当前位置:文档之家› WiFi时间同步

WiFi时间同步

WiFi时间同步
WiFi时间同步

Wi-fi 同步

一、同步的意义

1.1 什么是同步

时钟同步的目的是维护一个全局一致的物理或逻辑时钟,时钟同步广义上称为时间同步,狭义上称为频率同步。

时间同步:指在对比时刻求得标准时钟与本地时钟的频率和相位偏移,并通过修正使本地时钟与参考时钟保持同步。

频率同步:指信号之间的频率或相位保持某种严格的特定关系,通信网络中频率同步用来保证所有的设备以相同的速率运行。频率同步一般采用锁相环技术,频率调节具有连续性和周期性;而时间同步可以是非连续性的调控。

1.2 WiFi 同步的意义

数字通信网中传递的信号是对源信息,比如模拟的语音信息,进行采样编码后得到的PCM (pulse Code Modulation )离散脉冲。如果两数字交换设备之间的时钟频率不一致产生采样时刻的偏差,或者由于数字比特流在传输中因码间干扰和各种噪声干扰的叠加产生相位偏移和频率偏移,接收端就会出现码元的丢失或重复,导致传输的比特流中出现滑码的现象。

Wifi 作为无线接入技术承载3G 基站业务时,由于3G 基站业务,例如一些基于WLAN 的宽带数据应用,流媒体、网络游戏等均需要优于50ppb 的频率同步,其中有些制式,如CDMA2000、TS-SCDMA ,WiMAX 等还有高精度的时间同步需求,所以要求WIFI 能够对时间和频率信号进行高精度稳定地传送,因此研究WIFI 时间同步有其必要性和迫切性。

二、802.11链路时钟同步层

2.1 概述

根据WiFi 的机制,在BSS 中利用TSF 来保证STAs 同步于一个时钟。

??? T SF T SF false BSS ST A true tivated dot11OCBAc 用来保持同步,来保持同步

则需要用于同步外的其他目的步,的一员,所以不需要同不是TSF

2.2 AP与AC的同步

AP与AC的时间同步是基于的CAPWAP协议,该协议主要包括了AP自动发现AC,AC对AP进行安全认证,AP从AC获取软件映像,AP从AC获得初始和动态配置等。

2.2.1 CAPWAP协议

CAPWAP 协议由Discovery阶段开始。WTPs发送Discovery Request 消息,诱发任何收到该消息的AC用Discovery Response消息响应。根据收到的Discovery Response 消息,WTP 用与其建立安全的DTLS会话来选择一个AC。

一旦WTP和AC完成DTLS会话建立,开始配置交换其间两个设备对采用的版本达成一致。在这个交换中,WTP可以接收配置设置。然后,WTP开始运

行。当WTP和AC完成版本和配置交换并启动WTP后,CAPWAP协议用于封装在WTP和AC间发送的无线数据帧。如果被封装的无线用户数据(Data)帧或协议控制(Management)帧的长度引起最终的CAPWAP协议分组超过WTP和AC 间支持的MTU,CAPWAP协议将分段第2层帧。为了重建原始封装的净荷,分段的CAPWAP分组被重组。

2.2.2 AC 的timestamp传递

AC Timestamp消息要素由AC发送,用于同步WTP时钟。除非另有规定由AC发送给WTP的任何配置信息可以保存到非易失性存储器中,数据信息要素格式使用下图所示的TLV格式

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0

Type Length

Value...

消息要素用于携带控制消息中需要的信息。每个消息要素由Type Value字段标识,如上面定义。在消息要素的长度字段指出消息要素的总长度。

16位Type字段标识Value字段携带的信息,Length(16位)指出Value字段的字节数。0值保留并且不能使用。字段值其余部分分配如下:

用途类型值CAPWAP Protocol Message Elements 1 - 1023

IEEE 802.11Message Elements 1024 –2047

保留将来使用2048 –3071

EPCGlobalMessage Elements 3072 –4095

保留将来使用4096 –65535 16位Type字段标识Value字段携带的信息,Length(16位)指出Value字段的

字节数。0值保留并且不能使用。

AC时间戳要素的格式如下图所示。

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0

Timestamp

AC timestamp消息格式

Type:AC Timestamp为6

Length:4

Timestamp:AC的目前时间,让所有WTPs采用NTR(Network Time Protocal)[RFC1305]中定义的格式,实现时间同步。仅NTP时间的最高有效32位包括在这个字段中。

NTR的时间戳由一个64位的无符号定点数组成,前32位表示整数部分,后32位表示分数部分。NTR的相关信息将会在下一节介绍。

2.3 NTR协议中的时间同步

NTP(Network Time Protocol)以GPS时间代码传送的时间消息为参考标准,采用了Client/Server结构,具有相当高的灵活性,可以适应各种互联网环境。NTP 除了可以估算封包在网络上的往返延迟外,还可独立地估算计算机时钟偏差,从而实现在网络上的高精准度计算机校时,它是设计用来在Internet上使不同的机器能维持相同时间的一种通讯协定。在大多数的地方,NTP可以提供1-50ms的可信赖性的同步时间源和网络工作路径。

2.3.1 NTP的通信模式

NTP以客户机和服务器方式进行通信。每次通信共计两个包。客户机发送一个请求数据包,服务器接收后回送一个应答数据包。两个数据包都带有时间戳。NTP根据这两个数据包代的时间戳确定时间误差,并通过一系列算法来消除网

络传输的不确定性的影响。

在数据包的传送方式上,有客户机和服务器一对一的点对点方式,还有多个客户机对一个服务器的广播/多播方式。两者工作方法基本相同。处于两种方式下的客户机在初始时和服务器进行如同点对点的简短信息交换,据此对往返延时进行量化判断。此后广播/多播客户机只接收广播/多播消息的状态,并根据第一次信息交换的判断值修正时间在广播/多播方式下一个服务器可以为大量的客户机提供时间,但精度较低。

NTP要求的资源开销和通信带宽很小。NTP采用UDP协议,端口号设定为123。UDP占用很小的网络带宽,在众多客户机和少许服务器通信时有利于避免拥塞。NTP数据包的净长度在V3下为64个字节,V4下为72个字节;在IP层分别为76和84个字节。如果通信方式是广播模式,服务器以固定的间隔向客户机广播发送一个数据包;如果是服务器/客户机方式,则通信间隔将在指定的范围内变化(一般是64秒到1024秒),同步情况越好,间隔就越长。

2.3.2 NTP的同步实现

在单播及广播方式下,单播服务器回答及广播所有的字段;但是,在SNTP 下,各字段中,只有传送时间戳在非零情况下才有明确的意思.这个字段的整数部分包含服务器此刻的时间,其格式与UDP/TIME 协议相同[POS83].这个字段的fraction部分通常是有效的, SNTP的精确度证明可以精确到秒。如果传送用时间戳字段是全0,则该消息将被忽略。

