当前位置:文档之家› 第五章数理统计的基本概念

第五章数理统计的基本概念

数理统计的基本概念知识点

10 06 数理统计的基本概念 知识网络图 正态总体下的四大分布统计量样本函数样本个体总体数理统计的基本概念→???? ?????????????? 主要内容 一、样本 我们把从总体中抽取的部分样品n x x x ,,,21Λ称为样本。样本中所含的样品数称为样本容量,一般用n 表示。在一般情况下,总是把样本看成是n 个相互独立的且与总体有相同分布的随机变量,这样的样本称为简单随机样本。在泛指任一次抽取的结果时,n x x x ,,,21Λ表示n 个随机变量(样本);在具体的一次抽取之后,n x x x ,,,21Λ表示n 个具体的数值(样本值)。我们称之为样本的两重性。 二、.统计量 1.定义:称不含未知参数的样本的函数),,,(21n X X X f Λ为统计量 2.常用统计量 样本均值 .11 ∑==n i i x n x 样本方差 ∑=--=n i i x x n S 122.)(11 样本标准差 .)(111 2∑=--=n i i x x n S 样本k 阶原点矩 ∑===n i k i k k x n A 1 .,2,1,1Λ 样本k 阶中心矩

∑==-=n i k i k k x x n B 1 .,3,2,)(1Λ μ=)(X E ,n X D 2 )(σ=, 22)(σ=S E ,221)(σn n B E -=, 其中∑=-=n i i X X n B 1 22)(1,为二阶中心矩。 三、抽样分布 1.常用统计量分布 (1)设n X X X ,,,21Λ是相互独立的随机变量,且均服从与标准正态分布)1,0(N ,则222212n n X X X X Λ++=,服从自由度为n 的-2χ分布,记为()n 2~χχ. (2)设()()n Y N X 2~,1,0~χ,且X 与Y 相互独立,则.n Y X T =服从自由度为n 的-t 分 布,记为()n t T ~. (3)设X 与Y 相互独立,分别服从自由度为1n 和2n 的-2χ分布,则1 22 1n n Y X n Y n X F ?==。服从自由度为()21,n n 的-F 分布,记为()21,~n n F F 2.正态总体场合 设n X X X ,,,21Λ是从正态总体()2,σμN 中抽取的一个样本,记 ()2 1211,1∑∑==-==n i i n n i i X X n S X n X ,则 (1);,~2??? ? ??n N X σμ (2)X 与2 n S 相互独立. (3)()()1~1222 --n S n χσ;或()1~)(2212 --∑=n X X n i i χσ

应用数理统计复习题

《应用数理统计》复习题 第一章 概率知识 一、一袋中有5个球,编号1、2、3、4、5. 现从中任取3个,以X 表示所取球的号码的最大值, 求X 的概率分布律. 解:X 的可能取值为3、4、5, 1.010 1 }3{35 33== ==C C X P , 3.0103 }4{352311====C C C X P , 6.010 6 }5{35 2411== = =C C C X P , 故X 的概率分布律为 6 .03.01.05 43k p X . 二、设连续型随机变量X 的密度函数为?? ?<≤=., 0, 10,)(其它x Ax x f (1)求常数A ;(2)求X 的分布函数)(x F . 解:(1)由完备性:? ∞+∞ -=1)(dx x f , 有 11 =?Ax , 解得2=A . (2)t d t f x F x ?∞ -=)()( 当0≤x 时, 0)(}{)(?∞ -==≤=x dt t f x X P x F , 当10≤x 时,1)(=x F . 所以 .1,10,0,1,,0)(2 >≤<≤?? ???=x x x x x F 三、设X 的概率密度为 ????? ≤ ≤-=其它, 022,cos )(ππx x C x f , 1、求常数C ; 2、均值EX 和方差DX . 解:1、由完备性,C xdx C dx x f 2cos )(122 ?? -∞ ∞ -=== π π, 2 1 = ∴C ;

2、0cos 21 )(22 ??∞ ∞--===π πxdx x dx x xf EX ; ???∞ ∞---====22202 2 22 2 14cos cos 21)(πππ πxdx x xdx x dx x f x EX ; 14 )(2 2 2-= -=∴πEX EX DX . 四、若随机(X ,Y )在以原点为中心的单位圆上服从均匀分布,证明X ,Y 不相互独立. 解:依题意有(X ,Y )的概率密度为221/, 1; (,)0, x y f x y π?+≤=??其它. . 故 11, 11()(,)0, 0, X x x f x f x y dy +∞ -∞ ?-≤≤-≤≤?===????? ? 其它其它; 同理 11()0, Y y f y -≤≤=??其它 . 于是(,)()()X Y f x y f x f y ≠, X 与Y 不相互独立. 五、设X 的概率密度为? ? ?≤≤+=.,0,10,)(其它x bx a x f ,且已知EX =127求DX . 解:由概率密度的完备性有: 1= ?? += ∞+∞ -1 d )(d )(x bx a x x f =b a 5.0+, 且有12 7 =EX = ? ? += ∞+∞ -10 d )(d )(x bx a x x x xf = 3 2b a +, 联立上述两式解得: 1,5.0== b a 又= )(2X E 12 5 d )5.0(1 02= +? x x x , 于是 =DX =-22)()(EX X E 2)12 7(125-14411=. 六、1.设随机变量)3,2(~2 N X ,)()(C X P C X P >=<,则=C ( A ). A . 2 B . 3 C . 9 D . 0 2. 设随机变量),(~2 σμN X ,则随σ增大,}|{|σμ<-X P ( C ). (A) 单调增大; (B) 单调减小; (C) 保持不变; (D) 增减不定

