当前位置:文档之家› 工程力学-第三章-平面力系的合成与平衡

工程力学-第三章-平面力系的合成与平衡

第一章结构设计中的静力学平衡

精密机械设计基础
四川大学制造学院 测控专业 2014.9
Ⅰ 结构设计中的静力学平衡
主讲:陆小龙

参考文献
n n n
范钦珊,蔡新编著,《工程力学》,机械工业出版 社,2006.7 贾启芬,刘习军主编,《理论力学》,机械工业出 版社,2005.1 其他工程力学以及理论力学的相关书籍
结构设计中的静力学平衡

本章 重点 掌握静力学的基本概念和公理 ? 掌握约束与约束反力的定义 ? 学会绘制受力图 ? 掌握摩擦自锁的原理
?
结构设计中的静力学平衡

主要内容 静力学基本概念 n 静力学公理 n 约束与约束反力 n 受力图 n 平面一般力系的简化 n 平面一般力系的平衡 n 摩擦
n 结构设计中的静力学平衡

一、静力学基本概念
一、静力学基本概念
? ? ? ?
力是物体与物体之间相互的机械作用。 力的外效应:使物体的机械运动发生变化; 力的内效应:使物体产生变形。 力的三要素:力的大小、方向和作用点。
? 力是矢量: 力的单位是牛顿(N)或千牛顿 (KN) A B F
结构设计中的静力学平衡

一、静力学基本概念
一、基本概念
? 刚体:在受力情况下保持形状和大小不变的 物体。(理想化了的力学模型)。 外力作用下物体视为刚体的情况: ①研究物体受力与运动关系时; ②由平衡条件求解物体所受外力时。 ? 变形体:在研究物体受力与变形的关系时,认 为零件是弹性体。 ? ? 力系:同时作用在同一物体上的许多力。 力系分类:平面力系和空间力系 等效力系和平衡力系
结构设计中的静力学平衡

平面一般力系的平衡 作业及答案

平面一般力系的平衡 一、 判断题: 1.下图是由平面汇交力系作出的力四边形,这四个力构成力多边形封闭,该力系一定平衡。( ) 图 1 2.图示三个不为零的力交于一点,则力系一定平衡。( ) 图 2 3.如图3所示圆轮在力F和矩为m的力偶作用下保持平衡,说明力可与一个力偶平衡。( ) 4.图4所示力偶在x轴上的投影ΣX=0,如将x轴任转一角度 轴,那么Σ =0。( ) 图 3 图 4

5.如图5所示力偶对a的力矩Ma(F,F')=F·d,如将a任意移到b,则力矩Mb(F,F')将发生变化。( ) 图 5 图 6 6.图6所示物体的A、B、C、D四点各有一力作用,四个力作出的力多边形闭合,则此物体处于平衡状态。( ) 7.如果两个力偶的力偶矩大小相等,则此两个力偶等效。( ) 8.图示构件A点受一点力作用,若将此力平移到B点,试判断其作用效果是否相同( ) 图 7 图 8 9.图8所示梁,若求支反力 时,用平面一般力系的平衡方程不能全部求出。 ( ) 10.图9所示物体接触面间静摩擦系数是f,要使物体向右滑动。试判断哪种施力方法省力。( ) 图 9 图 10 11.力在坐标轴上的投影和该力在该轴上分力是相同的。( )

12.如果将图10所示力F由A点等效地平移到B点,其附加力矩M =Fa ( )。 13.平面任意力系,其独立的二力矩式平衡方程为 ∑Fx=0, ∑M A =0, ∑M B=0,但要求矩心A、B的连线不能与x轴垂直。( ) 二、选择题 1.同一个力在两个互相平行的同向坐标轴上的投影( )。 A.大小相等,符号不同 B.大小不等,符号不同 C.大小相等,符号相同 D.大小不等,符号相同 2.图11所示圆轮由O点支承,在重力P和力偶矩m作用下处于平衡。这说明( )。 图 11 A. 支反力R0与P平衡 B. m与P平衡 C. m简化为力与P平衡 D. R0与P组成力偶,其m(R0,P)=-P·r与m平衡 3. 图12所示三铰刚架,在D角处受一力偶矩为m的力偶作用, 如将该力力偶移到E角出,支座A、B的支反力 ( )。 图12 A.A、B处都变化 B.A、B处都不变 C.A处变,B处不变

第三章 平面一般力系

第三章平面一般力系 教学目的及要求 1.掌握平面任意力系向一点简化的方法,会应用解析法求主矢和主矩,熟知平面任意力系简化的结果。 2.深入理解平面力系的平衡条件及平衡方程的三种形式。 3.能熟练地计算在平面任意力系作用下物体和物体系统的平衡问题。 4.正确理解静定与静不定的概念,会判断物体系统是否静定。 5.理解简单桁架的简化假设,掌握计算其杆件内力的节点法和截面法及其综合作用。 §3-1 平面一般力系向作用面内一点简化 教学重点:1.平面一般力系如何向作用面内一点简化 2. 主矢与主矩的概念 教学难点:对力的平移定理的理解和应用 教学内容: 首先对什么是平面一般力系进行分析。对于平面一般力系如何向其作用面内一点简化,从而引出力的平移定理。 1.力的平移定理 作用在刚体上的力可以向任意点平移,但必须附加一力偶,附加力偶的力偶矩等于原来的力对平移点(新作用点)的矩,它是一般力系向上点简化的依据。2.基本概念 1) 合力矢:汇交力系一般地合成为一合力,合力的作用线通过汇交点,合力矢等于力系的主矢。 2)主矢:平面力系各力的矢量和,即 3.应用力的的平移定理将平面一般力系向作用面内一点简化 用图形来进行讲解力系向一点简化的方法和结果。最终平面一般力系向一点简化可以得到两个简单的力系:平面汇交力系和平面力偶系。应用前两章学过的内容,这两个简单的力系还可以进一步简化成一个主矢和对简化中心的主矩。 结论:平面一般力系向作用面内任选一点O简化,可得到一个力和一个力偶,这个力等于该力系的主矢,作用线通过简化中心O,这个力偶的矩等于该力

