当前位置:文档之家› 水库水体富营养化生态修复对策初探

水库水体富营养化生态修复对策初探

水库水体富营养化生态修复对策初探
水库水体富营养化生态修复对策初探

水体富营养化评价方法

为了进一步认识调查区域水质状况,我们采用了TLI 综合营养指数法运用TP 、TN 、SD 、COD Mn 对其水质进行评价。 综合营养状态指数公式: j 1 ()()m j TLI W TLI j ==?∑∑ (1) TLI(chl)=10(2.5+1.086ln chl ) (2) TLI(TP)=10(9.436+1.624ln TPl ) (3) TLI(TN)=10(5.453+1.694ln TN ) (4) TLI(SD)=10(5.118-1.94ln SD ) (5) TLI(COD)=10(0.109+2.661ln COD ) 式中,TLI (∑)表示综合营养状态指数;TLI (j )代表第j 种参数的营养状态指数;W j 为第j 种参数的营养状态指数的相关权重。以chla 为基准参数,则第j 种参数的归一化的相关权重计算公式为: 221ij m ij j r Wj r ==∑ r ij 为第j 种参数与基准参数chla 的相关系数;m 为评价参数的个数。 中国湖泊的chla 与其他参数之间的相关关系r ij 和r 2ij 见表2。 表1 中国湖泊的chla 与其他参数之间的相关关系r ij 和r 2i 值 参数 chla TP TN SD COD Mn r ij 1 0.84 0.82 -0.83 0.83 r 2ij 1 0.7056 0.6724 0.6889 0.6889

为了说明湖泊富营养状态情况, 采用0~100的一系列连续数字对湖泊营养状态进行分级: TL I < 30 贫营养(Oligotropher) 30≤TL I≤50 中营养(Mesotropher) TL I > 50 富营养(Eutropher) 50< TL I≤60 轻度富营养( lighteutropher) 60< TL I ≤70 中度富营养(Middleeutropher) TL I > 70 重度富营养(Hypereutropher) 在同一营养状态下, 指数值越高, 其营养程度越重。 本文档部分内容来源于网络,如有内容侵权请告知删除,感谢您的配合!

水体富营养化程度评价

水体富营养化程度评价 一、实验目的与要求 (1)掌握总磷、叶绿素-a及初级生产率的测定原理及方法。(2)评价水体的富营养化状况。 二、实验方案 1、样品处理 2 、工作曲线绘制 取7支消解管,分别加入磷的标准使用液0.00、0.25、0.50、1.50、2.50、5.00、7.50mL以比色管中,加水至15ml。然后按测定步聚进行测定,扣除空白试验的吸光度后,和对应磷的含量绘制工作曲线。 3、计算 总磷含量以C(mg/L)表示,按下式计算: 式中: M 试样测得含磷量,μg V 测定用水样体积,ml

注意:每个小组做空白2-3个,标线5个,样品3-4个。 图1 采样布点分布 三、实验结果与数据处理 1、工作曲线绘制 根据上表数据,绘制工作曲线如图2所示: 图2 标准工作曲线 从标准工作曲线图可以看出,其相关系数R2 = 0.9969,高于实验室最低要求R2=0.995,可见其相关度较好,可用以求解水样中总磷的浓度。

2、八个水样数据结果与处理 根据上表数据作水中磷质量浓度柱形图,如图2所示: 图2 各组水中总磷质量柱形图 四、实验结果 1、实验结果分析 从实验数据和图2可以看出,第一、三、四、五、八组数据比较准确,因为

这几组平行样数据比较接近,而且跟稀释后所测的浓度也大约呈5倍关系,可以保留作为水中磷质量浓度评价,而其他组数据误差较大,故舍去。根据各组原水样总磷质量浓度求评均整理下表。 从上表数据可以看出,第五组所测的水中总磷浓度较高,根据图1可知第五组采样点为第四饭堂附近,可能是由于饭堂平时清洁所用的洗涤剂含磷较高,排放入河涌的污水导致河水受污染。 2、污染程度分析 表4 总磷与水体富营养化程度的关系 本实验是以水体磷平均浓度平均参数,本次实验所得的监测采样点数据的平均浓度是0.205mg/L,测得的最小浓度为0.142mg/L,测得的最高浓度为0.311mg/L,由表1可知超过0.1mg/L就为水体富营养化,本次实验测得的最低浓度也超出0.1mg/L,本次实验所得数据均说明该水体富营养化。 3、解决措施 该河涌地处大学城内,不受工业排放污染,所以造成该河涌富营养化的主要原因是生活污染,比如饭堂、学生公寓、商业区等,要治理河涌首先还是得从源头抓起,特别是饭堂、学生公寓和商业区,必须监控从这三个地方流出的污水,须进行处理达标后才能排入河涌;其次就是要严格审查各类洗涤剂等,含磷超标的不能进入市场;最后就是要树立环保意识,大家环保觉悟高了,从自己做起,自然就有绿水青山。 五、思考题 (1)查资料说明评价水体富营养化程度的指标有哪些? 答:水体富营养化程度的评价指标分为物理指标、化学指标和生物学指标。物理指标主要是透明度,化学指标包括溶解氧和氮、磷等营养物质浓度等,生物

什么是水体富营养化

什么是水体富营养化 【1】水体富营养化是一种由氮,磷等植物应用物质含量过多所引起的水质污染现象,一般分天然营养化和人为富营养化,它们的共同点在于它们都是由于水体的氮,磷等营养物质的富集,引起藻类及其它浮游生物迅速繁殖,水体溶解氧下降,使鱼类或者其它生物大量死亡,水质恶化。相对而言,一个营养物质贫乏的水体称为贫营养水体,由于人类文明的发展人类的活动加速形成。人们把水体富营养化现象看成是水体质量恶化或水污染的一种标志。水体富营养化的重要检测指标为水体中氮与磷的含量,其中磷的含量尤为重要。目前,世界各国对水体富营养化指标的划分标准大致相似,一般地说,如果水体中的无机氮和总磷浓度大于0.3 mg/L和0.02 mg/L时,则该水体即处于富营养化状态。 【2】水体富营养化是在人为活动的影响下生物所需的氮、磷等矿质营大量进入湖泊、河口等缓流水体,引起藻类及其他浮游生物迅速繁殖,水体溶氧量下降,水质恶化,鱼类及其他生物大量死亡的现象根据美国环保局的评价标准,水体总磷<20~25g/L,叶绿素a<10g/L,透明度>210m,深水溶解氧小于饱和溶氧量10%的湖泊可判断为富营养化水体。 【3】富营养化是在湖泊、水库以及海湾等缓流水体的水生生态系统中,藻类通过与其他水生生物的生存竞争,逐渐取得优势并占据其他 水生生物的生存空间,同时也使自身种属减少,少数藻类恶性增殖,进而造成水中溶解氧的急剧变化,使鱼类等水生生物因缺氧而死亡。

