当前位置:文档之家› 利用波导效应降低城中村私装直 放站上行干扰实验报告

利用波导效应降低城中村私装直 放站上行干扰实验报告

利用波导效应降低城中村私装直 放站上行干扰实验报告
利用波导效应降低城中村私装直 放站上行干扰实验报告

利用波导效应降低城中村私装直放站上行干扰

实验报告

深圳公司网络优化中心王博

2010年3月22日

目录

利用波导效应降低城中村私装直放站上行干扰实验报告 (1)

1 引言 (2)

2 波导效应特性以及天线的极化 (3)

3 现网应用 (9)

3.1干扰水平分析: (9)

3.2业务量分析 (10)

3.3上下行覆盖、质量分析 (11)

3.4接通率、掉话率分析 (13)

4 总结 (14)

1 引言

私装直放站引起城中村覆盖900M小区强上行干扰,导致有效覆盖减小,造成上行信号质差、用户投诉。

直放站产生干扰的原因是空间的白噪声和直放站自身的噪声经过放大后通过上行链路连同手机信号一同到到达基站接收端造成对基站的上行干扰。一般正规直放站厂家在安装直放站时考虑到这个问题,要对直放站上行噪声底部电平进行调整,并且选择适当的施主小区,以减少对基站系统的上行干扰。但私装直放站并不考虑该问题,功率往往调整为最大,因此会对周围基站造成较强的上行干扰。换言之,私装直放站的上行功率有较大冗余。如适当降低私装直放站上行功率将对现网上行干扰问题有一定改善。

通过实地调查发现,一般的私装直放站使用的都是定向性较好的八木天线作为私装直放站无线接入耦合方式,且八木天线安装时的极化方式为垂直极化,根据这一特性,我们可以利用波导效应,使基站天线和私装直放站天线传播方向极化正交,从而降低私装直放站引入的上行干扰。

而对于普通终端,其天线为全向天线且用户持握方式极少为绝对的垂直,因此对普通终端影响较小。

2 波导效应特性以及天线的极化

波导效应在城市环境中较为明显,波长越短的无线电波,当遇到障碍物时,在其表面发生镜面反射的可能也越大,当无线信号在两侧是规则楼房的街道中传播时,主要以反射方式进行,我们称之为“波导效应”。由于街道两旁有高大的建筑物,结果使得沿传播方向的街道上信号增强,而垂直于传播方向的街道上信号减弱,通常两者信号强度一般相差达10dB以上。

从波导效应特性我们可以得出一个推论:

当发射天线电磁波传播方向和接收天线电磁波传播方向平行时,接收到的信号强度最强;当发射天线电磁波传播方向和接收天线电磁波传播方向垂直时,接收到的信号强度最弱。

为了验证这一推论,我们进行了一个实验,以现在移动通信网比较常用的±45°双极化天线为发射天线,+45°为基站信号发射极化方向,以八木天线连接频谱仪作为接收终端,在离发射天线30米可视范围下,通过旋转八木天线振子相对于地面的方向,使其处于不同的接收角度,得到不同的接收信号强度,试验连接示意图如下:

图1试验连接示意图

当旋转八木天线与室外基站天线成0度、180度、360度时,接收功率为-12.40dBm。见图2:

图2八木天线与室外基站天线成0度、180度、360度时接收功率

当旋转八木天线与室外基站天线成45度、225度时,接收功率为-9.20dBm。见图3:

图3八木天线与室外基站天线成45度、225度时接收功率

当旋转八木天线与室外基站天线成90度、270度时,接收功率为

-12.97dBm。见图4:

图4八木天线与室外基站天线成90度、270度时接收功率

当旋转八木天线与室外基站天线成135度、315度时,接收功率

为-26.07dBm。见图5:

图5八木天线与室外基站天线成135度、315度时接收功率从实验数据可以得知,当发射天线为+45°倾斜极化,八木天线振子相对于地面为135°和315°方向时,频谱仪接收到的信号强度最弱;八木天线振子相对于地面为45°和225°方向时,频谱仪接收到的信号强度最强;且最强和最弱的信号强度相差达16dB以上。从以上的实验数据可以验证推论的正确性。见下图:

图6极化方向与接收功率关系图

现阶段移动通信网络在密集城区和一般城镇应用环境下,主要采用±45°双极化天线,双极化天线组合了+45°和-45°两副极化方向

相互正交的天线,并同时工作在收发双工模式下,大大节省了每个小区的天线数量,同时由于±45°为正交极化,有效保证了分集接收的良好效果。而城中村私装直放站使用的八木天线,主要为垂直极化方式,其天线振子安装时与地面垂直,综上所述,我们可以得出一个结论:

如果使城中村基站发射天线极化方向与私装直放站八木天线极化方向保持垂直,即极化方向保持正交,那么私装直放站八木天线接收到的信号强度将会大大减弱,从而降低了私装直放站引入的上行干扰。

根据这一结论,我们需要将城中村基站±45°双极化天线更换为水平极化的单极化天线,这样才能使城中村基站发射天线极化方向与私装直放站八木天线垂直极化方向保持正交。

值得注意的是,将双极化天线更换为单极化天线会造成基站上行接收信号的极化分集损失。极化分集主要用于多径反射显著的场景,比如密集城区。由于建筑物的多径反射情况复杂,多径反射信号的极化分量往往也出现扭转和改变,以致合成的极化方向并非是简单的水平或者垂直,而主要是介于水平和垂直之间的方向,所以±45°双极化天线可获得良好的极化分集效果。

虽然将城中村基站±45°双极化天线更换为水平极化的单极化天线会带来极化分集损失,但是两根单极化天线带来的空间分集效果,除了弥补极化分集损失外,还增加了上行分集增益。极化分集和空间分集增益的比较见下表:

图7极化分集和空间分集增益比较

从上表可以看出,在类似城中村这样的密集城区环境,使用两根水平极化的单极化天线带来的空间分集增益会使室内的用户获得更好的效果,而对于室外则稍有下降。考虑到城中村弱覆盖多发于室内,因此我们认为使用空间分集对城中村覆盖有益。

3 现网应用

通过以上的分析,将城中村基站±45°双极化天线更换为两根水平极化的单极化天线,将会降低城中村私装直放站对基站的上行干扰,从而释放城中村基站的话务吸收能力,增强城中村基站的有效覆盖。根据这一优化思路,我们选择了现网城中村的一个基站小区进行了天线更换,分析如下:

3.1干扰水平分析:

更换天线后:ICMBAND均值为

50%,干扰水平改善30%

更换天线前:ICMBAND均值为20%,

干扰等级较高

图8上行干扰改善效果图

天线更换前,ICMBAND均值为20%,大多数时段为4-5级上行干扰;

更换天线后,ICMBAND均值为50%,大多数时段为2-3级上行干扰。

结论:天线更换后,接收到私装直放站上行信号明显减弱,干扰水平下降明显,达到30%。

3.2业务量分析

图9小区话务量变化图

此小区优化前有5级左右的上行干扰,因此为控制其覆盖范围,参数设置为:ACCMIN=90,CRO=5,PT=0,MSRXMIN=90。

3月12日进行了天线更换(图上红线),更换后未进行任何参数调整,可见话务量保持平稳。

3月14日,观察小区干扰降低,将参数恢复为普通设置,参数设置为:ACCMIN=100,CRO=0,PT=0,MSRXMIN=100。调整后可见话务量由178erl提升到200erl左右。约有10%的业务量提升。

结论:

更换天线后,总体话务量平稳并未下降,覆盖范围内未损失用

户,物理覆盖能力并为因为更换天线有明显下降。

调整参数后,话务量相应提升,结合ICMBAND指标可认为有效

覆盖提升。

3.3上下行覆盖、质量分析

图70 MRR上下行覆盖电平采样点分布变化图

而MRR上下行覆盖率方面,单纯从“率”的角度上,指标均有一定的下降。但结合上、下行两图变化趋势则有更多发现:

下行方面,-65dBm以上采样点几乎毫无变化,在-65至-80dBm

区间则有一定程度的下降,而从-80dBm以下则有较明显增加。

根据以往的覆盖经验,-65dBm以上覆盖区域多为正对无遮挡

道路及住宅,此部分未发生采样变化可认为正对无遮挡情况下

两种天线下行覆盖能力极为接近。而-65至-80dBm区间下降的

原因怀疑为因直放站接收施主小区电平强度下降所致,以及水

平波折射衰减更严重等原因所致,此原因仍需进一步验证。而

低于-80dBm部分有一定增长,则是上行干扰降低后,有效覆

盖提升所致。

而上行方面,则与下行有较大的分歧。-85dBm以上采样点大

幅度降低。分析原因应与分集接收方式及私装直放站的影响相

关。分集接收方式问题在前文提到(见图7),对于室外(强

信号)空间分集接收增益相对极化分集降低1.4dB。而对于室

内(弱信号)空间分集接收增益相对极化分集提升1.3dB。这

将造成上行电平强度的变化。而影响更大的是,大量的私装放大器发射的强信号被有效降低,导致上行强信号采样降低,而在-95至-85dBm区间,采样点有大幅度提升。

图11 MRR上下行质量变化图

通过MRR上下行质量变化可见,优化后MRR上行质量由82%提升至90%,提升非常明显。而下行质量则有微弱下降,从90.5%下降为89.2%。

下行质量的下降一方面是由于损失了强电平所贡献的高质量下行采样。尤其在恢复参数设置后,上下行质量略有下降,原因是由于恢复参数设置后更多的弱电平用户接入,对质量有所影响。

结论:

更换天线后,下行质量指标有轻微下降,但上行质量则大幅提Array

升。对于上行受限的城中村900M基站,这样的取舍是有意义

的;

更换天线后,下行物理覆盖直线传播能力与原小区没有明显差

异,但折射衰耗相对于垂直波更高。同时,改变极化方式后,

对原私装直放站用户的电平强度分布也有一定影响;

空间分集相对极化分集对室内外增益情况有所不同,城中村更加适用空间分集。天线更换后,对私装直放站强上行信号有较好的抑制作用。同时,上行干扰降低后,上行有效覆盖能力增强明显。

更换天线为水平极化,并使用空间分集,对城中村覆盖有较好的效果。

3.4接通率、掉话率分析

图 8接通率忙时均值变化图

图 9掉话率忙时均值变化图

更换天线后,接通率得到

较大提高,由均值97%提

高到99%,呈上升趋势

更换天线后,掉话率得到

较大改善,由均值0.92%

下降到0.5%,呈下降趋势

结论:

优化后接通率、掉话率都得到一定幅度的改善,这主要得益于ICMBAND的改善。

在恢复参数设置后,由于更多的弱电平用户接入,导致接通率、掉话率指标有小幅度下降,但仍在健康范围内。

4 总结

综上所述,只要将城中村基站小区±45°双极化天线更换为两根水平极化的单极化天线,就会使城中村私装直放站八木天线垂直极化与单极化天线水平极化产生极化正交,通过这一极化隔离,使私装直放站接收信号强度变得最弱,从而降低城中村私装直放站对基站造成的上行干扰。另一方面,使用空间分集相对于极化分集更加适用于城中村场景。