系对于点O的主矩。 注意:主矢与简化中心无关;而主矩与简化中心有关,必须指明对于哪一点的主矩。 4.固定端约束 它是平面一般力系向作用面内一点简化的一个典型应用。可以将固定端支座的约束反力向作用平面内点A简化得到一个力和一力偶,这个力用两个未知分力来代替。 它限制了物体在平面内的转动,所以比铰支座多了一个给反力偶。 §3-2 平面一般力系简化结果与分析 教学重点:平面一般力系向作用面内一点简化的结果 教学难点:将一个力系向指定点简化的具体应用。 教学内容: 1.平面力系的简化步骤如下: 1)选取简化中心O:题目指定点或自选点(一般选在多个力交点上) 2) 建立直角坐标系Oxy 3) 求主矢 4) 求主矩:逆正顺负,画在图中 5) 简化结果讨论 2.平面力系的简化结果 一个力系的主矢与简化中心的选取无关;一般情况下,主矩与简化中心的选取有关。 平面一般力系向作用面内一点简化结果,有四种情况: 1) 简化为一个力偶的情形: 力系的主矢等于零,而力系对于简化中心的主矩不等于零。即: F R′=0,M o≠0 2) 简化为一合力的情形 力系向点O简化的结果为主矩等于零,主矢不等于零。即: F R′≠0,M o=0 3)若F R′≠0,M o≠0 平面力系与一力偶等效,此力偶为平面力系的合力偶,其力偶矩用主矩M o 度量,这时主矩与简化中心的选择无关。 原力系合成为作用点为O′的力F R,合力作用线在点O的哪一侧,由主矢和

平面一般力系的平衡 作业及答案

平面一般力系的平衡 一、判断题: 1.下图是由平面汇交力系作出的力四边形,这四个力构成力多边形封闭,该力系一定平衡。() 图1 2.图示三个不为零的力交于一点,则力系一定平衡。() 图2 3.如图3所示圆轮在力F和矩为m的力偶作用下保持平衡,说明力可与一个力偶平衡。() 4.图4所示力偶在x轴上的投影ΣX=0,如将x轴任转一角度轴,那么Σ=0。()

图3 图4 5.如图5所示力偶对a的力矩Ma(F,F')=F·d,如将a任意移到b,则力矩Mb(F,F')将发生变化。() 图5 图6 6.图6所示物体的A、B、C、D四点各有一力作用,四个力作出的力多边形闭合,则此物体处于平衡状态。() 7.如果两个力偶的力偶矩大小相等,则此两个力偶等效。() 8.图示构件A点受一点力作用,若将此力平移到B点,试判断其作用效果是否相同()

图7 图8 9.图8所示梁,若求支反力时,用平面一般力系的平衡方程不能全部求出。() 10.图9所示物体接触面间静摩擦系数是f,要使物体向右滑动。试判断哪种施力方法省力。() 图9 图10 11.力在坐标轴上的投影和该力在该轴上分力是相同的。() 12.如果将图10所示力F由A点等效地平移到B点,其附加力矩M =Fa ()。 13.平面任意力系,其独立的二力矩式平衡方程为∑Fx=0,∑M A=0,∑M B =0,但要求矩心A、B的连线不能与x轴垂直。() 二、选择题 1.同一个力在两个互相平行的同向坐标轴上的投影()。

A.大小相等,符号不同 B.大小不等,符号不同 C.大小相等,符号相同 D.大小不等,符号相同 2.图11所示圆轮由O点支承,在重力P和力偶矩m作用下处于平衡。这说明()。 图11 A.支反力R0与P平衡 B.m与P平衡 C.m简化为力与P平衡 D.R0与P组成力偶,其m(R0,P)=-P·r与m平衡 3. 图12所示三铰刚架,在D角处受一力偶矩为m的力偶作用, 如将该力力偶移到E角出,支座A、B的支反力()。 图12

九、平面一般力系平衡方程的其他形式

第九讲内容 一、平面一般力系平衡方程的其他形式 前面我们通过平面一般力系的平衡条件导出了平面一般力系平衡方程的基本形式,除了这种形式外,还可将平衡方程表示为二力矩形式及三力矩形式。 1.二力矩形式的平衡方程 在力系作用面内任取两点A 、B 及X 轴,如图4-13所示,可以证明平面一般力系的平衡方程可改写成两个力矩方程和一个投影方程的形式,即 ?? ? ?? =∑=∑=∑000B A M M X (4-6) 式中X 轴不与A 、B 两点的连线垂直。 证明:首先将平面一般力系向A 点简化,一般可得到过A 点的一个力和一个力偶。若0A =M 成立,则力系只能简化为通过A 点的合力R 或成平衡状态。如果0B =∑M 又成立,说明R 必通过B 。可见合力R 的作用线必为AB 连线。又因0=∑X 成立,则0X =∑=X R ,即合力R 在X 轴上的投影为零,因AB 连线不垂直X 轴,合力R 亦不垂直于X 轴,由0X =R 可推得 0=R 。可见满足方程(4-6)的平面一般力系,若将其向A 点简化,其主 矩和主矢都等于零,从而力系必为平衡力系。 2.三力矩形式的平衡方程 在力系作用面内任意取三个不在一直线上的点A 、B 、C ,如图4-14所示,则力系的平衡方程可写为三个力矩方程形式,即