水体富营养化的根本原因是营养物质的增加,使得藻类和有机物增加所致,营养物质主要是磷,其次是氮,还有碳、微量元素或维生素等。目前判断水体富营养化一般采用的指标是:氮含量超过0.2~0.3mg/L,磷含量大于0.0~0.02mg/L,生化耗氧量BOD大于10mg/L,pH值7~9 的淡水中细菌总数超过10万个/毫升,叶绿素a含量大于10Lg/ 【4】由于人类活动的影响,可能在短期内会使大量含氮含磷等植物性营养物质进入水体,从而引起藻类和浮游生物的迅速繁殖,使水体溶解氧下降、透明度下降、水质恶化、鱼贝及其他水生生物大量死亡。这种由于植物性营养元素大量排入水体,破坏了水体自然生态系统平衡的现象,称之为水体的富营养化。富营养化可分为天然富营养化和人为富营养化。 【1】浅析水体富营养化的危害及防治王静 【2】水体富营养化成因及其防治措施研究进展程丽巍 【3】水体富营养化及其防治措施研究进展刘勇 【4】水体富营养化及其防治技术董继红

阅读材料:水体富营养化的概念及原因

水体富营养化 1.水体富营养化概念 水体富营养化(eutrophication)是指在人类活动的影响下,生物所需的氮、磷等营养物质大量进入湖泊、河口、海湾等缓流水体,引起藻类及其他浮游生物迅速繁殖,水体溶解氧量下降,水质恶化,鱼类及其他生物大量死亡的现象。在自然条件下,湖泊也会从贫营养状态过渡到富营养状态,不过这种自然过程非常缓慢。而人为排放含营养物质的工业废水和生活污水所引起的水体富营养化则可以在短时间内出现。水体出现富营养化现象时,浮游藻类大量繁殖,形成水华。因占优势的浮游藻类的颜色不同,水面往往呈现蓝色、红色、棕色、乳白色等。这种现象在海洋中则叫做赤潮或红潮。 2.水体富营养化的机理 在地表淡水系统中,磷酸盐通常是植物生长的限制因素,而在海水系统中往往是氨氮和硝酸盐限制植物的生长以及总的生产量。导致富营养化的物质,往往是这些水系统中含量有限的营养物质,例如,在正常的淡水系统中磷含量通常是有限的,因此增加磷酸盐会导致植物的过度生长,而在海水系统中磷是不缺的,而氮含量却是有限的,因而含氮污染物加入就会消除这一限制因素,从而出现植物的过度生长。生活污水和化肥、食品等工业的废水以及农田排水都含有大量的氮、磷及其他无机盐类。天然水体接纳这些废水后,水中营养物质增多,促使自养型生物旺盛生长,特别是蓝藻和红藻的个体数量迅速增加,而其他藻类的种类则逐渐减少。水体中的藻类本来以硅藻和绿藻为主,蓝藻的大量出现是富营养化的征兆,随着富营养化的发展,最后变为以蓝藻为主。藻类繁殖迅速,生长周期短。藻类及其他浮游生物死亡后被需氧微生物分解,不断消耗水中的溶解氧,或被厌氧微生物分解,不断产生硫化氢等气体,从两个方面使水质恶化,造成鱼类和其他水生生物大量死亡。藻类及其他浮游生物残体在腐烂过程中,又把大量的氮、磷等营养物质释放入水中,供新的一代藻类等生物利用。因此,富营养化了的水体,即使切断外界营养物质的来源,水体也很难自净和恢复到正常状态。

山东省青岛二中2018-2019学年高一化学期末质量跟踪监视试题

山东省青岛二中2018-2019学年高一化学期末质量跟踪监视试题 一、单选题 1.浓硫酸的用途、反应现象与括号内的性质对应不正确的是( ) A.在化学实验中,浓硫酸可做SO2、CO2等气体的干燥剂(吸水性) B.将浓硫酸滴到蔗糖表面,固体变黑膨胀,有刺激性气味气体产生(脱水性和酸性) C.向滤纸上滴加浓H2SO4 ,滤纸变黑(脱水性) D.在冷浓H2SO4中放入铁片没明显现象(强氧化性) 2.下列离子方程式中正确的是( ) A.少量SO2通入NaOH溶液中:OH-+SO2=HSO3- B.H2S通入氯水中:S2-+Cl2 =S↓+2Cl- C.二氧化氮溶于水:3NO2+H2O =2H++2NO3-+NO↑ D.少量NaHSO4与过量Ba(OH)2溶液反应:2H++SO42-+Ba2++2OH-=BaSO4↓+2H2O 3.下列情况会对人体健康造成较大危害的是() A.自来水中通入少量Cl2进行消毒杀菌B.用SO2漂白食品 C.用食醋清洗热水瓶胆内壁附着的水垢D.用小苏打(NaHCO3)发酵面团制作馒头 4.下列关于金属钠的叙述错误的是 A.金属钠在空气中燃烧,生成Na2O2 B.钠能与溶液发生置换反应生成Cu C.金属钠长期露置于空气中,最终转化为Na2CO3 D.将金属钠与水反应后的溶液中通入一定量氯气,溶液中可能含有两种溶质 5.提纯下列物质(括号内物质为杂质),选用的试剂和方法都正确的是 6.下列各组物理量中,随取水量的变化而变化的是( ) A.水的密度B.水的沸点C.水的物质的量D.水的摩尔质量 7.下列变化中,必须加入氧化剂才能发生的是 A.NH3→NH4+ B.CO2→CO C.Cl2→HCl D.Na→NaCl 8.赤铜矿的成分是Cu2O,辉铜矿的成分是Cu2S,将赤铜矿与辉铜矿混合加热有以下反应:2Cu2O+Cu2S6Cu+SO2↑,对于该反应,下列说法正确的是 A.该反应的氧化剂只有Cu2O B.Cu既是氧化产物,又是还原产物 C.Cu2S既是氧化剂又是还原剂 D.还原产物与氧化产物的物质的量之比为1∶6 9.有关Fe(OH)3胶体的说法不正确的是 A.呈红褐色 B.Fe(OH)3胶体粒子的直径介于1-100 nm之间

