当前位置:文档之家› 多普勒天气雷达基础

多普勒天气雷达基础

多普勒天气雷达基础
多普勒天气雷达基础

多普勒天气雷达基础

一、填空题

0.5,1.5 , 2.4 ,

2、我国S波段雷达探测范围:当探测距离在230km、340km、460km时,雷达波束高度分别是 4.5 km 、9.2km 、15.3 km 。

3、雷达探测的局限性是波束展宽和Overshooting 。

4、超级单体风暴可能产生的灾害有:雷电、灾害性大风,强降水、冰雹、甚至龙

二、选择题

1、雷达通常观测地面以上的大气,通常采用最低仰角是0.5°度,这样做的原因(A )

A.尽量减少地面的杂波

B.对近地层进行完美的扫描

C.随距离变远,波束中心逐渐变高,采样体积变大。

2、多普勒天气雷达的主要应用领域有(ABCDE)(多选)

A.强对流天气的监测与预警

B. 监测天气尺度和次天气尺度降水系统

C.降水估计测量

D.风的测量(VAD 风廓线)——提供风场信息

E.数据同化,改善数值预报模式初值场

3、下面那些中小尺度天气系统可以产生雷暴大风天气?(ABCD)(多选)

A.一般强风暴(超级单体或多单体风暴)

B.飑线

C.与强锋面有关的带状对流中处于成熟阶段的单体中的下沉气流

D.雷暴低层的强烈入流

4、下面不属于气象回波的有(BCDG)(多选)

A.絮状回波

B.超折射回波

C.鸟类回波

D.飞机回波

E.阵风锋

F.飑线G海浪回波H.0度层亮带

三、判断对错

1、在雷达图的产品中,0等速度线呈“S”形则说明大气风场结构为暖平流,呈反“S”形则为冷平流。(对)

2、雷达波束随着距离的变远,采样体积变少。(错)

3、雷达不能观测头顶的大气状态,但能观测所有近地面的大气。(错)

4、雷达在扫描时一个波束以某仰角发射出来,转360°完成一个高度的扫描。(对)

5.雷达不能观测到“头顶“的大气静锥区,环状无回波区。(对)

四、简答题

1、雷达上能观测到的气象回波有那些?(至少写出8个)

答:稳定性层云降水回波(小雨、雪)

对流性积云降水回波(超级单体、龙卷、飑线、雷暴大风、冰雹、暴雨、暴雪、台风、阵风锋、海陆锋等

2、下图的强回波区域是什么回波?并简述理由。

A B

C D

答:。理由:晴空超折射回波;强回波区域速度为0,抬高仰角后,强回波区域迅速减小。

3.请标出以下基本径向速度图中白色圆圈内的中γ尺度系统(气旋、反气旋、辐合、辐散,气旋性辐合,气旋性辐散,反气旋辐合,反气

旋辐散)

(1)答案:气旋性辐合

(2)答案:辐散

(3)答案:气旋(4)答案:

(5)答案:气旋

4.图3中哪个是基本径向速度图?哪个是基本反射率图?图中有没有三体散射特征?可能发生那种灾害性天气?

答案:左边基本反射率;右边速度;有雷暴、冰雹、大风

6、多普勒天气雷达原理与应用

第六部分多普勒天气雷达原理与应用(周长青) 我国新一代天气雷达原理;天气雷达图像识别;对流风暴的雷达回波特征;新一代天气雷达产品 第一章我国新一代天气雷达原理 一、了解新一代天气雷达的三个组成部分和功能 新一代天气雷达系统由三个主要部分构成:雷达数据采集子系统(RDA)、雷达产品生成子系统(RPG)、主用户处理器(PUP)。 二、了解电磁波的散射、衰减、折射 散射:当电磁波束在大气中传播,遇到空气分子、大气气溶胶、云滴和雨滴等悬浮粒子时,入射电磁波会从这些粒子上向四面八方传播开来,这种现象称为散射。 衰减:电磁波能量沿传播路径减弱的现象称为衰减,造成衰减的物理原因是当电磁波投射到气体分子或云雨粒子时,一部分能量被散射,另一部分能量被吸收而转变为热能或其他形式的能量。 折射:电磁波在真空中是沿直线传播的,而在大气中由于折射率分布的不均匀性(密度不同、介质不同),使电磁波传播路径发生弯曲的现象,称为折射。 三、了解雷达气象方程 在瑞利散射条件下,雷达气象方程为: 其中Pr表示雷达接收功率,Z为雷达反射率,r为目标物距雷达的距离。Pt表示雷达发射功率,h为雷达照射深度,G为天线增益,θ、φ表示水平和垂直波宽,λ表示雷达波长,K表示与复折射指数有关的系数,C为常数,之决定于雷达参数和降水相态。 四、了解距离折叠 最大不模糊距离:最大不模糊距离是指一个发射脉冲在下一个发射脉冲发出前能向前走并返回雷达的最长距离,Rmax=0.5c/PRF, c为光速,PRF为脉冲重复频率。 距离折叠是指雷达对雷达回波位置的一种辨认错误。当距离折叠发生时,雷达所显示的回波位置的方位角是正确的,但距离是错误的(但是可预计它的正确位置)。当目标位于最大不模糊距离(Rmax)以外时,会发生距离折叠。换句话说,当目标物位于Rmax之外时,雷达却把目标物显示在Rmax以内的某个位置,我们称之为‘距离折叠’。 五、理解雷达探测原理。 反射率因子Z值的大小,反映了气象目标内部降水粒子的尺度和数密度,反射率越大,说明单位体积中,降水粒子的尺度大或数量多,亦即反映了气象目标强度大。 反射率因子(回波强度): 即反射率因子为单位体积内中降水粒子直径6次方的总和。 意义:一般Z值与雨强I有以下关系: 层状云降水 Z=200I1.6 地形雨 Z=31I1.71 雷阵雨 Z=486I1.37 新一代天气雷达取值 Z=300I1.4 六、了解雷达资料准确的局限性、资料误差和资料的代表性 由于雷达在探测降水粒子时,以大气符合标准大气情况为假定,与实际大气存在一定的差别,使雷达资料的准确度具有一定的局限性,且由于雷达本身性能差异及探测方法的固有局限,对探测目标存在距离折叠及速度模糊现象,对距离模糊和速度模

