当前位置:文档之家› 高考物理二轮复习专题功、功率与动能定理

高考物理二轮复习专题功、功率与动能定理

高考物理二轮复习专题功、功率与动能定理
高考物理二轮复习专题功、功率与动能定理

功、功率与动能定理

【2013考纲解读】

功、能、能量守恒是近几年高考理科综合物理命题的重点、热点和焦点,也是广大考生普遍感到棘手的难点之一.能量守恒贯穿于整个高中物理学习的始终,是联系各部分知识的主线.它不仅为解决力学问题开辟了一条重要途径,同时也为我们分析问题和解决问题提供了重要依据.守恒思想是物理学中极为重要的思想方法,是物理学研究的极高境界,是开启物理学大门的金钥匙,同样也是对考生进行方法教育和能力培养的重要方面.因此,功、能、能量守恒可谓高考物理的重中之重,常作为压轴题出现在物理试卷中.纵观近几年高考理科综合试题,功、能、能量守恒考查的特点是:

①灵活性强,难度较大,能力要求高,内容极丰富,多次出现综合计算;

②题型全,不论是从内容上看还是从方法上看都极易满足理科综合试题的要求,经常与牛顿运动定律、圆周运动、电磁学和近代物理知识综合运用,在高考中所占份量相当大.从考题逐渐趋于稳定的特点来看,我们认为:2013年对功、能、能量守恒的考查重点仍放在分析问题和解决问题的能力上.因此在第二轮复习中,还是应在熟练掌握基本概念和规律的同时,注重分析综合能力的培养,训练从能量守恒的角度分析问题的思维方法.【知识网络构建】

【重点知识整合】

一、求功的方法比较 1.恒力做功的求法

(1)应用公式W =Fs cos α其中α是F 、s 间的夹角. (2)用动能定理(从做功的效果)求功:

2

1

2

2k k 1122

W E E m v m v =-=

此公式可以求恒力做功也可以求变力做功.

特别提醒:(1)应用动能定理求的功是物体所受合外力的功,而不是某一个力的功. (2)合外力的功也可用W 合=F 合s cos α或W 合=F 1s 1cos α+F 2s 2cos α+…求解. 2.变力做功的求法

特别提醒:(1)摩擦力既可以做正功,也可以做负功,还可以不做功.

(2)相互摩擦的系统内:一对静摩擦力做功的代数和总为零,静摩擦力起着传递机械能的作用,而没有机械能转化为其他形式的能;一对滑动摩擦力做功的代数和等于摩擦力与相对路程的乘积,其值为负值,W =-F f ·s 相对,且F f ·s 相对=ΔE 损=Q 内能.

二、两种功率表达式的比较

1.功率的定义式:P =W

t

,所求出的功率是时间t 内的平均功率.

2.功率的计算式:P =Fv cos θ,其中θ是力与速度间的夹角,该公式有两种用法: (1)求某一时刻的瞬时功率.这时F 是该时刻的作用力大小,v 取瞬时值,对应的P 为F 在该时刻的瞬时功率;

(2)当v 为某段位移(时间)内的平均速度时,则要求这段位移(时间)内F 必须为恒力,对应的P 为F 在该段时间内的平均功率.

特别提醒:公式P =Fv cos θ在高中阶段常用于机车类问题的处理,此时P 指发动机的输出功率,F 为牵引力,F f 为阻力,则任一时刻都满足P =F ·v ,机车任一状态的加速度a

F -F f

m

,当机车匀速运动时,F =F f ,P =F ·v =F f ·v . 三、对动能定理的理解 1.对公式的理解

(1)计算式为标量式,没有方向性,动能的变化为末动能减去初动能. (2)研究对象是单一物体或可以看成单一物体的整体.

(3)公式中的位移和速度必须是相对于同一参考系,一般以地面为参考系. 2.动能定理的优越性

(1)适用范围广:应用于直线运动,曲线运动,单一过程,多过程,恒力做功,变力做

功.

(2)应用便捷:公式不涉及物体运动过程的细节,不涉及加速度和时间问题,应用时比牛顿运动定律和运动学方程方便,而且能解决牛顿运动定律不能解决的变力问题和曲线运动问题.

【高频考点突破】 考点一 功的计算

功的计算在高中阶段占有十分重要的地位,涉及功的计算问题,要掌握以下三点: 1.判断力是否做功的方法:恒力作用时用力和位移的夹角判断,变力作用时一般用力和速度的夹角判断.

2.做功的求法:恒力做功应用W =Fs cos θ,变力做功优先考虑动能定理或将变力转化为恒力.

3.整体法求功:涉及连接体的问题,若不涉及内力做功,一般优先考虑整体法. 例1、如图5-1所示,竖直平面内放一直角杆,直角杆的水平部分粗糙,动摩擦因数μ=0.20,竖直部分光滑,两部分各套有质量为2.0 kg 和1.0 kg 的小球A 和B ,A 、B 间用细绳相连,初始位置OA =1.5 m ,OB =2.0 m ,g 取10 m/s 2,则

图5-1

(1)若用水平拉力F 1沿水平杆向右缓慢拉A ,使之移动0.5 m ,该过程中A 受到的摩擦力多大?拉力F 1做功多少?

(2)若小球A 、B 都有一定的初速度,A 在水平拉力F 2的作用下,使B 由初始位置以1.0 m/s 的速度匀速上升0.5 m ,此过程中拉力F 2做功多少?

考点二 功率的计算

公式P =F ·v cos θ的应用在解题过程中的几种情况:

1.计算某一力的瞬时功率,若力F 与速度v 之间有夹角θ,则P =Fv cos θ,体现分解

F 或v 的思想;若F 与v 共线同方向,则P =F ·v .

2.计算机车启动类问题时,牛顿第二定律P

v

-f =ma 和匀速状态时P 额=f ·v m 两公式的联合应用.

3.对恒定功率问题,也可用动能定理的形式Pt -f ·s =12mvt 2-1

2

mv 2.

例2、如图5-3所示,物体A 放在足够长的木板B 上,木板B 静置于水平面.t =0时,电动机通过水平细绳以恒力F 拉木板B ,使它做初速度为零、加速度a B =1.0 m/s 2的匀加速直线运动.已知A 的质量m A 和B 的质量m B 均为2.0 kg ,A 、B 之间的动摩擦因数μ1=0.05,

B 与水平面之间的动摩擦因数μ2=0.1,最大静摩擦力与滑动摩擦力大小视为相等,重力加

速度g 取10 m/s 2

.求:

图5-3

(1)物体A刚运动时的加速度a A;

(2)t=1.0 s时,电动机的输出功率P;

(3)若t=1.0 s时,将电动机的输出功率立即调整为P′=5 W,并在以后的运动过程中始终保持这一功率不变,t=3.8 s时物体A的速度为1.2 m/s.则在t=1.0 s到t=3.8 s 这段时间内木板B的位移为多少?

F-μ1m A g-μ2(m A+m B)g=m B a B④(6分)

电动机输出功率

P1=Fv1⑤(7分)

由③④⑤并代入数据解得P1=7 W.⑥(9分)

(3)电动机的输出功率调整为5 W时,设细绳对木板B的拉力为F′,则

P′=F′v1⑦(10分)

代入数据解得F′=5 N⑧(11分)

木板B受力满足

F′-μ1m A g-μ2(m A+m B)g=0⑨(13分)

所以木板B将做匀速直线运动,而物体A则继续在B上做匀加速直线运动直到A、B速度相等.设这一过程时间为t′,有

v1=a A(t+t′)⑩(14分)

这段时间内B的位移s1=v1t′?(15分)

A、B速度相同后,由于F′>μ2(m A+m B)g且电动机输出功率恒定,A、B将一起做加速度逐渐减小的变加速运动,由动能定理得

P ′(t 2-t ′-t 1)-μ2(m A +m B )gs 2=1

2(m A +m B )

2

A

v -12

(m A +m B )2

1v

?(17分) 联立②③⑩??并代入数据解得

木板B 在t =1.0 s 到t =3.8 s 这段时间内的位移

s =s 1+s 2=3.03 m(或取s =3.0 m).(20分)

【答案】 (1)0.5 m/s 2 (2)7 W (3)3.03 m(或3.0 m) 考点三 动能定理的应用

动能定理是力学的基本规律,在应用动能定理分析解决问题时,要注意以下几点: 1.研究对象一般是单个物体,分析的过程可以是单一过程,也可以是几个过程组成的复杂过程,物体的运动可以是直线运动也可以是曲线运动.

2.分析研究对象的受力情况(包括重力),各力是否做功,做正功还是负功,并分别求出各力做功的代数和,但要注意求功时,位移必须是相对地面的. 3.确定过程始、末状态的动能.

4.利用动能定理列方程求解,要注意方程的左边是功,右边是动能的变化量. 例3、如图5-5甲所示为游乐场中过山车的实物图片,图乙是过山车的模型图.在模型图中,半径分别为R 1=2.0 m 和R 2=8.0 m 的两个光滑圆形轨道,固定在倾角为α=37°的倾斜直轨道平面上的Q 、Z 两点,且两圆形轨道的最高点A 、B 均与P 点平齐,圆形轨道与斜直轨道之间圆滑连接.现使小车(视作质点)从P 点以一定的初速度沿斜直轨道向下运动.已知斜直轨道与小车间的动摩擦因数为μ=1

24

,g =10 m/s 2,sin 37°=0.6,cos 37°=0.8.求:

(1)若小车恰好能通过第一个圆形轨道的最高点A 处,则其在P 点的初速度应为多大? (2)若小车在P 点的初速度为10 m/s ,则小车能否安全通过两个圆形轨道?