水体富营养化的成因

水体富营养化的成因、危害及防治方法 摘要:水体富营养化防治是世界性的热点与难点问题,水体发生富营养化,其后果十分的严重。本文基于富营养化发生的机理,从氮、磷营养盐水平,铁、硅含量,光照强度,温度,等方面对水体富营养化成因及其危害进行分析,并从内、外两方面对水体富营养化的防治措施进行探讨。目的是为更好地维持水体生态平衡,控制水体污染,预防水体富营养化的发生提供参考。 关键词:水体富营养化,成因,危害,湖泊衰亡,外部控制,内部控制 水体富营养化是指在人类活动的影响下,生物所需的氮、磷等营养物质大量进入湖泊、河口、海湾等缓流水体,引起藻类及其他浮游生物迅速繁殖,水体溶解氧量下降,水质恶化,鱼类及其他生物大量死亡的现象。人为排放含营养物质的工业废水和生活污水所引起的水体富营养化则可以在短时间内出现。水体出现富营养化现象时,浮游藻类大量繁殖,形成水华。因占优势的浮游藻类的颜色不同,水面往往呈现蓝色、红色、棕色、乳白色等。这种现象在海洋中则叫做赤潮或红潮。 一、水体富营养化的成因 氮、磷等营养物质浓度升高,是藻类大量繁殖的原因,其中又以磷为关键因素。影响藻类生长的物理、化学和生物因素(如阳光、营养盐类、季节变化、水温、pH 值,以及生物本身的相互关系)是极为复杂的。因此,很难预测藻类生长的趋势,也难以定出表示富营养化的指标。目前一般采用的指标是:水体中氮含量超过 0.2-0.3ppm,生化需氧量大于 10ppm,磷含量大于 0.01-0.02ppm,pH 值 7-9 的淡水中细菌总数每毫升超过 10 万个,表征藻类数量的叶绿素-a 含量大于 10μ mg/L。 (一)水体富营养化成因的两种理论 富营养化的发生和发展是水体的整个环境系统出现失衡,导致某种优势藻类大量生长繁殖的过程。因此要研究富营养化的发生机理和发生条件,实质上是需要了解藻类生长繁衍的过程。 1.食物链理论 这是由荷兰科学家马丁·肖顿于1997年6月在“磷酸盐技术研讨会”上提出的。该理论认为,自然水域中存在水生食物链。如果浮游生物的数量减少或捕食能力降低,将使水藻生长量超过消耗量,平衡被打破,发生富营养化。该理论说明营养负荷的增加不是导致富营养化的唯一原因。 2.生命周期理论 命周期理论认为含氮和含磷的化合物过多排入水体,破坏了原有的生态平衡,引起藻类大量繁殖,过多的消耗水中的氧,使鱼类、浮游生物缺氧死亡,它们的尸体腐烂又造成水质污染。根据这一理论,氮磷的过量排放是造成富营养化的根本原因,藻类是富营养化的主体,它的生长速度直接影响水质状态。 藻类光合作用的总反应式: 106CO2+16NO3-+HPO42-+122H2O+18H++能量+微量元素→C106H263O110N16P(藻类原生质)+138O2 根据Leibig最小因子定律,植物的生长取决于外界供给它们养分最少的一种或两种,从藻类原生质C106H263O110N16P可以看出,生产1kg藻类,需要消耗碳358g,氢74g,氧496g,氮63g,磷9g,显然氮磷是限制因子。因此,要想控制水体富营养化,必须控制水体中氮磷等营养

叶绿素a测定实验报告

叶绿素a测定实验报告 (一)实验目的及意义 水体富营养化可以通过跟踪监测水中叶绿素的含量来实现,其中叶绿素a是所有叶绿素中含量最高的,因此叶绿素a的测定能示踪水体的富营养化程度。 (二)水样的采集与保存 1.确定具体采样点的位置 2.在采样点将采样瓶及瓶盖用待测水体的水冲洗3-5遍 3.将采样瓶下放到距水面0.5-1m处采集水样2.5L 4.在采样瓶中加保存试剂,每升水样中加1%碳酸镁悬浊液1mL 5.将采样瓶拧上并编号 6.用GPS同步定位采样点的位置 (三)仪器及试剂 仪器: 1.分光光度计 2.比色池:10mm 3.过滤装置:过滤器、微孔滤膜(孔径0.45μm,直径60mm) 4.研钵 5.常用实验设备 试剂: 1.碳酸镁悬浮液:1%。称取1.0g细粉末碳酸镁悬浮于100mL蒸馏水中。每次使用时要充分摇匀 2.乙醇溶液 (四)实验原理 将一定量的试样用微孔滤膜过滤,叶绿素会留在滤膜上,可用乙醇溶液提取。 将提取液离心分离后,测定750、663、645、630mm的吸光度,计算叶绿素的浓度。 (五)实验步骤 1.浓缩:在一定量的试样中添加0.2mL碳酸镁悬浮液,充分搅匀后,用直径60mm 的微孔滤膜吸滤.过滤器内无水分后,还要继续抽吸几分钟.如果要延时提取,可把载有浓缩样品的滤膜放在干燥器里冷冻避光贮存。 2. 提取:将载有浓缩样品的滤膜放入研钵中,加入7mL乙醇溶液至滤纸浸湿的程度,把滤膜研碎,再少量地加乙醇溶液,把滤膜完全研碎,然后用乙醇溶液将已磨碎的滤膜和乙醇溶液洗入带刻度的带塞离心管中,使离心管内提取液的总体积不超过10mL,盖上管塞,置于的暗处浸泡24h。 3.离心:将离心管放入离心机中,以4000r/min速度离心分离20min。将上清液移入标定过的10mL具塞刻度管中,加少量乙醇于原提取液的离心管中,再次悬浮沉淀物并离心,合并上清液。此操作重复2-3次,直至沉淀不含色素为止,最后将上清液定容至10mL。 4.测定:取上清液于10mm的比色池中,以乙醇溶液为对照溶液,读取波长750,663,645和630mm的吸光度。