概率论与数理统计第4章作业题解

第四章作业题解 4.1 甲、乙两台机床生产同一种零件, 在一天内生产的次品数分别记为 X 和 Y . 已知 ,X Y 的概率分布如下表所示: 如果两台机床的产量相同, 问哪台机床生产的零件的质量较好? 解: 11.032.023.014.00)(=?+?+?+?=X E 9.0032.025.013.00)(=?+?+?+?=Y E 因为 )()(Y E X E >,即乙机床的平均次品数比甲机床少,所以乙机床生产的零件质量较好。 4.2 袋中有 5 个球, 编号为1,2,3,4,5, 现从中任意抽取3 个球, 用X 表示取出的3 个球中的 最大编号,求E (X ). 解:X 的可能取值为3,4,5. 因为1.01011)3(35 == = =C X P ;3.010 3)4(35 2 3== = =C C X P ; 6.010 6)5(3 5 24=== =C C X P 所以 5.46.053.041.03)(=?+?+?=X E 4.3 设随机变量X 的概率分布1 {}(0,1,2,),(1) k k a P X k k a +===+ 其中0a >是个常 数,求()E X 解: 1 1 2 1 1 1 ()(1) (1) (1) k k k k k k a a a E X k k a a a -∞ ∞ +-=== = +++∑∑ ,下面求幂级数11 k k k x ∞ -=∑的和函数, 易知幂级数的收敛半径为1=R ,于是有 1 2 1 1 1()( ),1,1(1) k k k k x k x x x x x ∞ ∞ -==''=== <--∑ ∑

《应用数理统计》吴翊李永乐第五章方差分析课后作业参考答案

《应用数理统计》吴翊李永乐第五章方差分析课后作业 参考答案 标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-

第五章 方差分析 课后习题参考答案 下面给出了小白鼠在接种三种不同菌型伤寒杆菌后的存活日数: 设小白鼠存活日数服从方差相等的正态分布,试问三种菌型的平均存活日数有无显著差异(01.0=α) 解:(1)手工计算解答过程 提出原假设:() 3,2,10:0==i H i μ 记 167.20812 11112 =??? ? ??-=∑∑∑∑====r i n j ij r i n j ij T i i X n X S 467.70112 112 11=???? ??-???? ??=∑∑∑∑====r i n j ij r i n j ij i A i i X n X n S 7 .137=-=A T e S S S 当 H 成立时, ()() ()r n r F r n S r S F e A ----= ,1~/1/ 本题中r=3 查表得 ()()35 .327,2,195.01==---F r n r F α且F=>,在95%的置信度下,拒绝原假 设,认为不同菌型伤寒杆菌对小白鼠的存活日数有显著影响。 (2)软件计算解答过程

组建效应检验 Dependent Variable: 存活日数a 70.429235.215 6.903 .004 137.73727 5.101 208.167 29 方差来源菌型误差总和 平方和自由度 均值F 值P 值R Squared = .338 (Adjusted R Squared = .289) a. 从上表可以看出,菌种不同这个因素的检验统计量F 的观测值为,对应的检验概率p 值为,小于,拒绝原假设,认为菌种之间的差异对小白鼠存活日数有显著影响。 现有某种型号的电池三批,他们分别是甲、乙、丙三个工厂生产的,为评论其质量,各随机抽取6只电池进行寿命试验,数据如下表所示: 工厂 寿命(小时) 甲 40 48 38 42 45 乙 26 34 30 28 32 丙 39 40 43 50 50 试在显著水平0.05α=下,检验电池的平均寿命有无显著性差异并求 121323,μμμμμμ---及的95%置信区间。这里假定第i 种电池的寿命 2i X (,)(1,2,3) i N i μσ=。 解:手工计算过程: 1.计算平方和 其检验假设为:H0:,H1:。 2.假设检验: 所以拒绝原假设,即认为电池寿命和工厂显著相关。 6 .615])394.44()3930()396.42[(*4)()(4 .216)3.28108.15(*4*))(1()(832 429.59*14*))(1()(2221 22 1 21 22 222=-+-+-=-=-==++=-==-===-==-=∑∑∑∑∑∑∑∑∑===r i i i i A r i i i r i i i i ij e ij T X X n X X S S n S n X X S s n ns X X S 0684 .170333 .188 .30712/4.2162/6.615)/()1/(===--= r n S r S F e A 89 .3)12,2(),1(95.01==-->-F r n r F F α