?? ? ?? =∑=∑=∑000C B A M M M (4-7) 式中,A 、B 、C 三点不在同一直线上。 同上面讨论一样,若0A =∑M 和0B =∑M 成立,则力系合成结果只能是通过A 、B 两点的一个力(图4-14)或者平衡。如果0C =∑M 也成立,则合力必然通过C 点,而一个力不可能同时通过不在一直线上的三点,除非合力为零,0C =∑M 才能成立。因此,力系必然是平衡力系。 综上所述,平面一般力系共有三种不同形式的平衡方程,即式(4-5)、 式(4-6)、式(4-7),在解题时可以根据具体情况选取某一种形式。无论采用哪种形式,都只能写出三个独立的平衡方程,求解三个未知数。任何第四个方程都不是独立的,但可以利用这个方程来校核计算的结果。 【例4-7】 某屋架如图4-15(a )所示,设左屋架及盖瓦共重 kN 31=P ,右屋架受到风力及荷载作用,其合力kN 72=P ,2P 与BC 夹角 为?80,试求A 、B 支座的反力。 【解】 取整个屋架为研究对象,画其受力图,并选取坐标轴X 轴和Y 轴,如图4-15(b )所示,列出三个平衡方程 kN 39.2342.0770cos 0 70cos 02A 2A =?=?==?-=∑P X P X X 30tan 470cos 1270sin 416 0221B A =????+??-?-?=∑P P P Y M

九、 平面一般力系平衡方程的其他形式

第九讲内容 一、平面一般力系平衡方程的其他形式 前面我们通过平面一般力系的平衡条件导出了平面一般力系平衡方程的基本形式,除了这种形式外,还可将平衡方程表示为二力矩形式及三力矩形式。 1.二力矩形式的平衡方程 在力系作用面内任取两点A 、B 及X 轴,如图4-13所示,可以证明平面一般力系的平衡方程可改写成两个力矩方程和一个投影方程的形式,即 ?? ? ?? =∑=∑=∑000B A M M X (4-6) 式中X 轴不与A 、B 两点的连线垂直。 证明:首先将平面一般力系向A 点简化,一般可得到过A 点的一个力和一个力偶。若0A =M 成立,则力系只能简化为通过A 点的合力R 或成平衡状态。如果0B =∑M 又成立,说明R 必通过B 。可见合力R 的作用线必为AB 连线。又因0=∑X 成立,则0X =∑=X R ,即合力R 在X 轴上的投影为零,因AB 连线不垂直X 轴,合力R 亦不垂直于X 轴,由0X =R 可推得0=R 。可见满足方程(4-6)的平面一般力系,若将其向A 点简化,其主矩和主矢都等于零,从而力系必为平衡力系。 2.三力矩形式的平衡方程 在力系作用面内任意取三个不在一直线上的点A 、B 、C ,如图4-14所示,则力系的平衡方程可写为三个力矩方程形式,即

?? ? ?? =∑=∑=∑000C B A M M M (4-7) 式中,A 、B 、C 三点不在同一直线上。 同上面讨论一样,若0A =∑M 和0B =∑M 成立,则力系合成结果只能是通过A 、B 两点的一个力(图4-14)或者平衡。如果0C =∑M 也成立,则合力必然通过C 点,而一个力不可能同时通过不在一直线上的三点,除非合力为零,0C =∑M 才能成立。因此,力系必然是平衡力系。 综上所述,平面一般力系共有三种不同形式的平衡方程,即式(4-5)、 式(4-6)、式(4-7),在解题时可以根据具体情况选取某一种形式。无论采用哪种形式,都只能写出三个独立的平衡方程,求解三个未知数。任何第四个方程都不是独立的,但可以利用这个方程来校核计算的结果。 【例4-7】 某屋架如图4-15(a )所示,设左屋架及盖瓦共重 kN 31=P ,右屋架受到风力及荷载作用,其合力kN 72=P ,2P 与BC 夹角 为?80,试求A 、B 支座的反力。 【解】 取整个屋架为研究对象,画其受力图,并选取坐标轴X 轴和Y 轴,如图4-15(b )所示,列出三个平衡方程 kN 39.2342.0770cos 0 70cos 02A 2A =?=?==?-=∑P X P X X 30tan 470cos 1270sin 416 0221B A =????+??-?-?=∑P P P Y M

平面一般力系的平衡方程

....................... 装.............订.......... 线 ..................... .

分配记 20 ∑Fy=0 ∑MO(F)=0 不难看出,平面平行力系的二矩式平衡方程为 ∑MA(F) =0 ∑MB(F) =0 其中A、B两点的连线不能与各力平行。 平面平行力系只有两个独立的方程,因而最多能解出两个未知量。 三.应用平面一般力系平衡方程的解题步骤如下: (1) 根据题意,选取适当的研究对象。 (2) 受力分析并画受力图。 (3) 选取坐标轴。坐标轴应与较多的未知反力平行或垂直。 (4) 列平衡方程,求解未知量。列力矩方程时,通常选未知力较多的交点为矩心。 (5) 校核结果。 应当注意:若由平衡方程解出的未知量为负,说明受力图上原假定的该未知量的方向与其实际方向相反。而不要去改动受力图中原假设的方向。 例4-2 已知F=15kN,M=3kN.m,求A、B处支座反力。 解(1) 画受力图,并建坐标系 (2) 列方程求解 图4-8

分配记 20例4-3 如图3-9所示外伸梁上作用有集中力FC=20kN,力偶矩M=10kN.m ,载荷集度为q=10kN/m的均布载荷。求支座A、B处的反力。 图4-9 解取水平梁AB为研究对象, 画受力图如图4-9(b)所示。 列平衡方程并求解