【解析】 (1)设小车经过A 点时的临界速度为v 1,根据牛顿第二定律有2

11

m v m g R =

设Q 点与P 点高度差为h 1,PQ 间距离为L 1,则L 1=

R 11+cos αsin α

设小车在P 点的初速度为v 01,从P 点到A 点的过程中,由动能定理得-(μmg cos α)L 1

=12

小车能安全通过两个圆形轨道的临界条件,是在B 点速度为v 2时,由牛顿第二定律知,

小车满足mg =mv 22

R 2

设小车在P 点的初速度为v 02,从P 点到B 点的过程中,由动能定理得: -μmg cos αL 2=1222-1

2mv 202

解得:v 02=4 6 m/s

因为4 6 m/s <10 m/s ,故能安全通过两圆形轨道. 【答案】 (1)2 6 m/s (2)能 【难点探究】

难点一 变力做功问题

1.当力的方向不变,大小随位移做线性变化时,可先求力对位

移的平均值

再由恒力做功的公式W =Fx cos α求功,如弹簧弹力做的功.

2.大小不变、方向变化的力做的功(如滑动摩擦力、空气阻力等在曲线运动或往复运动

中做的功):W=Fs,s为运动质点通过的路程.

3.与势能对应的力(如重力、弹簧的弹力、电场力)做的功等于运动质点相应势能的减少量.

4.作出变力F随位移x变化的图象,图线与坐标轴所围的“面积”表示变力做的功.如图所示,图线下方的对应面积等于变力做的功.

5.当变力的功率一定时(如机车以恒定功率运行),变力做的功W=Pt;当变力的功率变化时,可利用平均功率求功,W=

6.利用动能定理求变力做的功,或用功能关系W=ΔE求变力做的功,即用能量的增量等效变换变力所做的功,如求重力、弹簧弹力做的功.

例1 一质量为m的物体静止在水平面上,在水平方向的拉力F作用下开始运动,在0~6 s内其运动的速度—时间图象与拉力的功率—时间图象如图2-5-2所示,取g=10 m/s2,下列判断正确的是( )

图2-5-2

A.拉力F的大小为4 N,且保持不变

B.物体的质量为2 kg

C.0~6 s内物体克服摩擦力做功24 J

D.0~6 s内拉力做的功为156 J

【答案】BD

【解析】由图象可知,t=2 s后物体做匀速直线运动,则F

2=f,由速度为6 m/s,P

2

=F 2v ,故f =F 2=P

v =4 N .由速度图象知,物体在0~2 s 内做匀加速直线运动,加速度大

小a =

Δv Δt =3 m/s 2,由于t =2 s 时,v =6 m/s ,P 1=60 W ,此时拉力F 1=P 1

v

=10 N ,在0~2 s 内,由牛顿第二定律F 1-f =ma ,可得m =2 kg ,选项A 错误、B 正确.由速度图象可知物体在前2 s 内的位移x 1=6 m ,在后4 s 内的位移为x 2=24 m,6 s 内物体克服摩擦力做功W f =f(x 1+x 2)=120 J,6 s 内拉力做的功为W =F 1x 1+F 2x 2=156 J ,选项C 错误、D 正确.

【点评】 本题综合考查了运动图象、功率图象、牛顿第二定律、功率及变力做功等相关知识.对分段图象问题,要在明确题意的基础上,对各段分别进行研究,并找出联系相邻两段的物理量.对函数图象问题,还特别要注意函数方程和函数图象是一一对应的关系.

难点二 功率的计算问题

1.平均功率:P -=W t

P -=F v -cos α(v -

是平均速度).

2.瞬时功率:P =Fv cos α(v 是瞬时速度,α是力F 与瞬时速度之间的夹角).重力的瞬时功率P G =mgv cos α=mgv y ,即重力的瞬时功率等于重力和物体在该时刻的竖直分速度的乘积.

注意:功和功率的概念易与v -t 图象、F -t 图象等函数图象一起综合考查,一般可通过v -t 图象求得位移,通过F -t 图象读出力,然后利用W =Fx cos α、P =Fv cos α等公式求解.

例2、一质量为1 kg 的质点静止于光滑水平面上,从t =0时起,第1 s 内受到2 N 的水平外力作用,第2 s 内受到同方向的1 N 的外力作用.下列判断正确的是( )

A .0~2 s 内外力的平均功率是

B .第2 s 内外力所做的功是

C .第2 s 末外力的瞬时功率最大

D .第1 s 内与第2 s 内质点动能增加量的比值是 【答案】AD

【解析】 由牛顿第二定律F =ma 可得,第1 s 内的加速度a 1=2 m/s 2,第2 s 内的加速度a 2=1 m/s 2;由匀变速直线运动规律可得,第1 s 内的位移x 1=1 m ,第1 s 末的速度v 1=2 m/s ,第2 s 内的位移x 2=2.5 m ,第2 s 末的速度v 2=3 m/s ;由做功公式W =Fx 可

求,第1 s 内外力做功W 1=2 J ,第2 s 内外力做功W 2=2.5 J ,选项B 错误; 0~2 s 内外力的平均功率P =

W 1+W 2t 1+t 2=4.5 J 2 s =9

4

W ,选项A 正确;第2 s 末外力瞬时功率P 2=F 2v 2=3 W ,第1 s 末外力瞬时功率P 1=F 1v 1=4 W >P 2,选项C 错误;由动能定理知,动能增加量之比等于合外力做功之比,所以ΔE k1ΔE k2=W 1W 2=4

5

,选项D 正确.

难点三 机车启动问题

1.求解机车发动机类问题的关键是要明确机车的功率是牵引力的功率,不是机车受到的合力的功率.发动机允许输出的最大功率即为其额定功率,它是在正常条件下可以长时间工作的最大功率.

2.机车两种启动方式的运动对比

3.机车两种启动方式流程图 (1)以恒定功率启动

(2)匀加速度启动

例 3 、节能混合动力车是一种可以利用汽油及所储存电能作为动力来源的汽车.有一质量m =1000 kg 的混合动力轿车,在平直公路上以v 1=90 km/h 匀速行驶,发动机的输出功率为P =50 kW.当驾驶员看到前方有80 km/h 的限速标志时,保持发动机功率不变,立即启动利用电磁阻尼带动的发电机工作给电池充电,使轿车做减速运动,运动L =72 m 后,速度变为v 2=72 km/h.此过程中发动机功率的15用于轿车的牵引,45用于供给发电机工作,发动

机输送给发电机的能量最后有50%转化为电池的电能.假设轿车在上述运动过程中所受阻力保持不变.求:

(1)轿车以90 km/h 在平直公路上匀速行驶,所受阻力F 阻的大小; (2)轿车从90 km/h 减速到72 km/h 过程中,获得的电能E 电 ;

(3)轿车仅用其在上述减速过程中获得的电能E 电 维持72 km/h 匀速运动的距离L ′. 【答案】(1)2×103 N (2)6.3×104 J (3)31.5 m 【解析】 (1)汽车牵引力与输出功率关系 P =F 牵v

将P =50 kW ,v 1=90 km/h =25 m/s 代入得 F 牵=P

v 1

=2×103 N 当轿车匀速行驶时,牵引力与阻力大小相等,有F 阻=2×103 N

(2)在减速过程中,注意到发动机只有1

5P 用于汽车的牵引.根据动能定理有

15Pt -F 阻L =12mv 22-12mv 21 代入数据得Pt =1.575×105 J 电源获得的电能为

E 电=0.5×45

Pt =6.3×104 J

(3)根据题设,轿车在平直公路上匀速行驶时受到的阻力仍为F 阻=2×103

N .在此过程中,由能量转化及守恒定律可知,仅有电能用于克服阻力做功.

E 电=

F 阻L ′

代入数据得L ′=31.5 m.

【点评】 本题是机车发动机功率问题的综合计算题,结合生活实际和节能减排,重点

考查了减速过程中的能量转换,通过用于轿车的机械功和克服安培力做功的比例关系间接求解减速过程中产生的电能,进一步计算减速过程产生的电能能够维持轿车匀速前进的距离.难点四动能定理在曲线运动中的应用

1.动能定理既适用于做直线运动的物体,也适用于做曲线运动的物体.

2.动能定理既适用于恒力做功,也适用于变力做功;力既可以同时作用,也可以分段作用;力可以是各种性质的力.

3.如果在某个运动过程中包含有几个不同运动性质的阶段(如加速、减速阶段),可以分段应用动能定理,也可以对全程应用动能定理,一般对全程列式更简单.4.因为动能定理中功和动能均与参考系的选取有关,所以动能定理也与参考系的选取有关.在中学物理中一般取地面为参考系.

5.动能定理建立的是外力做的总功和物体动能变化之间的一个双向关系:既可以由总功求物体动能的变化,又可以由动能的变化求总功.它是求解变力做功的有效方法.6.动能定理通常适用于单个物体或可看成单个物体的系统.如果涉及系统,因为要考虑内力做的功,所以要十分慎重.在中学阶段可以先分别对系统内每一个物体应用动能定理,然后再联立求解.

例4 、如图2-5-5所示,竖直固定放置的粗糙斜面AB的下端与光滑的圆弧BCD的B 点相切,圆弧轨道的半径为R,圆心O与A、D在同一水平面上,∠COB=θ.现有质量为m

的小物体从距D点为的高处无初速释放,已知物体恰能从D点进入圆轨道,求:

(1)为使小物体不会从A点冲出斜面,小物体与斜面间的动摩擦因数至少为多少?

(2)若小物块与斜面间的动摩擦因数μ=则小物体在斜面上通过的总路程为多少?