概率论与数理统计第4章作业题解25554

第四章作业题解 4.1 甲、乙两台机床生产同一种零件, 在一天内生产的次品数分别记为 X 和 Y . 已知 ,X Y 的概率分布如下表所示: 如果两台机床的产量相同, 问哪台机床生产的零件的质量较好? 解: 11.032.023.014.00)(=?+?+?+?=X E 9.0032.025.013.00)(=?+?+?+?=Y E 因为 )()(Y E X E >,即乙机床的平均次品数比甲机床少,所以乙机床生产的零件质量较好。 4.2 袋中有 5 个球, 编号为1,2,3,4,5, 现从中任意抽取3 个球, 用X 表示取出的3 个球中的 最大编号,求E (X ). 解:X 的可能取值为3,4,5. 因为1.01011)3(35====C X P ;3.010 3 )4(3523====C C X P ; 6.010 6 )5(3524====C C X P 所以 5.46.053.041.03)(=?+?+?=X E 4.3 设随机变量X 的概率分布1 {}(0,1,2,),(1)k k a P X k k a +== =+L 其中0a >是个常 数,求()E X 解: 1121 1 1()(1)(1)(1)k k k k k k a a a E X k k a a a -∞∞ +-====+++∑∑g g ,下面求幂级数1 1k k kx ∞ -=∑的和函数,易知幂级数的收敛半径为1=R ,于是有 1 2 1 1 1 ()(),1,1(1)k k k k x kx x x x x ∞ ∞ -==''===<--∑∑

根据已知条件,0a >,因此011a a < <+,所以有 2 21 ()(1)(1)1a E X a a a a = =+-+g . 4.4 某人每次射击命中目标的概率为p , 现连续向目标射击, 直到第一次命中目标为止, 求射击次数的期望. 解:因为X 的可能取值为1,2,……。依题意,知X 的分布律为 1(),1,1,2,k P X k q p q p k -===-=L L 所以)1( )()()(1 1 1 1 '-='='== ∑∑∑∞ =∞=∞ =-q q p q p q p p kq X E k k k k k k p p p q p 1 1)1(12 2=?=-= 4.5 在射击比赛中, 每人射击4 次, 每次一发子弹. 规定4弹全未中得0分, 只中1弹得15 分, 中2弹得30 分, 中3弹得55分, 中4弹得100分. 某人每次射击的命中率为0.6, 此人期 望能得到多少分? 解:设4次射击中命中目标的子弹数为X ,得分为Y ,则X ~B (4,0.6) 因为 0256.04.06.0)0(4 4=?==C X P 1536.04.06.0)1(311 4=?==C X P 3456.04.06.0)2(2224=?==C X P 3456.04.06.0)3(1334=?==C X P 1296.04.06.0)4(0444=?==C X P 所以Y 的分布律为 故期望得分为 1296.01003456.0553456.0301536.0150256.00)(?+?+?+?+?=Y E = 44.64 4.6 设随机变量 X 的概率分布为1 32 {(1)}(1,2,,),3 k k k k P X k +=-= =L 说明X 的期望不存在。

天津理工大学概率论与数理统计第五章习题答案详解

第 5 章 大数定律与中心极限定理 一、 填空题: 1.设随机变量μξ=)(E ,方差2 σξ=)(D ,则由切比雪夫不等式有≤≥-}|{|σμξ3P 9 1 . 2.设n ξξξ,,, 21是 n 个相互独立同分布的随机变量, ),,,(,)(,)(n i D E i i 218===ξμξ对于∑== n i i n 1ξξ,写出所满足的切彼雪夫不等式 2 28εεξεμξn D P =≤ ≥-)(}|{| ,并估计≥ <-}|{|4μξP n 21 1- . 3. 设随机变量129,,,X X X 相互独立且同分布, 而且有1i EX =, 1(1,2,,9)i DX i == , 令9 1 i i X X ==∑, 则对任意给定的0ε>, 由切比雪夫不等式 直接可得{} ≥<-ε9X P 2 9 1ε- . 解:切比雪夫不等式指出:如果随机变量X 满足:()E X μ=与2()D X σ=都存在, 则对任意给定的0ε>, 有 22{||}P X σμεε-≥≤, 或者2 2{||}1.P X σμεε -<≥- 由于随机变量129,,,X X X 相互独立且同分布, 而且有 1,1(1,2,9),i i EX DX i === 所以 99 9111()()19,i i i i i E X E X E X μ===??===== ???∑∑∑ 99 9 2 111()()19.i i i i i D X D X D X σ===??===== ???∑∑∑ 4. 设随机变量X 满足:2 (),()E X D X μσ==, 则由切比雪夫不等式, 有{||4}P X μσ-≥ 1 16 ≤ . 解:切比雪夫不等式为:设随机变量X 满足2 (),()E X D X μσ==, 则对任意 的0ε>, 有22{||}.P X σμεε-≥≤由此得 221 {||4}.(4)16 P X σμσσ-≥≤=