分配记 结果均为正,说明图示方向与实际方向一致。 例3-4 塔式起重机如图4-10所示。设机架自重为G,重心在C点,与右轨 距离为e,载重W,吊臂最远端距右轨为l,平衡锤重Q,离左轨的距离为a, 轨距为b。试求塔式起重机在满载和空载时都不致翻倒的平衡锤重量的范围。 图4-10 解取塔式起重机为研究对象,作用在起重机上的力有重物W、机架重G、 平衡锤的重力Q及钢轨的约束反力NA和NB,这些力构成了平面平行力系,起 重机在该平面平行力系作用下平衡。 (1)满载时W=Wmax,Q=Qmin,机架可能绕B点右翻,在临界平衡状 态,A处悬空,NA=0,受力图如图3-10b所示。则

第三章平面力系平衡方程应用

第三章平面力系平衡方程的应用 第1节物体系统的平衡问题 一、外力、内力的概念 (1)外力。系统外任何物体作用于该系统的力称为这个系统的外力。 (2)内力。所研究的系统内部各物体间相互作用的力称为内力,内力总是成对地作用于同一系统上。因此,当取系统为研究对象时,不必考虑这些内力。 二、静定与静不定概念 (1)静定系统。系统中所有未知量的总数小于或等于系统独立的平衡方程的总数时,称这系统为静定系统。这类系统仅应用刚体的静力平衡条件,就可以求得全部未知量的解。 (2)静不定系统。系统中所有未知量的总数大于系统独立的平衡方程的总数时,称这系统为静不定系统或超静定系统。这类问题仅应用刚体的静力平衡条件,不能求得全部未知量的解。 三、物体系统的平衡问题 常见的物体系统的平衡问题有三类,即构架;多跨静定梁;三铰拱。 这三类问题都有其相应的求解特点,在求解过程中能总结归纳。在求解这三类问题时通常要注意以下情况,如固定端约束、铰上受力、分布荷载计算、二力构件等。 例1 图3-1-1-1所示结构由AB、CD、DE三个杆件铰结组成。已知a=2m,q=500N/m,F =2000N。求铰链B的约束反力。 图3-1-1-1 解: 取整体为研究对象,其受力如图3-1-1-2所示。

图3-1-1-2 列平衡方程,有 ∑ F y =0, F Ay ?F?qa=0 得 F Ay =300N ∑ M C (F)=0,?3a F Ay ?a F Ax +aF+×qa=0 得 F Ax =?5500N 分析AEB杆,受力图如图3-1-1-3所示。 图3-1-1-3 ∑ F x =0, F Ax + F Bx =0 故 F Bx =? F Ax =5500N ∑ M E ( F → )=0, F By a+ F Bx a+ F Bx a? F Ay a=0 则得 F By = F Ay ? F Bx =?2500N 例2 求图3-1-1-4所示多跨静定梁的支座反力。梁重及摩擦均不计。

3平面力系的静力学平衡问题

教案首页

教学内容: 课题3 平面力系的静力学平衡问题 受力分析得最终任务是:确定作用在构件上的所有未知力。作为对工程构件进行强度设计、刚度设计、稳定性设计的基础。 平衡的概念:物体相对于惯性系保持静止或匀速直线运动的状态。 一、平面一般力系的平衡条件与平衡方程 1.基本式:ΣF x=0 ΣF y=0ΣM O(F)=0 2.两矩式:ΣF x=0 ΣM A(F)=0ΣM B(F)=0 附加条件:A、B连线不能垂直投影轴x 3.三矩式:ΣM A(F)=0ΣM B(F)=0 ΣM C(F)=0 附加条件:A、B、C三点不共线 平面一般力系独立的平衡方程有三个,只能求出三个未知数。 解题步骤: (1)选研究对象,画受力图(受力分析); (2)选取适当的坐标轴和矩心; (3)列平衡方程。 (4)解方程求出未知量。 (5)校核 4.举例 [例1] 图(a)所示为一悬臂式起重机,A、B、C处都是铰链连接。梁AB自重F G=1kN,作用在梁的中点,提升重量F P=8kN,杆BC自重不计,求支座A的反力和杆BC所受的力。 解:(1)选取研究对象AB杆。 (2)选取投影轴和矩心。(使每个方程中的未知数尽量少) (3)列平衡方程求解。 ΣM A(F)=0 -F G×2-F P×3+F T×sin30°×4=0 得F T=(2F G+3F P)/(4×sin30°)=( 2×1+3×8) /4×0.5=13kN ΣM B(F)=0 -F Ay×4-F G×2+F P×1=0 得F Ay=(2F G+F P)/4=( 2×1+8) /4=2.5kN ΣF x=0 F Ax-F T×cos30°=0 得F Ax= F T×cos30°=13×0.866=11.26kN 校核:ΣF y= F Ay-F G-F P +F T×sin30°=2.5-1-8+13×0.5=0

