当前位置:文档之家› 加热炉温度控制系统设计与仿真研究_毕业设计论文

加热炉温度控制系统设计与仿真研究_毕业设计论文

加热炉温度控制系统设计与仿真研究_毕业设计论文
加热炉温度控制系统设计与仿真研究_毕业设计论文

内蒙古科技大学

本科生毕业设计说明书(毕业论文)

题目:加热炉温度控制系统设计与

仿真研究

加热炉温度控制系统设计与仿真研究

摘要

在钢铁企业中,为了将钢坯加热到轧制所规定的工艺要求,必然地要求对加热炉内的温度进行有效的控制,使之保持在某一特定的范围内。而温度的维持又要求燃料在炉内稳定地燃烧。加热炉燃烧过程是受随机因素干扰的,具有大惯性、纯滞后的非线性过程。

本设计针对加热炉燃烧控制系统,主要介绍的控制方案有单回路控制系统、串级比值控制系统、单交叉限幅控制系统、双交叉限幅控制系统,并对每一种控制方案进行了理论分析。运用MATLAB软件对温度控制系统进行了较为全面的仿真和性能分析。通过分析比较可以得出结论,双交叉限幅对加热炉温度的控制优于其它的控制方案。双交叉限幅的炉温控制系统使煤气流量和空气流量相互限制,既防止了燃烧中冒黑烟,也防止了空气过剩,达到控制加热炉温度,提高煤气燃烧率,避免环境污染等目的。

关键词:加热炉;单交叉限幅控制;双交叉限幅控制;MATLAB仿真

Temperature Control of Heating Furnace System Design and

Simulink Study

Abstract

In the enterprises where producing iron and steel, in order to heat up billet to the technological requirements of rolling, the temperature inside the furnace must be controlled effectively so that it remains in a specific range. Maintaining the temperature needs the stable burning of fuel inside the furnace. Furnace combustion process is a non-linear process which is subject to the random interference, great inertia and the pure time delay.

The design for the furnace combustion control system is mainly on the control of a single-loop control programme, the ratio of cascade control system, control system limiting unilateral, bilateral limiting control system, and analyses each of the control programme on theory. Using MATLAB software makes a more comprehensive simulation and performance analysis on the temperature control system. Through analysis and comparison we can conclude that bilateral limiting control system is superior to others in the furnace temperature control. The temperature control system of bilateral limiting control system makes gas flow and air flow restrict on each other, which not only prevent the burning of black smoke, but also prevent the excess air, to reach the purposes of controlling the furnace temperature, enhancing the rate of combustion gas and avoiding pollution and others.

Key words: furnace; single-limiting control; bilateral-limiting control; MA TLAB Simulation

目录

摘要........................................................................................................................................II Abstract .................................................................................................................................... III 第一章绪论 (1)

1.1 概述 (1)

1.2 国内现状 (2)

1.3 本设计的研究内容 (2)

第二章加热炉工艺简介 (3)

2.1 加热炉的组成 (3)

2.2 加热炉的温度加热方式 (3)

2.3 加热炉工艺流程 (3)

2.4 加热炉温度控制要求 (5)

2.4.1 燃烧系统 (6)

2.4.2 炉膛负压 (7)

2.5 空燃比 (8)

第三章加热炉的温度控制系统 (10)

3.1 单闭环控制系统 (11)

3.2 炉膛负压控制系统 (12)

3.3 串级比值燃烧控制系统 (13)

3.4 单交叉限幅燃烧控制系统 (15)

3.4.1 单交叉限幅燃烧控制系统工作原理 (15)

3.4.2 单交叉限幅燃烧控制系统特点 (17)

3.5 双交叉限幅燃烧控制系统 (17)

3.5.1 双交叉限幅燃烧控制原理图 (17)

3.5.2 双交叉限幅燃烧控制系统的工作原理 (18)

3.5.3 双交叉限幅燃烧控制特点 (20)

第四章加热炉温度控制系统仿真 (23)

4.1 对象模型的建立 (23)

4.2 系统各装置数学模型的建立 (24)

4.3 仿真软件简介 (26)

4.4 加热炉炉温控制系统仿真结果分析 (27)

4.4.1 炉温单回路控制仿真 (27)

4.4.2 燃料空气串级比值控制仿真 (31)

4.4.3 单交叉限幅控制仿真 (34)

4.4.4 双交叉限幅控制仿真 (36)

4.5 总结 (38)

第五章系统的检测变送装置及正反作用 (39)

5.1 检测变送 (39)

5.1.1 差压式流量计 (39)

5.1.2 热电偶 (39)

5.2 系统仪表正反作用的确定 (40)

参考文献 (41)

致谢 (42)

第一章绪论

1.1 概述

加热炉是热轧生产过程的重要热工设备,其能耗占到钢铁工业总能耗的25%。它的主要作用是提高钢坯的塑性,降低变形抗力,以满足轧制工艺的要求。其温度控制性能直接影响到加热炉的能耗和最终钢材产品质量、钢坯成材率、轧制设备寿命以及整个轧线的有效作业率。

钢坯在轧前进行加热,是钢坯在热加工过程中一个必须的环节。对轧钢加热炉而言,加热的主要目的就是提高钢坯的塑性,降低变形抗力。

钢坯加热应满足下列要求:

(1)加热温度应严格控制在规定的温度范围,防止产生加热缺陷。钢坯加热应当保证在轧制全部过程都具有足够的可塑性,满足生产要求,但并非说钢坯加热温度越高越好,而应有一定的限度,过高的加热温度可能产生废品和浪费能源。

(2)加热制度必须满足不同钢种、不同断面、不同形状的钢坯在具体条件下合理加热。

(3)钢坯加热温度应在长度、宽度和断面上均匀一致。

钢坯加热温度是指钢坯在加热炉内加热完毕出炉时的表面温度。确定钢坯加热温度不仅要根据钢种的性质而且还要考虑到加工的要求,以获得最佳的塑性,最小的变形抗力,从而有利于提高轧制的产量、质量、降低能耗和设备磨损。

锻造加热炉必须保证1250℃以上的炉温。这种炉在以发热量低于1300千焦/米3的煤气或发热量低于5000千焦/千克的煤为燃料时,将难于甚至不能达到需要炉温,这时可对煤气和空气进行预热。例如:煤气发热量为1200千焦/米3,仅能达到约1200℃的炉温,而将空气预热到400℃时,则可达到约1320℃的炉温。

加热炉的离炉烟气带走的热量约占供入炉内热量的50~60%。利用这部分热量预热空气和煤气是节约燃料的有效方法。燃料节约百分数与离炉烟气温度成正比,离炉烟气温度越高,则燃料节约百分数越大。例如:燃烧发生炉煤气的炉子,同样将空气预热到500℃,间断式加热炉的离炉烟气温度为1200℃,燃料节约达30%;连续式加热炉的离炉烟气温度为900℃,燃料节约则为23%。

1.2 国内现状

我国从80年代初开始进入加热炉计算机控制系统研究阶段。就国内来说,我国钢铁企业现有轧钢炉窖近千座,其中加热炉700多座。目前,国内大多数加热炉的计算机控制水平很低,虽然引进了一些先进的控制系统和设备,但绝大部分加热炉计算机控制系统仍然处在计算机过程控制的水平上,甚至还有少数加热炉由人工操作,其加热质量和能耗与国外同行相比相距甚远。在理论研究方面,近年来,国内对加热炉数学模型的研究越来越活跃起来,我国的科学工作者进行了大量的卓有成效的研究工作,取得了一些研究成果。有很多学者,对钢坯升温的数学模型进行了研究,还有学者将燃料消耗与钢温联系起来,构成燃料消耗最低的真实目标函数,从而可以运用最优升温曲线。

1.3 本设计的研究内容

本设计源于三段式推钢侧出加热炉,燃料采用高炉焦炉混合煤气。在参照相关理论的基础之上,设计了该加热炉控制系统,包括加热炉内的加热炉串级比值控制、单交叉限幅、双交叉限幅燃烧控制,很好地抑制了处于副环(煤气热值和压力的波动、生产率的改变及炉内参数的变化等)的干扰因素对加热炉运行的影响;提高了炉温控制的快速性,实现了加热炉燃烧过程的控制。

本人在阅读了大量的文献资料的基础上,对加热炉相关工艺进行了深入的了解,分析了加热炉控制系统的难点。在现有几种燃烧控制方法的基础上,提出了双边限幅控制,使系统性能得到了极大的改善。运用MATLAB软件对温度控制系统进行了较为全面的仿真和性能分析。