多普勒天气雷达原理与业务应用思考题

1 多普勒天气雷达主要由几个部分构成?每个部分的主要功能是什么? 答:主要由雷达数据采集子系统(RDA ),雷达产品生成子系统(RPG ),主用户终端子系统(PUP )三部分构成。RDA 的主要功能是:产生和发射射频脉冲,接收目标物对这些脉冲的散射能量,并通过数字化形成基本数据。RPG 的主要功能是:由宽带通讯线路从RDA 接收数字化的基本数据,对其进行处理和生成各种产品,并将产品通过窄带通讯线路传给用户,是控制整个雷达系统的指令中心。PUP 的主要功能是:获取、存储和显示产品,预报员主要通过这一界面获取所需要的雷达产品,并将它们以适当的形式显示在监视器上。 2 多普勒天气雷达的应用领域主要有哪些? 答:一、对龙卷、冰雹、雷雨大风、暴洪等多种强对流天气进行监测和预警;二、利用单部或多部雷达实现对某个区域或者全国的降水监测;三、进行较大范围的降水定量估测; 四、获取降水和降水云体的风场信息,得到垂直风廓线;五、改善高分辨率数值预报模式的初值场。 3 我国新一代天气雷达主要采用的体扫模式有哪些? 答:主要有以下三个体扫模式:VCP11——规定5分钟内对14个具体仰角的扫描,主要对强对流天气进行监测;VCP21——规定6分钟内对9个具体仰角的扫描,主要对降水天气进行监测;VCP31——规定10分钟内对5个具体仰角的扫描(使用长脉冲),主要对无降水的天气进行监测。 4 天气雷达有哪些固有的局限性? 答:一、波束中心的高度随距离的增加而增加;二、波束宽度随距离的增加而展宽;三、静锥区的存在。 5 给出雷达气象方程的表达式,并解释其中各项的意义。 答: P t 为雷达发射功率(峰值功率); G 为天线增益;h 为脉冲长度; 、 :天线在水平方向和垂直方向的波束宽度; r 为降水目标到雷达的距离; :波长; m :复折射指数; Z 雷达反射率因子。 6 给出反射率因子在瑞利散射条件下的理论表达式,并说明其意义。 答:∑= 单位体积6i D z ,反射率因子指在单位体积内所有粒子的直径的六次方的总和,与波长无 关。 7 给出后向散射截面的定义式及其物理意义。 答: 定义:设有一个理想的散射体,其截面面积为?,它能全部接收射到其 上的电磁波能量,并全部均匀的向四周散射,若该理想散射体返回雷达天线处的电磁波能流密度,恰好等于同距离上实际散射体返回雷达天线的电磁波能流密度,Z R C Z m m r h G p p t r ?=?+-=2 2222223212ln 1024λθ?πθ?λi S s R S 24πσ=

最新1多普勒天气雷达原理与应用

1多普勒天气雷达原 理与应用

第六部分 多普勒天气雷达原理与应用(周长青) 我国新一代天气雷达原理;天气雷达图像识别;对流风暴的雷达回波特征;新一代天气雷达产品 第一章 我国新一代天气雷达原理 一、了解新一代天气雷达的三个组成部分和功能 新一代天气雷达系统由三个主要部分构成:雷达数据采集子系统(RDA )、雷达产品生成子系统(RPG )、主用户处理器(PUP )。 二、了解电磁波的散射、衰减、折射 散射:当电磁波束在大气中传播,遇到空气分子、大气气溶胶、云滴和雨滴等悬浮粒子时,入射电磁波会从这些粒子上向四面八方传播开来,这种现象称为散射。 衰减:电磁波能量沿传播路径减弱的现象称为衰减,造成衰减的物理原因是当电磁波投射到气体分子或云雨粒子时,一部分能量被散射,另一部分能量被吸收而转变为热能或其他形式的能量。 折射:电磁波在真空中是沿直线传播的,而在大气中由于折射率分布的不均匀性 (密度不同、介质不同),使电磁波传播路径发生弯曲的现象,称为折射。 2 /3730/776.0T e T P N +=波束直线传播 波束向上弯曲波束向下弯曲000=>

雷达波长,K 表示与复折射指数有关的系数,C 为常数,之决定于雷达参数和降水相态。 四、了解距离折叠 最大不模糊距离:最大不模糊距离是指一个发射脉冲在下一个发射脉冲发出前能向前走并返回雷达的最长距离,Rmax=0.5c/PRF, c 为光速,PRF 为脉冲重复频率。 距离折叠是指雷达对雷达回波位置的一种辨认错误。当距离折叠发生时,雷达所显示的回波位置的方位角是正确的,但距离是错误的(但是可预计它的正确位置)。当目标位于最大不模糊距离(Rmax )以外时,会发生距离折叠。换句话说,当目标物位于Rmax 之外时,雷达却把目标物显示在Rmax 以内的某个位置,我们称之为‘距离折叠’。 五、理解雷达探测原理。 反射率因子Z 值的大小,反映了气象目标内部降水粒子的尺度和数密度,反射率越大,说明单位体积中,降水粒子的尺度大或数量多,亦即反映了气象目标强度大。 反射率因子(回波强度): ?=dD D D N Z 6)( 3 60/1m mm Z = 即反射率因子为单位体积内中降水粒子直径6次方的总和。 意义:一般Z 值与雨强I 有以下关系: 层状云降水 Z=200I1.6 地形雨 Z=31I1.71 雷阵雨 Z=486I1.37 新一代天气雷达取值 Z=300I1.4 六、了解雷达资料准确的局限性、资料误差和资料的代表性 由于雷达在探测降水粒子时,以大气符合标准大气情况为假定,与实际大气存在 一定的差别,使雷达资料的准确度具有一定的局限性,且由于雷达本身性能差异及探测方法的固有局限,对探测目标存在距离折叠及速度模糊现象,对距离模糊和速度模糊的处理等,均增大了雷达资料的误差。虽然如此,由于径向速度是从多个脉冲对得到的径向速度的平均值,为平均径向速度,雷达反射率因子通过对沿径向上的四个取样体积平均得到的,其径向分辨率相当于四个取样体积的长度,这也使雷达探测的资料具有一定的代表性。 第二章 天气雷达图像识别 一、掌握多普勒效应 多普勒效应为,当接收者或接受器与能量源处于相对运动状态时,能量到达接受者或接收器时频率的变化。多普勒频率,是由于降水粒子等目标的径向运动引起的雷