(3)在(2)的条件下,当小物体通过圆弧轨道最低点C时,对C的最大压力和最小压力各是多少?

【答案】(1)14tan θ (2)5R 2tan θ (3)????3+1

2cos θmg (3-2cos θ)mg

【解析】 (1)为使小物体不会从A 点冲出斜面,由动能定理得 mg

R cos θ4-μmg cos θ R tan θ

≤0 解得μ≥1

4

tan θ

即动摩擦因数至少为1

4

tan θ

(2)由μmg cos θ=1

2mg sin θ

B 点开始在

C 两侧做往复运动,由动能定理得

mg ????R cos θ4+R cos θ-μmgs cos θ=0 解得s =

5R 2tan θ

即小物体在斜面上通过的总路程为5R 2tan θ

.

(3)由于小物体第一次通过最低点时速度最大,此时压力最大,由动能定理,得 mg

????R cos θ4+R =12

2 由牛顿第二定律,得F Nmax -mg =m v 2

R

联立解得F Nmax =???

?3+1

2cos θmg

最终小物体将从B 点开始做往复运动,则有

【点评】 应用动能定理解答竖直平面内的圆周运动问题,尤其是多过程的问题,需要准确分析物体在每一过程的受力情况和运动情况,明确各阶段运动的联系和能量变化情况. 【历届高考真题】

【2012高考】

(2012·上海)15.质量相等的均质柔软细绳A、B平放于水平地面,绳A较长。分别捏住两绳中点缓慢提起,直至全部离开地面,两绳中点被提升的高度分别为h A、h B,上述过程中克服重力做功分别为W A、W B。若()

(A)h A=h B,则一定有W A=W B (B)h A>h B,则可能有W A

(C)h Ah B,则一定有W A>W B

【答案】B

【解析】设绳长为L,由于捏住两绳中点缓慢提起,因此重心在距最高点L/4位置处,因绳A较长。若h A=h B,A的重心较低,W Ah B两根绳子重心无法知道谁高谁低,因此可能W AW B,因此B正确而C不对;若h A

【考点定位】功和能

(2012·上海)16.如图,可视为质点的小球A、B用不可伸长的细软轻线连接,跨过固定在地面上、半径为R的光滑圆柱,A的质量为B的两倍。当B位于地面时,A恰与圆柱轴心等高。将A由静止释放,B上升的最大高度是()(A)2R

(B)5R/3

(C)4R/3

(D)2R/3

【答案】C

【解析】当A下落至地面时,B恰好上升到与圆心等高位置,这个过程中机械能守恒,即:,

接下来,B物体做竖直上抛运动,再上升的高度

两式联立得h=

这样B上升的最大高度H=h+R=4R/3

【考点定位】功和能、直线运动

(2012·上海)18.位于水平面上的物体在水平恒力F1作用下,做速度为v1的匀速运

动;若作用力变为斜向上的恒力F2,物体做速度为v2的匀速运动,且F1与F2功率相同。则可能有()

(A)F2=F1,v1> v2

(B)F2=F1,v1< v2

(C)F2>F1,v1> v2

(D)F2

【答案】BD

【解析】水平恒力F1作用下的功率P1= F1 v1,F2作用下的功率P2=

现P

1=P

2

,若F2=F1,一定有v1< v2,因此B正确,A不对;

由于两次都做匀速度直线运动,因此而第一次的摩擦力而第二次的摩擦

力显然,即:因此无论F2>F1还是F2

【考点定位】功和能、力和运动

(2012·上海)20.如图,质量分别为m A和m B的两小球带有同种电荷,电荷最分别为q A和q B,用绝缘细线悬挂在天花板上。平衡时,两小球恰处于同一水平位置,细线与竖直方

向间夹角分别为θ

1与θ

2

(θ

1

>θ

2

)。两小球突然失去各自所带电荷后开始摆动,最大速

度分别v A和v B,最大动能分别为E kA和E kB。则()

(A)m A一定小于m B (B)q A一定大于q B

(C)v A一定大于v B (D)E kA一定大于E kB 【答案】ACD

分别对A、B进行受力分析,如图所示

两球间的库仑斥力是作用力与反作用力总是大小相等,与带电量的大小无关,因此B 选项不对,

对于A球:

对于B球:

联立得:F=又θ

1>θ

2

可以得出:m A

在两球下摆的过程中根据机械能守恒:

可得:

可得:开始A、B两球在同一水平面上,

由于θ

1>θ

2

可以得出:L

A

>L

B

这样代入后可知: C选项正确A到达最低点的动能:

B到达最低点的动能:

由于θ

1>θ

2

可知,

又:

可得:因此D选项也正确

【考点定位】力和运动、功和能

(2012·山东)20.如图所示,相距为L的两条足够长的光滑平行金属导轨与水平面的夹角为,上端接有定值电阻,匀强磁场垂直于导轨平面,磁感应强度为B。将质量为m的导体棒由静止释放,当速度达到时开始匀速运动,此时对导体棒施加一平行于导轨向下的

拉力,并保持拉力的功率为P,导体棒最终以的速度匀速运动。导体棒始终与导轨垂直且接触良好,不计导轨和导体棒的电阻,重力加速度为g,下列选项正确的是()

A.

B.

C.当导体棒速度达到时加速度为

D.在速度达到以后匀速运动的过程中,R上产生的焦耳热等于拉力所做的功

【答案】AC

【解析】当速度达到时开始匀速运动,受力分析可得,导体棒最终以的速度匀速运动时,拉力为,所以拉力的功率为,选项A正确B错误。当导体棒速度达到时安培力,加速度为,

选项C正确。在速度达到以后匀速运动的过程中,根据能量守恒定律,R上产生的焦耳热等于拉力所做的功加上重力做的功,选项D错误,

【考点定位】磁场、功和能

(2012·安徽)16.如图所示,在竖直平面内有一半径为R的圆弧轨道,半径OA水平、OB竖直,一个质量为m的小球自A的正上方P点由静止开始自由下落,小球沿轨道到达最高点B时恰好对轨道没有压力。已知AP=2R,重力加速度为g,则小球从P到B的运动过程中()

A. 重力做功mgR

2 B. 机械能减少mgR

1

C. 合外力做功mgR

D. 克服摩擦力做功mgR

2

(2012·大纲版全国卷)19.一台电风扇的额定电压为交流220V。在其正常工作过程中,用交流电流表测得某一段时间内的工作电流I随时间t的变化如图所示。这段时间内电风扇的用电量为

A.3.9×10-2度

B.5.5×10-2度

C.7.8×10-2度

D.11.0×10-2度

【答案】B

【解析】由W=UIt可得,这段时间内电风扇的用电量为

W=(220×0.3×+220×0.4×+220×0.2×)×10-3kW·h=5.5×10-2度,选项B正确。

【考点定位】此题考查电能的计算。

7. (2012·物理)下列关于功和机械能的说法,正确的是

A.在有阻力作用的情况下,物体重力势能的减少不等于重力对物体所做的功

B.合力对物体所做的功等于物体动能的改变量

C.物体的重力势能是物体与地球之间的相互作用能,其大小与势能零点的选取有关D.运动物体动能的减少量一定等于其重力势能的增加量

【答案】BC

【解析】在任何情况下,物体重力势能的减少都等于重力对物体所做的功,选项A错误;

根据动能定理,合力对物体所做的功等于物体动能的改变量,选项B正确;物体的重力势能是物体与地球之间的相互作用能,其大小与势能零点的选取有关,选项C正确;当只有重力做功的情况下,运动物体动能的减少量才等于其重力势能的增加量,选项D错误。

【考点定位】此题考查重力做功、重力势能、动能定理及其相关知识。

(2012·福建)17、.如图,表面光滑的固定斜面顶端安装一定滑轮,小物块A、B用轻绳连接并跨过滑轮(不计滑轮的质量和摩擦)。初始时刻,A、B处于同一高度并恰好静止状态。剪断轻绳后A下落、B沿斜面下滑,则从剪断轻绳到物块着地,两物块

A.速率的变化量不同

B.机械能的变化量不同

C.重力势能的变化量相同

D.重力做功的平均功率相同

【答案】D

【解析】由平衡知识可知则两者质量不等所以重力势能变化量不等答案BC错,由机械能守恒可知两物块落地时速度大小相等,所以A错,再由功率可知重力的瞬时功率相等;答案D正确,选D 【考点定位】物体的平衡,机械能守恒定律及瞬时功率等,偏难。

(2012·浙江)18、由光滑细管组成的轨道如图所示,其中AB段是半径为R的四分之一圆弧,轨道固定在竖直平面内。一质量为m的小球,从距离水平地面高为H的管口D处静止释放,最后能够从A端水平抛出落到地面上。下列说法正确的是

A. 小球落到地面相对于A点的水平位移值为错误!未找到引用源。

B. 小球落到地面相对于A点的水平位移值为错误!未找到引用源。

C. 小球能从细管A端水平抛出的条件是H>2R

D. 小球能从细管A端水平抛出的最小高度错误!未找到引用源。

【答案】BC

【解析】由机械能守恒定律知:,平抛运动时间

,,故B正确;由于是管子模型,允许小球在A点时速度为零,所以只需满足H>2R即可,C正确。

【考点定位】机械能守恒、动能定律、平抛运动

(2012·天津)10.(16分)如图所示,水平地面上固定有高为h的平台,台面上有固定的光滑坡道,坡道顶端距台面高度也为h,坡道底端与台面相切。小球A从坡道顶端由静止开始滑下,到达水平光滑的台面与静止在台面上的小球B发生碰撞,并粘连在一起,共同沿台面滑行并从台面边缘飞出,落地点与飞出点的水平距离恰好为台高的一半,两球均可视为质点,忽略空气阻力,重力加速度为g。求

