM电容电极
HBr → H + Br Br + Si → SiBr4↑ 少的 O2 保护侧壁 少的 NF3 预防硅玷污 刻蚀过程时间控制

要求对氧化硅有高选择比 Cl2 是主要的刻蚀剂 Cl + Si →SiCl4↑ HBr 保护侧壁, 保护机 在过刻蚀一步中加入O2 提高对氧化硅的 选择比.
多晶硅栅刻蚀
STI-CMOS
Photoresist Gate Oxide SiCl4 Cl Polysilicon Cl
SiO 2 p+
Polysilicon gate
多晶硅栅刻蚀-2
LOCOS-CMOS
Poly-Si on sidewall PR Poly Poly-Si on Gate sidewall oxide
Single Crystal Silicon Substrate
N-well
STI P-Well P-Epi
USG N-Well P-Wafer
High poly-to-oxide selectivity is required

半导体工艺主要设备大全

清洗机超音波清洗机是现代工厂工业零件表面清洗的新技术,目前已广泛应用于半导体硅 片的清洗。超声波清洗机“声音也可以清洗污垢”——超声波清洗机又名超声波清洗器,以其洁净的清洗效果给清洗界带来了一股强劲的清洗风暴。超声波清洗机(超声波清洗器)利用空化效应,短时间内将传统清洗方式难以洗到的狭缝、空隙、盲孔彻底清洗干净,超声波清洗机对清洗器件的养护,提高寿命起到了重要作用。CSQ 系列超声波清洗机采用内置式加热系统、温控系统,有效提高了清洗效率;设置时间控制装置,清洗方便;具有频率自动跟踪功能,清洗效果稳定;多种机型、结构设计,适应不同清洗要求。CSQ 系列超声波清洗机适用于珠宝首饰、眼镜、钟表零部件、汽车零部件,医疗设备、精密偶件、化纤行业(喷丝板过滤芯)等的清洗;对除油、除锈、除研磨膏、除焊渣、除蜡,涂装前、电镀前的清洗有传统清洗方式难以达到的效果。恒威公司生产CSQ 系列超声波清洗机具有以下特点:不锈钢加强结构,耐酸耐碱;特种胶工艺连接,运行安全;使用IGBT 模块,性能稳定;专业电源设计,性价比高。反渗透纯水机去离子水生产设备之一,通过反渗透原理来实现净水。 纯水机清洗半导体硅片用的去离子水生产设备,去离子水有毒,不可食用。 净化设备主要产品:水处理设备、灌装设备、空气净化设备、净化工程、反渗透、超滤、电渗析设备、EDI 装置、离子交换设备、机械过滤器、精密过滤器、UV 紫外线杀菌器、臭氧发生器、装配式洁净室、空气吹淋室、传递窗、工作台、高校送风口、空气自净室、亚高、高效过滤器等及各种配件。 风淋室:运用国外先进技术和进口电器控制系统, 组装成的一种使用新型的自动吹淋室.它广 泛用于微电子医院制药生化制品食品卫生精细化工精密机械和航空航天等生产和科研单位,用于吹除进入洁净室的人体和携带物品的表面附着的尘埃,同时风淋室也起气的作用 防止未净化的空气进入洁净区域,是进行人体净化和防止室外空气污染洁净的有效设备. 抛光机整个系统是由一个旋转的硅片夹持器、承载抛光垫的工作台和抛光浆料供给装置三大部分组成。化学机械抛光时,旋转的工件以一定的压力压在旋转的抛光垫上,而由亚微米或纳米磨粒和化学溶液组成的抛光液在工件与抛光垫之间流动,并产生化学反应,工件表面形成的化学反应物由磨粒的机械作用去除,即在化学成膜和机械去膜的交替过程中实现超精密表面加工,人们称这种CMP 为游离磨料CMP 。 电解抛光电化学抛光是利用金属电化学阳极溶解原理进行修磨抛光。将电化学预抛光和机械精抛光有机的结合在一起,发挥了电化学和机构两类抛光特长。它不受材料硬度和韧性的限制,可抛光各种复杂形状的工件。其方法与电解磨削类似。导电抛光工具使用金钢石导电锉或石墨油石,接到电源的阴极,被抛光的工件(如模具)接到电源的阳极。 光刻胶又称光致抗蚀剂,由感光树脂、增感剂(见光谱增感染料)和溶剂三种主要成分组成的对光敏感的混合液体。感光树脂经光照后,在曝光区能很快地发生光固化反应,使得这种材料的物理性能,特别是溶解性、亲合性等发生明显变化。经适当的溶剂处理,溶去可溶性部分,得到所需图像(见图光致抗蚀剂成像制版过程)。光刻胶广泛用于印刷电路和集成电路的制造以及印刷制版等过程。光刻胶的技术复杂,品种较多。根据其化学反应机理和显影原理,可分负性胶和正性胶两类。光照后形成不可溶物质的是负性胶;反之,对某些溶剂是不可溶的,经光照后变成可溶物质的即为正性胶。利用这种性能,将光刻胶作涂层,就能在硅片表面刻蚀所需的电路图形。基于感光树脂的化学结构,光刻胶可以分为三种类型。①光聚合型,采用烯类单体,在光作用下生成自由基,自由基再进一步引发 单体聚合,最后生成聚合物,具有形成正像的特点。②光分解型,采用含有叠氮醌类化合