在单播方式下,一种简单的计算可以用来计算与服务器有关的往返传播延迟d及本地时钟补偿t,通常对在数十毫秒内。为此,客户端在请求包中将本地时钟时间按NTP的格式写入源时间戳。当收到答复时,客户端将目的时间戳作为到达时间,并根据它的本地时钟,将其转变成NTP格式。下述表格总结4个时间戳。

用时间戳名字 ID 产生

原始时间戳T1 时间请求由客户端送

收到时间戳T2 时间请求在服务器收到

传送时间戳T3 时间答复通过服务器送

目的地时间戳T4 时间答复在客户端收到

往返传播延迟d和本地时钟补偿t定义为:

D =( T4 - T1) - ( T2 - T3)

T =(( T2 - T1) +( T3 - T4)) /2。

下述表格是SNTP客户端操作的总结。在表格里显示有两种推荐的错误检查方式。在全部NTP版本里,如果Li字段为3;或者阶层字段不在第1-15范围里;或者传送用时间戳是0,服务器决不同步或者不予同步成过去24小时内有效的时间源。在客户端的判断中,保留字段值也可能被检查。是否相信传送用时间戳取决于对这些字段中的一个或多个字段的有效性判断。

字段名请求回答

Li 0 闰秒指示器;如果是3 (非同步),则放弃该消息VN 1( 参见正文) 忽略

方式 3( 客户端) 忽略

阶层 0 忽略

轮询 0 忽略

精度 0 忽略

根延迟 0 忽略

根差量 0 忽略

参考标识符 0 忽略

参考时间戳 0 忽略

原始用时间戳 0 忽略( 参见正文)

收到用时间戳 0 忽略( 参见正文)

传送的时间戳 0 时间;如果是0(非同步),则忽略该消息Authenticator. (不使用) 忽略

2.4 STA与AP保持同步

BSS中,AP控制TSF的计时器。(系统中存在)多个AP的情况下,AP需要同时、独立的初始化TSF计时器,这样能最小化同步(误差/系统)AP需要周期性发送含有TSF值的Beacon frames,用来同步同一个BSS下的其他STA。STA需要接收来自AP的Beacon frames,并将接收到的frames中的时间戳设置成本地的TSF计时器的值(还需要考虑延迟)。

同步分为主动同步和被动同步:

TSF for an IBSS(被动同步)

IBSS中TSF的实现是由一个分布式算法完成的(BSS中的所有成员都会参与,每个STA都需要根据这个算法来传送Beacon frames)。若STA接收到的TSF 值迟于本地TSF计时器的值,则更新时间。

TSF for an MBSS(主动同步)

根据MBSS的主动同步方法,the mesh STA需要初始化它的TSF计时器,并周期性的传送内含TSF计时器值的Beacon frames来对外宣称自己的本地时间。

2.5 获得同步信息,扫描

2.3.1 Beacon 的间隔

Beacon frames 的间隔主要由dot11BeaconPeriod参数决定。

STA在发送Beacon frame时需要设置Beacon frame的时间戳(其值等于the STA的TSF的计时器的值)the data symbol 包含的时间戳的第一个bit是被传送给PHY的延迟加上the transmitting STA’s 本身PHY到MAC-PHY 交界面的delays(延迟来自于本地MAC-PHY和WM的的交界面)。

虽然由于CSMA的退避机制,Beacon frame的发送可能会延迟,但是随后的Beacon frame被安排在没有延迟的beacon间隔内发送,如上图。(不管是否繁忙,每个beacon interval内都会发送一个beacon帧)。

2.3.2 Beacon reception

AP:

A、CF参数集:再没考虑到BSSID的时候,STAs 可以使用接收到的CF Parameter Set element(无竞争参数集的元素)来更新它们的NA V.(详细描述见

9.4.3.3)

B、非CF参数集:只有当STA(contained in the AP of the BSS)正在使用的BSSID field=MAC address,在一个基础网络中的STAs才能使用不在CF Parameter Set中的元素。

Non-Ap:

基础网络中的支持多路BSSID capability 的Non-AP STAs,只有non-AP的STA的BSSID field=MAC address或者the BSSID field is equal to one of the nontransmitted BSSIDs,STA才能使用接收到的Beacon frames的其他信息。

一旦STA接收到有效地FCS(帧效验序列),BSSID,SSID的beacon frame,STA就需要根据以下算法跟新它的TSD计时器:

接收到的时间戳的值需要加上STA的总的延迟——本地PHY传输的时间加上MAC/PHY交界面接收到时间戳第一个比特的延迟。基本架构下,STA的TSF 计时器更新为调整后的时间戳的值,TSF的精确度误差不能超过0.01%。

2.3.3 分为主动扫描和被动扫描

被动扫描不超过MaxChannelTime参数规定的间隙

主动扫描包含请求探针帧的产生,和随后接收探针响应帧的处理当dot11RadioMeasurementActivated is true且Probe Request frame包含的DSSS参数集的当前信道值与dot11CurrentChannelNumber.不同,STA接收到探测请求帧后不作出响应

当probe request中的SSID相符,或者STA的SSID包含在SSID列表中,STAs接收到Probe request frame后需要作出响应。(以下做出具体说明)

STAs在以下情况下接收到Probe Request需要作出响应:

A、probe request中的Address 1 是广播地址或者与STA的MAC地址相同;

B、对mesh STA来说,probe request 中的Mesh ID是the wildcard Mesh ID(通配符ID)或者与STA的mesh ID相符;

C、如果STA 不是mesh STA 只要

1)probe request中是wildcard SSID, 或者SSID与STA的SSID相符合, 亦或STA的SSID 包含在SSID List element, 且

2) probe request中的Address 3 field是wildcard BSSID or the BSSID of the STA.

在BSS,IBSS这两个不管什么时刻都会有至少一个STA处于工作状态。

2.6 调整STA计时器时间

在某些频带和域管理中主动扫描是被禁止的。STA根据MLME-SCAN.request primitive的扫描模式参数分为主动扫描和被动扫描。

STA接收到MLME-START.request primitive, STA就要确定BSS的BSSID,选择信道同步信息,选择beacon周期,select the operational rate set, 初始化和设置TSF timer, 并开始传送beacon frame。

STA接收到MLME-scan的请求原语,STA使用域管理的信息来处理这个请求,如果主动扫描是非法的就返还一个NOT_SUPPORTED的参数,否则进行主动扫描。

STA接收到MLME-JOIN请求原语,STA采用请求中的BSSID

STA接收到beacon frame,STA就采用其中的信道同步信息,MLME会发出MLME-JOIN确认原语来确认同步操作成功。

2.7 BSS同步的终止

BSS可以在随意时刻终止。STA一接收到MLME-STOP request primitive,STA就停止传送Beacon 和Probe Response frames,并解除所有关联STA的验证。