多普勒天气雷达练习题精编版

练习题2 1.业务运行的多普勒天气雷达通常采用体积扫描的方式观测。我国业务运行多普勒雷达通常采用的体描模式(VCP11、VCP21、VCP31)2.多普勒天气雷达与常规天气雷达的主要区别在于:前者可以测量目标物(沿雷达径向速度),从而大大加强了天气雷达对各种天气系统特别是(强对流天气系统)的识别和预警能力。 3.新一代雷达系统对灾害天气有强的监测和预警能力。对台风、暴雨等大范围降水天气的监测距离应不小于(400km)。 4.新一代雷达系统对灾害天气有强的监测和预警能力。对雹云、中气旋等小尺度强对流现象的有效监测和识别距离应大于(150km)。 5.新一代雷达观测的实时的图像中,提供了丰富的有关(强对流天气)信息。 6.新一代雷达速度埸中,辐合(或辐散)在径向风场图像中表现为一个最大和最小的径向速度对,两个极值中心连线和雷达射线(一致)。7.新一代雷达速度埸中,气流中的小尺度气旋(或反气旋),在径向风场图像中表现为一个最大和最小的径向速度对,但中心连线走向则与雷达射线相(垂直)。 8.新一代天气雷达观测采用的是北京时。计时方法采用24小时制,计时精度为秒。 9.速度场(零等值线)的走向不仅表示风向随高度的变化,同时表示雷达有效探测范围内的(冷、暖平流)。 10.在距离雷达一定距离的一个小区域内,通过对该区域内沿雷达径向速度特征的分析,可以确定该区域内的气流(辐合)、(辐散)和(旋转)等特征。 11.天气雷达是用来探测大气中降水区的(位置)、大小、强度及变化

12.气象目标对雷达电磁波的(散射)是雷达探测的基础。 13.气象上云滴、雨滴和冰雹等粒子一般可近似地看作是圆球。当雷达波长确定后,球形粒子的散射情况在很大程度上依赖于粒子直径D 和入射波长λ之比。对于(D远小于λ)情况下的球形粒子散射称为瑞利散射;而(D与λ尺度相当)情况下的球形粒子散射称为(Mie)米散射。 14.多普勒天气雷达使用低脉冲重复频率PRF测(反射率因子),用高脉冲重复频率PRF测(速度)。 15.每秒产生的触发脉冲的数目,称为(脉冲重复频率),用PRF 表示。两个相邻脉冲之间的间隔时间,称为(脉冲重复周期),用PRT表示,它等于脉冲重复频率的(倒)数。 16.降水粒子产生的回波功率与降水粒子集合的反射率因子成(正比)。与取样体积到雷达的距离的平方成(反比)。 17.S波段天气雷达是(10)cm波长的雷达。 18.在天线方向上两个半功率点方向的夹角称为(c波束宽度)。19.在强回波离雷达(较近)时,有可能产生旁瓣造成虚假回波. 20.降水粒子的后向散射截面是随粒子尺度增大而(增大)。 21.0 dBZ、-10dBZ、30dBZ和40dBZ对应的Z值分别为(1)、(0.1)、(1000)、(10000) (mm6/m3)。 22.SA雷达基数据中反射率因子的分辨率为(1km×1°)。 23.写出Z-I关系的表达公式 (b Z ) AI 24.Ze的物理意义是(所有粒子直径的6次方之和)。 25.雷达反射率η是单位体积中,所有降水粒子的(雷达截面之和)。 26.雷达气象方程说明回波功率与距离的(二)次方成反比。

多普勒雷达原理

汽笛声变调的启示--多普勒雷达原理 1842年一天,奥地利数学家多普勒路过铁路交叉处,恰逢一列火车从他身 旁驰过,他发现火车由远而近时汽笛声变响,音调变尖(注:应为“汽笛声的音频频率变高”);而火车由近而远时汽笛声变弱,音调变低(应为“汽笛声的音频频率降低了”)。他对这种现象感到极大兴趣,并进行了研究。发现这是由于振源与观察者之间存在着相对运动,使观察者听到的声音频率不同于振源频率的缘故,称为频移现象。因为这是多普勒首先提出来的,所以称为多普勒效应。 由于缺少实验设备,多普勒当时没有用实验进行验证。几年后有人请一队小号手在平板车上演奏,再请训练有素的音乐家用耳朵来辨别音调的变化,验证了该效应。 为了理解这一现象,需要考察火车以恒定速度驶近时,汽笛发出的声波在传播过程中表现出的是声波波长缩短,好像波被“压缩”了。因此,在一定时间间隔内传播的波数就增加了,这就是观察者为什么会感受到声调变高的原因;相反,当火车驶向远方时,声波的波长变大,好像波被“拉伸”了。因此,汽笛声听起来就显得低沉。 用科学语言来说,就是在一个物体发出一个信号时,当这个物体和接收者之间有相对运动时,虽然物体发出的信号频率固定不变,但接收者所接收到的信号频率相对于物体发出的信号频率出现了差异。多普勒效应也可以用波在介质中传播的衰减理论解释,波在介质中传播,会出现频散现象,随距离增加,高频向低频移动。 多普勒效应不仅适用于声波,它也适用于所有类型的波,包括电磁波。 多普勒效应被发现以后,直到1930年左右,才开始应用于电磁波领域中。常见的一种应用是医生检查就诊人用的“彩超”,就是利用了声波的多普勒效应。简单地说,“彩超”就是高清晰度的黑白B超再加上彩色多普勒。超声振荡器产生一种高频的等幅超声信号,向人体心血管器官发射,当超声波束遇到运动的脏器和血管时,便产生多普勒效应,反射信号为换能器所接受,根据反射波与发射波的频率差可以求出血流速度,根据反射波的频率是增大还是减小判定血流方向。 20世纪40年代中期,也就是多普勒发现这种现象之后大约100年,人们才将多普勒效应应用于雷达上。多普勒雷达就是利用多普勒效应进行定位,测速,测距等的雷达。当雷达发射一固定频率的脉冲波对空扫描时,如遇到活动目标,回波的频率与发射波的频率出现频率差(称为多普勒频率),根据多普勒频率的大小,可测出目标对雷达的径向相对运动速度;根据发射脉冲和接收的时间差,可以测出目标的距离。20世纪70年代以来,随着大规模集成电路和数字处理技术的发展,多普勒雷达广泛用于机载预警、导航、导弹制导、卫星跟踪、战场侦察、靶场测量、武器火控和气象探测等方面,成为重要的军事装备以及科学研究、业务应用装置。 多普勒天气雷达,是以多普勒效应为基础,当大气中云雨等目标物相对于雷达发射信号波有运动时,通过测定接收到的回波信号与发射信号之间的频率差异就能够解译出所需的信息。它与过去常规天气雷达仅仅接收云雨目标物对雷达发射电磁波的反射回波进了一大步。这种多普勒天气雷达的工作波长一般为5~10厘米,除了能起到常规天气雷达通过回波测定云雨目标物空间位置、强弱分布、垂直结构等作用,它的重大改进在于利用多普勒效应可以测定降水粒子的运