第二章加热炉工艺简介

2.1 加热炉的组成

加热炉由以下几个基本部分构成:炉膛与炉衬、装出料设备、燃料系统、供风系统、排烟系统、冷却系统、电子计算机控制系统、余热利用装置、检测及调节装置等。

2.2 加热炉的温度加热方式

加热炉的温度加热方式大体分为:一段式加热方式、两段式加热方式、三段式及多段式加热方式。

三段式加热方式是比较完善的加热制度,它是把钢坯放在三个温度条件不同的区域内加热,依次是:预热段、加热段、均热段。钢坯首先在低温区域进行预热,这时加热速度比较慢,温度应力小,不会造成危险。当钢坯温度超过500℃~600℃以后,进入塑性范围,这时就可以快速加热,直到表面温度快速升高到出炉所要求的温度。加热期结束时,钢坯断面上还有较大的温差,需要进入均热期进行均热,此时钢坯表面温度不再升高,而使中心温度逐渐上升,缩小断面上的温度差。

2.3 加热炉工艺流程

加热炉的作用是将钢坯加热到轧制工艺要求的温度[1],在此温度下进行轧制既能保证燃料的合理利用又能使轧制力在正常范围内。下图为加热炉结构简图:

图2.1加热炉结构简图

加热炉为三段式加热炉,沿炉长方向分为预热段、II加热段、I加热段和均热段,如上图所示。预热段主要是依靠炉内尾气余热来预热装炉钢坯,从而提高燃料的利用率。为了把钢坯加热到目标温度,加热炉以高炉焦炉混合煤气为燃料,分成五个控制区域对加热炉的燃烧过程和炉温进行控制,即II 加热段上区,并将I 加热段和均热段各分成上、下两个区域,每个区域单独控制,分别设置有热电偶温度传感器,空气流量控制器、煤气流量控制器,对每段的炉温以及燃烧状况进行实时监控,各控制器的设定值可用手动方式,亦可根据不同规格、材质的钢坯自动设定,预热段内由于没有设置烧嘴而不参与控制。

三段式加热炉的供热点一般设在均热段端部和侧部,加热段上方和下方的端部和侧部。两面加热可消除坯料沿厚度方向的温度差,这对提高产品质量是有利的。为了使加热均匀,每一个段上的燃烧嘴越密集越好。

加热炉难以用严格的数学表达式描述它的特性,是具有大惯性、大滞后和严重非线性等特性的对象。其结构复杂,受许多干扰因素的影响,燃料的发热值及残氧又很难在线准确测量,因此一般线性调节器不能满足对象及工艺控制的要求。

在加热炉工作时,钢坯被整齐排列在加热炉内,并在推钢机的推动下不断地从炉尾推入炉膛,首先进入预热段,预热段主要是依靠加热段和均热段排出的高温烟气来缓慢加热装炉钢坯,从而提高燃料的利用率。这样钢坯开始升温不大,温度应力小,不会造成裂纹和断裂;钢坯运行到加热二段时,钢坯的中心温度已

超过500℃,进入塑性范围,此时快速加热钢坯使钢坯表面温度迅速升高到出炉温度;在均热段钢坯表面温度不再升高,断面温差逐步减小。这样,钢坯经过预热、加热、均热三个过程,就被加热成温度适宜、温差较小、可供轧制的热坯。此时钢坯被出钢机构推上滚道,由滚道传送给轧机进行轧制,如图(2.1)所示。根据加热工艺要求,一般每块钢坯在炉内大约停留 2 小时,但具体钢种以及生产要求不同,该时间有差异。

加热炉排烟方式为向上排烟,在炉内燃烧生成的烟气由炉尾总排烟管经地上烟道通到厂外烟囱,再排入大气中。为了提高热利用率,在烟道内安装有带保护管组的金属管状换热器,用来回收部分高温烟气所带走的热量,冷空气通过该处预热再分别进入各加热区域,其间空气的预热温度大约为450℃。在烟道装有一套转动阀门,用来对炉膛压力进行自动调节和控制。同时还要对加热炉上方的汽包水位进行控制,以保证支撑钢坯的炉筋管中的水流量,防止烧坏炉筋管。

为了将钢坯加热到轧制所规定的工艺要求,必然地要求对加热炉内的温度进行有效的控制使之保持在某一特定的范围内,出钢温度过高既不必要且又导致钢坯过多烧损和能源浪费,甚至造成粘钢的严重事故。过低则会使轧机轧制困难而影响到最终产品质量和轧机的使用寿命(或维护周期),而温度的维持又要求燃料在炉内稳定地燃烧。另外,不同种类的钢坯对炉内的气氛有不同的要求(这里气氛主要是指氧化气氛和还原气氛,具体要求视加热工艺要求而定),如果氧化气氛过重,会使被加热金属表面生成较厚的氧化皮,不仅浪费材料而且给除鳞带来困难,严重的还会影响产品表面质量。如果还原气氛过重,不仅白白浪费大量燃料,同时还污染了空气。

2.4 加热炉温度控制要求

燃料的种类很多,分类方法也不尽相同。一般按存在状态来分,有固体燃料、液体燃料和气体燃料三种。随着我国冶金工业设备的日趋完善,技术的逐渐提高和石油工业的全面发展,目前国内大、中型冶金企业的轧钢加热炉已极少使用固体燃料,绝大部分轧钢厂是使用气体或液体燃料。

加热炉常用的气体燃料有天然气、高炉煤气、焦炉煤气、发生炉煤气等。常用的液体燃料主要是重油。

本设计所用加热炉燃料为高炉与焦炉煤气的混合煤气。高炉煤气是高炉炼铁的副产品,它主要由可燃成分CO 、H 2、CH 4和不可燃成分N 2、CO 2组成。由于含有大量不可燃成分,约占气体体积的60%~70%,所以发热量比较低,通常只有3350~4200KJ/M 3。高炉煤气由于发热量较低,燃烧温度也低,约1470 ℃,在加热炉上单独使用困难,往往是与焦炉煤气混合使用。焦炉煤气是炼焦生产的副产品,它的燃料成份组成是:H 2含量一般超过50%,CH 4含量一般超过25%,其余是少量的CO 、N 2、CO 2、H 2S 等。由于焦炉煤气的主要可燃成分是高发热量的H 2和CH 4,所以焦炉煤气的发热量较高,为16000~18800 KJ/M 3。

如果高炉煤气与焦炉煤气的发热量分别为Q 高与Q 焦,要配成发热量为Q 混的混合煤气,可以用下式计算:

设焦炉煤气在混合煤气中的体积分数为x,则高炉煤气的体积分数为(1-x ),那么

高焦混)(Q x xQ Q -+=1

(2.1) 整理上式得: 高焦高

混Q Q Q Q x --= (2.2)

采用高炉、焦炉混合煤气不仅合理利用了燃料,而且改善了火焰的性能,它既克服了焦炉煤气火焰上飘的缺点,同时也可以利用焦炉煤气中碳氢化合物分解产生的碳粒,在燃烧时可以增强火焰的辐射能力。

2.4.1 燃烧系统

燃烧系统的曲线描述图如下[12]:

图2.2 燃烧系统的曲线描述

上图表示了空气过剩率与燃烧效率及污染之间的关系,可以看出,燃烧系统的质量跟空气过剩率有很大的关系。同时,空气过剩率还可以用空气和燃气的配比,即空燃比来描述。理论空燃比A0为单位体积或质量的燃料完全燃烧所需的空气量,为一个常数。实际空燃比A=实际空气量/煤气量,设μ为剩余空气系数, μ=实际空气量/理论空气量,A /μ= A0,则实际空燃比与空气剩余系数成正比。从上图可看出当μ<1和1≤μ<1.02分别为空气不足燃烧区域和超低空气过剩燃烧区域,在这两个燃烧区中,会有不完全燃烧现象,这样的热损失就比较大,而且从环境污染角度看,由于不完全燃烧,将会产生大量的黑烟,污染大气。但是如果处于高过剩空气燃烧区,即当μ>1.10时,由于过多的过剩空气,不但使出钢时钢坯表面的氧化铁皮增多,影响钢加热质量,而且使烟气中带走了大量的热量,使燃烧系统热效率过低,同时会使氮硫氧化物增加,对环保不利。因此,在实际燃烧系统中,空气过剩率设定在过剩空气燃烧区1.02≤μ≤1.1是最佳的燃烧方案。

2.4.2炉膛负压

炉膛压力对出钢质量有很大影响,只有炉膛压力适当,才能保证燃烧的效果当均热段的炉膛压力过高时,炉膛内的热气从炉膛口往外喷,会造成很大一部分热

损失。均热段的炉膛压力也不能过低,尤其是当出现负炉压时,冷空气通过炉门、炉衬裂缝以及其它开口进入炉内,这些漏入的冷空气不仅会降低炉膛温度,而且由于其必须被加热到炉温后才能排除,这样造成了燃烧系统的额外负担并浪费大量燃料,且给炉膛温度控制系统带来很大的麻烦,是绝对不允许的。可见,这两种情况对炉内热工过程均不利。从工艺设计上,烟道口的排烟阀功能是用来调节炉膛压力的,因此,我们要求,在正常生产时,烟道阀门的开度大小适当。而在炉内压力发生波动时,根据炉膛压力检测结果,改变炉压调节器的输出,即通过烟道阀门开度的大小,改变排烟量来获得稳定的炉膛压力,从而使炉膛压力稳定在设定值上,以维持炉内微正压。