三、802.11的时间测量过程

WiFi时钟同步包括两个过程:一是测量出链路延迟和时钟偏差,二是通过

补偿算法使丛时钟同步上主时钟。

802.11链路的时间同步是在MLME 层产生和回收用于时间测量的帧,并在该层记录同步帧发送和接收的时间,然后通过服务原语吧时间戳传递给媒介无关层。802.11MLME 用于测量时间的帧和协议如下图:

测量过程通过一个来回的帧交换完成。首先当MLME-TIMINGMSMT request 原语被requester 端唤醒,由802.11MLME 产生‘request ’帧。当收到单播来的request 帧,responder 端就发送一个802.11ACK 控制帧给requester 端。当这两个帧交换的时候就有四个时间戳被记录下来,分别是:

t 1是发送request 帧的时间(基于requester 端的时间)

t 2是收到request 帧的时间(基于responder 端的时间)

t 3是发送ACK 控制帧的时间(基于responder 端的时间)

t 4是收到ACK 控制帧的时间(基于requester 端的时间)

当requester 端初始化时间测量request 帧的时候把前一次测量得到的t1和t4以及其他一些端到端的同步信息一起传给responder 端。每个request 都携带一对令牌,一个用于标记本次测量过程,另一个由responder 端来标记上一次测量。报文交换完成时,responder 端收到的前一次t1和t4需和上次记录的t2、t3构成一组进行处理。Responder 端负责处理这些时间戳组,用来计算从时钟相对主时钟的偏移和两节点间报文的平均传播时间。由这四个时间戳可以得到式(1.1、

1.2)

)1.1(t 1222t t Offset Delay s m s m -=+=

)2.1(t 3422t t Offset Delay m s m s -=+=

其中requester 为主时钟端,responder 为从时钟端,s m ay D 2el 表示从requester 到responder 的传输延时,而m s ay D 2el 表示responder 到requester 的传输延时,

Offset 表示主从时钟偏差。

如果requester 和responder 之间的传播路径对称,即m s s m Delay Delay Delay 22________==,则有:

平均链路延迟:

2

)()(2t 341222________t t t t t Delay m s s m -+-=+= 时钟相位偏移: 2

)()(f f set 3412________12t t t t Delay t t O ---=--= 时钟相位偏移的计算公式假设主到从和从到主的传播时间相等。为了达到高精度的时钟同步要求,在进行偏移补偿之前,可以进行多次测量取平均值或者采用滤波算法来减小抖动的影响。

时间同步系统在线监测可行性研究报告

附件4 甘肃电网智能调度技术支持系统 时间同步系统在线监测 技术改造(设备大修)项目 可行性研究报告模板项目名称: 项目单位: 编制: 审核: 批准: 编制单位: 设计、勘测证书号:

年月日

1.总论 时间同步系统在线监测功能,将时钟、被授时设备构成闭环,使对时状态可监测,且监测结果可上送,从而将时间同步系统纳入自动化监控系统管理。时间同步系统在线监测的数据来源分为两大类:设备状态自检数据和对时状态测量数据。设备状态自检主要是被监测设备自身基于可预见故障设置的策略,快速侦测自身的故障点。对时状态测量则是从被监测设备外部对其自身不可预见的故障产生的结果进行侦测,这两种方法较为完整的保证了时间同步系统监测的性能和可靠性。 1.1设计依据 2013年4月,国调中心专门下发了〔2013〕82号文《国调中心关于加强电力系统时间同步运行管理工作的通知》 1.2主要设计原则 通过在原系统上建立一套通讯技术及软件来实现系统级的时间同步状态在线监测功能。采用低建设成本、低管理成本、低技术风险的手段,解决当前自动化系统时间同步体系处于开环状态,缺乏反馈,无法获知工作状态紧迫现状,使时钟和被对时设备形成闭环监测,减少因对时错误引起的事件顺序记录无效,甚至导致设备死机等运行事故,并在此前提下尽可能的提高监测性能,减少复杂度。

1.3设计水平年 系统模块使用年限10年。 1.4设计范围及建设规模 智能调度技术支持系统(主站)针对时钟同步检测功能修改主要涉及前置应用,前置应用以104 或476 规约与变电站自动化系进行过乒乓原理对时,根据对时结果来检测各变电站时钟对时的准确性,从而保证全网时钟同步的准确性。同时,以告警直传方式接收变电站时间同步监测结果,包含设备状态自检数据和对时状态测量数据。 1.5主要技术经济指标 1.6经济分析 2.项目必要性 2.1工程概况 智能电网调度技术支持系统及各变电站都以天文时钟作为自己的时间源,正常情况下实现了全网时间的一致。 2.2存在主要问题 近期,电力系统时间同步装置在运行中发现的时钟异常跳变、时钟源切换策略不合理及电磁干扰环境下性能下降等问题,反映出电力系统时间同步在运行管理、技术性能、检验检测管理、在线监测手段及相关标准等方面仍需进一步完善和加强。

硬盘录像机服务器时间同步方法

P C、硬盘录像机时间同步设置一.原理:利用NTP服务实现。NTP服务器【Network Time Protocol(NTP)】是用来使计算机时间同步化的一种协议,它可以使计算机对其服务器或时钟源(如石英钟,GPS等等)做同步化,它可以提供高精准度的时间校正(LAN上与标准间差小于1毫秒,WAN上几十毫秒),且可介由加密确认的方式来防止恶毒的协议攻击。 二.如何使局域网内的电脑时钟同步 首先要在互联网上寻找一台或几台专门提供时间服务的电脑(以下称为“主时间服务器”),在百度和Google里搜索一下,时间服务器还是很多的,笔者推荐pool.ntp.org这个地址。其次设置局域网时钟服务器。选择单位中能上外网的一台电脑,让它与主时间服务器同步,然后把它设为局域网内部的时间服务器(以下称为时间服务器),以后局域网内所有电脑依它为准进行时间校对。 最后设置客户端。如果客户机为win2000、XP或Linux系统,不需要安装任何软件。如客户机为Win98系统时要根据时间服务器类型的不同而区别对待:如果时间服务器选用SNTP协议进行时钟同步,则Win98机上需安装一个sntp客户端软件,如时间服务器由Windows电脑通过netbios协议提供,则Win98上也不需要安装任何软件。 三.如何设置时间服务器 以下分Win2000、XP分别介绍,而且只介绍sntp服务的架设。 1.Windows2000、XP做时间服务器 第一步:指定主时间服务器。在DOS里输入“net time /setsntp:pool.ntp.org”,这里我们指定pool.ntp.org是主时间服务器。