干法刻蚀工艺

干法刻蚀工艺 干法刻蚀工艺可分为物理性刻蚀与化学性刻蚀两种方式。物理性刻蚀是利用辉光放电将气体(如氩)电离成带正电的离子,再利用偏压将离子加速,溅击在被刻蚀物的表面而将被刻蚀物的原子击出,该过程完全是物理上的能量转移,故称为物理性刻蚀。其特色在于,具有非常好的方向性,可获得接近垂直的刻蚀轮廓。但是由于离子是全面均匀地溅射在芯片上,所以光刻胶和被刻蚀材料同时被刻蚀,造成刻蚀选择性偏低。同时,被击出的物质并非挥发性物质,这些物质容易二次沉积在被刻蚀薄膜的表面及侧壁上。因此,在超大规模集成化制作工艺中,很少使用完全物理方式的干法刻蚀方法。 化学性刻蚀或称为等离子体刻蚀( PLASMA Etching,PE),是利用等离子体将刻蚀气体电离并形成带电离子、分子及反应性很强的原子团,它们扩散到被刻蚀薄膜表面后与被刻蚀薄膜的表面原子反应生成具有挥发性的反应产物,并被真空设备抽离反应腔。因这种反应完全利用化学反应,故称为化学性刻蚀。这种刻蚀方式与前面所讲的湿法刻蚀类似,只是反应物与产物的状态从液态改为气态,并以等离子体来加快反应速率。因此,化学性干法刻蚀具有与湿法刻蚀类似的优点与缺点,即具有较高的掩膜/底层的选择比及等向性。鉴于化学性刻蚀等向性的缺点,在半导体工艺中,只在刻蚀不需要图形转移的步骠(如光刻胶的去除)中应用纯化学刻蚀方法。 最为广泛使用的方法是结合物理性的离子轰击与化学反应的反应离子刻蚀( RIE)。这种方式兼具非等向性与高刻蚀选择比的双重优点。刻蚀的进行主要靠化学反应来实现,加入离子轰击的作用有两方面。 1)破坏被刻蚀材质表面的化学键以提高反应速率。 2)将二次沉积在被刻蚀薄膜表面的产物或聚合物打掉,以使被刻蚀表面能充分与刻蚀气体接触。由于在表面的二次沉积物可被离子打掉,而在侧壁上的二次沉积物未受到离子的轰击,可以保留下来阻隔刻蚀表面与反应气体的接触、使得侧壁不受刻蚀,所以采用这种方式可以获得非等向性的刻蚀效果。 当应用于法刻蚀时,主要应注意刻蚀速率、均匀度、选择比及刻蚀轮廓等因素。

半导体工艺 干法刻蚀 铝刻蚀

干法刻蚀之铝刻蚀 在集成电路的制造过程中,刻蚀就是利用化学或物理方法有选择性地从硅片表面去除不需要的材料的过程。从工艺上区分,刻蚀可以分为湿法刻蚀和干法刻蚀。前者的主要特点是各向同性刻蚀;后者是利用等离子体来进行各向异性刻蚀,可以严格控制纵向和横向刻蚀。 干法的各向异性刻蚀,可以用表面损伤和侧壁钝化两种机制来解释。表面损伤机制是指,与硅片平行的待刻蚀物质的图形底部,表面的原子键被破坏,扩散至此的自由基很容易与其发生反应,使得这个方向的刻蚀得以持续进行。与硅片垂直的图形侧壁则因为表面原子键完整,从而形态得到保护。侧壁钝化机制是指,刻蚀反应产生的非挥发性的副产物,光刻胶刻蚀产生的聚合物,以及侧壁表面的氧化物或氮化物会在待刻蚀物质表面形成钝化层。图形底部受到离子的轰击,钝化层会被击穿,露出里面的待刻蚀物质继续反应,而图形侧壁钝化层受到较少的离子轰击,阻止了这个方向刻蚀的进一步进行。 在半导体干法刻蚀工艺中,根据待刻蚀材料的不同,可分为金属刻蚀、介质刻蚀和硅刻蚀。金属刻蚀又可以分为金属铝刻蚀、金属钨刻蚀和氮化钛刻蚀等。目前,金属铝作为连线材料,仍然广泛用于DRAM和flash等存储器,以及以上的逻辑产品中。本文着重介绍金属铝的刻蚀工艺。

金属铝刻蚀通常用到以下气体:Cl2、BCl3、Ar、 N2、CHF3和C2H4等。Cl2作为主要的刻蚀气体,与铝发生化学反应,生成的可挥发的副产物AlCl3被气流带出反应腔。BCl3一方面提供BCl3+,垂直轰击硅片表面,达到各向异性的刻蚀。另一方面,由于铝表面极易氧化成氧化铝,这层自生氧化铝在刻蚀的初期阻隔了Cl2和铝的接触,阻碍了刻蚀的进一步进行。添加BCl3 则利于将这层氧化层还原(如方程式1),促进刻蚀过程的继续进行。 Al2O3 + 3BCl3→ 2AlCl3 + 3BOCl (1) Ar电离生成Ar+,主要是对硅片表面提供物理性的垂直轰击。 N2、CHF3和C2H4是主要的钝化气体,N2与金属侧壁氮化产生的AlxNy,CHF3和C2H4与光刻胶反应生成的聚合物会沉积在金属侧壁,形成阻止进一步反应的钝化层。 一般来说,反应腔的工艺压力控制在6-14毫托。压力越高,在反应腔中的Cl2浓度越高,刻蚀速率越快。压力越低,分子和离子的碰撞越少,平均自由程增加,离子轰击图形底部的能力增强,这样刻蚀反应速率不会降低甚至于停止于图形的底部。

刻蚀工艺

硅片工艺程
集成电路工艺之
Materials
IC Fab Metallization CMP Dielectric deposition Test
Wafers
刻蚀
Thermal Processes Masks
Implant
Etch PR strip
Packaging
Photolithography Design
Final Test
刻蚀
1、基本介绍 2、湿法刻蚀 3、干法刻蚀 4、刻蚀工艺
刻蚀的定义
基于光刻技术的腐蚀:刻蚀 湿法称腐蚀?干法称刻蚀? 将光刻胶上的IC设计图形转移到硅片 表面 腐蚀未被光刻胶覆盖的硅片表面,实 现最终的图形转移 化学的,物的或者两者的结合

栅极光刻对准
栅极光刻掩膜
光刻胶 多晶硅
STI P-Well
USG
栅极光刻曝光
Gate Mask
显影/后烘/检验
Photoresist Polysilicon STI P-Well USG STI
PR Polysilicon USG P-Well

多晶硅刻蚀(1)
Polysilicon
多晶硅刻蚀(2)
Gate Oxide Polysilicon
PR STI P-Well USG STI
PR USG P-Well
去除光刻胶
Gate Oxide Polysilicon
离子注入
Gate Oxide Dopant Ions, As Polysilicon
+
STI P-Well
USG
STI
n+ P-Well
n+
USG Source/Drain