对于炉膛压力,送风总管压力以及汽包水位的控制,由于被控对象单一,所以采用单回路 PID 控制就能达到较好的效果。

2.5 空燃比

燃烧过程是燃料的氧化过程,当燃料燃烧时,燃烧产物连同其他可能存在的蒸汽都被提高到火焰温度,火焰温度的高低取决于燃料是否完全燃烧,是否发出最大的热效率,故需要空气过量。同时,从安全角度考虑,空气不足也会使燃料在炉子中聚集起来,而一点燃就可能发生爆炸,因此,燃烧过程一般都是在空气过量的情况下进行的。

为了使燃料充分燃烧,必须供给足够的空气,即保证一定的剩余空气系数μ或空燃比r [6]。它们的定义分别为: f

a F A F 0==理论空气量实际空气量μ (2.3) max max

f f

a a F F F F r = (2.4) 可知空燃比r 与剩余空气系数μ的关系为: μβ=?==max

max 00max max

a f f a f f a a

F F A F A F F F F F r (2.5)

0A 为单位体积或质量的燃料完全燃烧所需要的理论空气量

a F 和max a F 分别为空气流量的测量值和最大值

f F 和max f F 分别为燃料流量的测量值和最大值

为理论空气修正系数

第三章加热炉的温度控制系统

加热炉的温度控制一共分为五部分,每一部分单独设置一个串级系统来实现炉膛温度的自动控制。在系统中,炉温控制器为主控制器,它的输出作为副控制器即燃烧控制器的设定值,通过燃烧控制器去决定煤气阀门和空气阀门的开度。而煤气压力波动等变化剧烈的扰动包含在副回路当中,利用副回路的优良动态性能来抑制这些扰动对炉膛温度的影响。在稳定状态下,炉温控制器和燃烧控制器的输出都处于相对稳定值,煤气、空气阀门的开度也保持不变。当稳定状态被破坏时,炉温控制和燃烧控制的串级控制开始作用。对于加热炉温度的影响主要有以下两种干扰:

1.煤气压力波动。当煤气压力发生波动时,流量会相应发生变化。在初始阶段,由于煤气流量的变化不会马上影响到炉温,因此,炉温控制器的输出暂时不变,即煤气流量的设定值不变。由于误差的产生,煤气流量控制器发生作用,经过副回路的调节作用,会大大削弱它对炉温的影响,而此时炉温控制器开始工作,不断改变副控制器的设定值,在主控制器和副控制器的共同作用下,炉温将很快恢复到设定值。

2.炉温变化。当炉温降低时,温度控制器开始动作,控制输出量增大,即煤气流量设定值增大,而此时煤气实际流量没有变化,煤气流量控制器输出增大,阀门增大开度,炉温逐渐升高,直到重新恢复设定值。可见,串级控制系统对于加热炉这样具有大惯性、多扰动等特点的过程,是一种很好的解决方案。

对于定空燃比(燃料热值一定)的燃烧控制系统,概括起来主要有以下几种炉温控制方式:

(1)单回路控制

单回路控制是最简单的控制方式,通过炉温的变化直接调节煤气流量。

(2)串级控制

串级控制中,空气和煤气并行,温度回路的输出值作为煤气、空气回路的设定值。

(3)单交叉限幅控制

单交叉限幅控制可以保证在动态过程中,空气量比燃料量富裕,不会产生冒黑烟现象,但由于对空气量的上限没有限制,因此排烟热损失较大。

(4)双交叉限幅控制

双交叉限幅控制的特点是当热负荷增加时,空气量设定值先增加,煤气量设定值后增加,防止冒黑烟;当热负荷降低时,煤气量设定值先降低,空气量设定值后降低,减少烟气热损失;当空气回路出现故障时,煤气自动切断,避免危险。双交叉算法在动态调节时能够获得合理的空燃比,但响应速度慢。

双叉限幅控制的特点是在单交叉的基础上增加一个最大选择器和一个最小选择器,其目的是保证当炉温低于设定值,需要增加燃料流量时空气先行;而当炉温高于设定值,需要减少燃料流量时燃料先行,以防止冒黑烟。该方法己经广泛应用于工业燃烧控制中,它能在动态过程中保证空燃比在规定范围内,从而使燃烧过程最佳,节约能量,减少环境污染。

3.1 单闭环控制系统

加热炉单回路温度控制系统框图如下[2]:

图3.1 单回路控制系统方框图

采用此系统,在平衡状态下如果炉温突然上升,那么此回路将控制煤气阀和空气阀关小,使温度降回给定值,同样如果炉温突然下降,回路又会控制煤气阀和空气阀开大,使温度回升至给定值。这个控制方案只是针对煤气和空气的压力稳定的情况,当煤气压力变大时在阀门开度不变的情况下会导致煤气流量的增大,从而导致总热值的上升,影响炉温。而由于炉温控制的大惯性,要过很长的时间,炉温检测装置才会有反应。

PID调节器将来自变送器的测量值与给定值相比较后产生的偏差进行比例、积分、微分(PID)运算,并输出统一标准信号,去控制执行机构的动作,以实现对温度、压力、流量、液位及其他工艺变量的自动控制。

所谓PID 控制,就是利用比例、积分和微分三者配合对测量参数的偏差进行运算确定输出量,对被控对象进行控制的方法。当P、I、D 三个参数达到最佳系数组合,PID 的控制效果很好。

控制器参数整定的方法很多,归结起来可以分为两大类[7]:一类是理论计算方法,另一类是工程整定方法。本设计主要利用工程整定方法进行控制器参数整定,工程整定方法有临界比例度法、衰减曲线法和反应曲线法。

(1)临界比例度法在系统闭环情况下,将控制器的积分时间放到最大,微分时间放到最小,比例度放到100%,然后使比例度由大往小逐步改变,直到过渡过程出现不衰减的等幅振荡为止。此时的比例度叫临界比例度,临界振荡的周期则称临界周期。

(2)衰减曲线法此法与临界比例度法有些类似。不同的是让过渡过程最终呈现4:1衰减振荡为止。此时的比例度(δs)和振荡周期(T s)即是我们需要的。因此,在纯比例情况下,系统不会出现等幅振荡,临界比例度法就无法应用,而衰减曲线法在此种情况下也同样能用。因此衰减曲线法应用较为广泛,本设计也将使用该方法对系统进行整定。对系统进行整定,用衰减曲线法4:1衰减振荡时,控制器参数经验公式如图:

表3.1 控制器参数经验公式

P PI PID

δs

1.2δs

0.8δs

δ%

0.5Ts

0.3Ts

-

T i/min

控制器类型

控制器参数

T D/min

-

-

0.1Ts 3.2 炉膛负压控制系统

图3.2炉膛负压控制系统

在炉膛负压控制系统中,PID控制器通过对烟道阀开度大小的控制,从而达到了控制炉膛压力的目的。

送风总管压力也采用单回路PID控制系统,使烧嘴喷出的煤气和空气有一定的速度。供风压力必须和当前煤气压力相匹配,以提高阀门调节的灵敏度。若煤气压力过低,必须相应降低供风压力,使得空气阀门和煤气阀门调节行程大致相同,否则,空气压力过高,空气阀门的微小动作都会导致剩余空气过多。反之,若煤气压力过高,也要相应提高供风压力,使得流量的调节更为准确,以免在调节过程中出现黑烟。

3.3 串级比值燃烧控制系统

为了保证燃料与空气有一定的配比关系,最常用的方案之一是串级比值燃烧控制系统,其原理是空气流量和煤气流量的设定值成简单的比值关系。

1

2

图3.3 串级比值控制系统

加热炉燃烧过程中,正常情况下,煤气和空气应该有一定的比例。焦炉煤气的空燃比大约在4:1左右,高炉煤气的空燃比大约在1.05:1左右,转炉煤气的空燃比大约在1.1:1左右,如果煤气过量,会浪费能源,同时产生冒黑烟现象,产生环境污染;如果空气过量,不仅温度上不去,而且为了加热多余空气,加热炉

的热负荷会变大,同样也会浪费能源,剩余的热空气随烟气排入大气,会产生大量的NO2、SO2等气体污染环境。

在钢铁生产中用到煤气的地方很多,煤气阀前压力难以稳定,为了克服阀前压力波动,把温度和煤气构成串级控制回路,煤气和空气构成比值控制系统,因此引入加热炉串级比值燃烧控制系统。如图3.3所示。在该图中,加热炉温度控制主调节器的输出直接作为燃料流量副调节器的给定值,同时经过空燃比运算器r运算后,作为空气流量副调节器的给定值。通过调整r,可以改变空气和燃料的配比关系。加热炉的燃料燃烧过程中,不仅要保证稳态情况的剩余空气系数一定,更重要的是在加热炉负荷发生变化的动态情况下,保证剩余空气系数仍保持在合理的范围内。