第二步:与主时间服务器同步。先关闭windows time服务,再开启该服务。在DOS里输入“net stop w32time”、“net start w32time”。 第三步:设置电脑的Windows time服务的启动方式为自动,在“管理工具”的“服务”界面下完成(xp系统默认是自动)。 注意:这台windows主机不能加入任何域,否则无法启动windows time服务。此时,这台windows电脑已经是互联上主时间服务器的客户了,以后每次电脑启动时,都会自动与主时间服务器校对时间。如果网络不通,电脑也会过45分钟后再次自动校对时间。需要提醒的是电脑的时钟与标准时间误差不能超过12个小时,否则不能自动校对,只有手动校正了。 第四步:使这台电脑成为局域网内的时间服务器。用“regedit”打开注册表,把 “HKEY_LOCAL_MACHINE/SYSTEM/CurrentControlSet/Services/W32Time/Paramet ers”中的 LocalNTP改为1即可。 四.如何设置客户端 客户端的主要任务是连接到局域网内的时间服务器,以保持电脑的时钟与服务器同步。同样分Windows2000、XP几种情况介绍。 1.Windows2000主机 执行设置时间服务器时的前三步即可。 2.WindowsXP主机 可以按Windows2000主机的方法设置,也可双击任务栏右下角的时钟图标,打开“日期时间属性”对话框,在“Internet时间”卡片上选中“自动与Internet 时间服务器同步”,并在服务器上填入内部时间服务器的IP地址即可。

XP系统时间同步解决方案

XP系统时间同步不成功_Windows time服务无法启动解决 同步时间的服务器是:210.72.145.44 xp自带的时间同步服务器老是会连不上,而且时间还会差一秒。 这里就教大家换成中科院国家授时中心的服务器,同步就方便多了。 1.双击右下角的时间。 2.把服务器改成210.72.145.44 3.按同步就可以了,一般不会出错。即使是高峰时期,三次之内闭成功,比美国的服务器好多了。 另外系统默认的时间同步间隔只是7天,我们无法自由选择,使得这个功能在灵活性方面大打折扣。其实,我们也可以通过修改注册表来手动修改它的自动同步间隔。 1. 在“开始”菜单→“运行”项下输入“Regedit”进入注册表编辑器 2. 展开[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\W32Time\TimeProviders\Nt pClient ] 分支,并双击SpecialPollInterval 键值,将对话框中的“基数栏”选择到“十进制”上 3. 而这时在对话框中显示的数字正是自动对时的间隔(以秒为单位),比如默认的604800就是由7(天)×24(时)×60(分)×60(秒)计算来的,看明白了吧,如果您想让XP以多长时间自动对时,只要按这个公式算出具体的秒数,再填进去就好了。比如我填了3天,就是259200。 Windows time服务用于和Internet同步系统时间,如果时间无法同步有可能是服务没有随系统启动,可以在运行处输入"services.msc"打开服务控制台,找到"windows time"服务设置为自动并启动即可。 如果启动该服务时提示: 错误1058:无法启动服务,原因可能是已被禁用与其相关联的设备没有启动。 原因是windows time服务失效。 修复: 1.运行cmd 进入命令行,然后键入 w32tm /register 正确的响应为:W32Time 成功注册。 如果提示w32tm命令不内部或外部命令……,是因为系统盘下的system32目录不存在w32tm.exe和w32time.dll这两个文件,到网上下载一个或者到其他电脑复制过来放下这个目录下再运行 2.如果上一步正确,在cmd命令行或运行里用net start "windows time" 或net start w32time 启动服务。 如果无法启动Windows Time服务,同时提示:系统提示“错误1083:配置成在该可执行

NTP网络时间服务器(时间同步装置)使用手册

NTP网络时间服务器使用手册 北京华人开创科技发展有限公司 2012年10月

第一部分NTP网络时间服务器说明书 一、产品功能 NTP网络时间服务器是一款安全可靠的高精度的网络时间服务器。安装简便(天线放置时能提示可见卫星数),接口可支持以太网10/100Mbps和串口(波特率可设置),用户可修正精度(依据天线长度、串口线长度、客户端软件开销等),网络时间精度1~10mS(秒服务能力3000次/秒),串口时间精度8.33uS。 本产品运行具有较强的健壮性,当授时模块某一时段失效或天线失灵时,系统能自动启用守时机制(4小时内,精度影响甚微),确保NTP服务器能连续可靠工作。当授时模块或天线转为正常时,系统能自行将时间同步精度恢复。 二、产品外观 2.1前视板 2.2后视板

三、产品安装 3.1 连接天线 天线连接到“天线-主”口。 3.2 连接电源 将220V电源线连到AC220V座上或将电源适配器(7.5V~12V)接到DC口上。也可以同时接上,提高供电可靠性。 3.3 LAN网口 支持10/100Mbps以太网,NTP遵循SNTP4.0协议,符合RFC2030要求。 四、开机 4.1 加电 打开电源开关,液晶屏会显示“初始化中。。。。。”、“卫星数:X”。根据卫星数多少、捕获时间,调整天线的位置,最好确保可见卫星数10个以上。 4.2 指示灯说明 报警灯--GPS时间无效 时统1—NTP模块工作 4.3 液晶屏说明 左大部为时间显示,严格按秒脉冲同步(误差小于10uS)。 右上角为系统工作状态指示,第1个字符表示时区(B-北京时间,G-格林威治时间,U-其它时区),但当出现“L”时,意味着NTP进入守时状态;第2个字符表示串口和无线口同步时刻(R-每秒,S-即时5分钟内同步,F-深夜2:00开始8分钟同步);第3个字符表示NTP网口设置与否(N-NTP网口打开,空白-NTP网口关闭)。默认方式显示“BRN”。 右下角指示同步方式和时间精度修正值,第1个字符表示同步方式(T-尾同步,H-头同步);第2~4个字符表示以10ms、1ms、us为单位的精度修正值。缺省配置为“T000"。 五、设备参数设置 关于参数设置,根据显示屏提示,由功能键操作来实施。当显示屏信息提示时,若及时“按”键,表示不选该功能;若2秒内不按“功能键”,默认当前参数选择。首次按下功能键,首先显示“校准时刻:”。 5.1 校准时刻(跳过) 按键跳过该选项转5.2,否则进入该子项选择,依次可选“实时校准”、“即时校准”、“定时校准”、“守时参与校准”、“不再校准”。 注:“实时”指,UART每秒发送时间;