通过两方面的共同作用,将会有效降低城中村私装直放站的上行干扰并加强城中村基站的有效覆盖,增加话务收入,改善指标及客户满意度。

西安交大《塞曼效应实验报告》

应物31 吕博成学号:10

塞曼效应 1896年,荷兰物理学家塞曼()在实验中发现,当光源放在足够强的磁场中时,原来的一条光谱线会分裂成几条光谱线,分裂的条数随能级类别的不同而不同,且分裂的谱线是偏振光。这种效应被称为塞曼效应。 需要首先指出的是,由于实验先后以及实验条件的缘故,我们把分裂成三条谱线,裂距按波数计算正好等于一个洛伦兹单位的现象叫做正常塞曼效应(洛伦兹单位 mc eB L π4=)。而实际上大多数谱线的塞曼分裂谱线多于三条,谱线的裂距可以大于也可 以小于一个洛伦兹单位,人们称这类现象为反常塞曼效应。反常塞曼效应是电子自旋假设的有力证据之一。通过进一步研究塞曼效应,我们可以从中得到有关能级分裂的数据,如通过能级分裂的条数可以知道能级的J 值;通过能级的裂距可以知道g 因子。 塞曼效应至今仍然是研究原子能级结构的重要方法之一,通过它可以精确测定电子的荷质比。 一.实验目的 1.学习观察塞曼效应的方法观察汞灯发出谱线的塞曼分裂; 2.观察分裂谱线的偏振情况以及裂距与磁场强度的关系; 3.利用塞曼分裂的裂距,计算电子的荷质比e m e 数值。 二.实验原理 1、谱线在磁场中的能级分裂 设原子在无外磁场时的某个能级的能量为0E ,相应的总角动量量子数、轨道量子数、自旋量子数分别为S L J 、、。当原子处于磁感应强度为B 的外磁场中时,这一原子能级将分裂为12+J 层。各层能量为 B Mg E E B μ+=0 (1) 其中M 为磁量子数,它的取值为J ,1-J ,...,J -共12+J 个;g 为朗德因子;B μ为玻尔磁矩(m hc B πμ4= );B 为磁感应强度。 对于S L -耦合 ) () ()()(121111++++-++ =J J S S L L J J g (2) 假设在无外磁场时,光源某条光谱线的波数为 )(010201~E E hc -=γ (3) 式中 h 为普朗克常数;c 为光速。

HFSS报告,波导腔体内场分析

实验11 波导腔体内场分析 建立一个T型波导模型,利用HFSS软件求解、分析,观察T型波导的场分布情况。 设计步骤: 一、创建工程和设计 第1步:打开HFSS并保存新工程 运行HFSS软件后,自动创建一个新工程:Project1的新工程和名称为HFSSDesign1的新设计。由主菜单选File/Save as,保存在USER(E:)盘自建文件夹内,命名为Ex11_Tee。在工程树中选择HFSS Design1,点击右键,选择Rename项,将设计命名为TeeModel。 第2步:选择求解类型 由主菜单选HFSS/Solution Type,在弹出对话窗选择Driven Modal项。 第3步:设置单位 由主菜单选3D Modeler/Units,在Set Model Units 对话窗中选择in项。 二、创建模型 第一步:创建长方体 绘制一个长方体:由主菜单选Draw/Box:按下Tab键切换到参数设置区(在工作区的右下角),设置长方体的基坐标(x,y,z)为(0,-0.45,0),数据输入时用Tab键左右移动,按下Enter键确认后,输入长方体的长和宽(dx,dy,dz)为(2,0.9,0)再按下Enter键确认,输入高度(0,0,0.4),按Enter键确认。注意:在设置未全部完成时不要在绘图区中点击鼠标! 定义长方体属性:设置完几何尺寸后,自动弹出该长方体的属性对话框。选择Attribute 标签页,讲Name项改为Tee,Material项保持为Vacuum不变,点击Transparent项的数值条,在弹出的窗口移动滑条使其值为0.4,提高透明度。设置完毕后,按下Ctrl+D键,将长方体适中显示,如图1a所示。 定义波形端口:按下F键切换到面选择状态,选中长方体平行于yz面、x=2的平面,再点右键,选择Assign Excitation/Wave Port项,弹出Wave Port界面,输入名称Port1,点Next;点击Integration Line项选择New Line,则提示绘制端口,在绘图区该面的下边缘中部即(2,0,0)处点左键,确定端口起始点,再选上边缘中部即(2,0,0.4)处,作为端口终点。此时,弹出Wave Port对话窗,默认设置,点Next,点Finish结束,在工程树中选Teemodel/Excitations/Port1项,可选中该端口,如图1 b所示。 图1a 图1b

大气波导效应对LTE网络的影响

大气波导效应与解决方案

1 前言 对于时分双工模式(TDD)系统,要求基站保持严格的时间同步。不同基站之间的时间同步包括帧头同步和上下行转换同步。传统的同频干扰可以通过优化频点配置、干扰白噪化、功率控制、干扰协调、波束赋型等方式来对抗。同时,由于TDD系统的上行和下行传输共享同样的频率,TDD系统中除存在传统的小区间的干扰外,还存在远端基站的下行信号干扰目标小区上行信号的情形。 TDD系统的远距离同频干扰发生在相距很远的基站间。随着传播距离的增加,远端发射源的信号经过传播延迟到达近端同频的目标基站后,可能会进入目标基站的其他传输时隙,从而影响近端目标系统的正常工作,如图1所示。由于基站的发射功率远大于终端的发射功率,因此远距离同频干扰主要表现为远端小区下行信号干扰近端目标基站的上行接收。 2 成因分析 产生远距离同频干扰,必然是发生了超过保护间隔以上的超远距离传输。商用的TDD系统,如SCDMA(大灵通)和TD-SCDMA均已证实远距离同频干扰的存在性。远距离同频干扰的发生与信号传输环境和基站高度等有关。 2.1 主要因素 在“低空大气波导”效应下,电磁波好像在波导中传播一样,传播损耗很小(近似于自由空间传播),可以绕过地平面,实现超视距传输。当远处基站达到一定的基站高度级别时,在存在“低空大气波导”现象的情况下,远处基站的大功率