深硅刻蚀工艺原理

硅蚀刻工艺在MEMS中的应用 文章来源:本站原创点击数:97 录入时间:2006-4-7 减小字体增大字体Dave?Thomas?/?Trikon?Technologies,Newport,Wales,United?Kingdom 本文介绍了在现代微机电系统(MEMS;Micro?Electro-Mechanical?System)制造过程中必不可少的硅蚀刻流程,讨论了蚀刻设备对于满足四种基本蚀刻流程的要求并做了比较,包括块体(bulk)、精度(pre cision)、绝缘体上硅芯片(SOI;Silicon?On?Insulator)及高深宽比的蚀刻(high?aspect?ratio?etching)等。并希望这些基本模块能衍生出可提供具备更高蚀刻率、更好的均匀度、更平滑的蚀刻侧壁及更高的高深宽比的蚀刻能力等蚀刻设备,以满足微机电系统的未来发展需求。 微机电系统是在芯片上集成运动件,如悬臂(cantilever)、薄膜(membrane)、传感器(sensor)、反射镜(mirror)、齿轮(gear)、马达(motor)、共振器(resonator)、阀门(valve)和泵(pump)等。这些组件都是用微加工技术(micromachining)制造的。由于硅材料的机械性及电性众所周知,以及它在主流IC制造上的广泛应用,使其成为微加工技术的首要选择材料。在制造各式各样的坑、洞、齿状等几何形状的方法中,湿式蚀刻具有快速及低成本的优势。然而,它所具有对硅材料各方向均以相同蚀刻速率进行的等向性(isotropic)蚀刻特性、或者是与硅材料的晶体结构存在的差异性、产生不同蚀刻速率的非等向性(a nisotropic)等蚀刻特性,会限制我们在工艺中对应用制造的特定要求,例如喷墨打印机的细微喷嘴制造(非等向性蚀刻特性总会造成V形沟槽,或具锥状(tapered?walls)的坑洞,使关键尺寸不易控制?)。而干式蚀刻正可克服这个应用限制,按照标准光刻线法(photolithographic)的光罩所定义的几何图案,此类干式蚀刻工艺可获取具有垂直侧壁的几何图案。举例来说,通常要蚀刻定义出较大尺寸的组件,如电容式加速微传感器(capacitive?accelerometers)。通常我们会优先考虑湿式蚀刻方式,但对于需要更精确尺寸控制、或是整体尺寸需微缩的组件的制造,则会考虑选择采用干式蚀刻来达到工艺要求。 硅蚀刻 广泛应用的硅蚀刻方法,是起源于德国Robert?Bosch公司开发的非等向性硅蚀刻工艺方法,被称为Bosch 气体交替技术(Bosch?gas-switching?technique)[1]。利用具有非等向性蚀刻反应的等离子源,与通过反应形成高分子蔽覆层(polymeric?passivation?layer)的另一种等离子源,两者反复交替进行的方法,以达到硅蚀刻的工艺要求。常用的在硅蚀刻生产过程中的气体选择,多是采用SF6(六氟化硫),因其可在能量只有20eV的条件下即可分解出6个氟原子,而这些氟原子会继续与Si反应形成挥发性SiF4(四氟化硅)。理论上,已定义几何图案的6寸硅晶圆占据了大约15%的裸片面积,设定等离子反应室内压力>30mtorr、S

半导体工艺试卷及答案

杭州电子科技大学研究生考试卷(B卷)

共页第页

1、什么是CMOS器件的闩锁效应描述三种阻止闩锁效应的制造技术。(12分) 答:闩锁效应就是指CMOS器件所固有的寄生双极晶体管(又称寄生可控硅,简称SCR)被触发导通,在电源和地之间形成低阻抗大电流的通路,导致器件无法正常工作,甚至烧毁器件的现象。这种寄生双极晶体管存在CMOS器件内的各个部分,包括输入端、输出端、内部反相器等。当外来干扰噪声使某个寄生晶体管被触发导通时,就可能诱发闩锁,这种外来干扰噪声常常是随机的,如电源的浪涌脉冲、静电放电、辐射等。闩锁效应往往发生在芯片中某一局部区域,有两种情况:一种是闩锁只发生在外围与输入、输出有关的地方,另一种是闩锁可能发生在芯片的任何地方,在使用中前一种情况遇到较多。? 2、为什么要用区熔法生长硅晶体比较FZ和CZ优缺点。(10分) 答:(1)原因:因为区熔法可以得到低至1011cm-1的载流子浓度。区熔生长技术的基本特点是样品的熔化部分是完全由固体部分支撑的,不需要坩埚。柱状的高纯多晶材料固定于卡盘,一个金属线圈沿多晶长度方向缓慢移动并通过柱状多晶,在金属线圈中通过高功率的射频电流,射频功率技法的电磁场将在多晶柱中引起涡流,产生焦耳热,通过调整线圈功率,可以使得多晶柱紧邻线圈的部分熔化,线圈移过后,熔料在结晶为为单晶。另一种使晶柱局部熔化的方法是使用聚焦电子束。整个区熔生长装置可置于真空系统中,或者有保护气氛的封闭腔室内 (2)CZ和FZ区别:CZ是直拉法,就是首先把多晶硅置于坩埚内加热熔化,然后采用小的结晶“种子”——籽晶,再慢慢向上提升、结晶,获得大的单晶锭。 (3)CZ和FZ优缺点比较:FZ是水平区域熔化生长法,就是水平放置、采用感应线圈加热、并进行晶体生长的技术。直拉法在Si单晶的制备中更为常用,占75%以上。直拉法制备Si单晶的优点是:1)成本低;2)能制备更大的圆片尺寸,6英寸(150mm)及以上的Si单晶制备均采用直拉法,目前直拉法已制备出400mm(16英寸)的商用Si单晶;3)制备过程中的剩余原材料可重复使用;4)直拉法制备的Si单晶位错密度低,0~104cm-2。直拉法制备Si单晶的主要缺点是,由于使用坩埚,Si单晶的纯度不如区熔法。区熔法制备Si单晶的主要优点是,由于不使用坩锅,可制备高纯度的硅单晶,电阻率高达2000Ω-mm,因此区熔法制备的Si单晶主要用于功率器件及电路。区熔法制备Si单晶的缺点是:1)成本高; 3、什么是LOCOS和STI为什么在高级IC工艺中,STI取代了LOCOS(12分) 答:(1)LOCOS:即“硅的局部氧化”技术(Local Oxidation of Silicon)CMOS工艺最常用的隔离技术就是LOCOS(硅的选择氧化)工艺,它以氮化硅为掩膜实现了硅的选择氧化,在这种工艺中,除了形成有源晶体管的区域以外,在其它所有重掺杂硅区上均生长一层厚的氧化层,称为隔离或场氧化层。-常规的LOCOS工艺由于有源区方向的场氧侵蚀(SiN边缘形成类似鸟嘴的结构,称为“鸟喙效应”bird beak)和场注入的横向扩散,使LOCOS工艺受到很大的限制。 STI:浅沟槽隔离(STI)是用于隔绝活动区域的制造方法,它会使实际电流不同于模拟结果。具体情