硬盘录像机服务器时间同步方法

PC、硬盘录像机时间同步设置 一.原理:利用NTP服务实现。NTP服务器【Network Time Protocol(NTP)】是用来使计算机时间同步化的一种协议,它可以使计算机对其服务器或时钟源(如石英钟,GPS 等等)做同步化,它可以提供高精准度的时间校正(LAN上与标准间差小于1毫秒,W AN 上几十毫秒),且可介由加密确认的方式来防止恶毒的协议攻击。 二.如何使局域网内的电脑时钟同步 首先要在互联网上寻找一台或几台专门提供时间服务的电脑(以下称为“主时间服务器”),在百度和Google里搜索一下,时间服务器还是很多的,笔者推荐pool.ntp.org这个地址。其次设置局域网时钟服务器。选择单位中能上外网的一台电脑,让它与主时间服务器同步,然后把它设为局域网内部的时间服务器(以下称为时间服务器),以后局域网内所有电脑依它为准进行时间校对。 最后设置客户端。如果客户机为win2000、XP或Linux系统,不需要安装任何软件。如客户机为Win98系统时要根据时间服务器类型的不同而区别对待:如果时间服务器选用SNTP协议进行时钟同步,则Win98机上需安装一个sntp客户端软件,如时间服务器由Windows电脑通过netbios协议提供,则Win98上也不需要安装任何软件。 三.如何设置时间服务器 以下分Win2000、XP分别介绍,而且只介绍sntp服务的架设。 1.Windows2000、XP做时间服务器 第一步:指定主时间服务器。在DOS里输入“net time /setsntp:pool.ntp.org”,这里我们指定pool.ntp.org是主时间服务器。 第二步:与主时间服务器同步。先关闭windows time服务,再开启该服务。在DOS里输入“net stop w32time”、“net start w32time”。 第三步:设置电脑的Windows time服务的启动方式为自动,在“管理工具”的“服务”界面下完成(xp系统默认是自动)。 注意:这台windows主机不能加入任何域,否则无法启动windows time服务。此时,这台windows电脑已经是互联上主时间服务器的客户了,以后每次电脑启动时,都会自动与主时间服务器校对时间。如果网络不通,电脑也会过45分钟后再次自动校对时间。需要提醒的是电脑的时钟与标准时间误差不能超过12个小时,否则不能自动校对,只有手动校正了。

基于锁相环的时间同步机制与算法

ISSN 1000-9825, CODEN RUXUEW E-mail: jos@https://www.doczj.com/doc/352985202.html, Journal of Software, Vol.18, No.2, February 2007, pp.372?380 https://www.doczj.com/doc/352985202.html, DOI: 10.1360/jos180372 Tel/Fax: +86-10-62562563 ? 2007 by Journal of Software. All rights reserved. 基于锁相环的时间同步机制与算法 ? 任丰原 +, 董思颖 , 何滔 , 林闯 (清华大学计算机科学与技术系 , 北京 100084 A Time Synchronization Mechanism and Algorithm Based on Phase Lock Loop REN Feng-Yuan+, DONG Si-Ying, HE Tao, LIN Chuang (Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China + Corresponding author: Phn: +86-10-62772487, Fax: +86-10-62771138, E-mail: renfy@https://www.doczj.com/doc/352985202.html, Ren FY, Dong SY, He T, Lin C. A time synchronization mechanism and algorithm based on phase lock loop. Journal of Software, 2007,18(2:372?380. https://www.doczj.com/doc/352985202.html,/1000- 9825/18/372.htm Abstract : In this paper, the analysis model of computer clock is discussed, and the characteristic of the existing

计算机系统时间同步方案

关于同步210厂各计算机系统时间的方案目前我厂现场计算机包括生产管理计算机(含MES系统终端及ERP系统终端)、过程控制计算机(各二级服务器及终端)和基础自动化计算机(操作用HMI、FDA等),各系统的计算机均是使用自身BIOS时间作为系统时间,造成各电脑时间互异、各信息系统之间时间无法同步的情况;公司规定各系统时间同步原则为三级系统与ERP 系统时间同步、二级系统时间与三级系统时间同步、一级系统与二级系统时间同步;但是公司没有建设专门的时间服务器,且我厂一二级各系统之间互相独立,各系统之间时间同步存在很大的困难,为达到各系统之间时间同步的目的,特制定如下方案: 一、选择调度室计划用三级电脑作为我厂所有计算机系统的时间 服务器,设置该电脑时间与信息中心MES系统服务器时间自动同步,且设置系统以每小时一次的频率与信息中心MES系统服务器进行时间同步; 二、各三级计算机、ERP终端、二级服务器与我厂时间服务器进行 同步,频率为24小时; 三、各区域二级HMI电脑、一级电脑以相应区域的二级服务器为 依据进行时间同步,频率为24小时; 四、ERP系统、三级系统、二级系统的时间同步工作由设备管理室 负责,一级各电脑的时间同步工作由电气作业区负责,具体操作方式见附录《计算机系统时间同步设置操作说明》;

五、计算机系统时间的管理部门为设备管理室; 六、未经允许,禁止任务个人及部门对系统时间进行修改,违者进 行严肃考核,一经发现,考核100元/次; 设备管理室 2010-6-26

附录一: 计算机系统时间同步设置操作说明 若要使当前电脑与网络上IP为xxx.xxx.xxx.xxx的电脑时间同步,需要对当前电脑操作系统进行如下设置: 一、启动相关服务项 依次点击开始→控制面板→管理工具→服务,将Remote Procedure Call (RPC)服务、Remote Procedure Call (RPC) Locator服务、Windows Time服务启动,且将其启动类型设为自动;具体操作为:点击服务名称,右键选择属性,在启动类型下拉框中选择“自动”,确定。如图:

时间同步NTP

NTP网络时间协议 在网络管理中,我们需要网络中所有设备时间保持一致。这时可以通过NTP协议(端口号为123),使本地和远程服务器的时间进行同步。 本地设备和远程服务器同步时,会存在毫秒级的误差,如果别人再和自己同步,误差可能更大。Cisco设备把这样的精准度高低称为stratum,如果stratum值越大,就表示精准度越差,stratum值越小表示精准度就越好。比如远程服务器的stratum是2,本地设备和它同步后,自己的stratum就是3,如果别的设备再和自己同步,那么它得到的stratum就是4。 Cisco设备可以做为NTP客户端,和远程服务器同步;也可作为NTP服务器,向别的设备提供时间,和自己同步。如果将Cisco设备作为NTP服务器,默认的stratum是8。 时间和时区 如果一台Cisco设备需要做NTP时间服务器,就得先为自己配上时间,还需要为设备配置时区,中国使用东8时区。 1.配置时间 R1(config)#clock timezone BJ +8 配置时区为东8区 r1#clock set 8:00:00 1 mar 1 2012 配置时间为2012年3月1日8点 注:此时间为东8区2010年10月1日8点整,如果将时区更新,设备会自行计算时差将时间调整到对应时区的时间。 r1#show clock 2.配置NTP服务器 R1(config)# ntp master 3 配置master和stratum(默认为8) R1(config)# ntp source Loopback0 发送NTP消息时用loop0口(可选) 3.配置NTP Client R2(config)# clock timezone BJ +8 配置clock timezone, 与NTP SERVER保持一致R2(config)# ntp server 192.168.1.251 指定NTP服务器地址 查看结果: # sh ntp status # show clock