湖泊(水库)富营养化评价方法及分级技术规定

湖泊(水库)富营养化评价方法及分级技术规定 2004-08-11 1、湖泊(水库)富营养化状况评价方法:综合营养状态指数法 综合营养状态指数计算公式为: 式中:—综合营养状态指数; Wj—第j种参数的营养状态指数的相关权重。 TLI(j)—代表第j种参数的营养状态指数。 以chla作为基准参数,则第j种参数的归一化的相关权重计算公式为: 式中:rij—第j种参数与基准参数chla的相关系数; m—评价参数的个数。 中国湖泊(水库)的chla与其它参数之间的相关关系rij及rij2见下表。 ※:引自金相灿等著《中国湖泊环境》,表中rij来源于中国26个主要湖泊调查数据的计算结果。 营养状态指数计算公式为: ⑴ TLI(chl)=10(2.5+1.086lnchl) ⑵ TLI(TP)=10(9.436+1.624lnTP)

⑶ TLI(TN)=10(5.453+1.694lnTN) ⑷ TLI(SD)=10(5.118-1.94lnSD) ⑸ TLI(CODMn)=10(0.109+2.661lnCOD) 式中:叶绿素a chl单位为mg/m3,透明度SD单位为m;其它指标单位均为mg/L。 2、湖泊(水库)富营养化状况评价指标: 叶绿素a(chla)、总磷(TP)、总氮(TN)、透明度(SD)、高锰酸盐指数(CODMn) 3、湖泊(水库)营养状态分级: 采用0~100的一系列连续数字对湖泊(水库)营养状态进行分级: TLI(∑)<30贫营养(Oligotropher) 30≤TLI(∑)≤50中营养(Mesotropher) TLI(∑)>50富营养 (Eutropher) 50<TLI(∑)≤60轻度富营养(light eutropher) 60<TLI(∑)≤70中度富营养(Middle eutropher) TLI(∑)>70重度富营养(Hyper eutropher) 在同一营养状态下,指数值越高,其营养程度越重。 注:此规定由中国环境监测总站生态室负责解释

水体富营养化的原因及其措施

水体富营养化 摘要: 富营养化是水体衰老的一种现象,它通常是指湖泊、水库等封闭水体以及某些河流水体内的氮、磷等植物营养物质含量过多所引起的水质污染现象。本文将从水体富营养化的自然因素和人为因素两大方面进行分析,阐述各元素对水体的影响,并对水体富营养化的危害及治理措施进行阐述。 关键词:富营养化来源危害治理措施 富营养化是由于水体中氮磷等营养物质的富集,引起某些特征性藻类(主要是蓝藻、绿藻)及其他浮游生物的迅速繁殖,水体生产能力提高,使水体溶解氧含量下降,造成藻类、浮游生物、植物、水生物和鱼类衰亡甚至绝迹的水质恶化污染现象。富营养化具有缓慢、难以逆转的特点 ,因此水体富营养化问题是当今世界面临的最主要水污染问题之一。 我国在经济持续高速增长的同时,所带来的最大负效应就是环境污染日益严重,大江、大河及湖库水环境质量日趋恶化。据2003年我国环境状况公报显示:在我国七大水系407个重点监测断面中,Ⅰ~Ⅲ类水质占38. 1%, Ⅳ、Ⅴ类水质占32. 2%,劣Ⅴ类水质占29. 7%。2001年对我国130余个湖泊调查资料显示,高营养化湖泊占调查总数的43. 5%,中营养化湖泊占调查总数的45%。以藻型富营养化为主的湖泊主要分布在我国东南部经济发达地区,超营养化湖泊主要分布在城市和城郊附近。 1水体富营养化的来源 1.1 自然因素 数千年前或者更远年代,自然界的许多湖泊处于贫营养状态。然而,随着时间的推移和环境的变化,湖泊一方面从天然降水中吸收氮、磷等营养物质;一方面因地表土壤的侵蚀和淋溶,使大量的营养元素

进入湖内,湖泊水体的肥力增加,大量的浮游植物和其他水生植物生长繁殖,为草食性的甲壳纲动物、昆虫和鱼类提供了丰富的食料。当这些动植物死亡后,它们的机体沉积在湖底,积累形成底泥沉积物。残存的动植物残体不断分解,由此释放出的营养物质又被新的生物体所吸收。 因此,富营养化是天然水体普遍存在的现象。但是在没有人为因素影响的水体中,富营养化的进程是非常缓慢的,即使生态系统不够完善,仍需至少几百年才能出现。一旦水体出现富营养化现象,要恢复往往是极其困难的。 1.2 人为因素 1.2.1工业废水 工业废水主要是指工业生产过程中产生的,其中钢铁、化工、制药造纸、印染等行业的废水中氮和磷的含量都相当高。近年来,工业排放的废水逐年递增。据报道, 2003年全国工业废水排放量达212. 4亿吨。但由于技术与资金的原因,大部分工业废水只经简单处理甚至未经任何处理就直接排入江河等水体中,许多废水中所含的氮、磷等物质也就不断地在水体中累积了下来。 1.2.2生活污水 排放人们在日常生活中也产生了大量的生活污水, 2001年全国生活污水排放达247. 6亿吨,超过工业废水排放量。生活污水中含有大量富含氮、磷的有机物。其中的磷主要来自洗涤剂。 据《2003年中国环境状况公报》统计, 2003年全国工业和城镇