半导体刻蚀技术简介终稿

一、等离子体刻蚀技术的产生: 在积体电路制造过程中,常需要在晶圆上定义出极细微尺寸的图案,这些图案主要的形成方式,乃是藉由刻蚀技术,将微光刻后所产生的光阻图案忠实地转印至光阻下的材质上,以形成积体电路的复杂架构。因此蚀刻技术在半导体制造过程中占有极重要的地位。 广义而言,所谓的蚀刻技术,包含了将材质整面均匀移除及图案选择性部份去除的技术。而其中大略可分为湿式蚀刻与干式蚀刻两种技术。 早期半导体制程中所采用的蚀刻方式为湿式蚀刻,即利用特定的化学溶液将待蚀刻薄膜未被光阻覆盖的部分分解,并转成可溶于此溶液的化合物后加以排除,而达到蚀刻的目的。湿式蚀刻的进行主要是藉由溶液与待蚀刻材质间的化学反应,因此可藉由调配与选取适当的化学溶液,得到所需的蚀刻速率,以及待蚀刻材料与光阻及下层材质良好的蚀刻选择比(选择性)。 然而,随着积体电路中的元件尺寸越做越小,由于化学反应没有方向性,因而湿式蚀刻是各向同性的,此时,当蚀刻溶液做纵向蚀刻时,侧向的蚀刻将同时发生,进而造成咬边现象,导致图案线宽失真。因此湿式蚀刻在次微米元件的制程中已被干式蚀刻所取代。 干式蚀刻通常指利用辉光放电方式,产生包含离子,电子等带电粒子及具有高度化学活性的中性原子与分子及自由基的电浆来进行图案转印的蚀刻技术。 由部份解离的气体及等量的带正,负电荷粒子所组成的等离子体被称为电浆。蚀刻用的电浆中,气体的解离程度很低,其中所含的气体具高度的活性,它是利用外加电场的驱动而形成,并且会产生辉光放电现象。 自1970年代以来元件制造首先开始采用电浆蚀刻技术,对于电浆化学新的了解与认知也就蕴育而生。在现今的积体电路制造过程中,必须精确的控制各种材料尺寸至次微米大小且具有极高的再制性,而由于电浆蚀刻是现今技术中唯一能极有效率地将此工作在高良率下完成,因此电浆蚀刻便成为积体电路制造过程中的主要技术之一。 影响电浆蚀刻特性好坏的因素包括了:1)电浆蚀刻系统的型态,2)电浆蚀刻的参数; 3)前制程相关参数,如光阻,待蚀刻薄膜之沉积参数条件,待蚀刻薄膜下层薄膜的型态及表面的平整度等。 二、电浆的基本概念: 1、电浆形成的原理: 电浆的产生可藉由直流(DC)的偏压或交流射频(RF)的偏压下的电场形成,而在电浆中的电子来源通常有二:一为分子或原子解离后所产生的电子,另一则为离子撞击电极所产生的二次电子,在直流(DC)的电场下产生的电浆其电子源主要以二次电子为主,而交流射频(RF)的电场下产生的电浆其电子源则以分子或原子解离后所产生的电子为主。 在电浆蚀刻中以直流方式产生辉光放电的缺点包含了:1)需要较高的功率消耗,也就是说产生的离子密度低; 2)须要以离子撞击电极以产生二次电子,如此将会造成电极材料的损耗。三)所需之电极材料必须为导体如此一来将不适用于晶圆制程中。 在射频放电状况下,由于高频操作,使得大部份的电子在半个周期内没有足够的时间移动至正电极,因此这些电子将会在电极间作振荡,并与气体分子产生碰撞。而射频放电所需的振荡频率下限将视电极间的间距,压力,射频电场振幅的大小及气体分子的解离位能等因素而定,而通常振荡频率下限为50kHz的。一般的射频系统所采用的操作频率大都为13.56。 相较于直流放电,射频放电具有下列优点:1)放电的情况可一直持续下去而无需二次电子的发射,当晶圆本身即为电极的一部份时,这点对半导体材料制程就显得十分重要了; 2)由于电子来回的振荡,因此离子化的机率大为提升,蚀刻速率可因而提升; 3)可在较低的电极电压下操作,以减低电浆对元件所导致之损坏; 4)对于介电质材料同样可以运作。

半导体工艺流程

集成电路芯片生产的清洗包括硅片的清洗和工器具的清洗。由于半导体生产污染要求非常严格,清洗工艺需要消耗大量的高纯水;且为进行特殊过滤和纯化广泛使用化学试剂和有机溶剂。 在硅片的加工工艺中,硅片先按各自的要求放入各种药液槽进行表面化学处理,再送入清洗槽,将其表面粘附的药液清洗干净后进入下一道工序。常用的清洗方式是将硅片沉浸在液体槽内或使用液体喷雾清洗,同时为有更好的清洗效果,通常使用超声波激励和擦片措施,一般在有机溶剂清洗后立即采用无机酸将其氧化去除,最后用超纯水进行清洗,如图1-6所示。 图1-6硅片清洗工艺示意图 工具的清洗基本采用硅片清洗同样的方法。 2、热氧化 热氧化是在800~1250℃高温的氧气氛围和惰性携带气体(N2)下使硅片表面的硅氧化生成二氧化硅膜的过程,产生的二氧化硅用以作为扩散、离子注入的阻挡层,或介质隔离层。典型的热氧化化学反应为: Si + O2→SiO2