时间同步,各种配置方法

ntp时间同步,各种配置方法 1 Windows xp NTP服务器的配置(2003配置方式一样) 1) 首先需要关闭作为NTP服务器的windows系统自带的防火墙,否则将同步不成功。 2) 单击“开始”,单击“运行”,键入 regedit,然后单击“确定”。 找到下面的注册表项然后单击它: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\W32Time\Config\ 在右窗格中,右键单击“AnnounceFlags”,然后单击“修改”。 在“编辑 DWORD 值”对话框中的“数值数据”下,键入 5,然后单击“确定”。 3) 启用 NTPServer。 a. 找到并单击下面的注册表子项: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\W32Time\TimeProviders\NtpServe r\ b. 在右窗格中,右键单击“Enabled”,然后单击“修改”。 c. 在“编辑 DWORD 值”对话框中的“数值数据”下,键入 1,然后单击“确定”。

4) 关闭NTP client 找到并单击下面的注册表子项: a) HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\W32Time\TimeProviders\Ntpclien t\ b) 在右窗格中,右键单击“Enabled”,然后单击“修改”。 c) 在“编辑 DWORD 值”对话框中的“数值数据”下,键入 0,然后单击“确定”。 5) 退出注册表编辑器。 在命令提示符处,键入以下命令以重新启动 Windows 时间服务,然后按 Enter: net stop w32time && net start w32time 2 Windows(2003、XP)系统的NTP同步配置 2.1 Windows客户端的设置 1) 首先需要关闭作为NTP客户端的windows系统自带的防火墙,否则将同步不成功。 2) 设定同步时间间隔,在“开始”菜单→“运行”项下输入“Regedit”进入注册表编辑器。展开 [ HKEY_LOCAL_MACHINESYSTEMCurrentControlSetServicesW32TimeTimeProvidersNtpClient ] 分支,并双击

时间同步系统的要求

4.3.12时间同步系统的要求 4.3.12.1总的要求 4.3.12.1.1 时间同步系统的构成 1)时间同步系统由一级主时钟和时钟扩展装置组成。 2)一级主时钟用于接收卫星或上游时间基准信号,并为各时间扩展装置提供时间信号。3)一级主时钟与时钟扩展装置均配置时间保持单元,保证在输入信号中断的情况下,依然不间断地提供高精度的输出信号。 4.3.12.1.2时间同步系统的布置 根据本期工程情况,将配置1面主时钟装置屏和2面时钟扩展装置屏。主时钟本体装置屏安装在集控楼内,主时钟屏配置的2台主时钟为整个时间同步系统提供2路冗余的时间基准信号输出。机组保护室和网络继电器室各设1面时钟扩展装置屏,主时钟装置与时钟扩展装置之间采用光纤连接。时间同步系统天线安装在集控楼楼顶上。 4.3.12.1.3时间同步系统的运行条件 1)电源要求 同步时钟装置(一级主时钟和二级扩展)采用两路AC220V电源供电,投标方应配置双电源自动切换装置(美国ASCO 7000系列产品)实现双电源自动切换。 2)工作环境 工作温度: -10~+55℃ 贮存温度: -40~+55℃ 湿度: 5%~95%(不结露)。 所有设备均可放置在无屏蔽、无防静电措施的机房内。 4.3.12.1.4 时间同步系统的电磁兼容性 时间同步系统在集控楼的电磁场环境下能正常工作,符合“GB/T13926-1992 工业过程测量和控制装置的电磁兼容性”中有关规定的要求,并达到Ш级及以上标准。 4.3.12.2功能要求 4.3.12.2.1 时间同步系统配置的主时钟及时间同步信号扩展装置对厂内DCS、SIS、电气控制装置及其他需要时钟同步的设备进行时间同步,并应能提供满足这些设备需要的各种时间同步信号及接口(含接口装置、通讯电缆等设备)。 4.3.12.2.2时间同步系统两台主时钟的时间信号接收单元应能独立接收GPS卫星和我国北斗卫星发送的无线时间信号作为主外部时间基准信号。当某一主时钟的时间接收单元发生故

suse系统时间同步操作

s u s e系统时间同步操作 This model paper was revised by the Standardization Office on December 10, 2020

一、时区设置 使用utc还是local time. UTC(Universal Time Coordinated)=GMT(Greenwich Mean Time) Local time 是你手表上的时间 linux可以处理UTC时间和蹩脚的Windows所使用的local time 如果机器上同时安装有Linux和Windows,建议使用local time 如果机器上只安装有Linux,建议使用utc 确定后编辑/etc/sysconfig/clock, UTC=0 是local time; UTC=1 是UTC(GMT) 1)/etc/sysconfig/clock查看当前时区 HWCLOCK="-u" #与下面设置的时区对应 下面2项不用改#jvm/Nginx等程序取的时间才与date命令时间一致TIMEZONE="America/New_York" DEFAULT_TIMEZONE="US/Eastern" 2)使用tzselect设置时区(========好像对时间同步没有用) #/usr/bin/tzselect 逐步选择就ok

3)复制相应的时区文件,替换系统默认时区 # cp /usr/share/zoneinfo/Asia/Shanghai /etc/localtime 或者 cp /usr/share/zoneinfo/Asia/Beijing /etc/localtime(====这个不能同步时间,不知原因) 4)java时区:java_opts增加 =GMT+8 二、时间同步 内网时间服务器: 1)服务器端配置/etc/ restrict restrict mask #有几种都配置上 restrict mask restrict mask restrict mask server #是时钟服务器 2)服务器端ntp服务启动(xntp / ntp) # /etc/ntpd start 3)客户端只做定时同步

时间同步服务器技术规范书

时间同步服务器技术规范书 概述 SNTM系列网络时间服务器实现了网络PTP/NTP与卫星信号冗余输入,支持 PTP/NTP/SNTP网络对时、串口报文授时、1PPS脉冲信号输出,干接点报警信号输出,采用安全的MD5协议和证书加密方式,具有完整的日志记录功能和USB端口下载功能。该产品系统整体功耗小,采用无风扇设计,运行可靠稳定,完全满足《国家电网统一时钟系统技术规范》、《上海电网GPS时间同步系统技术原则和运行管理规定》和《电力系统时间同步技术规范》的各种要求,特别适用于分布在不同地点不同系统的统一授时,为计算机网络、计算机应用系统、流程控制管理系统、电子商务系统、网上B2B系统以及数据库的保存及维护需要提供精密的标准时间信号和时间戳服务。 SNTM系列网络时间服务器作为思利敏电力公司系列时间产品单元,内置高精度OCXO 晶振(可选铷原子)守时,可作为一级、二级甚至多级PTP/NTP时间服务器,支持任意扩展,满足大规模、多方式的时间信号需求。产品自推出市场以来,经受了众多的现场运行考验,得到广大用户的认可与信赖,已经被成功应用于政府、金融、移动通信、公安、石油、电力、交通、以及国防等领域。 技术特性 1物理外观标准2U,19英寸机架式机箱。全模块化,带电热插拔,即插即用方式。 2供电电源交流220V±10%,50Hz±5%,功率小于30W。 3工作环境工作湿度:0℃~+50℃;相对湿度:≤90%(40℃);存储温度:-30℃~+70℃. 4输入要求配备GPS+北斗二代+IRIG-B(422)码冗余授时。 5输出要求配备标准RJ45网络接口,3个NTP/SNTP网络授时端口,12路IRIG-B(422)信号输出,6路RS232串口信号输出,1路PPS脉冲信号输出。 6告警接点1路GPS北斗信号失步告警接点输出,1路B码信号失步告警接点输出,1路电源失电告警接点输出。 7时间精度锁定后输出1pps相对UTC的平均偏差小于50nS。 8守时精度小于0.42μS/分钟。