实验1水体富营养化程度的评价

实验五水体富营养化程度的评价 富营养化(eutrophication)是指在人类活动的影响下,生物所需的氮、磷等营养物质大量进入湖泊、河口、海湾等缓流水体,引起藻类及其他浮游生物迅速繁殖,水体溶解氧量下降,水质恶化,鱼类及其他生物大量死亡的现象。在自然条件下,湖泊也会从贫营养状态过渡到富营养状态,沉积物不断增多,先变为沼泽,后变为陆地。这种自然过程非常缓慢,常需几千年甚至上万年。而人为排放含营养物质的工业废水和生活污水所引起的水体富营养化现象,可以在短期内出现。水体富营养化后,即使切断外界营养物质的来源,也很难自净和恢复到正常水平。水体富养化严重时,湖泊可被某些繁生植物及其残骸淤塞,成为沼泽甚至干地。局部海区可变成“死海”,或出现“赤潮”现象。 植物营养物质的来源广、数量大,有生活污水、农业面源、工业废水、垃圾等。每人每天带进污水中的氮约50 g。生活污水中的磷主要来源于洗涤废水,而施入农田的化肥有50%~80%流入江河、湖海和地下水体中。 许多参数可用作水体富营养化的指标, 常用的是总磷、叶绿素-a含量和初级生产率的大小(见表7-1 )。

1. 掌握总磷、叶绿素-a及初级生产率的测定原理及方法。 2. 评价水体的富营养化状况。 1. 仪器 (1) 可见分光光度计。 (2) 移液管:1 mL、2 mL、10 mL。 (3) 容量瓶:100 mL、250 mL。 (4) 锥型瓶:250 mL。 (5) 比色管:25 mL。 (6) BOD瓶:250 mL。 (7) 具塞小试管:10 mL。 (8) 玻璃纤维滤膜、剪刀、玻棒、夹子。 (9) 多功能水质检测仪。 2. 试剂 (1) 过硫酸铵(固体)。 (2) 浓硫酸。 (3) 1 mol/L 硫酸溶液。 (4) 2 mol/L 盐酸溶液。 (5) 6 mol/L氢氧化钠溶液。 (6) 1%酚酞:1 g酚酞溶于90 mL乙醇中,加水至100 mL。 (7) 丙酮:水(9:1)溶液。

水体富营养化形成的原因及防治对策

3.2000年对我国18个主要湖泊的调查表明,其中14个已进入富营养化状态。水体富营养化对水体生态和人们生活造成很大影响,试分析水体富营养化形成的原因及防治对策。(20分) 解答: 水体富营养化:指在人类活动的影响下,氮、磷等营养物质大量进入湖泊、河口、海湾等缓流水体,引起藻类及其他浮游生物迅速繁殖,水体溶解氧量下降,水质恶化,鱼类及其他生物大量死亡的现象 原因: 1)化肥流失;人类使用的合成氮肥是进入沿海水域的营养物质的最主要 来源。根据全球的统计数据,在施用于土地的氮肥中,平均12%的合成 氮肥直接流入了沿海水域。而在某些高流失量地区,比如在降水量较多 的农耕地区,这个统计数字可能高达30% 。 2)生活污水输出过量营养物质;日益增长的人口数量增加了污水的排放, 由此也增加了排放到自然环境中的营养物质。 3)畜禽养殖输出过量营养物质;畜禽养殖也会输出过量的营养物质。中国 90%的养殖场根本没有垃圾和污水处理设施,使得大量营养物质输入水 体。 4)含磷物质的排放;在当今的工业产磷量里,80%-85%者用于制造化肥, 另一个用磷相对少得多的工业行业是洗涤剂行业。从某一地区来看虽然 工业的磷排放所占比重较大,但总体上看,流入水体的磷主要还是来自 于城市污水和农业。农业磷排放中,又主要来自养殖业和使用化肥。 5)工业污染排放;很多工业制造和加工工厂使用氮和磷化合物作为基础产 品,如:化肥厂、农药厂、食品加工厂、含磷清洁剂、使用尿素作为 基础产品的行业。 6)6矿物燃料的燃烧;矿物燃料燃烧过程(既包括交通工具燃烧汽油,也 包括电厂的发电过程)产生的氮化合物(NOx)能够直接沉积进入水体, 或者先存在土壤中,间接地被冲刷入水体里。 防治对策

水体富营养化程度的评价

实验八水体富营养化程度的评价 富营养化(Eutrophication)是指在人类活动的影响下,生物所需的氮、磷等营养物质大量进入湖泊、河口、海湾等缓流水体,引起藻类及其他浮游生物迅速繁殖,水体溶解氧量急剧下降,水质恶化,鱼类及其他生物大量死亡的现象。在自然条件下,湖泊也会从贫营养状态过渡到富营养状态,沉积物不断增多,先变为沼泽,后变为陆地。这种自然过程非常缓慢,常需几千年甚至上万年。而人为排放含营养物质的工业废水和生活污水所引起的水体富营养化现象,可在短期内出现。水体富营养化后,即使切断外界营养物质的来源,也很难自净和恢复到正常水平。水体富养化严重时,湖泊可被某些水生植物及其残骸淤塞,成为沼泽甚至干地。局部海区可变成“死海”,或出现“赤潮”。 植物营养物质的来源广、数量大,有生活污水、农业面源、工业废水、垃圾等。每人每天带进污水中的氮约50 g。生活污水中的磷主要来源于洗涤废水,而施入农田的化肥有50~80%流入江河、湖海和地下水体中。 许多参数可用作水体富营养化的指标,常用的有总磷、叶绿素-a含量和初级生产率的大小(见表8-1)。 表8-1 水体富营养化程度划分 富营养化程度初级生产率/mg O2·m·日总磷/ μg·L无机氮/ μg·L 极贫0~136 <0.005 <0.200 贫-中0.005~0.010 0.200~0.400 中137~409 0.010~0.030 0.300~0.650 中-富0.030~0.100 0.500~1.500 富410~547 >0.100 >1.500 一、实验目的 1. 掌握总磷、叶绿素-a及初级生产率的测定原理及方法。 2. 评价水体的富营养化状况。 二、仪器和试剂 1. 仪器

湖泊(水库)富营养化评价方法及分级技术规定(eco)(精)