下行信号可以产生远距离传输到达近处基站。由于远距离传输时间超过TDD系统的上下行保护间隔,远处基站的下行信号在近处基站的接收时隙被近处基站收到,从而干扰了近处基站的上行接收,产生TDD系统的远距离同频干扰。 大气波导是一种特殊天气下形成的大气对电磁波折射效应,各地分布不同:南海地区春秋冬季出现较多;东部沿海夏秋季出现较多;西北地区春秋冬季出现较多。我国东南部波导出现傍晚多于早上,西北地区则是早上多于晚上。 2.2 辅助因素 基站的发射天线与接收天线高度要求高于周围的建筑物,否则信号很容易被建筑物阻挡。当天线高度足够高时,远端基站下行信号在“抵抗大气波导”效应下可能会发生超远传输,干扰近端的上行信号。 由于基站发射功率高,终端发射功率低,因此只有基站发射的下行信号,才有可能经过远距离传输后,干扰近端上行。由于终端发射功率较低,经过远距离传输后,不会对近端基站上行信号产生干扰。经过远距离传输后,远处基站发射功率对近端基站的下行干扰也可以忽略。 3 TDD商用系统干扰实例及解决方案参考 商用的SCDMA系统和TD-SCDMA系统针对远距离同频干扰采取了相应的对抗措施,对TD-LTE系统对抗干扰具有参考意义。

法拉第效应实验报告

法拉第效应 一.实验目的 1.初步了解法拉第效应的经典理论。 2.初步掌握进行磁光测量的方法。 二.实验原理 1.法拉第效应 实验表明,偏振面的磁致偏转可以这样定量描述:当磁场不是很强时,振动面旋转的角度F θ与光波在介质中走过的路程l 及介质中的磁感应强度在光的传播方向上的分量H B 成正比,这个规律又叫法拉第一费尔得定律,即 F H VB l θ= ()1 比例系数V 由物质和工作波长决定,表征着物质的磁光特性,这个系数称为费尔得常数,它与光频和温度有关。几乎所有的物质都有法拉第效应,但一般都很不显著。不同物质的振动面旋转的方向可能不同。一般规定:旋转方向与产生磁场的螺线管中电流方向一致的,叫正旋(0V >)反之叫负旋(0V <)。 法拉第效应与自然旋光不同,在法拉第效应中,对于给定的物质,偏振面相对于实验室坐标的旋转方向,只由B 的方向决定和光的传播方向无关,这个光学过程是不可逆的。光线往返一周,旋光角将倍增。而自然旋光则是可逆的,光线往返一周,累积旋光角为零。与自然旋光类似,法拉第效应也有色散。含有三价稀土离子的玻璃,费尔德常数可近似表示为: ()1 22t V K λλ-=- ()2 这里K 是透射光波长t λ,有效的电偶极矩阵元,温度和浓度等物理量的函数,但是与入射波长λ无关。这种V 值随波长而变的现象称为旋光色散。 2.法拉第效应的经典理论 从光波在介质中传播的图像看,法拉第效应可以这样理解:一束平行于磁场方向传播的平面偏振光,可以看作是两柬等幅的左旋和右旋偏振光的叠加,左旋和右旋是相对于磁场方向而言的。介质中受原子核束缚的电子在人射光的两旋转电矢量作用下,作稳态的圆周运动。在与电子轨道平面相垂直的方向上加一个磁场B ,则在电子上将引起径向力M F ,力的方向决定于光的旋转方向和磁场方向。因此,电子所受的总径向力可以有两个不同的值。轨道半径

实验11波导腔体内场分析

实验11 波导腔体内场分析 一、设计要求 建立一个T型波导模型,利用HFSS软件求解、分析,观察分布情 T 型波导的场况。 二、实验仪器 硬件:PC机 软件:HFSS软件 三、设计步骤 1. 创建工程 第 1 步:打开HFSS 软件并保存新工程。 第 2 步:插入HFSS 设计 第 3 步:选择求解类型 第 4 步:设置单位 2. 创建模型 第 1 步:创建长方体 第 2 步:复制长方体 第 3 步:组合长方体 第 4 步:创建间隔 从而得到如下所示的模型图:

O 1 2(H) 3.创建模型 第1步:添加求解设置 第2步:确认设计 第3步:分析,对设计的模型进行三维场分析求解第4步:移动间隔的位置 第5步:重新进行分析 重新进行3D场的分析求解 4.比较结果

第1步:创建一个S参数的矩形曲线图

在上面矩形图中显示不同间隔的S参数曲线。 第2步:创建一个场覆盖图 如下图显示,在T接头的上表面显示场的分布情况 F Ffeld(V 1.7Z I Ie 5,, 9 i r11∣≡ 釘77?Heι0aj Z. 37S3e +□BΞ: Z, IElBe+0EK 1. eω7β?ma 1. TBUMBan IL莊即亡"虚泊 JL 3E7≡e→00Ξ: i. Lfr?Gf +B3Ξ! 几沪帥的? S . g*?BΞe +□G3∑ 5. ?L55e÷a32 I-鸟H 吉7<≡1 IMi 2 .∣ ∏j 第3步:动态演示场覆盖图 分别定义场间隔位置为O和0.2时候动态演示场覆盖图。观察场分布情况, 重点比较2、3端口场的分布差异。具体的图形在第四步的数据记录以及分析里面有详细的演示记录 四、数据记录及分析 (1)在矩形框中间隔位置分别为0和0.2的时候,S11、S12、S13的参数