BBU时钟同步方案学习资料

1.1目前BBU采用的时钟同步方案 在NodeB的BBU时钟同步方案应用中,目前产品中采用方案如下: 图1目前BBU时钟同步方案 关键需求: 1.频率同步要求:0.05ppm 2.相位同步要求:1.5us 基本原理: 通过使用GPS等稳定特性好的时钟源来校准精度较高的本地时钟,可以将GPS的长 期稳定特性与本地时钟晶振的短期稳定特性很好的结合起来,为整个系统提供可靠的系统时间和工作时钟,保证系统的频率同步和相位同步要求。 组成: 频率合成:本方案中频率合成指的是将OCXO输出的10MHZ的时钟进行变频,转换成系统时钟(目前系统时钟频率为20.48MHZ),这部分功能是采用专用的数字频率合成芯片DDS (AD9851 )来完成的;方案中共用到了两路DDS,其中的一路频率合成电路 (DDS1的输出(20.48MHZ作为同步算法的高频参考时钟输入到FPGA在FPGA内部经过DCM 模块变成高频时钟(200MH竝右);另一路频率合成电路(DDS2的输出(20.48MHZ 经过驱动电路后输出到背板提供给各个单板使用,由于输出到背板的时钟需要实时跟踪主 用板输出时钟的相位,所以会实时调节这一路AD9851 ( DDS2输出信号的相位。而另一 路AD9851 (DDS1的输出相位不作任何调整,这样就保证了同步算法的正确性。 OCXO的频率调整电路:OCXO的输出频率会受环境温度、负载、电源的影响,而且OCXO 自身也会老化。为了保证OCXO输出时钟的精度需要根据实际情况调整OCXO 的输出频率。OCXO有时钟频率调整端,此管脚的电压值将直接控制OCXO的输出频率。

DA变换在本板中的作用是产生OCXO的频率控制电压,CPU经过时钟算法处理后推算出OCXO的频率与GPS的时钟相比的误差,结合OCXO的频率调整范围以及预计调整的频率值,推算出应该设定的频率控制电压;知道了OCXO的频率控制电压后,再结合DA转换器的工作范围,就可以推算出DA转换器要设定的数字量。 FPGA: DDS2输出的20.48MHZ时钟信号通过分频产生PP2S信号。记录1pps间的 204.8Mhz时钟频率误差以及1pps和PP2S的相位差提供给CPU完成时钟同步算法。配置DA、DDS。 CPU:完成时钟同步算法。时钟同步模块类似锁相环,同步算法相当于鉴相器(部分)和低通滤波器。同步算法根据时钟参考源锁定状态下提供的1PPS信号来调整本板时钟(通常为压控恒温晶振OCXO),使得本板输出的PP2S信号的频率满足要求,且相位与1PPS 相位严格对齐。 GPS接收机:提供基站系统同步所需的时间;提供1pps作为时钟同步的常稳参考源。 方案优点:设计思路简单,通过CPU和FPGA共同来完成时钟同步算法,不仅实现了对频率的校准同时保证相位同步,时钟同步算法自主开发,可维护性强。 方案缺点:受OCXO的频率调整范围限制。由于需要对OCXO进行频率调整,一旦OCXO的频率调整范围超出了时钟同步算法设定的频率调整范围,将无法进行频率校准,必须更换OCXO。 设计难点:时钟同步算法是本方案的设计难点,特别是失锁后的保持算法。 1.2基于AD9548的时钟同步方案 基于AD9548的时钟同步方案框图如下: 图2基于AD9548 的时钟同步方案 关键需求: 1.频率同步要求:0.05ppm 2.相位同步要求:1.5us 基本原理: GPS等稳定特性好的时钟源作为数字锁相环的参考源,数字锁相环来产生校准后的高精度的系统时钟,通过系统时钟分频产生与1PPS同步的PP2S,从而保证系统的频率

linux系统时间与硬件时间的设置及同步

linux 的系统时间有时跟硬件时间是不同步的 Linux时钟分为系统时钟(System Clock)和硬件(Real Time Clock,简称RTC)时钟。系统时钟是指当前Linux Kernel 中的时钟,而硬件时钟则是主板上由电池供电的时钟,这个硬件时钟可以在BIOS中进行设置。当Linux启动时,硬件时钟会去读取系统时钟的设置,然后系统时钟就会独立于硬件运作。 Linux中的所有命令(包括函数)都是采用的系统时钟设置。在Linux中,用于时钟查看和设置的命令主要有date、hwclock和clock。其中,clock和hwclock用法相近,只用一个就行,只不过clock命令除了支持x86硬件体系外,还支持Alpha硬件体系。 1、date 查看系统时间 # date 设置系统时间 # date --set “07/07/06 10:19" (月/日/年时:分:秒) 2、hwclock/clock 查看硬件时间 # hwclock --show 或者# clock --show 设置硬件时间

# hwclock --set --date="07/07/06 10:19" (月/日/年时:分:秒) 或者# clock --set --date="07/07/06 10:19" (月/日/年时:分:秒) 3、硬件时间和系统时间的同步 按照前面的说法,重新启动系统,硬件时间会读取系统时间,实现同步,但是在不重新启动的时候,需要用hwclock或clock命令实现同步。 硬件时钟与系统时钟同步:# hwclock --hctosys(hc代表硬件时间,sys代表系统时间)或者# clock --hctosys 系统时钟和硬件时钟同步:# hwclock --systohc或者# clock --systohc