多普勒天气雷达基础

多普勒天气雷达基础 一、填空题 0.5,1.5 , 2.4 , 2、我国S波段雷达探测范围:当探测距离在230km、340km、460km时,雷达波束高度分别是 4.5 km 、9.2km 、15.3 km 。 3、雷达探测的局限性是波束展宽和Overshooting 。 4、超级单体风暴可能产生的灾害有:雷电、灾害性大风,强降水、冰雹、甚至龙 二、选择题 1、雷达通常观测地面以上的大气,通常采用最低仰角是0.5°度,这样做的原因(A ) A.尽量减少地面的杂波 B.对近地层进行完美的扫描 C.随距离变远,波束中心逐渐变高,采样体积变大。 2、多普勒天气雷达的主要应用领域有(ABCDE)(多选) A.强对流天气的监测与预警 B. 监测天气尺度和次天气尺度降水系统 C.降水估计测量 D.风的测量(VAD 风廓线)——提供风场信息 E.数据同化,改善数值预报模式初值场 3、下面那些中小尺度天气系统可以产生雷暴大风天气?(ABCD)(多选) A.一般强风暴(超级单体或多单体风暴) B.飑线 C.与强锋面有关的带状对流中处于成熟阶段的单体中的下沉气流 D.雷暴低层的强烈入流 4、下面不属于气象回波的有(BCDG)(多选) A.絮状回波 B.超折射回波 C.鸟类回波 D.飞机回波 E.阵风锋 F.飑线G海浪回波H.0度层亮带 三、判断对错 1、在雷达图的产品中,0等速度线呈“S”形则说明大气风场结构为暖平流,呈反“S”形则为冷平流。(对) 2、雷达波束随着距离的变远,采样体积变少。(错) 3、雷达不能观测头顶的大气状态,但能观测所有近地面的大气。(错) 4、雷达在扫描时一个波束以某仰角发射出来,转360°完成一个高度的扫描。(对) 5.雷达不能观测到“头顶“的大气静锥区,环状无回波区。(对)

1多普勒天气雷达原理与应用

第六部分 多普勒天气雷达原理与应用(周长青) 我国新一代天气雷达原理;天气雷达图像识别;对流风暴的雷达回波特征;新一代天气雷达产品 第一章 我国新一代天气雷达原理 一、了解新一代天气雷达的三个组成部分和功能 新一代天气雷达系统由三个主要部分构成:雷达数据采集子系统(RDA )、雷达产品生成子系统(RPG )、主用户处理器(PUP )。 二、了解电磁波的散射、衰减、折射 散射:当电磁波束在大气中传播,遇到空气分子、大气气溶胶、云滴和雨滴等悬浮粒子时,入射电磁波会从这些粒子上向四面八方传播开来,这种现象称为散射。 衰减:电磁波能量沿传播路径减弱的现象称为衰减,造成衰减的物理原因是当电磁波投射到气体分子或云雨粒子时,一部分能量被散射,另一部分能量被吸收而转变为热能或其他形式的能量。 折射:电磁波在真空中是沿直线传播的,而在大气中由于折射率分布的不均匀性 (密度不同、介质不同),使电磁波传播路径发生弯曲的现象,称为折射。 2 /3730/776.0T e T P N +=波束直线传播 波束向上弯曲波束向下弯曲000=>