大气波导干扰问题分析

大气波导干扰问题分析 1、概述 在一定的气象条件下,在大气边界层尤其是在近地层中传播的电磁波,受大气折射的影响,其传播轨迹弯向地面,当曲率超过地球表面曲率时,电磁波会部分地被陷获在一定厚度的大气薄层内,就像电磁波在金属波导管中传播一样,这种现象称为电磁波的大气波导传播,形成的大气薄层称为大气波导层,目前天津大气波导主要影响郊县区域的F频段,一般出现凌晨和上午。 经验证,在F频段站点存在大气波导干扰时,“大气波导启动开关”可有效降低接通、掉线指标恶化程度,提升用户感知,要配合上行频选功能使用,开的话改为上行PRB随机化[6],开启三天MR的时候改为RB位置子带分配(频选)[1]。 2、大气波导干扰规律 1、干扰范围 远距离同频干扰影响范围较大,农村及城郊受影响小区明显多于市区,干扰扇区具有明显的方向性,干扰小区会随着时间的推移逐渐流动 2、时间规律 干扰发生在晚12点至次日上午9点之间,9点之后自动消失;一般在晴朗有风的时候容易出现 3、指标影响 在大面积干扰出现时段,无线接通率和切换成功率明显降低,无线掉线率明显升高 4、干扰频段 大气波导主要影响F频段,在大气波导较为严重的时候,D频段也会受轻微的影响

由以上两图看出, 当出现大气波导干扰时,对3大指标均有不同程度的恶化且严重降低了用户感知。 3、干扰小区分布情况 天津市内大气波导干扰小区主要分布在环外区域,例如武清、北辰、静海、宁河等区域下图为2017年1月4日大气波导干扰小区分布图,受干扰小区基本集中在郊县区域 4、大气波导特征 TDD无线通信系统中,在某种特定的气候、地形、环境条件下,远端基站下行时隙传输距离超过TDD系统上下行保护时隙(GP)的保护距离,干扰到了本地基站上行时隙。这就是

【实验报告】近代物理实验教程的实验报告

近代物理实验教程的实验报告 时间过得真快啊!我以为自己还有很多时间,只是当一个睁眼闭眼的瞬间,一个学期都快结束了,现在我们为一学期的大学物理实验就要画上一个圆满的句号了,本学期从第二周开设了近代物理实验课程,在三个多月的实验中我明白了近代物理实验是一门综合性和技术性很强的课程,回顾这一学期的学习,感觉十分的充实,通过亲自动手,使我进一步了解了物理实验的基本过程和基本方法,为我今后的学习和工作奠定了良好的实验基础。我们所做的实验基本上都是在物理学发展过程中起到决定性作用的著名实验,以及体现科学实验中不可缺少的现代实验技术的实验。它们是我受到了著名物理学家的物理思想和探索精神的熏陶,激发了我的探索和创新精神。同时近代物理实验也是一门包括物理、应用物理、材料科学、光电子科学与技术等系的重要专业技术基础物理实验课程也是我们物理系的专业必修课程。 我们本来每个人要做共八个实验,后来由于时间关系做了七个实验,我做的七个实验分别是:光纤通讯,光学多道与氢氘,法拉第效应,液晶物性,非线性电路与混沌,高温超导,塞满效应,下面我对每个实验及心得体会做些简单介绍: 一、光纤通讯:本实验主要是通过对光纤的一些特性的探究(包括对光纤耦合效率的测量,光纤数值孔径的测量以及对塑料光纤光纤损耗的测量与计算),了解光纤光学的基础知识。探究相位调制型温度传感器的干涉条纹随温度的变化的移动情况,模拟语电话光通信, 了解光纤语音通信的基本原理和系统构成。老师讲的也很清楚,本试验在操作上并不是很困难,很易于实现,易于成功。

二、光学多道与氢氘:本实验利用光学多道分析仪,从巴尔末公式出发研究氢氘光谱,了解其谱线特点,并学习光学多道仪的使用方法及基本的光谱学技术通过此次实验得出了氢原子和氘原子在巴尔末系下的光谱波长,并利用测得的波长值计算出了氢氘的里德伯常量,得到了氢氘光谱的各光谱项及巴耳末系跃迁能级图,计算得出了质子和电子的质量之比。个人觉得这个实验有点太智能化,建议锻炼操作的部分能有所加强。对于一些仪器的原理在实验中没有体现。如果有所体现会比较容易使学生深入理解。数据处理有些麻烦。不过这也正是好好提高自己的分析数据、处理数据能力的好时候、更是理论联系实际的桥梁。 三、法拉第效应:本实验中,我们首先对磁场进行了均匀性测定,进一步测量了磁场和励磁电流之间的关系,利用磁场和励磁电流之间的线性关系,用电流表征磁场的大小;再利用磁光调制器和示波器,采用倍频法找出ZF6、MR3-2样品在不同强度的旋光角θ和磁场强度B的关系,并计算费尔德常数;最后利用MR3样品和石英晶体区分自然旋光和磁致旋光,验证磁致旋光的非互易性。 四p液晶物性:本实验主要是通过对液晶盒的扭曲角,电光响应曲线和响应时间的测量,以及对液晶光栅的观察分析,了解液晶在外电场的作用下的变化,以及引起的液晶盒光学性质的变化,并掌握对液晶电光效应测量的方法。本实验中我们研究了液晶的基本物理性质 和电光效应等。发现液晶的双折射现象会对旋光角的大小产生的影响,在实验中通过测量液晶盒两面锚泊方向的差值,得到液晶盒扭曲角的大小为125度;测量了液晶的响应时间。观察液晶光栅的衍射现象,在“常黑模式”和“常白模式”下分别测量了液晶升压和降压过程的电光响应曲线,求得了阈值电压、饱

LTE大气波导干扰缓解之特殊子帧配比回退方法外场测试规范(一阶段) -

LTE大气波导干扰缓解之特殊子帧配比回退方案外场测试规范(一阶段) 版本号:

目录

前言 近期以江苏为代表的多个省份F频段LTE小区经常受到大范围上行强干扰,综合考虑基站检测得到的干扰信号时域频域特征、频谱仪扫频结果、干扰发生的时间规律以及和全球波导预警信息的匹配程度,认为所受干扰为远端基站下行信号经大气波导远距离低损耗传输后对近端基站上行产生的干扰,即大气波导干扰。 大气波导干扰可大幅抬升上行底噪,严重影响KPI和用户体验,甚至引发断服情况。为减轻大气波导干扰造成的影响,可将F频段LTE小区特殊子帧配比由9:3:2回退为3:9:2。由于增大了下行与上行间的保护间隔(GuardPeriod,GP),理论分析可避免对220公里(信号传播距离)范围内的基站造成干扰。 考虑现网急迫程度和产业支持情况,特殊子帧配比回退方案的测试验证分两阶段进行: 第一阶段,集团网络部统一组织相关省公司固定将LTE小区的特殊子帧配比由9:3:2修改为3:9:2。 第二阶段,LTE基站根据上行干扰检测和特征序列检测情况,自适应的进行特殊子帧配比调整,在大气波导干扰发生时回退为3:9:2,在大气波导干扰消失时恢复为9:3:2。

范围 本标准规定了LTE大气波导干扰缓解之特殊子帧配比回退方案外场一阶段测试的测试步骤与测试方法,规定了测试需要输出的数据及结果,用于评估验证特殊子帧配比回退方案的效果。 术语、定义和缩略语 下列术语、定义和缩略语适用于本标准: 表2-1术语、定义和缩略语列表

测试环境 测试环境 参与测试的江苏、安徽、河南三省所有LTEF频段小区。 每省至少选择一个易受大气波导干扰且干扰程度较严重的LTEF 频段楼面站。江苏因全网已改为3:9:2,应选择主要干扰源方向为省外的站点,安徽、河南应选择主要干扰源方向为省内的站点。 配合测试设备 每省至少一台便携式频谱仪,用于从时域信号查看GP、UpPTS和上行子帧各符号的受扰情况 测试用例 特殊子帧配比回退效果全网定性分析

塞曼效应实验报告

塞曼效应实验报告 一、实验目的与实验仪器 1. 实验目的 (1)学习观察塞曼效应的方法,通过塞曼效应测量磁感应强度的大小。 (2)学习一种测量电子荷质比的方法。 2.实验仪器 笔形汞灯+电磁铁装置,聚光透镜,偏振片,546nm滤光片,F-P标准具,标准具间距(d=2mm),成像物镜与测微目镜组合而成的测量望远镜。 二、实验原理 (要求与提示:限400字以内,实验原理图须用手绘后贴图的方式) 1.塞曼效应 (1)原子磁矩和角动量关系 用角动量来描述电子的轨道运动和自旋运动,原子中各电子轨道运动角动量的矢量和即原子的轨道角动量L,考虑L-S耦合(轨道-自旋耦合),原子的角动量J =L +S。量子力学理论给出各磁矩与角动量的关系: L = - L,L = S = - S,S = 由上式可知,原子总磁矩和总角动量不共线。则原子总磁矩在总角动量方向上的分量 为: J = g J,J = J L为表示原子的轨道角量子数,取值:0,1,2… S为原子的自旋角量子数,取值:0,1/2,1,3/2,2,5/2… J为原子的总角量子数,取值:0,1/2,1,3/2… 式中,g=1+为朗德因子。 (2)原子在外磁场中的能级分裂 外磁场存在时,与角动量平行的磁矩分量J与磁场有相互作用,与角动量垂直的磁矩分量与磁场无相互作用。由于角动量的取向是量子化的,J在任意方向的投影(如z方向)为: = M,M=-J,-(J-1),-(J-2),…,J-2,J-1,J 因此,原子磁矩也是量子化的,在任意方向的投影(如z方向)为: =-Mg 式中,玻尔磁子μB =,M为磁量子数。

具有磁矩为J的原子,在外磁场中具有的势能(原子在外磁场中获得的附加能量): ΔE = -J·=Mg B 则根据M的取值规律,磁矩在空间有几个量子化取值,则在外场中每一个能级都分裂为等间隔的(2J+1)个塞曼子能级。原子发光过程中,原来两能级之间电子跃迁产生的一条光谱线也分裂成几条光谱线。这个现象叫塞曼效应。 2.塞曼子能级跃迁选择定则 (1)选择定则 未加磁场前,能级E2和E1之间跃迁光谱满足: hν = E2 - E1 加上磁场后,新谱线频率与能级之间关系满足: hν’= (E2+ΔE2) – (E1+ΔE1) 则频率差:hΔν= ΔE2-ΔE1= M2g2 B -M1g1B= (M2g2- M1g1)B 跃迁选择定则必须满足: ΔM = 0,±1 (2)偏振定则 当△M=0时,产生π线,为振动方向平行于磁场的线偏振光,可在垂直磁场方向看到。 当△M=±1时,产生σ谱线,为圆偏振光。迎着磁场方向观察时,△M=1的σ线为左旋圆偏振光,△M=-1的σ线为右旋圆偏振光。在垂直于磁场方向观察σ线时,为振动方向垂直于磁场的线偏振光。 3. 能级3S13P2 L01 S11 J12 g23/2 M10-1210-1-2 Mg20-233/20-3/2-3汞原子的绿光谱线波长为,是由高能级{6s7s}S1到低能级{6s6p}P2能级之间的跃迁,其上下能级有关的量子数值列在表1。3S1、3P2表示汞的原子态,S、P分别表示原子轨道量子数L=0和1,左上角数字由自旋量子数S决定,为(2S+1),右下角数字表示原子的总角动量量子数J。 在外磁场中能级分裂如图所示。外磁场为0时,只有的一条谱线。在外场的作用下,上能级分裂为3条,下能级分裂为5条。在外磁场中,跃迁的选择定则对磁量子数M的要求为:△M=0,±1,因此,原先的一条谱线,在外磁场中分裂为9条谱线。 9条谱线的偏振态,量子力学理论可以给出:在垂直于磁场方向观察,9条分裂谱线的强度(以中心谱线的强度为100)随频率增加分别为,,75,75,100,75,75,,. 标准具 本实验通过干涉装置进行塞曼效应的观察。我们选择法布里-珀罗标准具(F-P标准具)作为干涉元件。F-P标准具基本组成:两块平行玻璃板,在两板相对的表面镀有较高反射率的薄膜。 多光束干涉条纹的形成