扩散是在硅表面掺入纯杂质原子的过程。通常是使用乙硼烷(B 2H 6)作为N -源和磷烷(PH 3)作为P +源。工艺生产过程中通常分为沉积源和驱赶两步,典型的化学反应为: 2PH 3 → 2P + 3H 2 4、离子注入 离子注入也是一种给硅片掺杂的过程。它的基本原理是把掺杂物质(原子)离子化后,在数千到数百万伏特电压的电场下得到加速,以较高的能量注入到硅片表面或其它薄膜中。经高温退火后,注入离子活化,起施主或受主的作用。 5、光刻 光刻包括涂胶、曝光、显影等过程。涂胶是通过硅片高速旋转在硅片表面均匀涂上光刻胶的过程;曝光是使用光刻机,并透过光掩膜版对涂胶的硅片进行光照,使部分光刻胶得到光照,另外,部分光刻胶得不到光照,从而改变光刻胶性质;显影是对曝光后的光刻胶进行去除,由于光照后的光刻胶和未被光照的光刻胶将分别溶于显影液和不溶于显影液,这样就使光刻胶上形成了沟槽。 6、湿法腐蚀和等离子刻蚀 通过光刻显影后,光刻胶下面的材料要被选择性地去除,使用的基片 涂胶后基片 光刻胶 阻挡层

最新LED芯片制造设备及其工艺介绍(精)

最新LED芯片制造设备及其工艺介绍 时间:2011-1-23打印本文 LED是技术引导型产业,特别是技术与资本密集型的芯片制造业,需要高端的工艺设备提供支撑。但与半导体投资热潮下的“瓶颈”类似,设备研发与产业膨胀仍然存在着速度匹配的问题,尤其是在高端设备领域,大部分设备仍然需要依赖进口。进口设备的价格昂贵,采购周期过 长,使中国的LED芯片制造行业急需本土设备的成长和崛起。 一、上游外延片生长设备国产化现状 LED产业链通常定义为上游外延片生长、中游芯片制造和下游芯片封装测试及应用三个环节。从上游到下游行业,进入门槛逐步降低,其中LED产业链上游外延生长技术含量最高,资本投入密度最大,是国际竞争最激烈、经营风险最大的领域。在LED产业链中,外延生长与芯片制造约占行业利润的70%,LED封装约占10%~20%,而LED应用大约也占10%~20%。 产业链各环节使用的生产设备从技术到投资同样遵循上述原则,在我国上游外延片生长和中游芯片制造的60余家企业中,核心设备基本上为国外进口,技术发展受制于人,且技术水平尚无法与国际主流厂商相比。这就意味着我国高端LED 外延片、芯片的供应能力远远不能满足需要,需大量进口,从而大大制约了国内LED产业的发展和盈利能力。 表1 LED产业链概况及关键设备介绍 产业链产品关键设备 上游原材料—单晶 棒—单晶片— PSS—外延片单晶片、图形化衬底PSS、外延片 MOCVD, ICP刻蚀机, 光刻机, PECVD 中游金属蒸镀—光 刻—电极制作 (热处理、刻蚀 芯片切割—测 试分选LED芯片 ICP刻蚀机,光刻机,蒸发台,溅射台,激光划片机 下游固晶(芯片粘 贴)—打线 (焊接)—树 脂封装剪角— 应用产品灯泡、显示屏、背光源等 固晶机、焊线机等 上游外延生长,由于外延膜层决定了最终LED光源的性能与质量,是LED生产流程的核心,用于外延片生长的MOCVD也因其技术难度高、工艺复杂成为近年来最受瞩目,全球市场垄断最严重的设备。因此,该设备的国产化受到了国内产业界的热捧,一些企业和研究机构也启动了MOCVD的研发,但何时能实现产业应用还是个未知数。 二、中游芯片制造主要设备现状

半导体蚀刻技术

简介 在积体电路制造过程中,常需要在晶圆上定义出极细微尺寸的图案(图案),这些图案主要的形成方式,乃是藉由蚀刻(蚀刻)技术,将微影(微光刻)后所产生的光阻图案忠实地转印至光阻下的材质上,以形成积体电路的复杂架构。因此蚀刻技术在半导体制造过程中占有极重要的地位。 广义而言,所谓的蚀刻技术,包含了将材质整面均匀移除及图案选择性部份去除的技术。而其中大略可分为湿式蚀刻(湿蚀刻)与干式蚀刻(干式蚀刻)两种技术。 早期半导体制程中所采用的蚀刻方式为湿式蚀刻,即利用特定的化学溶液将待蚀刻薄膜未被光阻覆盖的部分分解,并转成可溶于此溶液的化合物后加以排除,而达到蚀刻的目的。湿式蚀刻的进行主要是藉由溶液与待蚀刻材质间的化学反应,因此可藉由调配与选取适当的化学溶液,得到所需的蚀刻速率(蚀刻率),以及待蚀刻材料与光阻及下层材质良好的蚀刻选择比(选择性)。 然而,随着积体电路中的元件尺寸越做越小,由于化学反应没有方向性,因而湿式蚀刻是等向性(各向同性)的,此时,当蚀刻溶液做纵向蚀刻时,侧向的蚀刻将同时发生,进而造成底切(咬边)现象,导致图案线宽失真。因此湿式蚀刻在次微米元件的制程中已被干式蚀刻所取代。 干式蚀刻通常指利用辉光放电(辉光放电)方式,产生包含离子,电子等带电粒子及具有高度化学活性的中性原子与分子及自由基的电浆来进行图案转印(模式传输)的蚀刻技术。在本章节中,将针对半导体制程中所采用的蚀刻技术加以说明,其中内容包括了湿式蚀刻与干式蚀刻的原理,以及其在各种材质上的应用。但基于干式蚀刻在半导体制程中与日俱增的重要地位,因此本章节将以干式蚀刻作为描述的重点。涵盖的内容包括电浆产生的原理,电浆蚀刻中基本的物理与化学现象,电浆蚀刻的机制,电浆蚀刻制程参数,电浆蚀刻设备与型态,终点侦测,各种物质(导体,半导体,绝缘体)蚀刻的介绍,微负载效应及电浆导致损坏等。 5-1-1蚀刻技术中的术语 5 - 1 - 1A型等向性与非等向性蚀刻(各向同性和各向异性蚀刻) 不同的蚀刻机制将对于蚀刻后的轮廓(资料)产生直接的影响。纯粹的化学蚀刻通常没有方向选择性,蚀刻后将形成圆弧的轮廓,并在遮罩(面膜)下形成底切(咬边),如图5-1所示,此谓之等向性蚀刻。等向性蚀刻通常对下层物质具有很好的选择比,但线宽定义不易控制。而非等向性蚀刻则是借助具有方向性离子撞击,造成特定方向的蚀刻,而蚀刻后形成垂直的轮廓,如图5-1所示。采用非等向性蚀刻,可定义较细微的线宽。 5 - 1 - 1B的选择比(性)(选择性) 选择比即为不同物质间蚀刻速率的差异值。其中又可分为对遮罩物质的选择比及对待蚀刻物质下层物质的选择比。 5 - 1 - 1C的负载效应(负载效应) 负载效应就是当被蚀刻材质裸露在反应气体电浆或溶液时,面积较大者蚀刻速率较面积较小者为慢的情形。此乃由于反应物质在面积较大的区域中被消耗掉的程度较为严重,导致反应物质浓度变低,而蚀刻速率却又与反应物质浓度成正比关系,大部份的等向性蚀刻都有这种现象。 湿式蚀刻技术 最早的蚀刻技术是利用特定的溶液与薄膜间所进行的化学反应来去除薄膜未被光阻覆盖的部分,而达到蚀刻的目的,这种蚀刻方式也就是所谓的湿式蚀刻。因为湿式蚀刻是利用化学反应来进行薄膜的去除,而化学反应本身不具方向性,因此湿式蚀刻过程为等向性,一