在串级比值燃烧控制系统中,煤气流量是主动量,空气流量是从动量。在稳定状态下,煤气流量和空气流量以一定的比值定量地进入加热炉中。当炉膛温度受干扰作用,燃烧负荷波动不大时,或工艺上需要升降负荷的时候,炉温控制器的输出一方面输出信号给煤气流量控制器,从而进行煤气流量的控制;另一方面经比值器后作为空气控制器的设定值。煤气和空气串级比值控制系统开始工作:当炉温升高时,在炉温控制器反作用下,其输出减小,即煤气流量设定值减小,同时,炉温控制器的输出经比值器给空气流量的设定值也减小,控制煤气调节阀开度减小;同样空气流量的测量值暂时也没有变化,经空气流量控制器使其输出也减小,相应地控制空气调节阀开度减小。

当炉温降低时,炉温控制器反作用下输出增大,即煤气流量设定值增大,同时,炉温控制器的输出经比值器给空气流量的设定值也增大。此时,煤气流量的测量值暂时没有变化,经煤气流量控制使其输出增大,控制煤气调节阀开度增大;同样空气流量的测量值暂时也没有变化,经空气流量控制器输出也增大,相应地控制空气调节阀开度增大。

综上,不论炉温升高还是降低,通过煤气流量和空气流量的串级比值控制系统的控制,可以实现较好的炉温控制。但是对于钢铁厂中的加热炉不仅煤气压力波动大,且燃料热值也在发生波动,在动态过程中,实际空燃比会产生很大的波动,空气过剩系数很容易进入黑烟区,因此,无法进行抑制,效果很差[12]。

在燃烧负荷发生急剧变化的情况下,由于控制空气流动管道与煤气流动管道特性间的差异,各阀门的响应速度和系统的响应速度不同,会带来缺氧燃烧现象和过氧燃烧现象的发生,此时若仍采用串级比值燃烧控制系统将无法保证燃料与空气之间的最佳动态配比关系,因此,引入单交叉限幅燃烧控制系统。

3.4 单交叉限幅燃烧控制系统

3.4.1 单交叉限幅燃烧控制系统工作原理

图3.4单交叉限幅燃烧控制系统图

单交叉限幅燃烧控制系统是在串级比值燃烧控制系统的基础上增加了高值选择器HS ,低值选择器LS ,正偏置+a 1(%)和负偏置-a 2(%),用来实现燃料和空气流量之间的相互制约,防止剩余空气系数μ低于其给定值μs 以下的某一允许区间,即μ≥(μs - a 1),并保证燃料流量F f 低于冒黑烟界限,以及空气流量F a 高于冒黑烟界限。

单交叉限幅燃烧控制系统的工作原理如下:

在燃料流量调节回路中,炉温调节器TC 的输出信号A ,与根据空气流量测量值F a 算出的所需燃料流量加上偏置a 1 (%)得到的信号B

r

F a B a ?+=)1001(1 (3.1) 相比较,由低值选择器LS 来选通A 、B 之一作为燃料流量调节器F f C 的给定值S f 。在空气流量调节回路中,炉温调节器TC 的输出信号A ,与燃料流量测量值F f 减去偏置a 2(%)得到的信号D

毕业设计-电加热炉控制系统设计

密级: NANCHANGUNIVERSITY 学士学位论文THESIS OF BACHELOR (2006 —2010年) 题目锅炉控制系统的设计 学院:环境与化学工程系化工 专业班级:测控技术与仪器 学生姓名:魏彩昊学号:5801206025 指导教师:杨大勇职称:讲师 起讫日期:2010-3至2010-6

南昌大学 学士学位论文原创性申明 本人郑重申明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果。对本文的研究作出重要贡献的个人和集体,均已在文中以明确方式表明。本人完全意识到本申明的法律后果由本人承担。 作者签名:日期: 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权南昌大学可以将本论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 保密□,在年解密后适用本授权书。 本学位论文属于 不保密□。 (请在以上相应方框内打“√”) 作者签名:日期: 导师签名:日期:

锅炉控制系统设计 专业:测控技术与仪器学号:5801206025 学生姓名:魏彩昊指导教师:杨大勇 摘要 温度是流程工业中极为常见的热工参数,对它的控制也是过程控制的一个重点。由于加热过程、加热装置特殊结构等具体原因,使得过程对象经常具有大时滞、非线性、难以建立精确数学模型等特点,利用传统的PID控制策略对其进行控制,难以取得理想的控制效果,而应用数字PID控制算法能得到较好的控制效果。 本文主要阐述了一种改进型的加热炉对象及其工艺流程,采用了PLC控制装置设计了控制系统,使加热炉的恒温及点火实现了自动控制,从而使加热炉实现了全自动化的控制。此种加热炉可广泛应用于铝厂、钢厂等金属冶炼、金属加工行业以及化工行业。 此设计以工业中的电加热炉为原型,以实验室中的电加热炉为实际的被控对象,采用PID控制算法对其温度进行控制。提出了一种适合电加热炉对象特点的控制算法,并以PLC 为核心,组成电加热炉自适应控制系统,其控制精度,可靠性,稳定性指标均远高于常规仪表组成的系统。 关键词:温度;电加热炉;PLC;控制系统

基于单片机的温控风扇设计论文

. .. 单片机系统课程设计报告 题目:基于单片机的温控风扇的设计 专业:电子信息工程 学号: 2013131033 学生姓名:_黄家快_ 指导教师:王艳春___ 2015 年11 月15日

. .. 目录错误!未定义书签。 摘要...................................................................................................................... I Abstract ............................................................................................错误!未定义书签。第一章整体方案设计 .. (1) 1.1 前言 (1) 1.2 系统整体设计 (1) 1.3方案论证 (2) 1.3.1 温度传感器的选择 (2) 1.3.2 控制核心的选择 (3) 1.3.3 温度显示器件的选择 (3) 1.3.4 调速方式的选择 (3) 第二章各单元模块的硬件设计 (5) 2.1系统器件简介 (5) 2.1.1 DS18B20单线数字温度传感器简介 (5) 2.1.2 达林顿反向驱动器ULN2803简介 (5) 2.1.3 AT89C52单片机简介 (6) 2.1.4 LED数码管简介 (7) 2.2 各部分电路设计 (8) 2.2.1 开关复位与晶振电路 (9) 2.2.2 独立键盘连接电路 (9) 2.2.3 数码管显示电路 (10) 2.2.4 温度采集电路 (11) 2.2.5 风扇电机驱动与调速电路 (12) 第三章软件设计 (14) 3.1 程序设置 (14) 3.2 用Keil C51编写程序 (14) 3.3 用Proteus进行仿真 (15) 3.3.1 Proteus简介 (15) 3.3.2 本设计基于Proteus的仿真 (16) 第四章系统调试 (21) 4.1 软件调试 (21) 4.1.1 按键显示部分的调试 (21) 4.1.2 传感器DS18B20温度采集部分调试 (21) 4.1.3 电动机调速电路部分调试 (21) 4.2 硬件调试 (22) 4.2.1 按键显示部分的调试 (22) 4.2.2 传感器DS18B20温度采集部分调试 (22) 4.2.3 电动机调速电路部分调试 (22) 4.3 系统功能 (23) 4.3.1 系统实现的功能 (23) 4.3.2 系统功能分析 (23) 结论 (24) 参考文献 (25)

步进式加热炉加热质量控制系统的设计

步进式加热炉加热质量控制系统的设计 摘要:目前,工业控制自动化技术正在向智能化、网络化和集成化方向发展。本文通过对步进式加热炉加热质量控制系统的设计,从而反映出当今自动化技术的发展方向。同时,介绍了软件设计思想和脉冲式燃烧控制技术原理特点及在本系统的应用。 一、引言 加热炉是轧钢工业必须配备的热处理设备。随着工业自动化技术的不断发展,现代化的轧钢厂应该配置大型化的、高度自动化的步进梁式加热炉,其生产应符合高产、优质、低耗、节能、无公害以及生产操作自动化的工艺要求,以提高其产品的质量,增强产品的市场竞争力。 我国轧钢工业的加热炉型有推钢式炉和步进式炉两种,但推钢式炉有长度短、产量低,烧损大,操作不当时会粘钢造成生产上的问题,难以实现管理自动化。由于推钢式炉有难以克服的缺点,而步进梁式炉是靠专用的步进机构,在炉内做矩形运动来移送钢管,钢管之间可以 留出空隙,钢管和步进梁之间没有摩擦,出炉钢管通过托出装置出炉,完全消除了滑轨擦痕,钢管加热断面温差小、加热均匀,炉长不受限制,产量高,生产操作灵活等特点,其生产符合高产、优质、低耗、节能、无公害以及生产操作自动化的工艺要求。 全连续、全自动化步进式加热炉。这种生产线都具有以下特点:

①生产能耗大幅度降低。②产量大幅度提高。③生产自动化水平非常高,原加热炉的控制系统大多是单回路仪表和继电逻辑控制系统,传动系统也大多是模拟量控制式的供电装置,现在的加热炉的控制系统都是PLC或DCS系统,而且大多还具有二级过程控制系统和三级生产管理系统。传动系统都是全数字化的直流或交流供电装置。 本工程是某钢铁集团新建的φ180小口径无缝连轧钢管生产线中的热处理线部分的步进式加热炉设备。 二、工艺描述 本系统的工艺流程图见图1 ?图1 步进式加热 炉工艺流程图 淬火炉和回火炉均为步进梁式加热炉。装出料方式:侧进,侧出;炉子布料:单排。活动梁和固定梁均为耐热铸钢,顶面带齿形面,直径小于141.3mm钢管,每个齿槽内放一根钢管。直径大15 3.7mm的钢管每隔一齿放一根钢管。活动梁升程180mm,上、下各90mm,齿距为190mm,步距为145mm。因此每次步进时,

温控器论文

浅析温控器复位不同步对终端产品的影响 来源: 亮群电子发布时间: 2014-04-01 14:08 247 次浏览大小: 16px14px12px 双金属片温控器采用机械式的结构,具有分断灵敏、不易拉弧、不产生电磁干扰而得到广泛的应用。然而由于在制造中的误差而引发温控器复位不同步的现象越来越多,给温控器的终端产品带来了一些不利的影响。本文从双金属片温控器复位不同步的定义、动作过程来说明复位不同步对终端产品的影响,并以实际的案例做分析说明。 本文由我司工程师张海滨发表于《电器附件》2013年第二期,通过对双金属片温控器复位不同步的过程和原理分析来说明其对终端产品的影响。 1定义 在温控器制造行业,通常将双金属片受热后翻转的瞬间与触点开关状态改变瞬间的时间差定义为温控器的同步性。而复位不同步是指双金属片温控器在达到动作温度后,双金属片已经翻转,同时开关触点已经断开,其控制的发热体也开始降温,在随后的过程中,双金属片会再一次翻转,开关触点并再一次闭合时,两个状态点的时间差有明显的滞后性。这个状况则被称做为温控器复位不同步。 2温控器复位不同步原因分析 从温控器基本结构和原理分析,我们发现双金属片由于受热变形翻转后有一个最高的弧高点到下一次再翻转前有一个行程A,开关的触点从断开到闭合的过程也有一个行程B;示意图1和示意图2分别指示出这种变化所产生的行程A、B。如果A=B时,则理论上该温控器为完全同步的温控器。实际生产中,由于各温控器厂家使用零件的误差以及制造工艺的误差,会导致A≠B;多数情况下是A>B,从而就比较容易产生温控器复位不同步的现象。

3影响终端产品的过程分析 温控器一般用于终端产品中做温度的控制,我们将电路简化为图3的电路。 在该电路中,先通电之后,常闭型的温控器触点是闭合的,加热体发热后温度持续上升,温度达到温控器的动作温度后,温控器内部开关触点断开,加热体由于热惯性温度会上升,到一定程度后开始降温。如果此时温控器的两个行程A=B,则电路接通和感温的双金属翻转是同时进行的。

智能温控风扇开题报告

中北大学 毕业设计开题报告 学生姓名:韩强学号:X29 学院、系:信息商务学院、信息与通信工程系专业:电气工程及其自动化 论文题目:家用风扇控制器的设计 指导教 师:温晶晶 2014 年3月 6日

毕业设计开题报告 1.结合毕业设计课题情况,根据所查阅的文献资料,撰写2000字左右的文献综述: 文献综述 一、本课题的研究背景及意义 生活中,我们经常会使用一些与温度有关的设备。尽管空调作为日常生活家电已经 步入千万普通家庭中,但空调普遍耗能太多,而且在占中国大部分人口的农村地区依旧 使用电风扇用作降温防暑设备[1]。近些来,空调价格水平不断下降,越来越多的人开始 使用空调,对电风扇行业是个不小的冲击,但是空调的强大的功能下是以高耗能、封闭 空间为代价的。相比之下,电风扇通风较好且功耗低仍是很大的一个优势,还是具有广 阔的市场空间的,电风扇需要新型的技术功能,来满足不同的人群需求。为了提高电风 扇的市场竞争力,使之在技术含量上有所提高,且更加安全可靠,智能电风扇随之被提 出[2]。 传统电风扇具有以下缺点:风扇不能随着环境温度的变化自动调节风速,这对那些 昼夜温差大的地区是致命的缺点,尤其是人们在熟睡时,不但浪费资源,还很容易使人 感冒生病;传统电风扇机械的定时方式常常会伴随着机械运动的声音,特别是夜间影响 人们的睡眠,而且定时范围有限,不能满足人们的需求。鉴于这些缺点,我们需要设计 一款智能的电风扇温度控制系统来解决[3]。 温控风扇系统,是根据当时温度情况去自动开通和关闭电风扇,能很好的节约电能, 同时也方便用户们的使用更具人性化。而且温控风扇系统在工业生产、日常生活中都有 广泛的应用,如在工业生产中大型机械设备的散热系统,或限制笔记本电脑上的智能CPU 风扇等基于单片机的温控风扇都能够根据环境温度的高低自动启动或停止转动,并能够 根据温度的变化实现转速的自动调节,在现实生活中具非常广泛的用途,因此它的设计 具有一定的价值意义[4]。 二、本课题国内外研究现状及发展趋势 电风扇有着悠久的发展历史,它简称电扇,香港称为风扇,日本及韩国称为扇风机,

电加热炉温度控制系统设计

湖南理工学院南湖学院 课程设计 题目:电加热炉温度控制系统设计专业:机械电子工程 组名:第三组 班级:机电班 组成员:彭江林、谢超、薛文熙

目录 1 意义与要求 (2) 1.1 实际意义 (2) 1.2 技术要求 (2) 2 设计内容及步骤 (2) 2.1 方案设计 (2) 2.2 详细设计 (3) 2.2.1 主要硬件介绍 (3) 2.2.2 电路设计方法 (4) 2.2.3 绘制流程图 (7) 2.2.4 程序设计 (8) 2.3 调试和仿真 (8) 3 结果分析 (9) 4 课程设计心得体会 (10) 参考文献 (10) 附录............................................................ 10-27

1 意义与要求 1.1 实际意义 在现实生活当中,很多场合需要对温度进行智能控制,日常生活中最常见的要算空调和冰箱了,他们都能根据环境实时情况,结合人为的设定,对温度进行智能控制。工业生产中的电加热炉温度监控系统和培养基的温度监控系统都是计算机控制系统的典型应用。通过这次课程设计,我们将自己动手设计一个小型的计算机控制系统,目的在于将理论结合实践以加深我们对课本知识的理解。 1.2 技术要求 要求利用所学过的知识设计一个温度控制系统,并用软件仿真。功能要求如下: (1)能够利用温度传感器检测环境中的实时温度; (2)能对所要求的温度进行设定; (3)将传感器检测到得实时温度与设定值相比较,当环境中的温度高于或低于所设定的温度时,系统会自动做出相应的动作来改变这一状况,使系统温度始终保持在设定的温度值。 2 设计内容及步骤 2.1 方案设计 要想达到技术要求的内容,少不了以下几种器件:单片机、温度传感器、LCD显示屏、直流电动机等。其中单片机用作主控制器,控制其他器件的工作和处理数据;温度传感器用来检测环境中的实时温度,并将检测值送到单片机中进行数值对比;LCD显示屏用来显示温度、时间的数字值;直流电动机用来表示电加热炉的工作情况,转动表示电加热炉通电加热,停止转动表示电加热炉断

关于温度控制系统论文

前言 随着电子技术的发展、数字电路应用领域的扩展,现今社会,产品智能化、数字化已成为人们追求的一种趋势,设备的性能、价格、发展空间等备受人们的关注,尤其对电子设备的精密度和稳定度最为关注随着单片机技术的不断发展,控制设备也跟着不断变化,对产品试验环境的要求也越来越严格。鉴于此,环境温度是试验环境中的一项重点,环境温度的高低直接影响产品的电气和机械性能参数,环境温度的准确度对测试温度的方法要求越来越高,而对环境温度的控制更显的重要。温度检测的传统方法是使用诸如热电偶、热电阻、半导体PN结之类的模拟温度传感器。信号经取样、放大后通过模数转换,再交由单片机处理。被测温度信号从温敏元件到单片机,经过众多器件,易受干扰、不易控制且精度不高。为了准确的测试与控制环境温度,因此,本系统采用一种新型的可编程温度传感器DS18B20,它能代替模拟温度传感器和信号处理电路,直接与单片机沟通,完成温度采集和数据处理。DS18B20与AT89S52结合实现最简温度检测系统,该系统结构简单,抗干扰能力强,适合于恶劣环境下进行现场温度测量,有广泛的应用前景。