(1)小球A刚滑至水平台面的速度v A;

(2)A、B两球的质量之比m A:m B。

【答案】(1)错误!未找到引用源。(2)1:3

高考物理二轮复习重点及策略

2019高考物理二轮复习重点及策略 一、考点网络化、系统化 通过知识网络结构理解知识内部的联系。因为高考试题近年来突出对物理思想本质、物理模型及知识内部逻辑关系的考察。 例如学习电场这章知识,必须要建立知识网络图,从电场力和电场能这两个角度去理解并掌握。 二、重视错题 错题和不会做的题,往往是考生知识的盲区、物理思想方法的盲区、解题思路的盲区。所以考生要认真应对高三复习以来的错题,问问自己为什么错了,错在哪儿,今后怎么避免这些错误。分析错题可以帮助考生提高复习效率、巩固复习成果,反思失败教训,及时在高考前发现和修补知识与技能方面的漏洞。充分重视通过考试考生出现的知识漏洞和对过程和方法分析的重要性。很多学生不够重视错题本的建立,都是在最后关头才想起要去做这件事情,北京新东方一对一的老师都是非常重视同时也要求学生一定要建立错题本,在大考对错题本进行复习,这样的效果和收获是很多同学所意想不到的。 三、跳出题海,突出高频考点 例如电磁感应、牛二定律、电学实验、交流电等,每年会考到,这些考点就要深层次的去挖掘并掌握。不要盲区的去大

量做题,通过典型例题来掌握解题思路和答题技巧;重视“物理过程与方法”;重视数学思想方法在物理学中的应用;通过一题多问,一题多变,一题多解,多题归一,全面提升分析问题和解决问题的能力;通过定量规范、有序的训练来提高应试能力。 四、提升解题能力 1、强化选择题的训练 注重对基础知识和基本概念的考查,在选择题上的失手将使部分考生在高考中输在起跑线上,因为选择题共48分。所以北京新东方中小学一对一盛海清老师老师建议同学们一定要做到会的题目都拿到分数,不错过。 2、加强对过程与方法的训练,提高解决综合问题的应试能力 2019年北京高考命题将加大落实考查“知识与技能”、“过程与方法”的力度,更加注重通过对解题过程和物理思维方法的考查来甄别考生的综合能力。分析是综合的基础,分析物理运动过程、条件、特征,要有分析的方法,主要有:定性分析、定量分析、因果分析、条件分析、结构功能分析等。在处理复杂物理问题是一般要定性分析可能情景、再定量分析确定物理情景、运动条件、运动特征。 如物体的平衡问题在力学部分出现,学生往往不会感到困难,在电场中出现就增加了难度,更容易出现问题的是在电

【物理】动能定理的综合应用练习及解析

【物理】动能定理的综合应用练习及解析 一、高中物理精讲专题测试动能定理的综合应用 1.如图所示,AC 为光滑的水平桌面,轻弹簧的一端固定在A 端的竖直墙壁上.质量 1m kg =的小物块将弹簧的另一端压缩到B 点,之后由静止释放,离开弹簧后从C 点水平 飞出,恰好从D 点以10/D v m s =的速度沿切线方向进入竖直面内的光滑圆弧轨道 (DEF 小物体与轨道间无碰撞).O 为圆弧轨道的圆心,E 为圆弧轨道的最低点,圆弧轨道 的半径1R m =,60DOE ∠=o ,37.EOF ∠=o 小物块运动到F 点后,冲上足够长的斜面 FG ,斜面FG 与圆轨道相切于F 点,小物体与斜面间的动摩擦因数0.5.sin370.6μ==o , cos370.8=o ,取2 10/.g m s =不计空气阻力.求: (1)弹簧最初具有的弹性势能; (2)小物块第一次到达圆弧轨道的E 点时对圆弧轨道的压力大小; (3)判断小物块沿斜面FG 第一次返回圆弧轨道后能否回到圆弧轨道的D 点?若能,求解小物块回到D 点的速度;若不能,求解经过足够长的时间后小物块通过圆弧轨道最低点E 的速度大小. 【答案】()11 ?.25J ;()2 30N ;()3 2/m s . 【解析】 【分析】 【详解】 (1)设小物块在C 点的速度为C v ,则在D 点有:C D v v cos60o = 设弹簧最初具有的弹性势能为p E ,则:2P C 1E mv 2 = 代入数据联立解得:p E 1.25J =; ()2设小物块在E 点的速度为E v ,则从D 到E 的过程中有: () 22E D 11mgR 1cos60mv mv 22 -= -o 设在E 点,圆轨道对小物块的支持力为N ,则有:2 E v N mg R -= 代入数据解得:E v 25m /s =,N 30N = 由牛顿第三定律可知,小物块到达圆轨道的E 点时对圆轨道的压力为30 N ; ()3设小物体沿斜面FG 上滑的最大距离为x ,从E 到最大距离的过程中有:

动能定理及其应用

动能定理及其应用 1.动能定理 (1)三种表述 ①文字表述:所有外力对物体做的总功等于物体动能的增加量; ②数学表述:W 合=12m v 2-12 m v 02或W 合=E k -E k0; ③图象表述:如图6所示,E k -l 图象中的斜率表示合外力. 图6 (2)适用范围 ①既适用于直线运动,也适用于曲线运动; ②既适用于恒力做功,也适用于变力做功; ③力可以是各种性质的力,既可同时作用,也可分阶段作用. 2.解题的基本思路 (1)选取研究对象,明确它的运动过程; (2)分析受力情况和各力的做功情况; (3)明确研究对象在过程的初末状态的动能E k1和E k2; (4)列动能定理的方程W 合=E k2-E k1及其他必要的解题方程,进行求解. 例1 我国将于2022年举办冬奥会,跳台滑雪是其中最具观赏性的项目之一.如图1所示,质量m =60 kg 的运动员从长直助滑道AB 的A 处由静止开始以加速度a =3.6 m /s 2 匀加速滑下,到达助滑道末端B 时速度v B =24 m/s ,A 与B 的竖直高度差H =48 m ,为了改变运动员的运动方向,在助滑道与起跳台之间用一段弯曲滑道衔接,其中最低点C 处附近是一段以O 为圆心的圆弧.助滑道末端B 与滑道最低点C 的高度差h =5 m ,运动员在B 、C 间运动时阻力做功W =-1 530 J ,取g =10 m/s 2. 图1 (1)求运动员在AB 段下滑时受到阻力F f 的大小;

(2)若运动员能够承受的最大压力为其所受重力的6倍,则C 点所在圆弧的半径R 至少应为多大. 答案 (1)144 N (2)12.5 m 解析 (1)运动员在AB 上做初速度为零的匀加速运动,设AB 的长度为x ,则有v B 2=2ax ① 由牛顿第二定律有mg H x -F f =ma ② 联立①②式,代入数据解得F f =144 N ③ (2)设运动员到达C 点时的速度为v C ,在由B 到达C 的过程中,由动能定理得 mgh +W =12m v C 2-12m v B 2 ④ 设运动员在C 点所受的支持力为F N ,由牛顿第二定律有 F N -mg =m v 2 C R ⑤ 由题意和牛顿第三定律知F N =6mg ⑥ 联立④⑤⑥式,代入数据解得R =12.5 m.

功、功率与动能定理(解析版)

构建知识网络: 考情分析: 功和功率、动能和动能定理、机械能守恒定律、能量守恒定律是力学的重点,也是高考考查的重点,常以选择题、计算题的形式出现,考查常与生产生活实际联系紧密,题目的综合性较强。复习中要特别注意功和功率的计算,动能定理、机械能守恒定律的应用以及与平抛运动、圆周运动知识的综合应用 重点知识梳理: 一、功 1.做功的两个要素 (1)作用在物体上的力. (2)物体在力的方向上发生的位移. 2.功的物理意义 功是能量转化的量度. 3.公式 W =Fl cos_α (1)α是力与位移方向之间的夹角,l 为物体对地的位移. (2)该公式只适用于恒力做功. 4.功的正负 (1)当0≤α<π 2 时,W >0,力对物体做正功. (2)当π 2<α≤π时,W <0,力对物体做负功,或者说物体克服这个力做了功. (3)当α=π 2时,W =0,力对物体不做功. 通晓两类力做功特点 (1)重力、弹簧弹力和电场力都属于“保守力”,做功均与路径无关,仅由作用对象的初、末位置(即位移)决定。

(2)摩擦力属于“耗散力”,做功与路径有关。 二、功率 1.物理意义:描述力对物体做功的快慢. 2.公式: (1)P =W t ,P 为时间t 内的物体做功的快慢. (2)P =Fv ①v 为平均速度,则P 为平均功率. ②v 为瞬时速度,则P 为瞬时功率. 3.对公式P =Fv 的几点认识: (1)公式P =Fv 适用于力F 的方向与速度v 的方向在一条直线上的情况. (2)功率是标量,只有大小,没有方向;只有正值,没有负值. (3)当力F 和速度v 不在同一直线上时,可以将力F 分解或者将速度v 分解. 4.额定功率:机械正常工作时的最大功率. 5.实际功率:机械实际工作时的功率,要求不能大于额定功率. 三、动能 1.定义:物体由于运动而具有的能. 2.公式:E k =1 2 mv 2. 3.物理意义:动能是状态量,是标量(选填“矢量”或“标量”),只有正值,动能与速度方向无关. 4.单位:焦耳,1J =1N·m =1kg·m 2/s 2. 5.动能的相对性:由于速度具有相对性,所以动能也具有相对性. 6.动能的变化:物体末动能与初动能之差,即ΔE k =12mv 22-1 2mv 12. 四、动能定理 1.内容:在一个过程中合外力对物体所做的功,等于物体在这个过程中动能的变化. 2.表达式:(1)W =ΔE k . (2)W =E k2-E k1. (3)W =12mv 22-1 2mv 12. 3.物理意义:合外力做的功是物体动能变化的量度. 4.适用条件 (1)动能定理既适用于直线运动,也适用于曲线运动. (2)动能定理既适用于恒力做功,也适用于变力做功.