半导体工艺制造论文

请回答以下问题: 题目:(1)在离子注入工艺中,有一道工艺是”沟道器件轻掺杂源(漏)区”,其目的是减小电场峰植和热电子效应!请详尽解释其原理! 题目:(2)在电极形成或布线工艺中,用到金属Ti,请详尽说明金属Ti的特性、金属Ti 的相关工艺、以及金属Ti在电路中的作用! 题目:(3)在化学气相淀积反应中低压会带来什么好处? 题目:(4)在光刻胶工艺中要进行,软烘,曝光后烘焙和坚膜烘焙,请详细说明这三步工艺的目的和条件。 题目:(5)请对Si(以一种刻蚀气体为例)和SiO2(以一种刻蚀气体为例)刻蚀工艺进行描述,并给出主要的化学反应方程式。 (每题20分,满分100分) (1)在离子注入工艺中,有一道工艺是”沟道器件轻掺杂源(漏)区”,其目的是减小电场峰植和热电子效应!请详尽解释其原理! 答:轻掺杂漏区(LDD)注入用于定义MOS晶体管的源漏区。这种区域通常被称为源漏扩展区。注入使LDD杂质位于栅下紧贴沟道区边缘,为源漏区提供杂质浓度梯度。LDD在沟道边缘的界面区域产生复杂的横向和纵向杂质剖面。nMOS和pMOS的LDD 注入需用两次不同的光刻和注入。在源漏区浅结形成的同时MOSFET的栅也被注入。 LDD结构用栅作为掩膜中低剂量注入形成(n-或p-注入),随后是大剂量的源漏注入(n+或p+注入)。源漏注入用栅氧化物侧墙作为掩膜。如果没有形成LDD,在正常的晶体管工作时会在结和沟道区之间形成高电场。电子在从源区向漏区移动的过程中(对n沟道器件)将受此高电场加速成为高能电子,它碰撞产生电子—空穴对。热电子从电场获得能量,造成电性能上的问题,如被栅氧化层陷阱捕获,影响器件的阀值电压控制。 随着栅氧厚度、结深、沟道长度的减小,漏端最大电场强度增大,热载流子效应的影响变大,它对器件的寿命、可靠性等有很大影响。通过分析我们可以看到:LDD结构通过两条途径来抑制热载流子效应:弱化漏端电场和使得漏端最大电场离开栅极。增大注

(工艺技术)电介质刻蚀面临材料和工艺的选择

电介质刻蚀面临材料和工艺的选择 半导体加工中,在晶片表面形成光刻胶图形,然后通过刻蚀在衬底或者衬底上面的薄膜层中选择性地除去相关材料就可以将电路图形转移到光刻胶下面的材料层上。这一工艺过程要求非常精确。但是,各种因素例如不断缩小的线宽、材料毒性以及不断变大的晶片尺寸等都会使实际过程困难得多。 Applied Materials公司电介质刻蚀部总经理Brian Shieh说:“前段(FEOL)和后段(BEOL)电介质刻蚀的要求各不相同,因此要求反应器基本功能具有很大的弹性,对于不同的要求都能够表现出很好的性能。” Dow Chemical公司新技术部总监Michael Mills说:“从目前和近期的发展来看,电介质刻蚀设备还不会出现很大问题。” “目前的研究重点是双嵌入式工艺、低k材料和高纵宽比接触孔的刻蚀。"Hitachi High Technologies America公司高级工艺经理Jason Ghormley说:“氧化硅刻蚀要求能够精确控制各向异性刻蚀过程,尽量减少侧壁钝化层,同时保证整体结构比较完美。这是氧化硅刻蚀的

一个普遍问题,因为其工艺控制与化学反应相关。对于氧化硅刻蚀来说,在反应器中使用含硅材料是非常有用的,因为它能控制氟原子和含碳自由基的比例,有助于在垂直方向的刻蚀反应和控制侧壁钝化层之间取得平衡。” 后段和前段面临的问题 Shieh认为双嵌入式工艺是很复杂的应用,因为它涉及到各种各样的材料以及相应的整合问题,例如光刻胶或BARC对微通孔(via)的部分或全部填充、多层掩膜版的使用、硬掩膜层或金属掩膜层的使用等。他说:“我们需要的是一整套解决方案,不管用户的要求是什么,它都能很好地达到要求。方法之一是使刻蚀具有很宽的工艺窗口,能够提供经过优化的最佳工艺条件和很好的工艺控制能力,满足下一代材料和技术的要求。这些新功能可以同时解决前段(FEOL)和后段(BEOL)面临的各种问题。当然,对于FEOL和BEOL来说,也许还需要做一些很小的调整,但是其基本功能应该是一样的。” 前段(FEOL)的主要问题是刻蚀结构变得越来越小,纵宽比变得越来越大,因此重点是如何确保正确的选择比以及如何控制刻蚀后的结构和顶部/底部CD,“从硬件角度来看,为了缩短等离子体存活时间,必须提高气体流量和降低气体压力。此外,控制离子密度和能量分布也是非常重要的。”Shieh说,“从工艺角度来看,必须合理控