第六章数理统计学的基本概念

第六章数理统计的基本概念 一、教学要求 1.理解总体、个体、简单随机样本和统计量的概念,掌握样本均值、样本方差及样本矩的计算。 2.了解分布、t分布和F分布的定义和性质,了解分位数的概念并会查表计算。 3.掌握正态总体的某些常用统计量的分布。 4.了解最大次序统计量和最小次序统计量的分布。 本章重点:统计量的概念及其分布。 二、主要内容 1.总体与个体 我们把研究对象的全体称为总体(或母体),把组成总体的每个成员称为个体。在实际问题中,通常研究对象的某个或某几个数值指标,因而常把总体的数值指标称为总体。设x为总体的某个数值指标,常称这个总体为总体X。X的分布函数称为总体分布函数。当X为离散型随机变量时,称X的概率函数为总体概率函数。当X为连续型随机变量时,称X的密度函数为总体密度函数。当X服从正态分布时,称总体X为正态总体。正态总体有以下三种类型: (1)未知,但已知; (2)未知,但已知; (3)和均未知。 2.简单随机样本 数理统计方法实质上是由局部来推断整体的方法,即通过一些个体的特征来推断总体的特征。要作统计推断,首先要依照一定的规则抽取n个个体,然后对这些个体进行测试或观察得到一组数据,这一过程称为抽样。由于抽样前无法知道得到的数据值,因而站在抽样前的立场上,设有可能得到的值为,n维随机向量()称为样本。n称为样本容量。()称为样本观测值。 如果样本()满足 (1)相互独立; (2) 服从相同的分布,即总体分布; 则称()为简单随机样本。简称样本。 设总体X的概率函数(密度函数)为,则样本()的联合概率

函数(联合密度函数为)

3. 统计量 完全由样本确定的量,是样本的函数。即:设是来自总体X 的 一个样本,是一个n 元函数,如果中不含任何总体的未知参数,则称 为一个统计量,经过抽样后得到一组样本观测值 ,则称 为统计量观测值或统计量值。 4. 常用统计量 (1)样本均值: (2)样本方差: (3)样本标准差: 它们的观察值分别为: 这些观察值仍分别称为样本均值、样本方差和样本标准差。 (4)样本(k 阶)原点矩 1 1,1,2,n k k i i A X k n ===∑L (5)样本(k 阶)中心矩 1 1(),2,3,n k k i i B X X k n ==-=∑L 其中样本二阶中心矩21 1(),n k i i B X X n ==-∑又称为未修正样本方差。 (6)顺序统计量 将样本中的各个分量由小到大的重排成 (1)(2)()n X X X ≤≤≤L 则称(1)(2)(),,n X X X L 为样本顺序统计量,()(1)n X X -为样本的极差。 (7)样本相关系数: 1 1 2 211 ()()()() 11()()n n i i i i i i xy n n x y i i i i x x y y x x y y r S S x x y y n n ====----= = --∑∑∑∑

应用数理统计习题答案 西安交大 施雨

应用数理统计答案 学号: 姓名: 班级:

目录 第一章数理统计的基本概念 (2) 第二章参数估计 (14) 第三章假设检验 (24) 第四章方差分析与正交试验设计 (29) 第五章回归分析 (32) 第六章统计决策与贝叶斯推断 (35) 对应书目:《应用数理统计》施雨著西安交通大学出版社

第一章 数理统计的基本概念 1.1 解:∵ 2 (,)X N μσ ∴ 2 (,)n X N σμ ∴ (0,1)N 分布 ∴(1)0.95P X P μ-<=<= 又∵ 查表可得0.025 1.96u = ∴ 2 2 1.96n σ= 1.2 解:(1) ∵ (0.0015)X Exp ∴ 每个元件至800个小时没有失效的概率为: 800 0.00150 1.2 (800)1(800) 10.0015x P X P X e dx e -->==-<=-=? ∴ 6个元件都没失效的概率为: 1.267.2 ()P e e --== (2) ∵ (0.0015)X Exp ∴ 每个元件至3000个小时失效的概率为: 3000 0.00150 4.5 (3000)0.00151x P X e dx e --<===-? ∴ 6个元件没失效的概率为: 4.56 (1)P e -=- 1.4 解:

i n i n x n x e x x x P n i i 1 2 2 )(ln 2121)2(),.....,(1 22 =-- ∏∑ = =πσμσ 1.5证: 2 1 1 2 2)(na a x n x a x n i n i i i +-=-∑∑== ∑∑∑===-+-=+-+-=n i i n i i n i i a x n x x na a x n x x x x 1 2 2 2 2 11) ()(222 a) 证: ) (1111 1+=+++=∑n n i i n x x n x ) (1 1 )(1 1 11n n n n n x x n x x x n n -++=++=++