大气波导对5G影响研究

大气波导对5G影响研究 1、导语 随着5G网络基站规模的逐渐扩大,以及5G终端渗透率的增加。5G网络下的干扰研究势必成为未来研究的热点话题。本文对5G网络2.6GHz 频段下的大气波导干扰成因进行了深入理论分析,并给出了切实可行的干扰解决办法,进而从根本上解决大气波导对5G网络的影响。 2、研究背景 在一定的气象条件下,比如当大气中某些区域的层结(温度与湿度随高度的分布状况)满足一定条件时,在大气边界层尤其是在近地层中传播的电磁波,受大气折射的影响其传播轨迹弯向地面,电磁波就会部分的传播在一定厚度的大气薄层内,这种现象称为电磁波的大气波导传播。低空大气波导的出现,可使电磁波以较小的损耗沿大气波导传播,所以会对通信系统和探测系统造成严重影响。大气波导对无线电波的影响主要表现在两个方面:一是增加传播的距离,二是增加电场强度。由于波导层使得无线电波来回不断反射,增加了其传播路径中的电场强度,从而使其能量衰减大大减缓,因此可使无线电波在波导层进行超长距离传播。大气波导传播示意图如图1所示。

图1 大气波导传播示意图 海南省海口市TD-LTE网络长期受大气波导干扰,主要受到来自广东湛江以及广西北海的TD-LTE网络F频段和D频段产生的时隙交叉干扰,大气波导干扰出现期间对用户业务感知严重恶化,具体情况如1所示。 表1 海口受干扰小区数量(红色字体表示受大气波导干扰小区数量) 3 、2.6GHz频段大气波导形成的条件 边界层大气中的电磁波若要形成波导传播必须满足4个基本条件。(1)近地层或边界层某一高度处必须存在大气波导。 (2)电磁波的波长必须小于最大陷获波长。

(3)电磁波发射源必须位于大气波导层内。对于抬升波导,有时电磁波发射源位于波导底下方时也可形成波导传播,但此时发射源必须距波导底不远,并且波导强度必须非常强。 (4)电磁波的发射仰角必须小于某一临界仰角。根据理论分析最容易受波导影响而形成波导传播的是分米波(电磁波长10~100cm,频率0.3~3GHz)和厘米波(电磁波长1~10cm,频率3~30GHz)。 如图2所示,目前中国移动使用5G网络的2.6GHz频段 2515~2615MHz正好和4G网络2.6GHz频段部分重叠,且属于易容易形成波导的频段。鉴于当前4G网络的2.6GHz频段受扰情况,未来大规模5G网络组网后不可避免的产生大气波导干扰。 图2 5G和LTE频段配置 4 、大气波导对5G网络干扰分析

塞曼效应实验报告

1、前言和实验目的 1.了解和掌握WPZ-Ⅲ型塞曼效应仪和利用其研究谱线的精细结构。 2.了解法布里-珀罗干涉仪的的结构和原理及利用它测量微小波长差值。 3.观察汞546.1nm (绿色)光谱线的塞曼效应,测量它分裂的波长差,并计算电子的荷质比的实验值和标准值比较。 2、实验原理 处于磁场中的原子,由于电子的j m 不同而引起能级的分裂,导致跃迁时发出的光子的频率产生分裂的现象就成为塞曼效应。下面具体给出公式推导处于弱磁场作用下的电子跃迁所带来的能级分裂大小。 总磁矩为 J μ 的原子体系,在外磁场为B 中具有的附加能为: E ?= -J μ *B 由于我们考虑的是反常塞曼效应,即磁场为弱磁场,认为不足以破坏电子的轨道-自旋耦合。则我们有: E ?= -z μB =B g m B J J μ 其中z μ为J μ 在z 方向投影,J m 为角动量J 在z 方向投影的磁量子数,有12+J 个值,B μ= e m eh π4称为玻尔磁子,J g 为朗德因子,其值为 J g =) 1(2) 1()1()1(1++++-++ J J S S L L J J 由于J m 有12+J 个值,所以处于磁场中将分裂为12+J 个能级,能级间隔为B g B J μ。当没有磁场时,能级处于简并态,电子的态由n,l,j (n,l,s )确定,跃迁的选择定则为Δs=0, Δl=1±.而处于磁场中时,电子的态由n,l,j,J m ,选择定则为Δs=0,Δl=1±,1±=?j m 。 磁场作用下能级之间的跃迁发出的谱线频率变为: )()(1122' E E E E hv ?+-?+==h ν+(1122g m g m -)B μB 分裂的谱线与原谱线的频率差ν?为: ν?=' ν-ν=h B g m g m B /)(1122μ-、 λ?= c ν λ?2 =2λ (1122g m g m -)B μB /hc =2 λ (1122g m g m -)L ~

西安交大《塞曼效应实验报告》(资料参考)