ICP刻蚀工艺要点

ICP考试题库 一,选择题。 1、ICP刻蚀机的分子泵正常运行时的转速大约在(B )RPM A 20000 B 32000 C 40000 D 18000 2、北微ICP本底真空和漏率指标为(A )时,设备能够正常工作 A 0—0.1mT <1mT/min B >2.5mT <2mT/min C 0.3-- 0.5mT <1.0mT/min D >0.5mT <2.5mT/min 3、NMC 刻蚀机当前SRF时间为( C )时,要求对设备进行开腔清洁 A 50H B 100H C 200H D 2000H 4、SLR ICP托盘、螺丝等清洗标准作业流程(ABC) A:用DI水喷淋托盘(底盘和盖子)、耐高温橡皮条(7根)、螺丝 B:用N2吹干 C:螺丝使用一次后清洗;托盘和橡皮条使用三次后清洗;当天全部声波清洗 5、ELEDE ICP铝盘、石英盖、密封圈清洗标准作业流程( ABCD ) A. 用DI水浸泡石英托盘20min B. 用DI水冲洗一遍 C. 用N2吹干 D.用IPA擦拭密封圈 6、ELEDE ICP卸晶片标准操作流程( ABC ) A.用专用螺丝刀把托盘的螺丝拧松,用手拧开,放回固定位置 B.用手轻轻地取出石英盖 C.用专用镊子将晶片夹放到相应的盒子里 7、CORIAL ICP卸晶片工艺步骤( ABC ) A.用小起子将铝盖轻轻翘开 B.移开铝板 C.用真空吸笔将蚀刻片吸到相应的盒子里 二,填空题。 1.蚀刻好的晶片测得的高度是1.75um底径是 2.74um那么需要进行补刻大约300S 2.蚀刻时一般设置氦气的压力是4Torr当实际压力超过 5.2Torr 会报警氦漏 3.NMC机台正常工作时分子泵的转速是32000 RPM 4.在NMC工作中氮气的作用是吹扫腔体氦气的作用时冷却晶片(托盘) 氧气的作用是清洁腔室三氯化硼的作用是蚀刻晶片 5. 1 Torr = 133 P a 6.清洗晶片时丙酮的作用是清洗有机物异丙醇的作用是清洗丙酮 7.曝光使光刻胶有选择性,正胶光照地方,负胶未被光照地方,光刻胶被显影液反应掉 8.ICP的清洁没有做好会造成晶片死区盲区等缺陷 9.造成马赛克的因素有晶片的平整度,匀胶的均匀性,曝光台的清洁度 10.NMC机台连续工作 5 小时需要做Dryclean 11. 每周五检查冷冻机冷冻液剩余情况,低于第一个金属环时应添加异丙醇

半导体刻蚀工艺技术——ICP.

半导体刻蚀工艺技术——ICP 摘要:ICP技术是微纳加工中的常用技术之一,本文简单介绍了ICP刻蚀技术(inductively coupled plasma)的基本原理和刻蚀设备的结构,对ICP工艺所涉及的化学、物理过程做了简要分析。阐述了ICP刻蚀参数对刻蚀结果的影响以及干法刻蚀的生成物。由于ICP技术在加工过程中可控性高,具有越来越重要的地位。以在硅基MEMS器件的ICP刻蚀为例,详细的介绍了在硅基MEMS制作过程中ICP刻蚀的反应过程,说明了在ICP刻蚀过程中如何实现控制加工深度和角度。据近年来国内外ICP技术的发展现状和发展趋势,对其在光电子器件、半导体氧化物、Ⅲ一V族化合物等方面的应用作了一些简要介绍。 关键词:ICP、刻蚀、参数、模型、等离子体 Process technology of semiconductor etching——ICP LIU Zhi Wei (Xi'an Electronic and Science University, School of Microelectronics.1411122908) Abstract:ICP technology is one of the commonly used in micro nano processing technology,This paper simply introduces ICP etching technology (inductively coupled plasma) structure and the basic principles of etching equipment,To do a brief analysis on the ICP process involved in chemical, physical process.Describes the effects of ICP etching parameters on the etching results and the resultant dry etching. Because the ICP technology in the process of processing high controllability, plays a more and more important role. Using ICP etching in silicon MEMS device as an example, describes in detail in the reaction process of silicon based MEMS in the production process of ICP etching, explains how to realize the control of machining depth and angle in the ICP etching process. According to the development status and development trend at home and abroad in recent years of ICP technology, its application in optoelectronic devices and semiconductor oxide, III a group V compound as well as some brief introduction. Key words:ICP、etching, parameter, model, plasma 1引言 刻蚀是微细加工技术的一个重要组成部分,微电子学的快速发展推动其不