时间同步设置说明

时间同步客户端设置说明 一、对于那些采用UNIX平台通用操作系统的设备,如Sun OS, Unix, Linux,Solaris, IBM AIX等系统均包含有标准的时间同步模块包,安装后,直接对对应的配置文件进行配置即可实现时间同步功能。以下部分系统的配置方法供参考: AIX 版本:IBM AIX 5.1/5.2 目的:使系统通过NTP服务器进行时间校对(同时作为客户端和服务端) 方法: 1)安装NTP服务模块 2)打开etc/ntp.conf文件 3)加入NTP服务器IP地址(如服务器地址为A.B.C.D则加入”server A.B.C.D”) 4)加入IP地址:127.127.1.0(本机作为NTP Server) #broadcastclient server A.B.C.D server 127.127.1.0 driftfile /etc/ntp.drift tracefile /etc/ntp.trace 5)存盘退出 6)本机时间和NTP服务器时间差超过1000秒,需要进行人工修正。 a)、ntp客户端使用 ntpdate 命令来确认是否可用指定的 ntp 服务器进行时间同步, 命令的结果会显示客户端与服务器的时间偏移。 #ntpdate -d 192.168.30.221 …… 18 Mar 10:52:54 ntpdate[23578]: step time server 192.168.30.221 offset 86323.068272 sec b)、若时间间隔大于1000秒,使用ntpdate 进行调整, 如: #date (查询当前时间) Tue Mar 18 11:06:29 BEIST 2003 #ntpdate 192.168.30.221 (修正本机时间为NTP服务器的时间) 19 Mar 11:06:51 ntpdate[23832]: step time server 192.168.30.221 offset 86403.402607 sec #date (查询修正后的时间,时间误差应该小于1000秒) Wed Mar 19 11:06:54 BEIST 2003 7)设置xntpd进程自启动: # smit xntpd 选择Start Using the xntpd Subsyste 选择BOTH方式,表示立即启动以及系统下次启动的时候将自动启动 通过如下命令可以看到,其实xntpd是tcpip服务组的一个子服务而已 #lssrc -g tcpip Subsystem Group PID Status inetd tcpip 303118 active snmpd tcpip 651356 active xntpd tcpip 589898 active ……

时钟同步系统施工方案

时钟同步系统施工方案

施工方案审批表 审核单位:审核意见:审核人: 日期:监理单位:监理意见:监理人: 日期:批准单位:审批意见:审批人: 日期:

目录 一、施工方案综述............................................................................................... - 3 - 二、工程概况及特点........................................................................................... - 4 - 三、施工步骤....................................................................................................... - 5 - 四、风险分析..................................................................................................... - 14 - 五、生产安全及文明施工................................................................................. - 14 - 一、施工方案综述 根据中韩(武汉)石油化工有限公司PLC系统的改造技术要求和我公司对改造要求的理解来编制施工方案。

NTP服务时间同步设置

一、市局集中端服务器上搭建NTP服务的服务端 1、在市局集中端服务器上,通过开始菜单,输入regedit命令后打开注册表设定画面。 2、修改以下选项的键值 HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\W32Time\TimeProviders\ NtpServer内的「Enabled」设定为1,打开NTP服务器功能

3、修改以下键值 HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\W32Time\Config\ AnnounceFlags设定为5,该设定强制主机将它自身宣布为可靠的时间源,从而使用内置的互补金属氧化物半导体(CMOS) 时钟。 4、在dos命令行执行以下命令,确保以上修改起作用 net stop w32time net start w32time 那么为了避免服务器和internet上的ntp同步,最好追加以下配置: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\W32Time\TimeProviders\

NtpClient的「enable」设定为0 以防止作为客户端自动同步外界的时间服务 二、硬盘录像机设置NTP服务的客户端 (注:只有新版型号的硬盘录像机才有NTP的功能) 1、在市局服务器IE浏览器地址栏输入硬盘录像机IP地址,进入到登陆界面,输入用户名:admin 密码:12345 端口号:8000 登陆后选择菜单“配置”, 2、在“配置”页面左边选择“远程配置”,出来“远程参数配置”页面,在“远程参数配置”页面里选择“网络参数”→“NTP设置”,“启用NTP”打上钩,“服务器地址”统一为市局集中端服务器地址,“NTP端口号”为123,校时间隔:4320(统一设置为三天,这里的单位是分钟),选择时区: ,点儿“保存”按钮。

域控的系统时间无法与北京时间同步的解决方案

域控的系统时间无法与北京时间同步的解决方案 某日, XX同事跑过来说, 我的XP的时间怎么不对啊, 比手机慢了3分钟, 我信誓旦旦的说, 这个与域控服务同步的, 没有问题, 肯定是你的手机时间错啦! ---但是既然有同事提醒, 我打开北京时间的官网一比对, 那个时候的汗那...确实慢了3分钟, 我想, DC也可能不对, 立马VNC, 哇靠, 确实如此! 查看DC注册表, 我现在的时间, 应该是跟服务器CMOS的硬件同步, 查阅MS-KB, 此方案通过同步外部时间服务器(推荐:https://www.doczj.com/doc/352985202.html,)来解决此问题并实现LAN内唯一特许经营时间提供商(世博专供). 以下转自Microsoft, 版权归属MS.由任何疑问, 请电联800. https://www.doczj.com/doc/352985202.html,/kb/816042/zh-cn 配置Windows 时间服务以使用外部时间源 要将内部时间服务器配置为与外部时间源同步,请按照下列步骤操作: 1. 将服务器类型更改为NTP。为此,请按照下列步骤操作: a. 单击“开始”,单击“运行”,键入regedit,然后单击“确定”。 b. 找到并单击下面的注册表子项: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\W32Time\Parameters\Type c. 在右窗格中,右键单击“Type”,然后单击“修改”。 d. 在“编辑值”的“数值数据”框中键入NTP,然后单击“确定”。 2. 将AnnounceFlags设置为5。为此,请按照下列步骤操作: . 找到并单击下面的注册表子项: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\W32Time\Config\AnnounceFlags a. 在右窗格中,右键单击“AnnounceFlags”,然后单击“修改”。 b. 在“编辑DWORD 值”的“数值数据”框中键入5,然后单击“确定”。 3. 启用NTPServer。为此,请按照下列步骤操作: . 找到并单击下面的注册表子项:

时间同步服务器设置

默认情况下,服务器Windows2003 Server是作为时间同步客户端的。你可以双击系统时间,在“Internet时间”属性页里有时间同步的设置,显然系统默认是作为客户端的。所以,必须通过修改设置,使系统作为时间同步的服务端。 1,修改注册表以下项的键值 HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\W32Time\TimeProviders\NtpServer 内的“Enabled”设置为“1”,打开时间同步服务功能。 2,修改以下键值HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\W32Time\Config里的“AnnounceFlags”设置为“5”,表示强制主机将它自身宣布为可靠的时间源,从而使用CMOS时钟。如果设置为“a”,则表示为采用外面的时间服务器。 3,重启Win32Time服务执行如下命令:net stop w32time && net start w32time 客户端设置: 1,客户端的设定更改注册表即可。 HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\W32Time\TimeProviders\NtpClient里的“SpecialPollInterval”时间间隔(单位为秒,43200为12小时);“SpecialPollTimeRemaining”时间同步的服务器,格式为:“IP address,0”,例如:192.168.1.1,0。 2,重启win32time服务net stop w32time && net start w32time这样,设置完成了,无需重启电脑。如果想立刻时间的变化,可以把时间设置成1、2秒。

相关主题
文本预览
相关文档 最新文档