ll第三章 平面力系

第三章 平面力系 一、填空题 1.力F 作用线向O 点平移时,为不改变它对刚体的作用效果,这时应该 附加一力偶,该力偶的矩等于力F 对O 点的矩。 2.平面任意力系向其作用平面内不同两点简化,所得主矢的关系是相同,所得主矩的关系是力系对新简化中心的主矩等于原力系对原简化中心的主矩加上作用于原简化中心的主矢对新简化中心的矩。 3.平面任意力系平衡方程的二矩式应满足的附加条件是两矩心的连线不垂直于投影轴。 二、选择题 1.一平面任意力系向点A 简化后,得到如图3.1所示的主矢和主矩,则该力系的最后合成结果应是(A ) (A ) 作用在点A 左边的一个合力 (B ) 作用在点A 右边的一个合力 (C ) 作用在点A 的一个合力 (D ) 一个合力偶 2.在刚体同一平面内A ,B ,C 三点上分别作用1F ,2F ,3F 三个力,并构成封闭三角形,如图3.2所示,此力系是属于什么情况(C ) (A ) 力系平衡 (B ) 力系简化为合力 (C ) 力系可简化为合力偶 (D ) 无法判断 3.均质杆长为l ,重为W ,在D 处用一绳将杆吊于光滑槽内,则槽壁在A ,B 处对杆产生的反力A F ,B F 有关系(D ) (A ) A B F F > (B ) A B F F < (C ) 0A B F F == (D ) 0A B F F =≠ 三、计算题 1.试求图3.4中力P 对点O 的矩,已知60a cm =,20b cm =,3r cm =,400P N =。 解:(a )()4000.6240O M Pa N m ==?=?P (b )o 1 ()sin 304000.61202 O M P a N m =-?=-??=-?P 图3.2 图3.1 图 3.3

平面一般力系的平衡 作业及答案

平面一般力系得平衡 一、判断题:?1、下图就是由平面汇交力系作出得力四边形,这四个力构成力多边形封闭,该力系一定平衡。( ) 图1 2、图示三个不为零得力交于一点,则力系一定平衡。( ) ?图 2 3、如图3所示圆轮在力F与矩为m得力偶作用下保持平衡,说明力可与一个力偶平衡。( ) 4、图4所示力偶在x轴上得投影ΣX=0,如将x轴任转一角度轴,那么Σ =0。( ) ?图 3 图4 5、如图5所示力偶对a得力矩Ma(F,F')=F·d,如将a任意移到b,则力矩Mb(F,F')将发生变化。( )

图 5 图 6 6、图6所示物体得A、B、C、D四点各有一力作用,四个力作出得力多 7、如果两个力偶得力偶矩大边形闭合,则此物体处于平衡状态。( )? 小相等,则此两个力偶等效.( )? 8、图示构件A点受一点力作用,若将此力平移到B点,试判断其作用效果就是否相同() ?图 7 图 8 9、图8所示梁,若求支反力时,用平面一般力系得平衡方程不能全部 10、图9所示物体接触面间静摩擦系数就是f,要使物体求出. ()? 向右滑动。试判断哪种施力方法省力。( ) 图 9 图10 11、力在坐标轴上得投影与该力在该轴上分力就是相同得。( ) ?12、如果将图10所示力F由A点等效地平移到B点,其附加力矩M=

13、平面任意力系,其独立得二力矩式平衡方程为∑Fx=0,Fa ( )。? ∑MA=0, ∑MB=0,但要求矩心A、B得连线不能与x轴垂直。()?二、选择题? 1、同一个力在两个互相平行得同向坐标轴上得投影()。?A、大小相等,符号不同 B、大小不等,符号不同 C、大小相等,符号相同D、大小不等,符号相同 2、图11所示圆轮由O点支承,在重力P与力偶矩m作用下处于平衡. 这说明( )。 图 11 A. 支反力R0与P平衡 B。m与P平衡 C. m简化为力与P平衡?D.R0与P组成力偶,其m(R0,P)=-P·r与m平衡 3、图12所示三铰刚架,在D角处受一力偶矩为m得力偶作用, 如将该力力偶移到E角出,支座A、B得支反力(). 图12 A.A、B处都变化?B。A、B处都不变? C.A处变,B处不变?E.B处变,A处不变 4、图13所示一平面上A、B、C、D四点分别有力作用,这四个力?画出得力多边形自行闭合,若向平面内任一点O简化可得( ). 图13 A.M0=0, R′=0?B、M0≠0,R′=0 C。M0≠0,R′≠0 D、 M0=0,R′≠0 5、图14所示物体放在平面上,设AB间与BC间得最大静摩擦力分别为FAB与FBC,外力P在什么情况下,使A、B一起运动?( ) 图14 A.P>F AB〉F BC B、FAB〈 P 〈 F BC? C、 F BC<P 〈F AB

工程力学项目2 平面力系的合成与平衡 答案

项目2 答案 2-1 (a )F RX =-676.93N (向左); F RY =-779.29N (向下);F R =1032.2N α=49.02° (指向第三象限) (b )F RX =-346.6N (向左); F RY =-181.8N (向下);F R =407.4N α=26.5°(指向第三象限) 2-2 (1) F RX =12.3KN ; F RY =-1.19KN (向下); F R =12.4KN ; α=5.53°(指向第四象限) (2) α=61.73°(指向第一象限) 2-3 (a) F AC =-3.15KN (受压) F AB =-0.41KN (受压) (b) F AC =-3942.4N (受压) F AB =557N (受拉) 2-4 (a) M O (F)=0; (b )M O (F)= F l sin β; (c )M O (F)= F l sin θ ;(d) M O (F)=-F ×a (逆时针);(e )M O (F)= F ×(l +r) (f )M O (F)=22sin b a F +??α 2-5 (1) M D (F)=-88.8KN.m(顺时针); (2)F CX =-394.7N (向左);(3) F C =-279.17N (指向左下方); 2-6 (a )M O (F)=-75.18N.m(顺时针); (b) M O (F)=8N.m ; 2-7 (a) F A =-2.25KN (向下); F B =2.25KN (向上); (b )F AX =2.5KN ;F AY =-2.5KN (向下); F B =3.54KN (指向左上方); 2-8 F AN =100KN ; 2-9 F AX =0.683KN (向右); F AY =1.183KN (向上);F BT =0.707KN (沿绳索方向) 2-10 (a) F A =3qa (向上); F B =3 2qa (向上); (b) F A =-qa (向下); F B =qa 2(向上); (c) F A =qa (向上); F B =qa 2(向上); (d) F A = 6 11qa (向上); F B =613qa (向上); (e) F A =qa 2(向上); M A =227qa -(顺时针); (f ) F A =qa 3(向上); M A =qa 3(逆时针); (g )F A =qa 2(向右); F BX =qa 2-(向左);F BY =qa (向上) (h) F AX =0; F AY =qa (向上); F B =0; 2-11 m l 2.25≥ 2-12 G P =7.4KN 2-13 (a) F A = F C = F D = F 21=2qa ;F B =F=qa ; (b) F A =qa 23-(向下);F B =qa 3;F C = F D =2 qa (c )F A = F B =qa 23;F C =-2qa (向下);M A =22 3qa (d )F A =0;F B =qa ;F C =qa ;M C =2 3qa -(顺时针)