第一章绪论 随着信息时代的到来,智能化已是现代温度控制系统发展的主流方向。特别是近年来,温度控制系统已应用到人们生活的各个方面,但温度控制一直是一个未开发的领域,却又是与人们息息相关的一个实际问题。针对这种实际情况,设计一个温度控制系统,具有广泛的应用前景与实际意义。 温度是科学技术中最基本的物理量之一,物理、化学、生物等学科都离不开温度。在工业生产和实验研究中,像电力、化工、石油、冶金、航空航天、机械制造、粮食存储、酒类生产等领域内,温度常常是表征对象和过程状态的最重要的参数之一[1]。比如,发电厂锅炉的温度必须控制在一定的范围之内;许多化学反应的工艺过程必须在适当的温度下才能正常进行;炼油过程中,原油必须在不同的温度和压力条件下进行分馏才能得到汽油、柴油、煤油等产品。没有合适的温度环境,许多电子设备就不能正常工作,粮仓的储粮就会变质霉烂,酒类的品质就没有保障。因此,各行各业对温度控制的要求都越来越高。可见,温度的测量和控制是非常重要的。 单片机在电子产品中的应用已经越来越广泛,在很多的电子产品中也用到了温度检测和温度控制。 由于传感器能将各种物理量、化学量和生物量等信号转变为电信号,使得人们可以利用计算机实现自动测量、信息处理和自动控制,但是它们都不同程度地存在温漂和非线性等影响因素[2]。传感器主要用于测量和控制系统,它的性能好坏直接影响系统的性能。因此,不仅必须掌握各类传感器的结构、原理及其性能指标,还必须懂得传感器经过适当的接口电路调整才能满足信号的处理、显示和控制的要求,而且只有通过对传感器应用实例的原理和智能传感器实例的分析了解,才能将传感器和信息通信和信息处理结合起来,适应传感器的生产、研制、开发和应用[3]。另一方面,传感器的被测信号来自于各个应用领域,每个领域都为了改革生产力、提高工效和时效,各自都在开发研制适合应用的传感器,于是种类繁多的新型传感器及传感器系统不断涌现。温度传感器是其中重要的一类传感器。其发展速度之快,以及其应用之广,并且还有很大潜力。

加热炉的工作分析毕业论文

加热炉的工作分析毕业论文 1蓄热式加热炉概况 蓄热式加热炉技术是自20世纪80年代发展起来并投入使用的一项新技术"它以蓄热室为基础来回收烟气 余热,从而实现余热的最大回收和助燃空气以及煤气的 高温预热"国外蓄热式加热炉的研究工作起步早!发展快,已经大规模地应用到工业中.我国的蓄热式加热炉研究 工作和应用起步较晚,但是发展速度快,到目前为止已有许多钢厂建成并投入使用了这种炉型,并达到了较好的 效果"。 目前由于能源和环境问题日益突出,要求各轧钢单位全面推行高效、清洁生产技术。而高效蓄热技术是目前世界上先进的燃烧技术。可以从根本上提高企业能源利用率,对低热值燃料进行合理利用,以最大限度地减少污染排放,很好的解决燃油炉成本高,污染重的难题根据工业炉燃烧的三高一低(高炉温、高烟温、高余热回收和低惰性)的发展方向以及节能环保的社会要求,采用分侧分段换向控制的烧嘴式蓄热燃烧技术,它便于控 制、安全可靠、长寿、余热极限回收与环境良好。 蓄热式烧嘴有以下优点: (1)供热调节灵活; (2)蓄热体更换方便; (3)不影响炉体的寿命;

(4)高温通道短,散热损失小; (5)每对烧嘴可根据需要单独开闭,炉温控制更加灵活。炉墙采用整体浇注复合式结构,炉顶采用整体浇注吊挂式复合结构,其重量通过锚固砖由钢结构承担。炉贴普通硅酸钙耐火纤维毡。这种结构保证了炉墙气密性和抗震性,保温良好,可减少温度波动对炉墙的影响。 为便于施工,炉顶设计成三段同样高。同时为减短均热时间,均热段全架空,实现双面均热。为减少装料端喷火现象,在预热段进行一定的抬高和加宽以降低出料端炉压,也可以降低钢坯与炉气的温差,避免加热缺陷。1.1加热炉的作用 是将热装或常温下冷装的连铸坯加热到轧制所需要的温度,以提高金属塑性,减少轧制变形抗力,机械和电 气负荷,同时消除钢坯中某些组织缺陷和应力,便于轧制,生产出满足用户要求的产品. 1.2加热炉的工艺流程分析 根据3500m m中厚板轧钢生产线的特点,将整个生产线划分为板加区、轧机区、冷床区、剪切区、精整区五部分。 板加区工艺流程简述:板坯加热包括板坯切割、称重、上料、加热以及出钢等工序。* 坯料自原料库吊到上料辊道上,然后在称重辊道上进行称重(需要改尺的坯料经火切机切割后称重),称重后坯料送到加热炉入炉辊道,经检查后,再由推钢机逐块推到加热炉加热,加热到1150-1250℃,加热好的钢

加热炉温度控制系统

目录 一、工艺介绍 (2) 二、功能的设计 (4) 三、实现的情况以及效果 (6)

一、工艺介绍 在钢厂中轧钢车间在对工件进行轧制前需要将工件加热到一定的温度,如图1表示其中一个加热段的温度控制系统。在图中采用了6台设有断偶报警的温度变送器、3台高值选择器、1台加法器、1台PID调节器和1台电器转换器组成系统。 利用阶跃响应便识的,以控制电流为输入、加热炉温度为输出的系统的传递函数为: 温度测量与变送器的传递函数为: 由于,因此,上式中可简化为: 在实际的设计控制系统时,首先采用了常规PID控制系统,但控制响应超调量较大,不能满足控制要求。

图1 对如图1所示的加热炉多点平均温度系统采用可变增益自适应纯滞后补偿进行仿真。 加入补偿环节后,PID调节器所控制的对象包括原来的对象和补偿环节两部分,于是等效对象的特性G(s)可以写成: 即补偿后的广义被控对象不在含有纯延迟环节,所以,采用纯滞后的对象特性比原来的对象容易控制的多。 但实际应用中发现,加热锅炉由于使用时间长短不同及处理工件数量不同,会引起特性变化,导致补偿模型精度降低,从而使纯滞后补偿特性变差,很难满足实际生产的稳定控制要求。

为改善调节效果,在控制线路中加入两个非线性单元——除法器与乘法器,构成如图所示的加热炉多点温度控制纯滞后自适应控制系统。 二、功能的设计 1、系统辨识 经辨识的被控对象模型为: 所以,带可变增益的自适应补偿控制结构框图如图

图2 加热炉多点温度控制纯滞后自适应补偿系统控制框图2、无调节器的开环系统稳定性分析 理想情况下,无调节器的开环传递函数为: 上式中所示广义被控对象的Bode图如下图所示。 图3

单片机温度控制器设计毕业论文

摘要 随着微机测量和控制技术的迅速发展与广泛应用,以单片机为核心的温度采集与控制系统的研发与应用在很大程度上提高了生产生活中对温度的控制水平。本设计论述了一种以STC89C52单片机为主控制单元。该控制系统可以实时存储相关的温度数据。系统设计了相关的硬件电路和相关应用程序。硬件电路主要包括STC89C51单片机最小系统,测温电路、实时时钟电路、LED显示以及通讯模块电路等。系统程序主要包括主程序,读出温度子程序,计算温度子程序、按键处理程序、LCD显示程序以及数据存储程序等。 关键词: STC89C52单片机;DS18B20;显示电路

Abstract Along with the computer measurement and control technology of the rapid development and wide application, based on singlechip temperature gathering and control system development and application greatly improve the production of temperature in life level of control. This design STC89C52 describes a kind of mainly by MCU control unit, for temperature sensor DS18B20 temperature control system. The control system can real-time storage temperature data and record related to the current time. System design related hardware circuit and related applications. STC89C52 microcontroller hardware circuit include temperature detection circuit smallest system, and real-time clock circuit, LCD display circuit, communication module circuit, etc. System programming mainly include main program, read temperature subroutine, the calculation of temperature subroutines, key processing procedures, LCD display procedures and data storage procedures, etc. Keywords :STC89C52 microcontroller;DS18B20;display circuit