数理统计答案第四章汪荣鑫

P168 2解:假设0 1234:H μμμμ=== 112 34:H μμμμ不全为零 1234454562024.52r n n n n n X ======= 经计算可得下列反差分析表: 查表得0.05(3,16) 3.24F = 0.0517.8837 0.4745(3,16)37.6887 F F = =< 故接受0H 即可认为四个干电池寿命无显着差异 3 解:假设0 123:H μμμ== 1123:H μμμ不全相等 12336140.9278r n n n X ===== 经计算可得下列方差分析表: 0.050.05(2,15) 3.68 4.373 3.68(2,15) F F F ==>= ∴拒绝0H 故可认为该地区三所小学五年级男生平均身高有显着差异。

4 解: 假设01234:H μμμμ=== 11234:H μμμμ不全相等 123445100.535r n n n n X ====== 0.05(3,16) 3.24F = 0.05(3,16) 3.24F F >= ∴拒绝0H 故可认为这几支伏特计之间有显着差异。 5 解:假设012345:H μμμμμ==== 112345:H μμμμμ不全相等 60 1234553 89.6r n n n n n X ======= 0.050.05(4,10) 3.4815.18(4,10)F F F ==>

∴拒绝0H 故可认为温度对得率有显着影响 2 151515 11(,( ))X X N n n μμσ--+ 由T 检验法知: ()T t n r = - 给定的置信概率为10.95α-= 0.025{()}0.95P T t n r <-= 故15μμ-的置信概率为的置信区间为 150.025150.025((,()E E X X t n r X X t n r ----+- 2.236E S = == 0.025(10) 2.2281t = 由上面的数据代入计算可得: 150.025150.0259084 2.2281 2.236 1.932210.0678E E X X t X X t --=--?=-+= 故15μμ-的置信区间为( , ) 2 343434 11(,( ))X X N n n μμσ--+ 由T 检验法知: ()X X T t n r = - 34μμ-的置信区间为: 340.025340.025((,()E E X X t n r X X t n r ----+-

数理统计第五章

第五章 1.通过原点的一元回归的线性模型为i i i Y x βε=+,1,2,,i n =??? 其中各i ε相互独立,并且都服从正态分布()2 0,N σ 。试由n 组观测值(),i i x y ,1,2,,i n =???,用最小二乘法估计 β,并用矩法估计2 σ。 解: 对一元回归的线性模型为i i i Y x βε=+ i n = ??? 离差平方和为 ()2 1 n i i i Q y x β== -∑ 对Q 求β的偏导数,并令其为0,即 ()1 0n i i i i y x x β=-=∑ 变换得 2 1 1 1 1n n i i i i i x y x n n β=== ∑∑ 解此方程得 2 xy x β∧ = 因为 22D E σεε== i i i y x εβ=- 所以 2 2 1 1n i i i y x n σβ∧∧ =??= - ??? ∑ () () () 22212 2 22 2 2 2 222 1222 n i i i i i y x y x n y xy x xy xy x y x x ββββ∧∧=∧ ∧??= -+ ???=-+=-+ ∑ () 2 2 2 xy y x =- 其中 1 1 n i i i xy x y n == ∑ 2 2 1 1 n i i x x n == ∑ 2 2 1 1 n i i y y n == ∑

2.在考察硝酸钠的可溶性程度时,对一系列不同温度观察它在100m l 的水中溶解的硝酸钠的重量,获得观察结果如下: 从经验和理论知i Y 和i x 之间有下述关系式i i i Y x αβε=++,1,2,,9i =??? 其中各i ε相互独立,并且都服从正态分布()2 0,N σ。试用最小二乘法估计参数,αβ ,并 用矩法估计2σ。 解: 将 26x = 90.14y = 2736.511xy = 2 451.11x m = 2 342.665 y m = 代入得 22 2 2 2 2 2736.51126 90.14 0.8706 451.11 90.140.870626 67.5088 342.665 0.8706 451.11 0.7487 x y x xy x y m y x m m βαβσ β∧ ∧ ∧ ∧ ∧--?= = ==-=- ?==-=-?= 3.为了得到一元线性回归分析的简化计算法,作变换101 ,,1,2,,, i i i i x c y c u v i n d d --= = =???且010,0d d ≠≠。若原经验回归直线方程为y x αβ∧ ∧ ∧ =+变换后经验回归直线方程为 ' ' v u αβ∧ ∧∧=+试证' ' ' 000011 1 ,d d d c c d d ββααβ∧ ∧∧ ∧∧= =+- ,并且 2 2 ''2 01 1 n n i i i i i i y x d v u αβαβ∧∧ ∧∧==?? ? ?--=-- ? ?? ??? ∑∑ 证明: ' 002 2 1 1 d d uv u v d d u u β∧-= - ()() () 01 2 1 1 n i i i n i i u u v v d d u u ==--= -∑∑