半导体工艺自己总结

只是想多了解下工艺,因为自己不是学这个的,要补课啊 .... 是不是可以这么理解: 1.PAD oxide:SiO2在LOCOS和STI形成时都被用来当作nitride的衬垫层,如果没有这个SiO2衬垫层作为缓冲之用,LPCVD nitride的高张力会导致wafer产生裂缝甚至破裂,同时也作为NITRIDE ETCH时的STOP LAYER 2.SAC oxide:Sacrificial Oxide在gate oxidation之前移除wafer表面的损伤和缺陷,有助于产生一个零缺陷的wafer 表面以生成高品质的gate oxide;经过HDP后Pad Oxide结构已经被破坏了,可能无法阻挡后面Implant的离子。所以生长一层Sac Oxide,作为在后面Implant时对Device的保护。 3.BPSG 含硼及磷的硅化物BPSG乃介于Poly之上、Metal之下,可做为上下两层绝缘之用,加硼、磷主要目的在使回流后的Step较平缓,以防止Metal line溅镀上去后,造成断线 4.ONO(OXIDE NITRIDE OXIDE)氧化层-氮化层-氧化层半导体组件,常以ONO三层结构做为介电质(类似电容器),以储存电荷,使得资料得以在此存取。在此氧化层- 氮化层–氧化层三层结构,其中氧化层与基晶的结合较氮化层好,而氮化层居中,则可阻挡缺陷(如pinhole)的延展,故此三层结构可互补所缺. 5.space Oxide RIE Etch:猜想应当是氧化物隔离的反应离子刻蚀(RIE-Reactive Ion Etch) 反应离子刻蚀是以物理溅射为主并兼有化学反应的过程。通过物理溅射实现纵向刻蚀,同时应用化学反应来达到所要求的选择比,从而很好地控制了保真度。刻蚀气体(主要是F基和CL基的气体)在高频电场(频率通常为13.56MHz)作用下产生辉光放电,使气体分子或原子发生电离,形成“等离子体”(Plasma)。在等离子体中,包含有正离子(Ion+)、负离子(Ion-)、游离基(Radical)和自由电子(e)。游离基在化学上是很活波的,它与被刻蚀的材料发生化学反应,生成能够由气流带走的挥发性化合物,从而实现化学刻蚀。 6:IMD Inter-Metal-Dielectric 金属绝缘层...(汗...........) 7:SOG spin-on glass 旋涂玻璃用于平坦化.SOD是SPIN-ON DOP ANTS?自旋转掺杂剂?,具体作用不甚清楚了.... 至于N-DEPL我怀疑是否是N耗尽区的意思,但是不是很清楚CMOS工艺中是如何实现这样的一个层次的,它是环绕DIFF 区域的一个可选层.莫非是反型的隔离? 外延: 外延生长之所以重要,在于外延层中的杂质浓度可以方便的通过控制反应气流中的杂质含量加以调节,而不依赖于衬底中的杂质种类与掺杂水平。 外延技术可用于解决高频功率器件的击穿电压与集电极串联电阻对集电极电阻率持相反要求的矛盾;掺杂较少的外延层保证了较高的击穿电压,高掺杂的衬底则可以大大降低集电极的串联电阻 ?????????气体SiCl气体2H?HClSi固体气体?4?反应过程为CVD 需要高温,①,同时42??????气体?气体2SiCl?Si固体SiCl,②因此若四氯化硅的浓度太高,则硅存在一竞争反应24反而会被侵蚀而非生长。硅通常是在低浓度区域生长。①式的反应是可逆的,如果进入反应炉的载气中含有氯化氢,将会有去处或侵蚀的情况发生。实际上,此侵蚀动作可用来在外延生长前先清洁硅晶片表 面, . . . . 去处其表面的氧化物和其他杂质。 金属有机物化学气相沉积外延(MOCVD),一般使用在较低温度下即可成为气态的Ⅲ族元素有机化合物和Ⅴ族元素氢化物

半导体技术-蚀刻

蚀刻(ETCH) 微影只是将光罩图案转移到光阻上,接下来利用这层光阻为罩幕(mask),以便对光阻下的薄膜或Si片进行选择性蚀刻或离子注入。蚀刻即是利用化学反应或物理作用,把光阻上的图案转移到薄膜上。 蚀刻的机制,按发生顺序可概分为「反应物接近表面」、「表面氧化」、「表面反应」、「生成物离开表面」等过程。所以整个蚀刻,包含反应物接近、生成物离开的扩散效应,以及化学反应两部分。整个蚀刻的时间,等于是扩散与化学反应两部分所用时间的总和。二者之中孰者所用时间较长,整个蚀刻快慢也卡在该者,故有「reaction limited」与「diffusion limited」两类蚀刻之分。 1.湿蚀刻 最普遍、也是设备成本最低的蚀刻方法,主要有三方面因素影响蚀刻速率 (etching rate):蚀刻液浓度、蚀刻液温度、及搅拌 (stirring) 的有无。定性而言,增加蚀刻温度与加入搅拌,均能有效提高蚀刻速率,但浓度影响则较不明确。一个选用湿蚀刻配方的重要观念是「选择性」(selectivity),指进行蚀刻时,对被蚀物去除速度与连带对其他材质(如蚀刻掩膜「etching mask」或承载被加工薄膜基板「substrate 」) 的腐蚀速度之比值。一个具有高选择性的蚀刻系统,应该只对被加工薄膜有腐蚀作用,而不伤及一旁蚀刻掩膜或其下的基板材料。 (1) 等向性蚀刻 (isotropic etching) 大部分的湿蚀刻液均是等向性,换言之,对蚀刻接触点的任何方向腐蚀速度并无明显差异。故一旦定义好蚀刻掩膜的图案,暴露出来的区域,便是往下腐蚀的所在;只要蚀刻配方具高选择性,便应当止于所该止之深度。 然而有鉴于任何被蚀薄膜皆有其厚度,当其被蚀出某深度时,蚀刻掩膜图案边缘的部位渐与蚀刻液接触,故蚀刻液也开始对蚀刻掩膜图案边缘的底部,进行蚀掏,这就是所谓的下切或侧向侵蚀现象(undercut)。该现象造成的图案侧向误差与被蚀薄膜厚度同数量级,换言之,湿蚀刻技术因而无法应用在类似「次微米」线宽的精密制程技术! (2) 非等向性蚀刻 (anisotropic etching) 湿蚀刻「选择性」观念,是以不同材料的受蚀快慢程度来说明。然而自1970年代起,在诸如Journal of Electro-Chemical Society等期刊中,发表了许多有关碱性或有机溶液腐蚀单晶硅的文章,其特点是不同的硅晶面腐蚀速率相差极大,尤其是<111>方向,足足比<100>或是<110>方向的腐蚀速率小一到两个数量级!因此,腐蚀速率最慢的晶面,往往便是腐蚀后留下的特定面。 2.干蚀刻 干蚀刻是一类较新型,但迅速为半导体工业所采用的技术。其利用电浆 (plasma) 来进行半导体薄膜材料的蚀刻加工。其中电浆必须在真空度约10至0.001 Torr 的环境下,才有可能被激发出来;而干蚀刻采用的气体,或轰击质量颇巨,或化学活性极高,均能达成蚀刻的目的。 干蚀刻基本上包括「离子轰击」(ion-bombardment)与「化学反应」(chemical reaction) 两部分蚀刻机制。偏「离子轰击」效应者使用氩气(argon),加工出来的边缘侧向侵蚀现象极微。而偏「化学反应」效应者则采氟系或氯系气体(如四氟化碳CF4),经激发出来的电浆,即带有氟或氯之离子团,可快速与芯片表面材质反应。 干蚀刻法可直接利用光阻作蚀刻的阻绝遮幕,不必另行成长阻绝遮幕的半导体材料。而其最重要的优点,能兼顾边缘侧向侵蚀现象极微与高蚀刻率两种优点,换言之,此技术中所谓「活性离子蚀刻」(reactive ion etch;RIE) 已足敷「次微米」线宽制程技术的要求,而正被大量使用中。

相关主题
文本预览
相关文档 最新文档