温控风扇系统设计

自动化系统创意设计大赛作品说明书 作品名称:温控风扇系统设计 队员: 2015年4月

目录 1、引言 (3) 2、背景 (3) 3、意义与应用 (3) 4、原理简介 (4) 5、方案设计 (4) 6、STC12C5A60S2单片机 (5) 6.1简介 (5) 6.2 PWM寄存器设置 (5) 6.3 PWM占空比计算方法 (5) 6.4 I/O工作方式设置 (6) 7、LCD液晶显示屏 (6) 8、温度传感器DS18B20 (8) 8.1 初始化 (9) 8.2 写操作 (10) 8.3 读操作 (10) 9、风扇 (10) 拓展1: (10) 拓展2: (11) 10、硬件电路设计 (12) 10.1原理图和部分电路PCB图 (12) 10.2 电机驱动电路 (13) 11、软件设计 (14) 11.1主函数流程图 (14) 11.2 温度控制风扇程序流程图 (15) 11.3 按键控制风扇程序流程图 (16) 11.4 按键设定温度程序流程图 (17) 12、结语 (18) 参考文献: (18) 附录Ⅰ:实物硬件图 (18) 附录Ⅱ:程序 (18)

摘要:本设计是基于STC12C5A60S2单片机技术与温度传感器测量外界温度的设计 原理,进行了不同设计方案的比较,给出了设计的硬件电路,同时对各种关键硬件进行 较详细的介绍,并且以流程图的方式对系统设计作出介绍。系统主要通过温度传感器控 制不同的PWM占空比输出来控制风扇的档位。而出于方便、可选择性的考虑,系统也添 加了辅助功能,就是直接手动控制风扇的档位。 关键词:STC12C5A60S2单片机,DS18B20温度传感器,PWM 1、引言 温控风扇在节能环保方面具有一定的作用,其工作原理除了普通的手动档位调节,主要是通过温度传感器感应外界温度,并自主地进行档位的调节,这样在风扇开着的情况下,不需进行手动就可以根据不同的外界温度进行自主调节风力大小,达到节能目的。 2、背景 随着空调机在日常生活中的普遍应用,很容易想到电风扇会成为空调的社会淘汰品,其实经过市场的考验和证实,真实的并不是这样的,在空调产品的冲击下,电风扇产品仍然具有很强大的生命力,电风扇在市场的考验中并没有淡出市场,反而销售在不停的复苏中,具有强大的发展空间。据市场调查,电风扇的不停复苏主要在以下原因:一,是电风扇虽然没有空调机的强大的制冷功能,但电风扇是直接取风,风力更加温和,比较适合老年人、儿童以及体质虚弱的人使用。二,是电风扇经过多年的市场使用,较符合人们的使用习惯,而且结构简单、操作方便、安装简易。三,是电风扇比起空调产品而言,其价格低廉,相对省电,更易的进入老百姓的家庭。在目前空调还没有普及,并且并不是所有的情况下空调都适合使用的情况下,智能风扇适合人体对温度的要求,智能风扇还有具有相当作用的。 3、意义与应用 1、普通电风扇的现状及存在的隐患:大部分只有手动调速,功能单一。长时间 在高负荷工作容易损坏电器,并且造成电量的损失。 2、作品可运用在家庭中,风扇的风力随温度而调节,即可以避免人因温度低吹 到冷风而着凉,也可达到节能目的,可见温控风扇更具有优越性。 3、其次将此系统装在产热多,急需排热的设备上,可以帮助它及时散掉大量的热。比如电脑散热器等。

智能温度控制系统毕业设计开题报告

毕业设计开题报告 题目名称智能温度控制系统设计 学生姓名郑如顺专业电气信息工程班级10级一、选题的目的意义 温度控制无论是在工业生产过程中,还是在日常生活中都起着非常重要的作用,而当今,我国农村的锅炉取暖等大多数都没有温度监控系统,部分厂矿,企业还一直沿用简单的温度设备和纸质数据记录仪。无法实现温度数据的测量与控制。随着社会经济的高速发展,越来越多的生产部门和生产环节对温度控制精度的可靠性和稳定性等有了更高的要求。传统的温度控制器控制精度普遍不高,不能满足对温度要求较为苛刻的生产环节。 在温度控制中,由于受到温度被控对象特性(如惯性大、滞后大、非线性等)的影响,使得控制性能难以提高,有些工艺过程其温度控制的好坏直接影响着产品的质量,因而设计一种较为理想的温度控制系统是非常有价值的。 此次的智能温度控制系统的设计基于此而设计,针对一些大型公共场合,为达到对其温度的良好控制,从实用的角度以AT89C51为核心设计一套温度智能控制系统。其控制温度不是一个点,而是一个范围。系统以AT89C51单片机为核心,组成一个集温度的采集、处理、显示、自动控制为一身的闭环控制系统。利用单片机采集环境温度值,以数字量的形式存储和显示,可以独立作为一种设备对温室温度进行有一定精度的控制,经过简单的运算发出各种控制命令,并能动态的显示当前温度值,设定目标控制温度值。同时,也可以作为数据采集装置,为上位机进行复杂运算决策提供数据来源。 该智能温度控制系统功耗低,本系统运行情况良好且经济可靠。能利用最少的资源对不同温度进行高精度的测量,信息性能可靠、操作便利,复杂的工作通过软件编程来完成,可以方便的获取结果,在实际的使用中获得了理想的效果。

毕业设计-电加热炉控制系统设计

密级: NANCHANG UNIVERSITY 学士学位论文 THESIS OF BACHELOR (2006 —2010 年) 题目锅炉控制系统的设计 学院:环境与化学工程系化工 专业班级:测控技术与仪器 学生姓名:魏彩昊学号:5801206025 指导教师:杨大勇职称:讲师 起讫日期:2010-3至2010-6

南昌大学 学士学位论文原创性申明 本人郑重申明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果。对本文的研究作出重要贡献的个人和集体,均已在文中以明确方式表明。本人完全意识到本申明的法律后果由本人承担。 作者签名:日期: 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权南昌大学可以将本论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 保密□,在年解密后适用本授权书。 本学位论文属于 不保密□。 (请在以上相应方框内打“√”) 作者签名:日期: 导师签名:日期:

锅炉控制系统设计 专业:测控技术与仪器学号:5801206025 学生姓名:魏彩昊指导教师:杨大勇 摘要 温度是流程工业中极为常见的热工参数,对它的控制也是过程控制的一个重点。由于加热过程、加热装置特殊结构等具体原因,使得过程对象经常具有大时滞、非线性、难以建立精确数学模型等特点,利用传统的PID控制策略对其进行控制,难以取得理想的控制效果,而应用数字PID控制算法能得到较好的控制效果。 本文主要阐述了一种改进型的加热炉对象及其工艺流程,采用了PLC控制装置设计了控制系统,使加热炉的恒温及点火实现了自动控制,从而使加热炉实现了全自动化的控制。此种加热炉可广泛应用于铝厂、钢厂等金属冶炼、金属加工行业以及化工行业。 此设计以工业中的电加热炉为原型,以实验室中的电加热炉为实际的被控对象,采用PID控制算法对其温度进行控制。提出了一种适合电加热炉对象特点的控制算法,并以PLC 为核心,组成电加热炉自适应控制系统,其控制精度,可靠性,稳定性指标均远高于常规仪表组成的系统。 关键词:温度;电加热炉;PLC;控制系统

基于51单片机的温控风扇设计

基于51单片机的温控风扇设计 摘要 在炎热的夏天人们用电风扇来降温;在工业生产中,大型机械用电风扇来散热等。随着温度控制的技术不断发展,应运而生的温控电风扇也逐渐走进了人们的生活中。温控电风扇可以根据环境温度自动调节电风扇启停与转速,在实际生活的使用中,温控风扇不仅可节省宝贵的电资源,也大大方便了人们的生活和生产。 本设计为一种温控风扇系统,具有灵敏的温度感测和显示功能,系统采用STC89C51 单片机作为控制平台对风扇转速进行控制。利用DS18B20数字温度传感器采集实时温度,经单片机处理后通过三极管驱动直流风扇的电机。根据采集的实时温度,实现了风扇的自起自停。可由用户设置高、低温度值,测得温度值在高低温度之间时打开风扇弱风档,当温度升高超过所设定的温度时自动切换到大风档,当温度小于所设定的温度时自动关闭风扇,控制状态随外界温度而定。 关键词:温控风扇,单片机,DS18B20,自动控制