数理统计的基本概念

6 数理统计的基本概念 基本要求 1 理解总体、样本(品)、样本容量、简单随机样本的概念。能在总体分布给定情况下,正确无误地写出样本的联合分布,这是本章的难点。 2*了解样本的频率分布、经验分布函数的定义,了解频率直方图的作法。 3 了解χ2分布、t分布和F分布的概念及性质,了解临界值的概念并会查表计算。 4 理解样本均值、样本方差及样本矩的概念。了解样本矩的性质,能借助计算器快速完成样本均值、样本方差观察值的计算。了解正态总体的某些常用抽样分布。 疑难解答 1、采用抽样的方法推断总体,对样本应当有怎样的要求? 答:为了对总体X的分布进行研究,逐个研究每个个体是不现实的。采用抽样推断总体,其出发点是利用局部认识整体,因此抽出的样本要具有代表性。即要求每个个体被抽取的机会均等,并且抽取一个个体后总体成分不变。首先要求抽样具有“随机性”,第一次抽取的样品X1的可能取值应与总体的可能取值是完全一样的,且去取个个值的概率相同。因此,X1是一个随机变量,并且是与X同分布的随机变量。其次,应具有“独立性”,第一次抽样不改变总体成分,第二次抽取的样品X2可能的值也与X完全一样,且取值的概率也是相同的,因此X2也是与X同分布的一个随机变量且与X1是相互独立的,同样道理,X3,X4,…,X n都是与X同分布的随机变量,并且X1,X2,…,X n是一组相互独立的随机变量,故要求X1,X2,…,X n是简单随机样本。 2、什么是简单随机样本?在实践中如何获得简单随机样本? 答:设X1,X2,…,X n是来自总体X的容量为n的样本,如果它满足以下两个条件,则称它为简单随机样本: (1)X1,X2,…,X n与总体X具有相同的分布 (2)X1,X2,…,X n相互独立 由简单随机样本的定义知,用简单随机样本研究总体,可以更好地用概率论中独立条件下的一系列结论,正是这些结论为概率统计提供了必要的理论基础。 一般说来,对总体进行独立重复观测,便可以获得简单随机样本。 具体来说,当抽取样本容量n相对于总体数N很小时(一般) ≤ n),则连续抽 N 10 1 取n个个体,就近似地看做一个简单随机样本。这是因为抽取的个数很小时,可认为对总体不影响或影响很小。 如果采取有放回抽样,则不必要求n相对很小。 3、什么叫大样本和小样本?它们之间的区别是否是一样本容量的大小来区分的? 答:在样本容量固定的条件下,进行的统计推断、分析问题称为小样本问题,而在样本容量趋于无穷的条件下,进行的统计推断、分析问题称为大样本问题。 然而,众多统计推断与分析问题与统计量或样本的函数的分布相关联。能否得到有关统计量或样本的函数的分布常成为解决问题的关键。所以,大、小样本的区分常与这一分布 *该部分内容考研不作要求。

数理统计第四章作业答案

习题4作业答案4.2 解: 提出假设:

4.6 解:本题为双因素无重复实验方差分析提出如下假设:

查F 表得:F0.05(2,6)= 5.14, F0.05(3,6)=4.76 因此,FA> F0.05(2,6), FB> F0.05(3,6) 所以拒绝原假设H01,H02,认为使用不同的促进剂和不同分量的氧化锌,对定强有显著影响。 补充:具体计算过程仅供参考 4.9 为考虑合成纤维中对纤维弹性有影响的二个因素:收缩率A 和总拉伸倍数B 。现就A 和B 各取4种水平做实验,在每一组合水平下各作2次试验,试验结 和总拉伸倍数分别对纤维弹性有无显著影响?并问二者对纤维弹性有无显著交互作用(α=0.05)? 解:提出如下假设 H 01:收缩率对纤维弹性无显著影响; H 02:总拉伸倍数对纤维弹性无显著影响; H 03:收缩率和总拉伸倍数对纤维弹性无显著交互作用; 其中,由S ij?=∑x ijk l k=1,i =1,2,3,4,j =1,2,3,4,分别有 S 11?=∑x 11k 2k=1=144,S 21?=∑x 21k 2k=1=148,