高考物理二轮复习计划五步走

2019年高考物理二轮复习计划五步走 通过第一轮的复习,高三学生大部分已经掌握了物理学中的基本概念、基本规律及其一般的应用。在第二轮复习中,首要的任务是要把整个高中的知识网络化、系统化;另外,要在理解的基础上,综合各部分的内容,进一步提高解题能力。这一阶段复习的指导思想是:突出主干知识,突破疑点、难点;关注热点和《考试说明》中新增点、变化点。二轮复习的目的和任务是:①查漏补缺:针对第一轮复习存在的问题,进一步强化基础知识的复习和基本技能的训练,进一步巩固基础知识和提高基本能力,进一步强化规范解题的训练;②知识重组:把所学的知识连成线、铺成面、织成网,梳理知识结构,使之有机结合在一起,以达到提高多角度、多途径地分析和解决问题的能力的目的;③提升能力:通过知识网的建立,一是提高解题速度和解题技巧,二是提升规范解题能力,三是提高实验操作能力。在第二轮复习中,重点在提高能力上下功夫,把目标瞄准中档题。 二轮复习的思路模式是:以专题模块复习为主,实际进行中一般分为如下几个专题来复习:(1)力与直线运动;(2)力与曲线运动;(3)功和能;(4)带电体(粒子)的运动;(5)电路与电磁感应;(6)必做实验部分; (7)选考模块。每一个专题都应包含以下几个方面的内容:(1)知识结构分析;(2)主要命题点分析;(3)方法探索;(4)典型例题分析;(5)配套训练。具体说来,专题复习中应注意以下几个方面的问题: 选考模块的复习不可掉以轻心,抓住规律区别对待。 选考模块的复习要突出对五个二级知识点的加强(选修3—4中四个,

选修3—5中一个)。由于分数的限制,该部分的复习重点应该放在扩大知识面上,特别是选修3—3,没有二级要求的知识点,应该是考生最容易拿分的版块,希望认真钻研教材。课本是知识之源,对这几部分的内容一定要做到熟读、精读课本,看懂、弄透,一次不够就两次,两次不行需再来,绝不能留任何的死角,包括课后的阅读材料、小实验、小资料等,因为大多的信息题是从这里取材的。 实验部分一直是高考复习的重点和难点 实验的理论部分一般在第一轮中进行,我们把“走进实验室”放在第二轮。历年来尽管在实验部分花费不少的时间和精力,但掌握的情况往往是不尽如人意,学生中高分、低分悬殊较大,原因在于很多学生思想重视不够、学习方法不对。实验中最重要的是掌握实验目的和原理,特别是《课程标准》下,高考更加注重考查实验原理的迁移能力,即使是考查教材上的原实验,也是改容换面而推出的。原理是为目的服务的,每个实验所选择的器材源于实验原理,电学中的控制电路与测量电路之间的关系是难以把握的地方。复习中还要注意器材选择的基本原则,灵活地运用这些基本原则是二轮实验复习的一个目的。针对每一个实验,注意做到“三个掌握、五个会”,即掌握实验目的、步骤、原理;会控制条件、会使用仪器、会观察分析、会处理数据并得出相应的结论、会设计简单的实验方案。选做题中考实验的可能性也很大,不要忽视这方面内容。 突出重点知识,狠抓主干知识,落实核心知识 二轮复习中我们不可能再面面俱到,切忌“眉毛胡子一把抓”,而且时

动能定理的综合应用(含答案)

动能定理的综合应用 1.如右图所示,半径R=2m的四分之一粗糙圆弧轨道AB置于竖直平面内,轨道的B端切线水平,且距水平地面高度为h=1.25m,现将一质量m=0.2kg的小滑块从A点由静止释放,滑块沿圆弧轨道运动至B点并以v=5m/s的速度水平飞出(g取10m/s2).求:(1)小滑块沿圆弧轨道运动过程中所受摩擦力做的功;(2)小滑块经过B点时对圆轨道的压力大小;(3)小滑块着地时的速度大小。 2.如图所示,质量为m=5kg的摆球从图中A位置由静止开始摆下,当小球摆 至竖直位置到达B点时绳子遇到B点上方电热丝而被烧断。已知摆线长为L=1.6m,OA与OB的夹角为60o,C为悬点O正下方地面上一点,OC间的距离 h=4.8m,若不计空气阻力及一切能量损耗,g=10m/s2, 求:(1)小球摆到B点时的速度大小;(2)小球落地点D到C点之间的距离; (3)小球的落地时的速度大小 A

3、(14分)如图所示,一个人用一根长1m ,只能承受46N 拉力的绳子,拴着一个质量为1kg 的小球,在竖直平面内作圆周运动,已知圆心O 离地面h =6m 。转动中小球运动到最低点时绳子突然断了,求 (1)绳子断时小球运动的角速度多大? (2)绳断后,小球落地点与抛出点间的水平距离。(取g =10m/s 2 ) 4.在光滑的水平面桌上有质量为m=0.2kg 的小球,它压缩着一个轻弹簧,弹簧一端固定,如图所示。轻弹簧原来处于静止状态,具有弹性势能E P =10.6J ,现突然释放弹簧,小球脱离弹簧后滑向与水平面相切,半径为为R=0.625m 的竖直放置的光滑半圆形轨道。取g=10m/s 2 则: (1)试通过计算判断小球能否滑到B 点? (2)若小球能通过B 点,求此时它对轨道的压力为多大。

高三物理二轮复习专题一

专题定位 本专题解决的是受力分析和共点力平衡问题.高考对本专题内容的考查主要有:①对各种性质力特点的理解;②共点力作用下平衡条件的应用.考查的主要物理思想和方法有:①整体法和隔离法;②假设法;③合成法;④正交分解法;⑤矢量三角形法;⑥相似三角形法;⑦等效思想;⑧分解思想. 应考策略 深刻理解各种性质力的特点.熟练掌握分析共点力平衡问题的各种方法. 1. 弹力 (1)大小:弹簧在弹性限度内,弹力的大小可由胡克定律F =kx 计算;一般情况下物体间相互作用的弹力可由平衡条件或牛顿运动定律来求解. (2)方向:一般垂直于接触面(或切面)指向形变恢复的方向;绳的拉力沿绳指向绳收缩的方向. 2. 摩擦力 (1)大小:滑动摩擦力F f =μF N ,与接触面的面积无关;静摩擦力0

(1)大小:F洛=q v B,此式只适用于B⊥v的情况.当B∥v时F洛=0. (2)方向:用左手定则判断,洛伦兹力垂直于B、v决定的平面,洛伦兹力总不做功.6.共点力的平衡 (1)平衡状态:静止或匀速直线运动. (2)平衡条件:F合=0或F x=0,F y=0. (3)常用推论:①若物体受n个作用力而处于平衡状态,则其中任意一个力与其余(n-1) 个力的合力大小相等、方向相反.②若三个共点力的合力为零,则表示这三个力的有向线段首尾相接组成一个封闭三角形. 1.处理平衡问题的基本思路:确定平衡状态(加速度为零)→巧选研究对象(整体法或隔离法)→受力分析→建立平衡方程→求解或作讨论. 2.常用的方法 (1)在判断弹力或摩擦力是否存在以及确定方向时常用假设法. (2)求解平衡问题时常用二力平衡法、矢量三角形法、正交分解法、相似三角形法、图解 法等. 3.带电体的平衡问题仍然满足平衡条件,只是要注意准确分析场力——电场力、安培力或洛伦兹力. 4.如果带电粒子在重力场、电场和磁场三者组成的复合场中做直线运动,则一定是匀速直线运动,因为F洛⊥v. 题型1整体法和隔离法在受力分析中的应用 例1如图1所示,固定在水平地面上的物体P,左侧是光滑圆弧面,一根轻绳跨过物体P 顶点上的小滑轮,一端系有质量为m=4 kg的小球,小球与圆心连线跟水平方向的夹角θ=60°,绳的另一端水平连接物块3,三个物块重均为50 N,作用在物块2的水平力F=20 N,整个系统平衡,g=10 m/s2,则以下正确的是() 图1 A.1和2之间的摩擦力是20 N B.2和3之间的摩擦力是20 N

【物理】物理动能定理的综合应用练习题及答案

【物理】物理动能定理的综合应用练习题及答案 一、高中物理精讲专题测试动能定理的综合应用 1.如图所示,半径2R m =的四分之一粗糙圆弧轨道AB 置于竖直平面内,轨道的B 端切线水平,且距水平地面高度为h =1.25m ,现将一质量m =0.2kg 的小滑块从A 点由静止释 放,滑块沿圆弧轨道运动至B 点以5/v m s =的速度水平飞出(g 取210/m s ).求: (1)小滑块沿圆弧轨道运动过程中所受摩擦力做的功; (2)小滑块经过B 点时对圆轨道的压力大小; (3)小滑块着地时的速度大小. 【答案】(1) 1.5f W J = (2) 4.5N F N = (3)152/v m s = 【解析】 【分析】 【详解】 (1)滑块在圆弧轨道受重力、支持力和摩擦力作用,由动能定理 mgR -W f = 12mv 2 W f =1.5J (2)由牛顿第二定律可知: 2 N v F mg m R -= 解得: 4.5N F N = (3)小球离开圆弧后做平抛运动根据动能定理可知: 22111 m m 22 mgh v v =- 解得: 152m/s v = 2.某物理小组为了研究过山车的原理提出了下列的设想:取一个与水平方向夹角为θ=53°,长为L 1=7.5m 的倾斜轨道AB ,通过微小圆弧与足够长的光滑水平轨道BC 相连,然后在C 处连接一个竖直的光滑圆轨道.如图所示.高为h =0.8m 光滑的平台上有一根轻质弹簧,一端被固定在左面的墙上,另一端通过一个可视为质点的质量m =1kg 的小球压紧弹