Temperature control fan design based on 51 single chip microcomputer ABSTRACT In the hot summer, people use cooling fan; in the industrial production, is used toheat the electric fan large machinery. With the continuous development of thetechnology of temperature control, temperature controlled electric fan emerge as the times require gradually into people's lives. Temperature controlled electric fan can be adjusted automatically stop and start the fan speed according to the environment temperature, the use of real life, temperature controlled fan not only can save power resources valuable, but also greatly facilitate the people's life and production. The design of a temperature controlled fan system, sensitive temperate- easuing and display, the system uses STC89C51 microcontroller as the control platform to control the speed of the fan. The real-time temperature using DS18B20 digital temperature sensor, SCM processing through the transistor DCfan motor drive. According to the real-time temperature acquisition, the fan selfstop. High, low temperature value set by the user, the measured temperaturevalues in the high and low temperature between open fan weak wind profile,when the temperature exceeds the set temperature automatically switch to thefile, automatically turn off the fan when the temperature is lower than the set temperature, the control state varies with the outside temperature. KEY WORDS:Temperature control fan, MCU, DS18B20,automatic control

加热炉温度控制系统设计

过程控制系统课程设计 设计题目加热炉温度控制系统 学生姓名 专业班级自动化 学号 指导老师 2010年12月31日 目录 第1章设计的目的和意义 (2) 第2章控制系统工艺流程及控制要求 (2) 2.1 生产工艺介绍

2.2 控制要求 第3章总体设计方案 (3) 3.1 系统控制方案 3.2 系统结构和控制流程图 第4章控制系统设计 (5) 4.1 系统控制参数确定 4.2 PID调节器设计 第5章控制仪表的选型和配置 (7) 5.1 检测元件 5.2 变送器 5.3 调节器 5.4 执行器 第6章系统控制接线图 (13) 第7章元件清单 (13) 第8章收获和体会 (14) 参考文献 第1章设计的目的和意义 电加热炉被广泛应用于工业生产和科学研究中。由于这类对象使用方便,可以通过调节输出功率来控制温度,进而得到较好的控制性能,故在冶金、机械、化工等领域中得到了广泛的应用。 在一些工业过程控制中,工业加热炉是关键部件,炉温控制精度及其工作稳定

性已成为产品质量的决定性因素。对于工业控制过程,PID 调节器具有原理简单、使用方便、稳定可靠、无静差等优点,因此在控制理论和技术飞跃发展的今天,它在工业控制领域仍具有强大的生命力。 在产品的工艺加工过程中,温度有时对产品质量的影响很大,温度检测和控制是十分重要的,这就需要对加热介质的温度进行连续的测量和控制。 在冶金工业中,加热炉内的温度控制直接关系到所冶炼金属的产品质量的好坏,温度控制不好,将给企业带来不可弥补的损失。为此,可靠的温度的监控在工业中是十分必要的。 这里,给出了一种简单的温度控制系统的实现方案。 第2章控制系统工艺流程及控制要求 2.1 生产工艺介绍 加热炉是石油化工、发电等工业过程必不可少的重要动力设备,它所产生的高压蒸汽既可作为驱动透平的动力源,又可作为精馏、干燥、反应、加热等过程的热源。随着工业生产规模的不断扩大,作为动力和热源的过滤,也向着大容量、高参数、高效率的方向发展。 加热炉设备根据用途、燃料性质、压力高低等有多种类型和称呼,工艺流程多种多样,常用的加热炉设备的蒸汽发生系统是由给水泵、给水控制阀、省煤器、汽包及循环管等组成。 本加热炉环节中,燃料与空气按照一定比例送入加热炉燃烧室燃烧,生成的热量传递给物料。物料被加热后,温度达到生产要求后,进入下一个工艺环节。 加热炉设备主要工艺流程图如图2-1所示。

加热炉控制系课程设计

第1章加热炉控制系统 加热炉控制系统工程背景及说明 加热炉自动控制(automatic control of reheating furnace),是对加热炉的出口温度、燃烧过程、联锁保护等进行的自动控制。早期加热炉的自动控制仅限控制出口温度,方法是调节燃料进口的流量。现代化大型加热炉自动控制的目标是进一步提高加热炉燃烧效率,减少热量损失。为了保证安全生产,在生产线中增加了安全联锁保护系统。 影响加热炉出口温度的干扰因素很多,炉子的动态响应一般都比较迟缓,因此加热炉温度控制系统多选择串级和前馈控制方案。根据干扰施加点位置的不同,可组成多参数的串级控制。使用气体燃料时,可以采用浮动阀代替串级控制中的副调节器,还可以预先克服燃料气的压力波动对出口温度的影响。这种方案比较简单,在炼油厂中应用广泛。 这种控制的主要目的是在工艺允许的条件下尽量降低过剩空气量,保证加热炉高效率燃烧。简单的控制方案是通过测量烟道气中的含氧量,组成含氧量控制系统,或设计燃料量和空气量比值调节系统,再利用含氧量信号修正比值系数。含氧量控制系统能否正常运行的关键在于检测仪表和执行机构两部分。现代工业中都趋向于用氧化锆测氧技术检测烟道气中的含氧量。应用时需要注意测量点的选择、参比气体流量和锆管温度控制等问题。加热炉燃烧控制系统中的执行机构特性往往都较差,影响系统的稳定性。一般通过引入阻尼滞后或增加非线性环节来改善控制品质。 在加热炉燃烧过程中,若工艺介质流量过低或中断烧嘴火焰熄灭和燃料管道压力过低,都会导致回火事故,而当燃料管道压力过高时又会造成脱火事故。为了防止事故,设计了联锁保护系统防止回火和温度压力选择性控制系统防止脱火。联锁保护系统由压力调节器、温度调节器、流量变送器、火焰检测器、低选器等部分组成。当燃料管道压力高于规定的极限时,压力调节系统通过低选器取代正常工作的温度调节系统,此时出料温度无控制,自行浮动。压力调节系统投入运行保证燃料管道压力不超过规定上限。当管道压力恢复正常时,温度调节系统通过低选器投入正常运行,出料温度重新受到控制。当进料流量和燃料流量低于允许下限或火焰熄灭时,便会发出双位信号,控制电磁阀切断燃料气供给量以防回火。 随着节能技术不断发展,加热炉节能控制系统正日趋完善。以燃烧过程数学模型为依据建立的最佳燃烧过程计算机控制方案已进入实用阶段。例如,按燃烧过程稳态数学模型组成的微机控制系统已开始在炼油厂成功使用。有时利用计算机实现约束控制,使加热炉经常维持在约束条件边界附近工作,以保证最佳燃烧。

温度控制器毕业设计论文资料

单片机课程设计https://www.doczj.com/doc/372321083.html,/forum-94-1.html X X X X 大学 毕业论文(设计)题目温度控制器 指导教师 XXXXXXXX 学生姓名 XXXXX 学生学号 XXXXXXXX 信息工程系电气自动化技术专业1班 2010年3月18日

https://www.doczj.com/doc/372321083.html,/forum-94-1.html XXXX大学专科毕业设计(论文)开题报告 学号; 姓名: 毕业设计(论文)题目: 温度控制器______________________ 1、阅读中外文献资料摘要: [1]廖德荣《自动控制温度的方法》北京航空航天大学出版社 2006.2 [2]李军《检测技术及仪表》中国轻工业出版社 2008.7 第二版 [3]李广弟朱月秀冷祖祁《单片机基础》北京航空航天大学出版社2008.1 第三版 [4]孙亮杨鹏《自动控制原理》北京工业大学出版社 2006.5 第二版 [5]刘守义钟苏《数字电子技术》西安电子科技大学出版社 2003.6 第二版 [6]FA PLAZA 《OMRON感測器技術與溫度控制器》 2009.6 2、立题依据及主要研究内容: 立题依据:温度控制器是对温度进行控制的电开关设备。在当今的社会中, 越来越多的环境需要对温度进行控制。随着温控器应用领域和范围的日益广泛, 电子技术的发展,特别是随着大规模集成电路的产生,给人们的生活带来了根本 性的变化,如果说微型计算机的出现使现代的科学研究得到了质的飞跃,那么可 编程控制器的出现则是给现代工业控制测控领域带来了一次新的革命。在现代社 会中,温度控制不仅应用在工厂生产方面,其作用也体现到了各个方面。 研究内容:设计一款温度控制器,可用于工业与生活,可以进行温度上限 与下限的设定,熟悉和掌握以单片机为核心的电路设计的基本方法和技术,熟悉 传感器的使用。并继电器控制输出。 3、设计方案及思路: 采用PID模糊控制技术,用先进数码技术通过Pvar,Ivar,Dvar.三方面结 合调整形成一个模糊控制来解决惯性温度误差问题。 大的框架是输入,控制和输出三个部分,输入是指温度传感器,可以是模 拟量的铂电阻、热敏电阻,也可以是数字量的18B20控制芯片常用AT89S52/1, 程序根据实际使用而定,原理就是根据测量温度值与设置值的比较来判定输出量 的开或者关。输出开关量,一般是继电器输出,控制加热或者制冷等设备的开启。

相关主题
文本预览
相关文档 最新文档