最大不模糊距离:最大不模糊距离是指一个发射脉冲在下一个发射脉冲发出前能向前走并返回雷达的最长距离,Rmax=0.5c/PRF, c 为光速,PRF 为脉冲重复频率。 距离折叠是指雷达对雷达回波位置的一种辨认错误。当距离折叠发生时,雷达所显示的回波位置的方位角是正确的,但距离是错误的(但是可预计它的正确位置)。当目标位于最大不模糊距离(Rmax )以外时,会发生距离折叠。换句话说,当目标物位于Rmax 之外时,雷达却把目标物显示在Rmax 以内的某个位置,我们称之为‘距离折叠’。 五、理解雷达探测原理。 反射率因子Z 值的大小,反映了气象目标内部降水粒子的尺度和数密度,反射率越大,说明单位体积中,降水粒子的尺度大或数量多,亦即反映了气象目标强度大。 反射率因子(回波强度): ?=dD D D N Z 6)( 0lg 10Z Z dBZ ?= 360/1m mm Z = 即反射率因子为单位体积内中降水粒子直径6次方的总和。 意义:一般Z 值与雨强I 有以下关系: 层状云降水 Z=200I1.6 地形雨 Z=31I1.71 雷阵雨 Z=486I1.37 新一代天气雷达取值 Z=300I1.4 六、了解雷达资料准确的局限性、资料误差和资料的代表性 由于雷达在探测降水粒子时,以大气符合标准大气情况为假定,与实际大气存在一定的差别,使雷达资料的准确度具有一定的局限性,且由于雷达本身性能差异及探测方法的固有局限,对探测目标存在距离折叠及速度模糊现象,对距离模糊和速度模糊的处理等,均增大了雷达资料的误差。虽然如此,由于径向速度是从多个脉冲对得到的径向速度的平均值,为平均径向速度,雷达反射率因子通过对沿径向上的四个取样体积平均得到的,其径向分辨率相当于四个取样体积的长度,这也使雷达探测的资料具有一定的代表性。 第二章 天气雷达图像识别 一、掌握多普勒效应 多普勒效应为,当接收者或接受器与能量源处于相对运动状态时,能量到达接受者或接收器时频率的变化。多普勒频率,是由于降水粒子等目标的径向运动引起的雷达回波信号的频率变化,也称为多普勒频移,其与目标的径向运动速度成正比,与多普勒天气雷达波长成反比。 二、了解多普勒天气雷达测量反射率因子、平均径向速度和速度谱宽的主要技术方法 多普勒雷达利用降水粒子的后向散射与多普勒效应来达到对其探测的目的。通过发射信号与接收信号的延迟来测量距离,通过降水粒子的多普勒频移来测量其速度。 反射率因子:雷达的反射率因子是降水粒子后向散射被雷达天线接收到的回波,为单位体积内中降水粒子直径6次方的总和,反射率因子Z 值的大小,反映了气象目标内部降水粒子的尺度和数密度,反射率越大,说明单位体积中,降水粒子的尺度大或数量多。

新一代多普勒天气雷达产品

新一代多普勒天气雷达产品及其在短时天气预报中的应用 引明 中心气象台 二零零二.二

目录 第一讲:新一代多普勒雷达基本构成及雷达产品生成数据流简介 (4) 1.1 基本构成 (4) 1.2 数据采集子系统(RDA) (5) 1.3 产品生成子系统(RPG) (7) 1.4 主用户处理子系统(PUP) (8) 第二讲:雷达基本产品的生成、调阅和应用 (9) 2.1 基本反射率因子(R) (10) 2.2 平均径向速度(V) (12) 2.3 速度谱宽(W) (14) 第三讲:由基本反射率因子导出产品的生成、调阅和应用 (16) 3.1 组合反射率因子(CR) (18) 3.2 组合反射率因子廓线(CRC) (20) 3.3 反射率因子剖面(RCS) (22) 3.4 分层组合反射率因子平均值(LRA) (24) 3.5 分层组合反射率因子最大值(LRM) (26) 3.6 弱回波区(WER) (28) 3.7 风暴跟踪信息(STI) (30) 3.8 风暴结构(SS) (34) 3.9 冰雹指数(HI) (36) 3.10 回波顶高(ET) (40) 3.11 回波顶高廓线(ETC) (42) 3.12 垂直积分液态含水量(VIL) (44) 3.13 强天气概率(SWP) (46) 3.14 一小时降水量(OHP) (48) 3.15 三小时降水量(THP) (50) 3.16 风暴总降水量(STP) (52) 3.17 用户可选降水量(USP) (54) 3.18补充降水资料(SPD) (56) 3.19一小时数字降水阵列(DPA)……………………………………………………(58). 第四讲:由基本速度资料导出产品的生成、调阅和应用 (59) 4.1 风暴相对平均径向速度图(SRM) (60) 4.2 风暴相对平均径向速度区(SRR) (62) 4.3 平均径向速度场剖面(VCS) (64) 4.4 速度方位显示(V AD) (66) 4.5 速度方位显示风廓线(VWP) (68) 4.6 中尺度气旋(M) (70) 4.7 龙卷涡旋标志(TVS) (74) 4.8 组合切变(CS) (78)

多普勒天气雷达原理与业务应用测验1(答案)..

多普勒天气雷达原理与业务应用测验一 (一至四章) 一、填空题 1、天气雷达是探测降水系统的主要手段,是对强对流天气(冰雹、大风、龙卷和暴洪)进行监测和预警的主要工具之一。 2、RDA由四个部分构成:发射机、天线、接收机和信号处理器。 3、PUP可以通过以下三种方式获取产品:(1)常规产品列表;(2)一次性请求;(3)产品-预警配对。 4、S波段和C波段的雷达波在传播过程中主要受到降水的衰减,衰减是由降水离子对于雷达雷达波的散射和吸收造成的。 5、.新一代多普勒雷达估测累计降水分布时,雷达采样时间间隔一般不应超过10分钟,除受本身精度限制外,还受降水类型(Z-R关系)、雷达探测高度、地面降水差异和风等多种因素影响。 6、多普勒雷达能测量的一个脉冲到下一个脉冲的最大相移上限是180度,其对应的径向速度值称为最大不模糊速度。 7、径向速度图中,零等速线呈“S”型表示,实际风随高度顺时针旋转,由RDA处得南风转为现实区边缘对应的西风。反之,零等速线呈反“S”型表示,实际风随高度。逆时针旋转,由RDA处得南风转为现实区边缘对应的东风。 8、WSR-88D和我国新一代天气雷达的脉冲重复频率在300-1300范

围内。 9、多普勒天气雷达的最大不模糊距离与雷达的脉冲重复频率成反比,相应的最大不模糊速度与脉冲重复频率成正比。 10、对于SA和SB型雷达,基数据中反射率因子的分辨率为1K M×1°,而径向速度和谱宽的分辨率为0.25K M×1°。 11、积状云降水一般有比较密实的结构,反射率因子空间梯度较大,其强度中心的反射率因子通常在35dbz以上,而层状云降水回波比较均匀,反射率因子空间梯度较小,反射率因子一般大于15dbz而小于30dbz。 12、雷达波束和实际风向的夹角越大,则径向速度值越小;实际风速越小,径向速度也越小。 13、如果一个模糊的径向速度值是 45 节,它的邻近值是-55 节,最大不模糊径向速度是 60节,那么这个径向速度的最可能值是节(-75)14、我国的新一代天气雷达主要采用(VCP11、VCP21、VCP31)三种体扫模式。 15、雷达产品生成子系统有主要功能有:(产品生成);(产品分发);雷达控制台;(第三级数据存档)。 16、主用户处理器PUP是的主要功能有:(产品请求);(产品数据存档);产品显示;(产品编辑注释);状态监视。 17、在瑞利散射条件满足的情况下,降水粒子集合的反射率因子只与降水粒子本身的(尺寸)和(数密度)有关。 18、(距离折叠)是雷达对产生雷达回波的目标物位置的一种辨认错误。