附件1: 湖泊(水库)富营养化评价方法及分级技术规定 1、湖泊(水库)富营养化状况评价方法:综合营养状态指数法 综合营养状态指数计算公式为: ∑=?=∑m j j TLI Wj TLI 1)()( 式中:)(∑TLI —综合营养状态指数; Wj —第j 种参数的营养状态指数的相关权重。 TLI (j )—代表第j 种参数的营养状态指数。 以chla 作为基准参数,则第j 种参数的归一化的相关权重计算公 式为: ∑==m j ij ij j r r W 122 式中:r ij —第j 种参数与基准参数chla 的相关系数; m —评价参数的个数。 中国湖泊(水库)的chla 与其它参数之间的相关关系r ij 及r ij 2见下表。 中国湖泊(水库)部分参数与chla 的相关关系r 及r 2值※ ※:引自金相灿等著《中国湖泊环境》,表中r ij 来源于中国26个主要湖泊调查 数据的计算结果。 营养状态指数计算公式为: ⑴ TLI (chl )=10(2.5+1.086lnchl ) ⑵ TLI (TP )=10(9.436+1.624lnTP ) ⑶ TLI (TN )=10(5.453+1.694lnTN )

⑷TLI(SD)=10(5.118-1.94lnSD) )=10(0.109+2.661lnCOD) ⑸TLI(COD Mn 式中:叶绿素a chl单位为mg/m3,透明度SD单位为m;其它指标单位均为mg/L。 2、湖泊(水库)富营养化状况评价指标: 叶绿素a(chla)、总磷(TP)、总氮(TN)、透明度(SD)、高锰 ) 酸盐指数(COD Mn 3、湖泊(水库)营养状态分级: 采用0~100的一系列连续数字对湖泊营养状态进行分级: TLI(∑)<30 贫营养(Oligotropher) 30≤TLI(∑)≤50 中营养(Mesotropher) TLI(∑)>50 富营养(Eutropher) 50<TLI(∑)≤60 轻度富营养(light eutropher) 60<TLI(∑)≤70 中度富营养(Middle eutropher) TLI(∑)>70 重度富营养(Hyper eutropher) 在同一营养状态下,指数值越高,其营养程度越重。 注:此规定由总站生态室负责解释

水体富营养化的现状与防治

水体富营养化的现状与防治 摘要:由于大量使用化肥及排放各类污水,已造成许多湖泊,河流水体氮磷严重污染造成水体富营养化,导致了水质恶化,严重影响了周边居民饮用水安全。水体的富营养化是当今社会面临的重大环境问题之一[1],已成为经济社会发展的重要影响因素,经济而有效的控制水体富营养化已经成为当代亟待解决的环境问题。本文通过对水库水体富营养化现状和原因分析表明,氮、磷是引起水库富营养化的主要因素。指出预防水库水体富营养化,应对水源保护区内的污染源进行综合治理,严格控制入库污染物排放。同时提出了对已经形成富营养化的水体进行有效治理的措施。 关键词:水体富营养化;环境问题;防治对策 1.水体富营养化及其危害 随着社会发展进程的加快,人类生产、生活污水排放的日益增多,水体的富营养化问题也越来越严重。水体富营养化是指水体中生物所需的氮、磷等无机营养物质含量过剩的现象。氮、磷是导致湖泊、水库、海湾等缓流水体富营养化的主要原因[2]。磷是藻类等的细胞合成所必需的,也是构成核酸、脂肪、蛋白质的重要成分,在能量代谢种起着十分重要的作用。水体富营养化的结果会导致以藻类为主体的水生植物大量的繁殖,影响水体的透明度和水中植物正常的光合作用。藻类的呼吸作用,和藻类死亡被需氧微生物分解都需要氧气,导致水体中的溶解氧含量大大降低,使水体长期处于缺氧状态中,造成鱼类等水生生物的死亡,水质浑浊发臭等最终破坏湖泊生态系统[3]。对人类工业,生活,灌溉用水都有不利影响。因富营养化水中含有硝酸盐和亚硝酸盐,人畜长期饮用这些物质含量超过一定标准的水,也会中毒致病[4]。 富营养化本身是一个自然过程[5],但因为人类社会的发展,将大量污水在未经处理的状况下直接排入水体,就加速了富营养化这一过程。则这样的富营养化称为人为富营养化。 2.我国的水体富营养化污染现状 第1页(共5页)

河流富营养化评价标准

河流富营养化评价标准 能够反映湖泊水库营养状态的变量很多 ,但只部分指标可被用于湖库营养状态的评价 ,而且不同国家和地区所选取的指标各不相同 ,其中总磷(TP)、总氮(TN)和叶绿素 a均为必选指标 ,虽然 TP和 TN中只有部分形式能够为藻类所吸收利用 ,但目前国际上大多是采用 TP和 TN指标 ,而不是选用可利用性总磷或者可利用性总氮等指标 ,这是由于营养盐的可利用态与不可利用态之间存在着复杂的转化关系。而其它指标如透明度、溶解氧 (DO)、化学需氧量 (COD)和 pH 等只是在一些国家和地区被应用。 河道型水库营养状态评价指标的选取应遵循以下几个原则: ( 1)是水库富营养化控制的关键性因素; (2)与藻类生长具有明确的机理性关系; (3)指标相对稳定 ,不易受到其它因素的影响; (4)具有富营养化的早期预警功能 ,为水库富营养化控制提供支持。 基于上述原则 ,对现有指标在河道型水库的适用性进行分析.认为总磷是我国大部分河道型水库的限制性要素 ,是水库富营养化控制的关键因子. 氮不仅是某些水库富营养化的控制性要素,而且是河口以及海岸带水体藻类的关键限制因子,为了体现水库对河口的影响及控制作用 ,在制定河道型水库的营养状态标准时应考虑氮元素.叶绿素a能够反映水库中藻类生物量的大小 ,虽然含量受到藻类种类的影响 ,容易在评价时造成一定的偏差 ,仍然是水体富营养化程度的一个重要表征指标. 因此 ,认为总磷、总氮和叶绿素 a仍然是河道型水库的 营养状态评价的关键指标。 透明度也是一个常用的湖泊水库营养状态评价指标 ,这是因为在一般的湖泊水库中 ,透明度变化主要源于水体中悬浮的藻类数量的差异 ,因此 ,它能够很好表征湖库的富营养化程度 ,甚至有人认为透明度是识别湖泊、水库营养状态趋势的最好变量. 但河道型水库与一般的湖泊水库不一样 ,其透明度指标受河流流速、泥沙含量的影响较大 ,与真正意义上的湖泊水库中的透明度不同.以三峡水库为例 , 1年中出现富营养化敏感时期分别是 3~6月和 9~10月 ,而两个时期的透明度存在显著差异 , 9~10月为汛后期 ,平均透明度为0.54 m, 3~6月为汛前期 ,平均透明度为1.76m,原因在于汛期泥沙含量的影响作用 ,使得透明度作为河道型水库的营养状态评价指标中具有一定局限性.因此 ,作者认