簧,现由静止释放小球,小球离开台面时已离开弹簧,到达A 点时速度方向恰沿AB 方向,并沿倾斜轨道滑下.已知小物块与AB 间的动摩擦因数为μ=0.5,g 取10m/s 2,sin53°=0.8.求: (1)弹簧被压缩时的弹性势能; (2)小球到达C 点时速度v C 的大小; (3)小球进入圆轨道后,要使其不脱离轨道,则竖直圆弧轨道的半径R 应该满足什么条件. 【答案】(1)4.5J ;(2)10m/s ;(3)R ≥5m 或0<R ≤2m 。 【解析】 【分析】 【详解】 (1)小球离开台面到达A 点的过程做平抛运动,故有 02 3m/s tan y v gh v θ = = = 小球在平台上运动,只有弹簧弹力做功,故由动能定理可得:弹簧被压缩时的弹性势能为 2 01 4.5J 2 p E mv = =; (2)小球在A 处的速度为 5m/s cos A v v θ = = 小球从A 到C 的运动过程只有重力、摩擦力做功,故由动能定理可得 221111sin cos 22 C A mgL mgL mv mv θμθ-= - 解得 ()212sin cos 10m/s C A v v gL θμθ=+-=; (3)小球进入圆轨道后,要使小球不脱离轨道,即小球能通过圆轨道最高点,或小球能在圆轨道上到达的最大高度小于半径; 那么对小球能通过最高点时,在最高点应用牛顿第二定律可得 2 1v mg m R ≤; 对小球从C 到最高点应用机械能守恒可得 221115 2222 C mv mgR mv mgR =+≥ 解得

2021届新高三物理精品专项测试题 8 功和功率、动能及动能定理 学生版

【精品原创】2021届高三特前班精准提升物理专项测试题 8 功和功率、动能及动能定理 例1.地下矿井中的矿石装在矿车中,用电机通过竖井运送至地面。某竖井中矿车提升的速 度大小v 随时间t 的变化关系如图所示,其中图线①②分别描述两次不同的提升过程,它们变速阶段加速度的大小都相同;两次提升的高度相同,提升的质量相等。不考虑摩擦阻力和空气阻力。对于第①次和第②次提升过程( ) A .矿车上升所用的时间之比为4∶5 B .电机的最大牵引力之比为2∶1 C .电机输出的最大功率之比为2∶1 D .电机所做的功之比为4∶5 【解析】根据位移相同可得两图线与时间轴围成的面积相等,21v 0×2t 0=21×21 v 0×[2t 0+t ′+(t 0 +t ′)],解得t ′=21t 0,则对于第①次和第②次提升过程中,矿车上升所用的时间之比为2t 0∶(2t 0+21 t 0)=4∶5,A 正确;加速过程中的牵引力最大,且已知两次加速时的加速度大小相等,故两次中最大牵引力相等,B 错误;由题知两次提升的过程中矿车的最大速度之比为2∶1,由功率P =Fv ,得最大功率之比为2∶1,C 正确;两次提升过程中矿车的初、末速度都为零,则电机所做的功等于克服重力做的功,重力做的功相等,故电机所做的功之比为1∶1,D 错误。 【答案】AC 例2.(2019?全国III 卷?17)从地面竖直向上抛出一物体,物体在运动过程中除受到重力外,还 受到一大小不变、方向始终与运动方向相反的外力作用。距地面高度h 在3 m 以内时,物体上升、下落过程中动能E k 随h 的变化如图所示。重力加速度取 10 m/s 2。该物体的质量为( ) A .2 kg B .1.5 kg C .1 kg D .0.5 kg 【解析】设物体的质量为m ,则物体在上升过程中,受到竖直向下的重力mg 和竖直向下的 恒定外力F ,当Δh =3 m 时,由动能定理结合题图可得-(mg +F )Δh =(36-72) J ;物体在下落过程中,受到竖直向下的重力mg 和竖直向上的恒定外力F ,当Δh =3 m 时,再由动能定理结合题图可得(mg -F )Δh =(48-24) J ,联立解得m =1 kg 、F =2 N ,选项C 正确,A 、B 、D 均错误。 【答案】C 1.(多选)如图所示,倾角为θ的光滑斜面足够长,一质量为m 的小物体,在沿斜面向上的恒 力F 作用下,由静止从斜面底端沿斜面向上做匀加速直线运动,经过时间t ,力F 做功为60 J ,此后撤去力F ,物体又经过相同的时间t 回到斜面底端,若以底端的平面为零势能参考面,重力加速度为g ,则下列说法正确的是( ) A .物体回到斜面底端的动能为60 J B .恒力F =2mg sin θ C .撤去力F 时,物体的重力势能是45 J D .动能与势能相等的时刻一定出现在撤去力F 之前 2.(多选)如图所示,半径为R 的半圆弧槽固定在水平地面上,槽口向上,槽口直径水平,一 个质量为m 的物块从P 点由静止释放刚好从槽口A 点无碰撞地进入槽中,并沿圆弧槽匀速率地滑行到最低点B 点,不计物块的大小,P 点到A 点高度为h ,重力加速度大小为g ,则下列说法正确的是( ) 此卷只装订不密封 班级 姓名 准考证号 考场号 座位号

(完整版)动能定理和机械能守恒定律的综合应用.docx

第 15 讲动能定理和机械能守恒定律的综合应用4、如图所示,一固定的楔形木块,其斜面倾角θ=30°,另一边与地面垂直,顶上有一定滑轮, 、如图所示,竖直平面内放一直角杆AOB,杆的水平部分粗糙,动摩擦因数μ =0.2 ,杆的竖直部一条细绳将物块 A 和 B 连接, A 的质量为 4m, B 的质量为 m,开始时将 B 按在地面上不动,然后 1 分光滑 . 两部分各套有质量均为 1 kg 的小球 A 和 B,A、B 球间用细绳相连 . 此时 A、B 均处于静止放开手,让 A 沿斜面下滑而 B 上升,物块 A 与斜面间无摩擦,设当 A 状态,已知: OA=3 m,OB=4 m.若 A 球在水平拉力 F 的作用下向右缓慢地移动 1 m(取 g=10 m/s2) , 沿斜面下滑 x 距离后,细绳突然断了,求物块 B 上升的最大高度 H. 那么 (1)该过程中拉力 F 做功多少? (2)若用 20 N 的恒力拉 A 球向右移动 1 m 时, A 的速度达 到了 2 m/s ,则此过程中产生的内能为多少? 、如图所示,跨过定滑轮的轻绳两端的物体 A 和 B 的质量分别为 M和 m,物体 A 在水平面上 .A由 A、 B,直角尺的顶点 O 2、如图所示,质量分别为 2m 和 3m 的两个小球固定在一根直角尺的两端 5 静止释放,当 B 沿竖直方向下落 h 时,测得 A 沿水平面运动的速度为 v ,这时细绳与水平面的夹角 处有光滑的固定转动轴 .AO、BO 的长分别为 2L 和 L.开始时直角尺的AO 部分处于水平位置而 B 在 O 为θ,试分析计算 B 下降 h 过程中, A 克服地面摩擦力做的功 .( 滑轮的质量和摩擦均不计 ) 的正下方 .让该系统由静止开始自由转动,求: (1)当 A 到达最低点时, A 小球的速度大小v; (2)开始转动后 B 球可能达到的最大高度h。 3、如图所示,AB是倾角为θ的粗糙直轨道,BCD是光滑的圆弧轨道,AB恰好在 B 点与圆弧相切, 圆弧半径为R. 一个质量为m的物体 ( 可以看做质点 ) 从直轨道上的P 点由静止释放,结果它能在两 轨道间做往返运动. 已知 P 点与圆弧的圆心O 等高,物体与轨道AB间的动摩擦因数为μ. 求: (1)物体做往返运动的整个过程中在AB轨道上通过的总路程; (2)最终当物体通过圆弧轨道最低点 E 时,对圆弧轨道的压力; 、一质量为 1kg 的物体被人用手由静止向上提升1m 时,物体的速度是2m/s,下列说法中错误的6 (3)为使物体能顺利到达圆弧轨道的最高点D,释放点距 B 点的是( g 是 10m/s 2)() 距离 L′应满足什么条件? A.提升过程中手对物体做功 12JB.提升过程中合外力对物体做功12J - 1 -