舟山多普勒天气雷达原理与业务应用试题

多普勒天气雷达原理与业务应用试题 1、新一代天气雷达主要有哪三个部分组成? 答:雷达数据采集(RDA )、雷达产品生成(RPG )和主用户处理器(PUP )。 2、雷达数据采集(Radar Data Acquisition )简称RDA ,有哪几部分构成? 答:发射机、天线、接收机和信号处理器。 3、主用户处理器(Principal User Processor )简称PUP ,主要功能是什么? 答:获取、存储和显示产品。 4、新一代天气雷达第一级数据是由接收机输出的模拟数据,第二级数据是由信号处理器产生的最高时空精度的高分辨率数据,称为 基数据 ;第三级数据是由RPG 生成的数据,称为 产品数据 。 5、新一代天气雷达有哪4种常用体扫模式?强对流天气过程中最好使用何种扫描模式? 新一代天气雷达有VCP11、VCP21、VCP31、VCP32四种常用体扫模式。 强对流天气过程中最好使用VCP11体扫模式。 6、雷达气象方程为i i kdr t r r r h G P P 单位体积∑?=-σψπθφλ0 2.02 22210.)2(ln 1024,其中G 表示 天线增益 ,λ表示 雷达波长 , σ表示 粒子的后向散射截面 。 7、在瑞利散射条件下, 单位体积 单位体积 ∑∑= 62 4 5||i i D k λπσ,定义反射率因子单位体积 ∑= 6 i D Z ,则雷达气象方程可表示为C P r Z r 2= ,其中2 2 23||)2(ln 1024K h G P C t λθφπ=。在不满足瑞利散射条件下,雷达气象方程要表示为同一形式C P r Z r e 2=,则e Z 称为 等效反射率因子 。 8、反射率因子和回波功率的表示形式分别定义为 0 lg 10Z Z dBZ ?=(10=Z 3 6/m mm )和 min lg 10P P dB r ?=,将雷达气象方程 C P r Z r 2= 变换为 min min lg 10lg 10lg 20lg 10P C P P r Z r -+=,即A r dB dBZ -+=lg 20,其中r lg 20为 距

多普勒天气雷达回波识别和分析之降水回波

多普勒天气雷达回波识别和分析之降水回波 1.层状云降水雷达回波特征——片状回波 层状云是水平尺度远远大于垂直尺度云团,由这种云团所产生的降水称之为稳定性层状云降水。降水区具有水平范围较大、持续时间较长、强度比较均匀和持续时间较长等特点。 ⑴回波强度特征:①在PPI上,层状云降水回波表现出范围比较大、呈片状、边缘零散不 规则、强度不大但分布均匀、无明显的强中心等特点。回波强度一般在20-30dBz,最强的为45dBz。②在RHI上,层状云降水回波顶部比较平整,没有明显的对流单体突起,底部及地,强度分布比较均匀,因此色彩差异比较小。一个明显的特征是经常可以看到在其内部有一条与地面大致平行的相对强的回波带。进一步的观测还发现这条亮带位于大气温度层结0度层以下几百米处。由于使用早起的模拟天气雷达探测时,回波较强则显示越亮,因此称之为零度层亮带。回波高度一般在8公里以下,当然会随着纬度,季节的不同有所变化。 ⑵回波径向速度特征:由于层状云降水范围较大,强度与气流相对比较均匀,因此相应其 径向速度分布范围也较大,径向速度等值线分布比较稀疏,切向梯度不大。在零径向速度型两侧常分布着范围不大的正、负径向速度中心,另外还常存在着流场辐合或辐散区。 ⑶零度层亮带:如前所述,在PPI仰角较高或者RHI扫面时,总能在零度层以下几百米处 看到一圈亮环或者亮带回波,亮带内的回波比上下两个层面都强。由于亮带回波总是伴随层状云降水出现,因此是层状云降水的一个重要特征。(零度层亮带形成的原因:冰晶、雪花下落的过程中,通过零度层时,表明开始融化,一方面介电常数增大,另一方面出现碰并聚合作用,使粒子尺寸增大,散射能力增强,所以回波强度增大。当冰晶雪花完全融化后,迅速变成球形雨滴,受雨滴破裂和降落速度的影响,回波强度减小。这样就存在一个强回波带,说明层状云降水中存在明显的冰水转换区,也表明层状云降水中气流稳定,无明显的对流活动。) 2.对流云降水雷达回波特征——块状回波 对流云往往对应着阵雨、雷雨、冰雹、大风、暴雨等天气。 ⑴回波强度特征:①在PPI上,对流云阵性降水回波通常由许多分散的回波单体所组成。 这些回波单体随着不同的天气过程排列成带状、条状、离散状或其它形状。回波单体结构

多普勒天气雷达集训试题附答案

多普勒天气雷达集训试题附答案 一、填空题 1、新一代天气雷达主要由雷达数据采集系统RDA、雷达产品生成系统RPG、主用户终端子系统PUP三部分组成。 2、新一代天气雷达的体扫方式有VCP11、VCP21、VCP31、VCP32。降水模式使用VCP11或VCP21,晴空模式使用VCP31或VCP32,其中VCP11常在强对流风暴出现的情况下使用,而VCP21在没有强对流但有显着降水的情况下使用,其他情况下使用VCP31。 3、多普勒天气雷达测量的三种基数据是基本反射率因子、平均径向速度、谱宽。 4、大气中折射的种类有标准大气折射、超折射、负折射、无折射、临界折射。 5、多普勒雷达是一种全相干雷达,每个发射脉冲的位相已知的,而且是相同的。 6、雷达探测到的任意目标的空间位置可根据仰角、方位角、斜距三个基本要素求得。 7、多普勒雷达除了具有探测云和降水的位置和强度的功能以外,它以多普勒效应为基础,根据返回信号的频率漂移,还可以获得目标物相对于雷达运动的径向速度。 8、达气象方程为=t p∑单位体积i r h PtGσπθ?λ2 222)2(ln1024,其中G表示天线增益,h表示脉冲长度,σ