2第二章 力系的简化和平衡方程习题+答案

第二章力系的简化和平衡方程 一、填空题 1、在平面力系中,若各力的作用线全部,则称为平面汇交力系。 2、求多个汇交力的合力的几何法通常要采取连续运用力法则来求得。 3、求合力的力多边形法则是:将各分力矢首尾相接,形成一折线,连接其封闭边,这一从最先画的分力矢的始端指向最后面画的分力矢的的矢量,即为所求的合力矢。 4、平面汇交力系的合力作用线过力系的。 5、平面汇交力系平衡的几何条件为:力系中各力组成的力多边形。 6、平面汇交力系合成的结果是一个合力,这一个合力的作用线通过力系的汇交点,而合力的大小和方向等于力系各力的。 7、若平面汇交力系的力矢所构成的力多边形自行封闭,则表示该力系的等于零。 8、如果共面而不平行的三个力成平衡,则这三力必然要。 9、在平面直角坐标系内,将一个力可分解成为同一平面内的两个力,可见力的分力是量,而力在坐标轴上的投影是量。 10、合力在任一轴上的投影,等于各分力在轴上投影的代数和,这就是合力投影定理。 11、已知平面汇交力系合力R在直角坐标X、Y轴上的投影,利用合力R与轴所夹锐角a的正切来确定合力的方向,比用方向余弦更为简便,也即tg a= | Ry / Rx | 。 12、用解析法求解平衡问题时,只有当采用坐标系时,力沿某一坐标的分力的大小加上适当的正负号,才会等于该力在该轴上的投影。 13、当力与坐标轴垂直时,力在该坐标轴上的投影会值为;当力与坐标轴平行时,力在该坐标轴上的投影的值等于力的大小。 14、平面汇交力系的平衡方程是两个的方程,因此可以求解两个未知量。 15、一对等值、反向、不共线的平行力所组成的力系称为_____。 16、力偶中二力所在的平面称为______。 17、在力偶的作用面内,力偶对物体的作用效果应取决于组成力偶的反向平行力的大小、力偶臂的大小及力偶的______。 18、力偶无合力,力偶不能与一个_____等效,也不能用一个______来平衡. 19、多轴钻床在水平工件上钻孔时,工件水平面上受到的是_____系的作用。 20、作用于物体上并在同一平面内的许多力偶平衡的必要和充分条件是,各力偶的_____代数和为零。 21、作用于刚体上的力,可以平移到刚体上的任意点,但必须同时附加一力偶,此时力偶的_____等于_____对新的作用点的矩。 22、一个力不能与一个力偶等效,但是一个力却可能与另一个跟它_____的力加一个力偶等效。 23、平面任意力系向作用面内的任意一点(简化中心)简化,可得到一个力和一个力偶,这个力的力矢等于原力系中所有各力对简化中心的矩的_____和,称为原力系主矢;这个力偶的力偶矩等于原力系中各力对简化中心的矩的和,称为原力对简化中心的主矩。 24、平面任意力系向作用面内任一点(简化中心)简化后,所得的主矢与简化中心的位置____,而所得的主矩一般与简化中心的位置______。 25、平面任意力系向作用面内任一点和简化结果,是主矢不为零,而主矩不为零,说明力系无论向哪一点简化,力系均与一个_____等效。 26、平面任意力系向作用面内任一点简化结果,是主矢不为零,而主矩为零,说明力系与通过简化中心的一个______等效。 27、平面任意力系向作用面内任一点简化后,若主矢_____,主矩_____,则原力系必然是平衡力系。 28、平面任意力系向作用面内的一点简化后,得到一个力和一个力偶,若将其再进一步合成,则可得到一个_____。 29、平面任意力系只要不平衡,则它就可以简化为一个______或者简化为一个合力。 30、对物体的移动和转动都起限制作用的约束称为______约束,其约束反力可用一对正交分力和一个力偶来表示。 31、建立平面任意力系的二力矩式平衡方程应是:任取两点A、B为矩心列两个力矩方程,取一轴X轴为投影列一个投影方程,但A、B两点的连线应_____于X轴。