S 12?=∑x 12k 2k=1=145,S 22?=∑x 22k 2k=1=150, S 13?=∑x 13k 2k=1=148,S 23?=∑x 23k 2k=1=155, S 14?=∑x 14k 2k=1=152,S 24?=∑x 24k 2k=1=148, S 31?=∑x 31k 2k=1=149,S 41?=∑x 41k 2k=1=148, S 32?=∑x 32k 2k=1=156,S 42?=∑x 42k 2k=1=145, S 33?=∑x 33k 2k=1=149,S 43?=∑x 43k 2k=1=141, S 34?=∑x 34k 2k=1=147,S 44?=∑x 44k 2k=1=138, 每行的和为 S 1??=∑∑x 1jk 2k=14j=1=589,S 2??=∑∑x 2jk 2 k=14j=1=601, S 3??=∑∑x 3jk 2k=14j=1=601,S 4??=∑∑x 4jk 2k=14j=1=572, 每列的和为 S ?1?=∑∑x i1k 2k=14i=1=589,S ?2?=∑∑x i2k 2 k=14i=1=596, S ?3?=∑∑x i3k 2k=14i=1=593,S ?4?=∑∑x i4k 2 k=14i=1=585, 则所有数据总和为S =∑∑∑x ijk 2k=14j=14i=1=2363, 数据平方总和为SS =∑∑∑x ijk 22k=14j=14i=1=174673, 故Q A =1 sl ∑S i??2r i=1?1 rsl S 2=1 4×2∑S i??24i=1?1 4×4×2S 2=70.59, Q B =1 rl ∑S ?j?2s j=1?1 rsl S 2=1 4×2∑S ?j?24j=1?1 4×4×2S 2=8.59, Q E =SS ?1 l ∑∑S ij?2s j=1r i=1=SS ?1 2∑∑S ij?24j=14i=1=21.5, Q T =SS ?1rsl S 2=174673?1 4×4×2×23632=180.22, Q I =Q T ?Q A ?Q B ?Q E =79.54, 对给定的水平α=0.05,查表得F 0.05(3,16)=3.24,F 0.05(9,16)=2.54,因为F A =17.56>3.24,F B =2.13<3.24,F I =6.60>2.54,故接受H 02,拒绝H 01和H 03,即认为总拉伸倍数对纤维弹性无显著影响,收缩率对纤维弹性有显著影响,且收缩率和总拉伸倍数对纤维弹性有显著交互作用。 4.11 九二零是一种植物生长调节剂,某微生物厂生产的九二零存在着产品效价低,成本高等问题,为解决这一问题,用正交安排试验,选取的因素及水平如下表: L 8(27)的第1,2,4,7列上,所得试验结果(效价:万单位)依次为: 2.05, 2.24, 2.44, 1.10, 1.50, 1.35, 1.26, 2.00.

研究生《应用数理统计基础》庄楚强 四五章部分课后答案

4-45. 自动车床加工中轴,从成品中抽取11根,并测得它们的直径(mm )如下: 10.52,10.41,10.32,10.18,10.64,10.77,10.82,10.67,10.59,10.38,10.49 试用W 检验法检验这批零件的直径是否服从正态分布?(显著性水平05.0=α) (参考数据:) 4-45. 解:数据的顺序统计量为: 10.18,10.32,10.38,10.41,10.49,10.52,10.59,10.64,10.67,10.77,10.82 所以 6131 .0][)()1(5 1 ) (=-= -+=∑k k n k k x x a L , 又 5264.10=x , 得 38197 .0)(11 1 2 =-∑=i i x x 故 984.0) (11 1 2 2 =-= ∑=i i x x L W , 又 当n = 11 时,85.005.0=W 即有 105.0<

概率论与数理统计第五章习题解答.dot资料

第五章 假设检验与一元线性回归分析 习题详解 5.01 解:这是检验正态总体数学期望μ是否为32.0 提出假设:0.32:, 0.32:10≠=μμH H 由题设,样本容量6n =, 21.12=σ,1.121.10==σ,所以用U 检验 当零假设H 0成立时,变量:)1,0(~61 .10 .320 N X n X U -= -= σμ 因检验水平05.0=α,由05.0}|{|=≥λU P ,查表得96.1=λ 得到拒绝域: 96.1||≥u 计算得: 6.31)6.318.310.326.310.306.32(6 1=+++++?=x 89.061 .10 .326.310 0-=-= -= n x u σμ 因 0.89 1.96u =< 它没有落入拒绝域,于是不能拒绝H 0,而接受H 0,即可以认为 0.32=μ,所以可以认为这批机制砖的平均抗断强度μ显著为 32.0kg/cm 2。 5.02 解:这是检验正态总体数学期望μ是否大于10 提出假设:10:, 10:10>≤μμH H 即:10:, 10:10>=μμH H 由题设,样本容量5n =,221.0=σ,1.01.020==σ,

km x 万1.10=,所以用U 检验 当零假设H 0成立时,变量:)1,0(~51 .010 N X n X U -= -= σμ 因检验水平05.0=α,由05.0}{='≥λU P ,查表得64.1'=λ 得到拒绝域: 64.1≥u 计算得: 24.251 .010 1.100 =-= -= n x u σμ 因 2.24 1.64u => 它落入拒绝域,于是拒绝零假设 H 0,而接受备择假设H 1,即可认为10>μ 所以可以认为这批新摩托车的平均寿命μ有显者提高。 5.03 解:这是检验正态总体数学期望μ是否小于240 提出假设:240:,240:10<≥μμH H 即:240:, 240:10<=μμH H 由题设,样本容量6n =,6252=σ,256250==σ,220=x ,所以用U 检验 当零假设H 0成立时,变量:)1,0(~625 240 N X n X U -= -= σμ 因检验水平05.0=α,由05.0}{='-≤λU P ,查表得64.1'=λ 得到拒绝域: 64.1-≤u 计算得:959.1625 240 2200 -=-= -= n x u σμ 因 1.959 1.64u =-<-