水体富营养化的危害

分析水体富营养化的危害,及防治措施 水体富营养化是指在人类活动的影响下,生物所需的氮、磷等营养物质大量进入湖泊、河口、海湾等缓流水体,引起藻类及其他浮游生物迅速繁殖,水体溶解氧量下降,水质恶化,鱼类及其他生物大量死亡的现象。在自然条件下,随着河流夹带冲击物和水生生物残骸在湖底的不断沉降淤积,湖泊会从平营养湖过渡为富营养湖,进而演变为沼泽和陆地,这是一种极为缓慢的过程。但由于人类的活动,将大量工业废水和生活污水以及农田径流中的植物营养物质排入湖泊、水库、河口、海湾等缓流水体后,水生生物特别是藻类将大量繁殖,使生物的种群、种类数量发生改变,破坏了水体的生态平衡。 一谈到水体的富营养化,使人们常常想到总氮、总磷超标。诚然,总氮、总磷等营养盐是发生富营养化的必要条件。Biebig最小值定律指出,植物生长取决于外界提供给它所需养料中数量最小的一种。然而,在藻类分子式中所占重量百分比最小的两种元素是氮和磷,特别是磷是控制水体藻类生长的主要因素。调查结果显示:80%的湖泊、水库富营养化是受磷元素的制约,大约10%的湖泊、水库富营养化与氮元素有关,余下的10%的湖泊、水库等与其它因素有关。(富营养状态:总氮>0.2 mg/L;总磷>0.02 mg/L) 水体富营养化的危害 水体富营养化,常导致水生生态系统紊乱,水生生物种类减少,多样性受到破坏。昆明滇池水质在20世纪50年代处于贫营养状态,到80年代则处于富营养化状态,大型水生植物种数由50年代的44种降至20种,浮游植物属数由87属降至45属,土著鱼种数由15种降至4种;武汉汉江在1992年发生水华时,藻类种群的多样性指数也呈下降趋势。普遍的富营养造成多种用水功能的严重损害,甚至完全丧失。此外,由于藻类带有明显的鱼腥味,从而影响饮用水质。而藻类产生的毒素则会危害人类和动物的健康。 水体富营养化的危害主要表现在六个方面。 (1)降低水体的透明度。在富营养水体中,生长着以蓝藻、绿藻为上风种类的大量水藻。这些水藻浮在湖水外貌,形成一层“绿色浮渣”,使水质变得污浊,透明度显着降低,富营养严重的水体透明度仅有0.2米,严重影响水中植物的光合作用和氧气的释放,同时浮游生物的大量繁殖,消耗了水中大量的氧,使水中溶解氧严重不足,而水面植物的光合作用,则可能造成局部溶解氧的过饱和,溶解氧过饱以及水中溶解氧少,都对水生动物有害,造成鱼类大量死亡。 (2)富营养化水体底层堆积的有机物质在厌氧条件下分解产生的有害气体,以及一些浮游生物产生的生物毒素(如石房蛤毒素)也会伤害水生动物。 (3)富营养化水中含有亚硝酸盐和硝酸盐,人畜长期饮用这些物质含量超过一定标准的水,会中毒致病等等。 (4)向水体开释有毒物质。富营养化对水质的另一个影响是某些藻类能够排泄、开释有毒性的物质,有毒物质进入水体后,若被牲口饮入体内,可引起牲口肠胃道疾病。 (5)对水生生态的影响在正常情况下,水体中种种生物都处于相对平衡的状态。但是,一旦水体受到污染而出现富营养状态时,这种正常的生态平衡就会被扰乱,某些种类的生物明显被淘汰,而另外一些生物种类则显着增长,这种生物种类演替会导致水生生物的稳固性和多样性低落,破坏其生态平衡。 (6)影响旅游和航运。水体一旦发生富营养化,藻类就会大量繁殖,水体透明度急剧降低,水质污浊,水面藻华聚集,臭味弥漫,严重影响湖库的旅游业,以致丧失旅游价值。另外,富营养水体中生长的大量浮游生物,还会堵塞航道,影响航运。

水体富营养化环境影响评价(一)

水体富营养化环境影响评价(一) 摘要:环境影响评价简称环评,是指对规划和建设项目实施后可能造成的环境影响进行分析、预测和评估,提出预防或者减轻不良环境影响的对策和措施,进行跟踪监测的方法与制度。通俗说就是分析项目建成投产后可能对环境产生的影响,并提出污染防止对策和措施。水体富营养化环境影响评价是规划和建设项目水环境影响评价的重要内容。鉴于此,本文援引其他文献,就水体富营养化环境影响评价予以浅议。 关键词:环保水环境环境影响评价 0引言 水体富营养化主要指人为因素引起的湖泊、水库中氮、磷增加对其水生生态产生不良的影响。富营养化是一个动态的复杂过程。一般认为,水体磷的增加是导致富营养化的主因,但富营养化亦与氮含量、水温及水体特征(湖泊水面积、水源、形状、流速、水深等)有关。 1流域污染源调查 根据地形图估计流域面积;通过水文气象资料了解流域内年降水量和径流量;调查流域内地形地貌和景观特征,了解城区、农区、森林和湿地的面积和调查污染物点源和面源排放情况。水中总磷的收支数据可用输出系数法和实际测定法获得。 输出系数法:这种方法是根据湖泊形态和水的输出资料,湖泊周围不同土地利用类型磷输出之和,再加上大气沉降磷的含量,推测湖泊总磷浓度、径流图、湖泊容积和水面积,估计湖泊水力停留时间和更新率,进而估计湖泊总磷的全年负荷量。要预测湖泊总磷浓度,除需要了解水量收支外,还需要了解污水排入磷的含量。 实测法:是精确测定所有水源总磷的浓度和输入、输出水量,需历时一年。湖泊水量收支通用式为:输入量=输出量+△储存量 湖水输入量是河流、地下水输入,湖面大气降水、河流以外的其他地表径流量和污水直接排入量的总和;输出量是河道出水、地下渗透、蒸发和工农业用水的总和。其中河流进出水量、大气降水量和蒸发量一般可从水文气象部门监测资料获得,有关各类水中磷浓度需要定期测定。地下水输入与输出较难确定,但不能忽略。 估计地下水进出量的一种方法就是通过流量网的测量,用下式计算地下水量: Q=K·I·A(8-2)式中,Q——地下水输入或输出量; K——水的电导率; I——水流的坡度; A——地下水流截面积。 以上从湖泊外部输入的磷称为磷的外负荷。由湖泊内释放的磷引起的富营养化称为磷的内负荷。在湖下层无氧气的湖泊中,沉积物释放磷较多,可能导致湖水实际总磷浓度的低估。