平面力系合成与平衡习题0

平面力系合成与平衡习题 1、判断题: (1)无论平面汇交力系所含汇交力的数目是多小,都可用力多边形法则求其合力。()(2)应用力多边形法则求合力时,所得合矢量与几何相加时所取分矢量的次序有关。()(3)若两个力在同一轴上的投影相等,则这两个力的大小必定相等。() (4)两个大小相等式、作用线不重合的反向平行力之间的距离称为力臂。() (5)平面力偶系合成的结果为一合力偶,此合力与各分力偶的代数和相等。() (6)平面任意力系向作用内任一点简化的主矢,与原力系中所有各力的矢量和相等。()(7)一平面任意力系向作用面内任一点简化后,得到一个力和一个力偶,但这一结果还不是简化的最终结果。() (8)平面任意力系向作用面内任一点简化,得到的主矩大小都与简化中心位置的选择有关。() (9)只要平面任意力系简化的结果主矩不为零,一定可以再化为一个合力()。 (10)在求解平面任意力系的平衡问题时,写出的力矩方程的矩心一定要取在两投影轴的交点处。() (11)平面任意力系平衡方程的基本形式,是基本直角坐标系而导出来的,但是在解题写投影方程时,可以任意取两个不相平行的轴作为投影轴,也就是不一定要使所取的两个投影轴互相垂直。() 2、填空题: (1)在平面力系中,若各力的作用线全部,则称为平面汇交力系。 (2)平面汇交力系平衡的几何条件为:力系中各力组成的力多边形。 (3)若平面汇交力系的力矢所构成的力多边形自行封闭,则表示该力系的等于零。(4)合力在任一轴上的投影,等于各分力在轴上投影的代数和,这就是合力投影定理。 (5)平面任意力系向作用面内任一点简化结果,是主矢不为零,而主矩为零,说明力系与通过简化中心的一个______等效。 (6)平面任意力系向作用面内的一点简化后,得到一个力和一个力偶,若将其再进一步合成,则可得到一个_____。 (7)平面任意力系向作用面内任一点简化后,若主矢_____,主矩_____,则原力系必然是平衡力系。 (8)平面任意力系只要不平衡,则它就可以简化为一个______或者简化为一个合力。(9)建立平面任意力系的二力矩式平衡方程应是:任取两点A、B为矩心列两个力矩方程,取一轴X轴为投影列一个投影方程,但A、B两点的连线应_____于X轴。 (10)平面任意力系的平衡方程可以表示成不同的形式,但不论哪种形式的独立方程应为______个。 (11)平面平行力系的平衡方程,也可以是任取A、B两点为矩心而建成两个力矩方程,但

教案8 平面一般力系的合成与平衡

浙江广厦建设职业技术学院 2011/2012学年第 二学期 所属分院 建筑 工程学院 课程名称 《建筑力学与结构》 授课教师 审核人 课号授课 班级 11建 技 班 11建 技 班 11建 技 班 11建 技 班 08授课时间 课题第二章静力学基本知识 第八节平面一般力系的合成与平衡 能力目标 能够灵活的运用平衡方程解支座反力。 知识目标(素质目 标)1、熟练运用平面一般力系的平衡方程——基本形 式、二矩式和三矩式计算支座反力; 2、掌握平面特殊力系的平衡方程的运用。 教学内容能力训 练项目 (或任 务、案 例) 无 知识要 点 1、平面一般力系的平衡方程——基本形式、二矩式 和三矩式; 2、平面特殊力系的平衡方程及应用。

教学准备参考资 料 《建筑力学与结构》 吴承霞主编 所需教 具、仪 器等 无 多媒体PPT课件 课后分析 教学过程设计学习任务 第二章静力学基本知识 第八节平面一般力系的合成与平衡 步骤教学内容教师活动与 要求 学生活 动与要 求 时间分 配(分) 注释及 教后感 课前提问1、平面一般力系向 任一点简化结果类型 有哪些情况? 2、合力矩定理的内 容是什么? 教师可以提 示并记录回 答情况,打 等级 态度认 真,回 答准 确; 10 新课引入建筑物中的构件是否 应处于处于平衡状 态?为什么? 回顾以前所 学的关于独 立方程的知 识 思考、 回答 5 平面一般力系平衡的 充分与必要条件 结合PPT讲 35平面一般力系的平衡 方程

新课内容二矩式平衡方程形式解,联系以 前所学知 识,通过例 题,巩固知 识 听讲、 思考、 互动、 记笔记 三矩式平衡方程形式 平面汇交力系的平衡 方程 25平面力偶系的平衡方 程 平面平行力系的平衡 方程 学习检验完成习题集P16的第4 题 教师边指导 边检查题目 的完成情况 学生当 堂完 成,记 笔记 7 归纳小结平面一般力系平衡求 解注意事项 启发、引导 思考、 总结 5 课后任务布置习题集P14-P16的相 关题目 讲清要求: 不可抄袭, 完成于作业 本中 思考、 查找, 完成任 务 3 教学注意1、 计算式与例题解答必须板书,而且规范。(求解结果后应标 实际方向) 2、 必须向学生强调:学好支座反力求解对后续内力计算的重要 性,与期中期末考试息息相关。 备注教师可以根据学生掌握情况决定是否讲授特殊力系的平衡条件及应用。如时间不允许可在习题课补充讲解。

建筑力学大纲 知识点第三章 平面力系得平衡条件

第3章 平面力系的平衡条件 3.1平面汇交力系的合成与平衡条件 力系中各力的作用线都在同一平面内且汇交于一点,这样的力系称为平面汇交力系。 3.1.1 平面汇交力系合成的解析法 设作用于O 点的平面汇交力系(F 1,F 2,…,F n ),其合力矢量为R F (图3-2)。按合力投影定理求合力R F 在x , y 轴上的投影 ∑∑====n i yi Ry n i xi Rx F F F F 1 1 y 图3-2 R F = cos Rx R F F α= (3-1) cos Ry R F F β= 式中 α,β------合力矢量F R 与x 和y 轴的正向夹角。 3.1.2 平面汇交力系的平衡方程 平面汇交力系平衡的必要与充分条件是力系的合力F R 等于零。 1 0n Rx xi i F F ===∑