《概率论与数理统计》习题 第五章 数理统计的基本概念

第五章 数理统计的基本概念 一. 填空题 1. 设X 1, X 2, …, X n 为来自总体N(0, σ2 ), 且随机变量)1(~) (22 1 χ∑==n i i X C Y , 则常数 C=___. 解. ∑=n i i X 1 ~ N(0, n σ2 ), )1,0(~1 N n X n i i σ ∑= 所以 2 1,1σ σ n c n c = = . 2. 设X 1, X 2, X 3, X 4来自正态总体N(0, 22)的样本, 且2 43221)43()2(X X b X X a Y -+-=, 则a = ______, b = ______时, Y 服从χ2分布, 自由度为______. 解. X 1-2X 2~N(0, 20), 3X 3-4X 4~N(0, 100) )1,0(~2022 1N X X -, )1,0(~1004343N X X - 20 1 ,20 1 = = a a ; 100 1,100 1 = = b b . Y 为自由度2的χ2分布. 3. 设X 1, X 2, …, X n 来自总体χ2(n)的分布, 则._____)(______,)(==X D X E 解. 因为X 1, X 2, …, X n 来自总体χ2(n), 所以 E(X i ) = n, D(X i ) = 2n (i = 1, 2, …, n) ,)(n X E = 22) ()(2 2 1=?= =∑=n n n n X D X D n i i 二. 单项选择题 1. 设X 1, X 2, …, X n 为来自总体N(0, σ2 )的样本, 则样本二阶原点矩∑==n i i X n A 1 2 21的方差为 (A) σ2 (B) n 2 σ (C) n 42σ (D) n 4 σ 解. X 1, X 2, …, X n 来自总体N(0, σ2), 所以

第6章 数理统计的基本概念1内容框图

第6章 数理统计的基本概念 6.1 内容框图 6.2 基本要求 (1) 理解总体、样本及统计量的概念,并熟练掌握常用统计量的公式. (2) 掌握矩法估计和极大似然估计的求法,以及估计无偏性、有效性的判断. (3) 掌握三大抽样分布定义,并记住其概率密度的形状. (4) 理解并掌握有关正态总体统计量分布的几个结论,如定理6.4~6.9及定理6.11. 6.3 内容概要 1) 总体与样本 在数理统计中,我们把作为统计研究对象的随机变量称为总体,记为 ξ,η,… 。对总体进行 n 次试验后所得到的结果,称为样本,记为(n X X X ,,,21Λ),(n Y Y Y ,,,21Λ),……,其中,试验次数 n 称为样本容量。样本(n X X X ,,,21Λ)中的每一个 i X 都是随机变量。样本所取的一组具体的数值,称为样本观测值,记为

(n x x x ,,,21Λ) 。 具有性质: (1)独立性,即 n X X X ,,,21Λ 相互独立。 (2)同分布性,即每一个 i X 都与总体 ξ 服从相同的分布。 称为简单随机样本 。 如果总体 ξ 是离散型随机变量,概率分布为 }{k P =ξ,那么样本(n X X X ,,,21Λ)的联合概率分布为∏∏====== ===n i i n i i i n n x P x X P x X x X x X P 1 1 2211}{}{},,,{ξΛ。 如果总体 ξ 是连续型随机变量,概率密度为 )(x ?,那么样本(n X X X ,,,21Λ)的联合概率密度为 ∏∏==== n i i n i i X n x x x x x i 1 1 21)()(),,,(*?? ?Λ 。 如果总体 ξ 的分布函数为 )(x F ,那么样本(n X X X ,,,21Λ)的联合分布函数为 ∏∏====n i i n i i X n x F x F x x x F i 1 1 21)()(),,,(*Λ 。 2)用样本估计总体的分布 数理统计的一个主要任务,就是要用样本估计总体的分布。 参数估计又可以分为两种,一种是点估计,另一种是区间估计。 3) 矩法估计 求矩法估计的步骤为: (1)计算总体分布的矩),,,()(21m k k f E θθθξΛ=,m k ,,2,1Λ=,计算到m 阶矩 为止(m 是总体分布中未知参数的个数)。 (2)列方程 ?????????======∧ ∧∧ m m m m m m X E f X E f X E f )()?,,?,?()()?,,?,?()?,,?,?(2122212211ξθθθξθθθξθθθΛΛ ΛΛΛ 从方程中解出m θθθ?,,?,?21Λ,它们就是未知参数m θθθ,,,21Λ的矩法估计。

相关主题
文本预览
相关文档 最新文档