水体富营养化成因及对策毕业论文

蚌埠学院 毕业设计(论文)水体富营养化成因及对策

目录 中文摘要 (2) 英文摘要 (2) 1引言 (3) 2水体富营养化及其污染物的来源 (3) 2.1水体富营养化 (3) 2.2水体污染物的来源 (3) 2.2.1非点源污染 (3) 2.2.2点源污染 (5) 2.2.3内源污染 (6) 3水体富营养化的危害及对策 (6) 3.1水体富营养化的危害 (6) 3.2水体富营养化的对策 (7) 3.2.1控制外源性营养物质输入 (7) 3.2.2重点控制农业面源污染 (7)

3.2.3加强治理工业废水和生活污 (8) 3.2.4 减少内源性营养物质负荷 (8) 3.3防治主要的方法有 (8) 3.3.1工程性措施 (8) 3.3.2化学方法 (9) 3.3.3生物性措施 (9) 4小结 (10) 参考文献 (11) 水体富营养化成因及对策 摘要: 从外源( 面源和点源) 和内源的角度分析了导致水体富营养化营养的来源,水体富营养化营养的危害,并根据不同污染源提出了具有针对性的对策。 关键词:富营养化、污染物来源、危害、对策。 Cause and Countermeasures of Eutrophication Abstract:From outside source (point source and point source) and endogenous point of view of

nutrition that led to the source of eutrophication, nutrient eutrophication hazards, and presented according to different sources with the targeted response. Keywords:Eutrophication, pollution sources , hazards and solutions. 水体富营养化成因及对策 1引言 水是人类地球上一个非常重要的介质,它是环境中能量和物质自然循环的载体和必要条件,也是地球生命的基础。由于自然环境的改变和人为频繁的活动而导致海洋、湖泊、河流、水库等储蓄水体中富营养化的发生,是当今世界水污染治理的难题,已成为全球最重要的环境问题之一。全球约有75%以上的封闭型水体存在富营养化问题。因此,探讨和研究水体富营养化的污染源及防治措施具有重要的现实意义和实用价值,为控制水体富营养化现象的产生和蔓延提供依据。 2 水体富营养化及其污染物的来源 2.1水体富营养化 水体富营养化(eutrophication)是指在人类活动的影响下,生物所需的氮、磷等营养物质大量进入湖泊、河口、海湾等缓流水体,引起藻类及其他浮游生物迅速繁殖,水体溶解氧量下降,水质恶化,鱼类及其他生物大量死亡的现象。在自然条件下,湖泊也会从贫营养状态过渡到富营养状态,不过这种自然过程非常缓慢。而人为排放含营养物质的工业废水

专题四 水体富营养化

专题四水体富营养化 水体富营养化是指在人类活动的影响下,生物所需的氮、磷等营养物质大量进入湖泊、河口、海湾等缓流水体,引起藻类及其他浮游生物迅速繁殖,水体溶解氧量下降,水质恶化,鱼类及其他生物大量死亡的现象。 在自然条件下,湖泊也会从贫营养状态过渡到富营养状态,不过这种自然过程非常缓慢。而人为排放含营养物质的工业废水和生活污水所引起的水体富营养化则可以在短时间内出现。水体出现富营养化现象时,浮游藻类大量繁殖,形成水华。因占优势的浮游藻类的颜色不同,水面往往呈现蓝色、红色、棕色、乳白色等。这种现象在海洋中则叫做赤潮或红潮。 1.2 水体富营养化机理 在地表淡水系统中,磷酸盐通常是植物生长的限制因素,而在海水系统中往往是氨氮和硝酸盐限制植物的生长以及总的生产量。导致富营养化的物质,往往是这些水系统中含量有限的营养物质,例如,在正常的淡水系统中磷含量通常是有限的,因此增加磷酸盐会导致植物的过度生长,而在海水系统中磷是不缺的,而氮含量却是有限的,因而含氮污染物加入就会消除这一限制因素,从而出现植物的过度生长。生活污水和化肥、食品等工业的废水以及农田排水都含有大量的氮、磷及其他无机盐类。天然水体接纳这些废水后,水中营养物质增多,促使自养型生物旺盛生长,特别是蓝藻和红藻的个体数量迅速增加,而其他藻类的种类则逐渐减少。水体中的藻类本来以硅藻和绿藻为主,蓝藻的大量出现是富营养化的征兆,随着富营养化的发展,最后变为以蓝藻为主。藻类繁殖迅速,生长周期短。藻类及其他浮游生物死亡后被需氧微生物分解,不断消耗水中的溶解氧,或被厌氧微生物分解,不断产生硫化氢等气体,从两个方面使水质恶化,造成鱼类和其他水生生物大量死亡。藻类及其他浮游生物残体在腐烂过程中,又把大量的氮、磷等营养物质释放入水中,供新的一代藻类等生物利用。因此,富营养化了的水体,即使切断外界营养物质的来源,水体也很难自净和恢复到正常状态。 2 水体富营养化产生的原因 在地表淡水系统中,磷酸盐通常是植物生长的限制因素,而在海水系统中往往是氨氮和硝酸盐限制植物的生长以及总的生产量。导致富营养化的物质,往往是这些水系统中含量有限的营养物质,例如,在正常的淡水系统中磷含量通常是有限的,因此增加磷酸盐会导致植物的过度生长,而在海水系统中磷是不缺的,而氮含量却是有限的,因而含氮污染物加入就会消除这一限制因素,从而出现植物的过度生长。生活污水和化肥、食品等工业的废水以及农田排水都含有大量的

相关主题
文本预览
相关文档 最新文档