动能定理及其应用专题

《动能定理及其应用》专题复习一.基础知识归纳: (一)动能: 1.定义:物体由于______而具有的能. 2.表达式:E k=_________. 3.物理意义:动能是状态量,是_____.(填“矢量”或“标量”) 4.单位:动能的单位是_____. (二)动能定理: 1.内容:在一个过程中合外力对物体所做的功,等于物体在这个过程中的___________. 2.表达式:W=_____________. 3.物理意义:_____________的功是物体动能变化的量度. 4.适用条件: (1)动能定理既适用于直线运动,也适用于______________. (2)既适用于恒力做功,也适用于_________. (3)力可以是各种性质的力,既可以同时作用,也可以_______________. 二.分类例析: (一)动能定理及其应用: 1.若过程有多个分过程,既可以分段考虑,也可以整个过程考虑.但求功时,必须据不同的情况分别对待求出总功,把各力的功连同正负号一同代入公式. 2.应用动能定理解题的基本思路: (1)选取研究对象,明确它的运动过程;(2)分析研究对象的受力情况和各力的做功情况: (3)明确研究对象在过程的初末状态的动能E k1和E k2; (4)列动能定理的方程W合=E k2-E k1及其他必要的解题方程,进行求解. 例1.小孩玩冰壶游戏,如图所示,将静止于O点的冰壶(视为质点)沿直线OB用水平恒力推到A点放手,此后冰壶沿直线滑行,最后停在B点.已知冰面与冰壶的动摩擦因数为μ,冰壶质量为m,OA=x,AB=L.重力加速度为g.求: (1)冰壶在A点的速率v A;(2)冰壶从O点运动到A点的过程中受到小孩施加的水平推力F. 吴涂兵

2020届高考物理小题狂练8:功和功率、动能和动能定理(附解析)

2020届高考物理小题狂练8:功和功率、动能和动能定理(附解析) 一、考点内容 (1)功的理解与计算; (2)恒力及合力做功的计算、变力做功; (3)机车启动问题; (4)功、功率与其他力学知识的综合; (5)动能及动能定理; (6)应用动能定理求解多过程问题; (7)应用动能定理求解多物体的运动问题。 二、考点突破 1.(多选)如图所示,轻绳一端受到大小为F的水平恒力作用,另一端通过定滑轮与质 量为m、可视为质点的小物块相连。开始时绳与水平方向的夹角为θ。当小物块从水平 面上的A点被拖动到水平面上的B点时,位移为L,随后从B点沿斜面被拖动到定滑轮O处,BO间距离也为L。小物块与水平面及斜面间的动摩擦因数均为μ,若小物块从A ,小物块在BO段运动过程中克服摩点运动到O点的过程中,F对小物块做的功为W F ,则以下结果正确的是() 擦力做的功为W f =FL(cos θ+1) A.W B.W F=2FL cos θ C.W f=μmgL cos 2θ D.W f=FL-mgL sin 2θ

2.(多选)物体受到水平推力F的作用在粗糙水平面上做直线运动。通过力和速度传感器监测到推力F、物体速度v随时间t变化的规律分别如图甲、乙所示。取g=10 m/s2,则下列说法正确的是() A.物体的质量m=0.5 kg B.物体与水平面间的动摩擦因数μ=0.4 C.第2 s内物体克服摩擦力做的功W=2 J D.前2 s内推力F做功的平均功率P=3 W 3.(多选)质量为400 kg的赛车在平直赛道上以恒定功率加速,受到的阻力不变,其加 的关系如图所示,则赛车() 速度a和速度的倒数1 v A.速度随时间均匀增大 B.加速度随时间均匀增大 C.输出功率为160 kW D.所受阻力大小为1600 N 4.从地面竖直向上抛出一物体,物体在运动过程中除受到重力外,还受到一大小 不变、方向始终与运动方向相反的外力作用。距地面高度h在3 m以内时,物体 随h的变化如图所示。重力加速度取10 m/s2。该物体的 上升、下落过程中动能E k 质量为() A.2 kg B.1.5 kg C.1 kg D.0.5 kg 5.(多选)如图所示为一滑草场,某条滑道由上、下两段高均为h,与水平面倾角分别为45°和37°的滑道组成,滑草车与草地之间的动摩擦因数为μ。质量为m的载人滑草车从

高考物理二轮复习专题一直线运动

专题一直线运动 『经典特训题组』 1.如图所示,一汽车在某一时刻,从A点开始刹车做匀减速直线运动,途经B、C两点,已知AB=3.2 m,BC=1.6 m,汽车从A到B及从B到C所用时间均为t=1.0 s,以下判断正确的是() A.汽车加速度大小为0.8 m/s2 B.汽车恰好停在C点 C.汽车在B点的瞬时速度为2.4 m/s D.汽车在A点的瞬时速度为3.2 m/s 答案C 解析根据Δs=at2,得a=BC-AB t2=-1.6 m/s 2,A错误;由于汽车做匀减速 直线运动,根据匀变速直线运动规律可知,中间时刻的速度等于这段时间内的平 均速度,所以汽车经过B点时的速度为v B=AC 2t=2.4 m/s,C正确;根据v C=v B+ at得,汽车经过C点时的速度为v C=0.8 m/s,B错误;同理得v A=v B-at=4 m/s,D错误。 2.如图,直线a和曲线b分别是在平直公路上行驶的汽车a和b的位置—时间(x-t)图线。由图可知() A.在t1时刻,b车追上a车 B.在t1到t2这段时间内,b车的平均速度比a车的大 C.在t2时刻,a、b两车运动方向相同 D.在t1到t2这段时间内,b车的速率一直比a车的大 答案A

解析在t1时刻之前,a车在b车的前方,在t1时刻,a、b两车的位置坐标相同,两者相遇,说明在t1时刻,b车追上a车,A正确;根据x-t图线纵坐标的变化量表示位移,可知在t1到t2这段时间内两车的位移相等,则两车的平均速度相等,B错误;由x-t图线切线的斜率表示速度可知,在t2时刻,a、b两车运动方向相反,C错误;在t1到t2这段时间内,b车图线斜率不是一直比a车的大,所以b车的速率不是一直比a车的大,D错误。 3.甲、乙两汽车在一平直公路上同向行驶。在t=0到t=t1的时间内,它们的v-t图象如图所示。在这段时间内() A.汽车甲的平均速度比乙的大 B.汽车乙的平均速度等于v1+v2 2 C.甲、乙两汽车的位移相同 D.汽车甲的加速度大小逐渐减小,汽车乙的加速度大小逐渐增大 答案A 解析根据v-t图象中图线与时间轴围成的面积表示位移,可知甲的位移大于乙的位移,而运动时间相同,故甲的平均速度比乙的大,A正确,C错误;匀变速 直线运动的平均速度可以用v1+v2 2来表示,由图象可知乙的位移小于初速度为v2、 末速度为v1的匀变速直线运动的位移,故汽车乙的平均速度小于v1+v2 2,B错误; 图象的斜率的绝对值表示加速度的大小,甲、乙的加速度均逐渐减小,D错误。 4. 如图所示是某物体做直线运动的v2-x图象(其中v为速度,x为位置坐标),下列关于物体从x=0处运动至x=x0处的过程分析,其中正确的是()

动能定理的综合应用

动能定理的综合应用 1. 如右图所示,半径R=2m的四分之一粗糙圆弧轨道AB置于竖直平面内,轨道 的B端切线水平,且距水平地面高度为h=1.25m,现将一质量m=0.2kg的小滑 块从A点由静止释放,滑块沿圆弧轨道运动至B点并以v=5m/s的速度水平飞出2 (g取10m/s)?求:(1)小滑块沿圆弧轨道运动过程中所受摩擦力做的功; (2)小滑块经过B点时对圆轨道的压力大小;(3)小滑块着地时的速度大小。 2?如图所示,质量为m= 5kg的摆球从图中A位置由静止开始摆下,当小球摆至竖直位置到达B点时绳子遇到B点上方电热丝而被烧断。已知摆线长为L = 1.6m , OA与0B的夹角为60o, C为悬点O正下方地面上一点,OC间的距离 h = 4.8m,若不计空气阻力及一切能量损耗,g= 10m/s2, 求:(1)小球摆到B点时的速度大小;(2)小球落地点D到C点之间的距离; (3)小球的落地时的速度大小

3、(14分)如图所示,一个人用一根长1m只能承受46N拉力的绳子,拴着一个 质量为1kg的小球,在竖直平面内作圆周运动,已知圆心O离地面h = 6m。转动 中小球运动到最低点时绳子突然断了,求 (1)绳子断时小球运动的角速度多大? (2)绳断后,小球落地点与抛出点间的水 平距离。(取g = 10m/s2) J / 4. 在光滑的水平面桌上有质量为m=0.2kg的小球,它压缩着一个轻弹簧,弹簧一端固定,如图所示。轻弹簧 原来处于静止状态,具有弹性势能E P=10.6J,现突然释放弹簧,小球脱离弹簧后滑向与水平面相切,半径为 为R=0.625m的竖直放置的光滑半圆形轨道。取g=10m/s2则: (1) 试通过计算判断小球能否滑到B点? (2) 若小球能通过B点,求此时它对轨道的压力为多大。

专题06 功和功率 动能定理-2020年高考物理二轮复习热点题型与提分秘籍(解析版)