1 0n Ry yi i F F == =∑ (3-2) 于是,平面汇交力系平衡的必要与充分条件可解析地表达为:力系中所有各力在两个坐标轴上投影的代数和分别为零。式(3-2)称为平面汇交力系的平衡方程。 3.2平面力偶系的合成与平衡条件 3.2.1 平面力偶系的合成 应用力偶的等效条件,可将n 个力偶合成为一合力偶,合力偶矩记为M 。 ∑==n i i M M 1 (3-3) 3.2.2 平面力偶系的平衡条件 平面力偶系平衡的必要与充分条件:力偶系中所有各力偶的力偶矩的代数和等于零,即 1 0n i i M M == =∑ (3-4) 3.3平面任意力系的合成与平衡条件 3.3.1工程中的平面任意力系问题 力系中各力的作用线在同一平面内,且任意地分布,这样的力系称为平面任意力系。 3.3.2 平面任意力系向一点的简化 主矢和主矩 如图3-7(a )所示。在力系作用面内任选一点O ,将力系向O 点简化,并称O 点为简化中心。 i ′ 图3-7

平面一般力系的平衡作业及答案

平面一般力系的平衡作业 及答案 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

平面一般力系的平衡 一、判断题: 1.下图是由平面汇交力系作出的力四边形,这四个力构成力多边形封闭,该力系一定平衡。() 图 1 2.图示三个不为零的力交于一点,则力系一定平衡。() 图 2 3.如图3所示圆轮在力F和矩为m的力偶作用下保持平衡,说明力可与一个力偶平衡。() 4.图4所示力偶在x轴上的投影ΣX=0,如将x轴任转一角度轴,那么Σ=0。()

图 3 图 4 5.如图5所示力偶对a的力矩Ma(F,F')=F·d,如将a任意移到b,则力矩Mb(F,F')将发生变化。() 图 5 图 6 6.图6所示物体的A、B、C、D四点各有一力作用,四个力作出的力多边形闭合,则此物体处于平衡状态。() 7.如果两个力偶的力偶矩大小相等,则此两个力偶等效。() 8.图示构件A点受一点力作用,若将此力平移到B点,试判断其作用效果是否相同() 图 7 图 8

9.图8所示梁,若求支反力时,用平面一般力系的平衡方程不能全部求出。() 10.图9所示物体接触面间静摩擦系数是f,要使物体向右滑动。试判断哪种施力方法省力。() 图 9 图 10 11.力在坐标轴上的投影和该力在该轴上分力是相同的。() 12.如果将图10所示力F由A点等效地平移到B点,其附加力矩M =Fa ()。 13.平面任意力系,其独立的二力矩式平衡方程为∑Fx=0,∑M A=0,∑M B=0,但要求矩心A、B的连线不能与x轴垂直。() 二、选择题 1.同一个力在两个互相平行的同向坐标轴上的投影()。 A.大小相等,符号不同 B.大小不等,符号不同 C.大小相等,符号相同 D.大小不等,符号相同

平面一般力系的合成与平衡

项目一1.2.2 教学设计 2015年月日星期模块名称平面一般力系模块课时7、8 模块描述理解力的平移原理; 能够把平面一般力系向一点简化;掌握平面一般力系的计算方法。 教学目标学会平面一般力系的解题方法; 能把工程实际结构转换成力学模型;培养分析问题和解决问题的能力。 教学资源平面一般力系的实例 教学组织按座位自然分组 教学过程 教学阶段 (可以按 照完成这一模块(任务)的步骤呈现)学习任务知识点 活动设计 (教师活动、学生活动) (讲解、示范、组织、指导、安 排、操作等) 估 用 时 间 新课引入复习旧课约束和约束反力的相 关知识 平面一般力系教师引导学生复习。 教师:平面一般力系是指各力的作用 线位于同一平面内但不全汇交于一点,也不全平行的力系。平面一般力 系是工程上最常见的力系,很多实际 问题都可简化成平面一般力系问题 处理。 5 新课讲解学习力的 平移定理 1.力的平移定理教师:已经研究了平面汇交力系与平 面力偶系的合成与平衡。为了将平面 一般力系简化为这两种力系,首先必 须解决力的作用线如何平行移动的 问题。 学生:思考力该怎么平移?

2.力的平移定理的逆过程。 3、力的平移定理的应用教师:绘制图形并讲解。 设刚体的A点作用着一个力F(图a), 在此刚体上任取一点O。现在来讨论 怎样才能把力F平移到O点,而不改 变其原来的作用效应?为此,可在O 点加上两个大小相等、方向相反,与 F平行的力F′和F〞,且F′=F〞 =F(图b)根据加减平衡力系公理, F、F′和F〞与图a的F对刚体的作 用效应相同。显然F〞和F组成一个 力偶,其力偶矩为: ) (O F M Fd m= = 这三个力可转换为作用在O点的一 个力和一个力偶(图4-3(c))。由 此可得力的平移定理:作用在刚体上 的力F,可以平移到同一刚体上的任 一点O,但必须附加一个力偶,其力 偶矩等于力F对新作用点O之矩。 根据上述力的平移的逆过程,共面的 一个力和一个力偶总可以合成为一 个力,该力的大小和方向与原力相 同,作用线间的垂直距离为: F m d ' = 教师:力的平移定理是一般力系向一 点简化的理论依据,也是分析力对物 体作用效应的一个重要方法。 教师举例:如图a所示的厂房柱子受 到吊车梁传来的荷载F的作用,为分 析F的作用效应,可将力F平移到柱 的轴线上的O点上,根据力的平移定 理得一个力F′,同时还必须附加一 15

相关主题
文本预览
相关文档 最新文档