表 示粒子的后向散射截面。9、反射率因子定义为单位体积中所有粒子直径的6次方之和。它的大小反映了气象目标内部降水粒子的尺度和数密度,常用来表示气象目标的强度。 10、 11、雷达波束在降水中传播时能量的衰减是由降水粒子对雷达电磁波的散射和吸收造成的。 12、当发生距离折叠时,雷达所显示的回波位置的方位(或位置)是正确的,但距离是错误的。 13、在风向随高度不变的多普勒速度图像中,零等速度线为一条贯穿屏幕中心的直线。 14、在雷达径向速度图上,任意高度处的真实风向垂直于过雷达测站点和该高度与零值等风速线交点的径向直线;暖平流时零值等风速线呈S型,冷平流时呈反S型;出现急流时会有一对符号相反的并与PPI显示中心对称分布的闭合等风速线出现。 15、新一代雷达速度埸中,辐合或辐散在径向风场图像中表现为一个最大和最小的径向速度对,两个极值中心连线和雷达射线一致。 16、多普勒天气雷达与常规天气雷达的主要区别在于前者可以测量目标物沿雷达径向的 速度当目标物位于最大不模糊距离以外时,雷达错误地把它当作

《多普勒天气雷达观测产品色标规范》编制说明

气象行业标准《多普勒天气雷达观测产品色标规范》编制说明 一、工作简况 1.任务来源 本标准由中国气象局提出,全国气象仪器与观测方法标准化技术委员会(SAC/TC507)归口。2019年由中国气象局下达中国气象局气象探测中心,项目编号QX/T-2020-50,计划项目名称为《新一代天气雷达观测产品色标等级》,正式立项名称为《多普勒天气雷达观测产品色标规范》。 2.协作单位 《多普勒天气雷达观测产品色标规范》气象行业标准的牵头单位为中国气象局气象探测中心,协作单位为陕西省西安市气象局、北京敏视达雷达有限公司。 3.主要工作过程 (1)2019年3月,应业务需求,申报《新一代天气雷达观测产品色标等级》,2019年4月获批并更名为《多普勒天气雷达观测产品色标规范》。 (2)2019年5月,成立标准起草小组,制定标准编制工作计划、编写大纲,明确任务分工及各阶段进度时间。 (3)2019年6月,标准起草小组成员认真学习GB/T 1.1—2009《标准化工作导则第1部分:标准化文件的结构和起草规则》及GB/T1.2—2000《标准化工作导则第2部分:标准的制定方法》,结合标准制定工作的各个环节进行认真讨论。 (4)2019年7月-10月,在官方收集、调研国外相关标准、规范等资料基础上,编制组完成《多普勒天气雷达观测产品色标规范》讨论稿(第一稿)。 (5)2019年11月,进行小组内部讨论,进一步完善《多普勒天气雷达观测产品色标规范》讨论稿(第二稿) (6)2019年12月-2020年2月,结合目前双偏振雷达业务现状,在《多普勒天气雷达观测产品色标规范》中增加了多普勒雷达观测产品相关内容,形成《多普勒天气雷达观测产品色标规范》讨论稿(第三稿)。 (7)2020年3月,向中国气象局气象探测中心、省级、台站、厂家等多部门专家进行咨询,专家针对标准适用范围、具体技术等提出意见。 (8)2019年4月-5月,根据上述专家意见,形成《多普勒天气雷达观测产品色标规范

天气雷达回波模拟系统的设计与实现

天气雷达回波模拟系统的设计与实现 摘要:天气雷达回波模拟系统能够成功模拟出具有真实天气目标特征的回波信号,利用这种回波信号可以实现在实验室环境中完成本需在外场试验条件下才可以进行的雷达性能测试。首先介绍了天气雷达回波模拟的原理,设计出回波模拟流程图,其次给出了回波模拟硬件平台的设计及模拟软件实现的思路,最后根据真实天气回波的特征等信息生成模拟回波图,并对模拟前后的回波图进行对比分析。 关键词:天气雷达;回波;信号模拟 0 引言 在现代地基主动气象遥感领域,多普勒天气雷达占据着重要的地位,特别是在对一些突发性、灾害性等中小尺度天气过程的捕获与跟踪时,其较高的时间与空间分辨能力就显得越来越重要[1]。随着多普勒天气雷达在气象探测业务运行中的广泛使用,在雷达的研发与维护过程中,对雷达的性能进行完整测试就显得非常重要[2]。由于实验条件及天气状况等因素的影响,要在完全真实的天气过程的环境中对雷达各个模块及系统进行测试将非常困难。国内现阶段对雷达接收机性能测试所采用的方法一般是给其提供一个不具有天气目标回波特征的单一频率的信号,这些信号能够通过测量系统通道的技术参数来验证系统硬件的性能。但由于这些测试信号不具有天气信号的时频特征,故测试结果仍与处理真实天气回波时的状态存在差异。而将实时天气目标回波作为接收机的测试信号的方法却有成本过高、测试过程复杂、所需时间长等缺点。除此之外,由于实时气象目标的参数是不可控的,所以这种方法不能实现对接收机性能参数的定量测试。如果能够模拟产生具有真实天气目标特征的雷达回波信号,就可以在实验室环境中模拟完成外场试验所需的测试,同时也可以降低测试成本,缩短研发周期,提高工作效率[3]。除此之外,对模拟回波的参数进行控制,可以实现定量测试,进而可对接收机及后端的信号处理算法进行验证。 1 天气回波信号模拟的原理 由于天气目标的径向移动会造成接收信号的频率相对于发射信号的频率存在一定的频移(多普勒频移),即天气雷达回波信号可以看成原始发射信号在时间上的延迟并且频谱进行搬移后的一个时间序列,这就是回波信号模拟的基本原理[4]。 ZRNIC D S[5]在总结了滤波器法与快速卷积法等模拟算法后,从天气雷达回波信号的功率谱的角度,提出了简单实用的基于谱模型的直接拟合法。气象回波的功率谱密度函数为Pn(f): 其中,pr为回波的功率,fd为多普勒频率,f为频率标准差,PRF为脉冲重复频率,N 为样本个数。 由气象雷达方程及相关理论可知:pr=CZ/r2,fd=2vr。其中,C为雷达常数,只与雷达系统的参数有关;Z为反射率因子;r为气象目标与雷达站的径向距离;vr、v分别为径向速度和速度谱宽;为雷达发射电磁波波长。 为了模拟出具有真实回波信号的频谱特性,需要在式(1)中加入噪声,然后进行随机化可得式(4): 式中,随机变量rnd在区间[0,1]上具有均匀分布,PN(f)为每秒钟噪声总功率,则PN(f)/PRF为噪声功率谱密度。 为了获取回波信号的复频谱特征,需要在Pn(f)中引入0~2π变化的随机相位谱?渍n(f)=rnd·2π/rndmax,即可以构成回波信号的复频谱,然后将其进行离散傅里叶逆变换(IDFT)得到对应的时间序列sn:

舟山多普勒天气雷达原理与业务应用试题

多普勒天气雷达原理与业务应用试题 1、新一代天气雷达主要有哪三个部分组成? 答:雷达数据采集(RDA )、雷达产品生成(RPG )和主用户处理器(PUP )。 2、雷达数据采集(Radar Data Acquisition )简称RDA ,有哪几部分构成? 答:发射机、天线、接收机和信号处理器。 3、主用户处理器(Principal User Processor )简称PUP ,主要功能是什么? 答:获取、存储和显示产品。 4、新一代天气雷达第一级数据是由接收机输出的模拟数据,第二级数据是由信号处理器产生的最高时空精度的高分辨率数据,称为 基数据 ;第三级数据是由RPG 生成的数据,称为 产品数据 。 5、新一代天气雷达有哪4种常用体扫模式?强对流天气过程中最好使用何种扫描模式? 新一代天气雷达有VCP11、VCP21、VCP31、VCP32四种常用体扫模式。 强对流天气过程中最好使用VCP11体扫模式。 6、雷达气象方程为i i kdr t r r r h G P P 单位体积∑?=-σψπθφλ0 2.02 22210.)2(ln 1024,其中G 表示 天线增益 ,λ表示 雷达波长 , σ表示 粒子的后向散射截面 。 7、在瑞利散射条件下, 单位体积 单位体积 ∑∑= 62 4 5||i i D k λπσ,定义反射率因子单位体积 ∑= 6 i D Z ,则雷达气象方程可表示为C P r Z r 2= ,其中22 23||)2(ln 1024K h G P C t λθφ π=。在不满足瑞利散射条件下,雷达气象方程要表示为同一形式C P r Z r e 2=,则e Z 称为 等效反射率因子 。 8、反射率因子和回波功率的表示形式分别定义为 0 lg 10Z Z dBZ ?=(10=Z 3 6/m mm )和 min lg 10P P dB r ?=,将雷达气象方程 C P r Z r 2= 变换为

多普勒天气雷达基础理论知识

多普勒天气雷达基础理论知识 一、填空题 1、雷暴单体的生命史可分为三个阶段,分别是(塔状积云)阶段、(成熟)阶段和(消散)阶段。 2、雷暴或深厚湿对流产生的三个要素是(大气垂直层结不稳定)、(水汽)和(抬升触发机制)。 3、强冰雹的产生要求雷暴内具有(强烈上升气流);而雷暴大风的产生通常要求雷暴内具有(强烈的下沉气流)。 4、在瑞利散射条件满足的情况下,降水粒子集合的发射率因子只与降水粒子本身的(尺寸)和(数密度)有关。 5、龙卷涡旋特征TVS的定义有三个指标,包括(切变)、(垂直方向伸展)以及(持续性)。 6、积状云降水回波强度中心的反射率因子一般大于(15)dBz以上。而层状云降水回波的反射率因子一般大于(15)dBz,小于(35)dBz, 大片的层状云或层状云-积状云混合降水大都会出现明显的(零度层亮带)。 7、如果大范围的环境风场零速度呈反“S”型变化,表示实际风向(随高度反时针旋转),并且在雷达有效探测范围内为(冷平流)。 8、在雷达径向方向上,若某区域最大入流速度中心位于左侧,表示该区域存在(气旋性旋转);若最大入流速度中心位于右侧,表示该区域存在(反气旋旋转)。 9、弓形回波是移动(迅速)(凸状)的与灾害性的下击暴流紧密相关的

低层回波,最强风经常发生在(弓形回波前方)。 10.降水回波功率随降水粒子(大小)、(相态)、(几何形状)不同而异。 11.雷暴分为(普通单体风暴)、(多单体风暴)、(线风暴(飑线))、(超级单体风暴)四类。 12.压、湿随高度变化的不同,导致了折射指数分布的不同,使电磁波的传播发生弯曲,一般有(标准大气)折射、(临界)折射、(超)折射、(负)折射、(零)折射五种折射现象。 13?不存在单一的(脉冲重复频率)使得最大不模糊距离和最大不模 糊速度都比较大,这通常称为(多普勒两难)。 14.雷暴或DM(形成的三要素为(条件不稳定层结)、(丰富的水汽)、(气块抬升到凝结高度的启动机制)。 15?新一代天气雷达子系统由(雷达数据采集子系统RDA、(雷达产品生成子系统RPG和(基本用户终端子系统PUP组成。 16?风暴路径属性包括(风暴单体序列号)、(风暴单体过去的位置)、(风暴单体当前的位置)、(风暴单体位置移动)、(预报的风暴单 体位置)和(预报误差)。 17?根据积云中盛行的垂直速度的大小和方向,普通风暴单体的演化 过程通常包括三个阶段:(塔状积云阶段)、(成熟阶段)和(消亡阶

相关主题
文本预览
相关文档 最新文档