2020年高考物理二轮复习热点题型与提分秘籍 专题06 功和功率 动能定理 题型一 功和功率的理解和计算 【题型解码】 1.要注意区分是恒力做功,还是变力做功,求恒力的功常用定义式. 2.变力的功根据特点可将变力的功转化为恒力的功(如大小不变、方向变化的阻力),或用图象法、平均值法(如弹簧弹力的功),或用W =Pt 求解(如功率恒定的力),或用动能定理等求解. 【典例分析1】(2019·山东菏泽市下学期第一次模拟)如图所示,半径为R 的半圆弧槽固定在水平地面上,槽口向上,槽口直径水平,一个质量为m 的物块从P 点由静止释放刚好从槽口A 点无碰撞地进入槽中,并沿圆弧槽匀速率地滑行到最低点B 点,不计物块的大小,P 点到A 点高度为h ,重力加速度大小为g ,则下列说法正确的是( ) A .物块从P 到 B 过程克服摩擦力做的功为mg (R +h ) B .物块从A 到B 过程重力的平均功率为2mg 2gh π C .物块在B 点时对槽底的压力大小为(R +2h )mg R D .物块到B 点时重力的瞬时功率为mg 2gh 【参考答案】 BC 【名师解析】 物块从A 到B 过程做匀速圆周运动,根据动能定理有mgR -W f =0,因此克服摩擦力做功W f =mgR ,A 项错误;根据机械能守恒,物块到A 点时的速度大小由mgh =1 2mv 2得v =2gh ,从A 到B 运 动的时间t =12πR v =πR 22gh ,因此从A 到B 过程中重力的平均功率为P =W t =2mg 2gh π,B 项正确;物块在B 点时,根据牛顿第二定律F N -mg =m v 2 R ,求得F N =(R +2h )mg R ,根据牛顿第三定律可知,F N ′=F N =(R +2h )mg R , C 项正确;物块到B 点时,速度的方向与重力方向垂直,因此重力的瞬时功率为零, D 项错误. 【典例分析2】(2019·湖北武汉高三3月调研)如图所示,将完全相同的四个小球1、2、3、4分别从同一高度由静止释放或平抛(图乙),其中图丙是一倾角为45°的光滑斜面,图丁为1 4光滑圆弧,不计空气阻力,则下 列对四种情况下相关物理量的比较正确的是( )

高考物理二轮复习计划(一)

2019年高考物理二轮复习计划(一) 通过第一轮的复习,高三学生大部分已经掌握了物理学中的基本概念、基本规律及其一般的应用。在第二轮复习中,首要的任务是要把整个高中的知识网络化、系统化;另外,要在理解的基础上,综合各部分的内容,进一步提高解题能力。这一阶段复习的指导思想是:突出主干知识,突破疑点、难点;关注热点和《考试说明》中新增点、变化点。二轮复习的目的和任务是:①查漏补缺:针对第一轮复习存在的问题,进一步强化基础知识的复习和基本技能的训练,进一步巩固基础知识和提高基本能力,进一步强化规范解题的训练;②知识重组:把所学的知识连成线、铺成面、织成网,梳理知识结构,使之有机结合在一起,以达到提高多角度、多途径地分析和解决问题的能力的目的;③提升能力:通过知识网的建立,一是提高解题速度和解题技巧,二是提升规范解题能力,三是提高实验操作能力。在第二轮复习中,重点在提高能力上下功夫,把目标瞄准中档题。 二轮复习的思路模式是:以专题模块复习为主,实际进行中一般分为如下几个专题来复习:(1)力与直线运动;(2)力与曲线运动;(3)功和能;(4)带电体(粒子)的运动;(5)电路与电磁感应;(6)必做实验部分; (7)选考模块。每一个专题都应包含以下几个方面的内容:(1)知识结构分析;(2)主要命题点分析;(3)方法探索;(4)典型例题分析;(5)配套训练。具体说来,专题复习中应注意以下几个方面的问题: 抓住主干知识及主干知识之间的综合 高中物理的主干知识是力学和电磁学部分,在各部分的综合应用中,

主要以下面几种方式的综合较多:①牛顿三定律与匀变速直线运动和曲线运动的综合(主要体现在动力学和天体问题、带电粒子在匀强电场中运动、通电导体在磁场中运动,电磁感应过程中导体的运动等形式);②以带电粒子在电场、磁场中运动为模型的电学与力学的综合,如利用牛顿定律与匀变速直线运动的规律解决带电粒子在匀强电场 中的运动、利用牛顿定律与圆周运动向心力公式解决带电粒子在磁场中的运动、利用能量观点解决带电粒子在电场中的运动;③电磁感应现象与闭合电路欧姆定律的综合,用力与运动观点和能量观点解决导体在匀强磁场中的运动问题;④串、并联电路规律与实验的综合(这是近几年高考实验命题的热点),如通过粗略地计算选择实验器材和电表的量程、确定滑动变阻器的连接方法、确定电流表的内外接法等。对以上知识一定要特别重视,尽可能做到每个内容都过关,绝不能掉以轻心,要分别安排不同的专题重点强化,这是我们二轮复习的重中之重,希望在这些地方有所突破。

最新高考物理动能定理的综合应用常见题型及答题技巧及练习题(含答案)

最新高考物理动能定理的综合应用常见题型及答题技巧及练习题(含答案) 一、高中物理精讲专题测试动能定理的综合应用 1.如图所示,半径为R =1 m ,内径很小的粗糙半圆管竖直放置,一直径略小于半圆管内径、质量为m =1 kg 的小球,在水平恒力F =250 17 N 的作用下由静止沿光滑水平面从A 点运动到B 点,A 、B 间的距离x = 17 5 m ,当小球运动到B 点时撤去外力F ,小球经半圆管道运动到最高点C ,此时球对外轨的压力F N =2.6mg ,然后垂直打在倾角为θ=45°的斜面上(g =10 m/s 2).求: (1)小球在B 点时的速度的大小; (2)小球在C 点时的速度的大小; (3)小球由B 到C 的过程中克服摩擦力做的功; (4)D 点距地面的高度. 【答案】(1)10 m/s (2)6 m/s (3)12 J (4)0.2 m 【解析】 【分析】 对AB 段,运用动能定理求小球在B 点的速度的大小;小球在C 点时,由重力和轨道对球的压力的合力提供向心力,由牛顿第二定律求小球在C 点的速度的大小;小球由B 到C 的过程,运用动能定理求克服摩擦力做的功;小球离开C 点后做平抛运动,由平抛运动的规律和几何知识结合求D 点距地面的高度. 【详解】 (1)小球从A 到B 过程,由动能定理得:212 B Fx mv = 解得:v B =10 m/s (2)在C 点,由牛顿第二定律得mg +F N =2 c v m R 又据题有:F N =2.6mg 解得:v C =6 m/s. (3)由B 到C 的过程,由动能定理得:-mg ·2R -W f =22 1122 c B mv mv - 解得克服摩擦力做的功:W f =12 J (4)设小球从C 点到打在斜面上经历的时间为t ,D 点距地面的高度为h , 则在竖直方向上有:2R -h = 12 gt 2

功和功率,动能定理

第一部分功和功率 知识要点梳理 知识点一——功和功的计算 ▲知识梳理 1.功的定义 一个物体受到力的作用,如果在力的方向上发生一段位移,就说这个力对物体做了功。 2.做功的两个必要因素 力和物体在力的方向上发生的位移,缺一不可。 如图甲所示,举重运动员举着杠铃不动时,杠铃没有发生位 移,举杠铃的力对杠铃没有做功。如图乙所示,足球在水平地 面上滚动时,重力对球做的功为零。 3.功的物理意义:功是能量变化的量度 能量的转化跟做功密切相关,做功的过程就是能量转化的过 程,做了多少功就有多少能量发生了转化,功是能量转化的量度。 4.公式 (1)当恒力F的方向与位移l的方向一致时,力对物体所做的功为W = Fl。 (2)当恒力F的方向与位移l的方向成某一角度时,力F物体所做的功为.即力对物体所做的功,等于力的大小、位移的大小、力与位移的夹角的余弦这三者的乘积。 5.功是标量,但有正负 功的单位由力的单位和位移的单位决定。在国际单位制中,功的单位是焦耳,简称焦,符号是J。 一个力对物体做负功,往往说成物体克服这个力做功(取绝对值)。这两种说法在意义上是相同的。例如竖直向上抛出的球,在向上运动的过程中,重力对球做了-6J 的功,可以说成球克服重力做了6J的功。 由,可以看出: ①当=0时,,即,力对物体做正功; ②当时,,力对物体做正功。 ①②两种情况都是外界对物体做功。 ③当时,力与位移垂直,,即力对物体不做功,即外界和物体间无能量交换; ④当时,,力对物体做负功; ⑤当时,,此时,即力的方向与物体运动位移的方向完全相反,是物体运动的阻力。 ④⑤两种情况都是物体对外界做功。 6.合力的功 当物体在几个力的共同作用下发生一段位移时,这几个力的合力对物体所做的功,等于各个力分别对物体所做功的代数和。 求合力的功可以先求各个力所做的功,再求这些力所做功的代数和;也可先求合外力,再求合外力的功;也可用动能定理求解。 ▲疑难导析 一、功的正负的理解和判断 1.功的正负的理解 功是一个标量,只有大小没有方向。功的正负不代表方向,也不表示大小,只说明是动力做功还是阻力做功,或导致相应的能量增加或减少。 2.常用的判断力是否做功及做功正负的方法 (1)根据力和位移方向的夹角判断: ①当时,,力对物体做正功; ②当时,,力对物体做负功,也称物体克服这个力做了功; ③当时,,力对物体不做功。 (2)根据力和瞬时速度方向的夹角判断。此法常用于判断质点做曲线运动时变力做的功。 ①时,力F对物体不做功。例如,向心力对物体不做功;作用在运动电荷上的洛伦兹力对电荷不做功; ②当时,力F对物体做正功; ③当时,力F对物体做负功,即物体克服力F做功。 (3)根据质点或系统能量是否变化,彼此是否有能量转移或转化进行判断。若有能量的变化,或系统各质点间彼此有能量的转移或转化,则必定有力做功。 二、功的计算方法 1.功的公式:,是力的作用点沿力的方向上的位移,公式主要用于求恒力做功和F随l做线性变化的变力做功(此时F取平均值)。

相关主题
文本预览
相关文档 最新文档