塞 曼 效 应 实 验 报 告 应物31 吕博成学号:2120903010

塞曼效应 1896年,荷兰物理学家塞曼(P.Zeeman )在实验中发现,当光源放在足够强的磁场中时,原来的一条光谱线会分裂成几条光谱线,分裂的条数随能级类别的不同而不同,且分裂的谱线是偏振光。这种效应被称为塞曼效应。 需要首先指出的是,由于实验先后以及实验条件的缘故,我们把分裂成三条谱线,裂距按波数计算正好等于一个洛伦兹单位的现象叫做正常塞曼效应(洛伦兹单位 mc eB L π4=)。而实际上大多数谱线的塞曼分裂谱线多于三条,谱线的裂距可以大于也可 以小于一个洛伦兹单位,人们称这类现象为反常塞曼效应。反常塞曼效应是电子自旋假设的有力证据之一。通过进一步研究塞曼效应,我们可以从中得到有关能级分裂的数据,如通过能级分裂的条数可以知道能级的J 值;通过能级的裂距可以知道g 因子。 塞曼效应至今仍然是研究原子能级结构的重要方法之一,通过它可以精确测定电子的荷质比。 一.实验目的 1.学习观察塞曼效应的方法观察汞灯发出谱线的塞曼分裂; 2.观察分裂谱线的偏振情况以及裂距与磁场强度的关系; 3.利用塞曼分裂的裂距,计算电子的荷质比e m e 数值。 二.实验原理 1、谱线在磁场中的能级分裂 设原子在无外磁场时的某个能级的能量为0E ,相应的总角动量量子数、轨道量子数、自旋量子数分别为S L J 、、。当原子处于磁感应强度为B 的外磁场中时,这一原子能级将分裂为12+J 层。各层能量为 B Mg E E B μ+=0 (1) 其中M 为磁量子数,它的取值为J ,1-J ,...,J -共12+J 个;g 为朗德因子;B μ为玻尔磁矩(m hc B πμ4= );B 为磁感应强度。 对于S L -耦合 ) () ()()(121111++++-++ =J J S S L L J J g (2) 假设在无外磁场时,光源某条光谱线的波数为

最新法拉第旋光效应实验报告资料

法拉第旋光效应实验报告 一.实验目的: 1.了解和掌握法拉第效应的原理; 2.了解和掌握法拉第效应的实验装置结构及实验原理; 3.测量法拉第效应偏振面旋转角与外加磁场电流I的关系曲线。二.实验仪器: LED 发光二极管(或白光光源和滤波片),偏振片,透镜,直流励磁电源,导轨,偏振片,集成霍尔元件,稳压电源等。三.实验原理和操作步骤: 天然旋光现象。 当线偏振光通过某些透明物质(如石英、糖溶液、酒石酸溶液等)后.其振动面将以光的传播方 向为轴旋转一定的角度,这种现象称为旋光现象。1811 年阿拉果首先发现石英有旋光现象,以后 毕奥(J. B. Biot)和其他人又发现许多有机液体和有机物溶液也具有旋光现象。凡能使线偏振光 振动面发生旋转的物质称为旋光物质,或称该物质具有旋光性。 图3.1 石英的旋光现象 如图3.1 所示,1P 和2P 分别为起偏器和检偏器(正交)。显然,在没有旋光物质时,2P 后面的视场是暗的。当在1P 和2P 之间加入旋光物质后2P 后的视场将变亮,将2P 旋转某一角度后,视场又将变暗。这说明线偏振光透过旋光物质后仍然是线偏振光,只是其振动面旋转了一个角度。 振动面旋转的角度称为旋光度,用?表示。 线偏振光通过旋光晶体时,旋光度?和晶体厚度 d 成正比,即 d α ? = (3.1)式中,α是比例系数,与旋光晶体的性质、温度以及光的频率有关,称为该晶体的旋光率。 不同的旋光物质可以使线偏振光的振动面向不同的方向旋转.人们对旋光方

向作下述约定: 迎着光传播方向观察,若出射光振动面相对于入射光扳动面沿顺时针方向旋转为右旋;沿逆时针方向旋转称为左旋.在图 3.1 中,若在1P 前加一个白色光源,由于不同波长的光旋转角度不同,因此到达2P 时有一部分光能透过去,有些光透不过去,有些能部分透过去,所以2P 后的视场是彩色的,旋转2P 其法拉第旋光效应25色彩会发生变化,这种现象叫做旋光色散。 2. 旋光现象的菲涅耳解释。 菲涅耳提出了一种唯象理论来解释物质的旋光性质。线偏振光可以分解为左旋圆偏振光和右旋圆偏振光。左旋圆偏振光和右旋圆偏振光以相同的角速度沿相反方向旋转,它们合成为在一直线上振动的线偏振光。在旋光物质中左旋圆偏振光和右旋圆偏振光传播的相速度不相同。假定右旋圆偏振光在某旋光物质中传播速度比左旋圆偏振光的速度快,在旋光物质出射面处观察,于右旋圆偏振光速度快,因此右旋圆偏振光振幅旋转过的角度较大,在出射面处,两圆偏光合成的线偏振光PE 的振动方向比起原来(进入旋光物质前)的振动方向0 PE 来,顺时针方向转过角度θ,这就是右旋。当材料中左旋圆偏振光的相速度较大时.就是左旋光材料。 3. 磁致旋光。 前面介绍的是物质的天然旋光性,实际上,有些物质本身不具有旋光性,但在磁场作用下就有旋光性了,就是前面介绍的法拉第旋光效应,也叫磁致旋光效应。磁致旋光中振动面的旋转角?和样品长度L 及磁感应强度B 成正比,即有VLB = ?(3.2)式中V 是—个与物质的性质、光的频率有关的常数,称为维尔德(Verdet)常数。某些物质的维尔德磁致旋光也有左右之分.我们规定:当光的传播方向和磁场方向平行时迎着光的方向观察,光的振动面向左旋转(逆时针),则维尔德常数为正。旋光现象的唯象解释 近代物理实验讲义 4. 磁致旋光的经典唯象解释。 可以用唯象模型来说明磁致旋光效应。电子在左旋圆偏振光和右旋圆偏振光的电场作用下作左旋和右旋圆周运动,电子运动平面与磁场垂直。电子在磁场中受到洛仑兹力,其方向向着电子轨道中心或背着轨道中心,视速度的方向而定注意:电子本身带负电荷。在洛仑兹力向着轨道中心的情况中,电子受到的向心力增加,电子旋转速率增大。在洛仑兹力背向轨道中心的情况中,电子旋转变慢。电子旋转快慢的变化影响了圆偏振光电场矢量旋转角速度。当光从磁光媒质出射时重新合成线偏振光。由于在媒质中左旋和右旋的速率不同,合成偏振光的振动面转过了一个角度。从图上可以看出,电子旋转速率变化只决定于磁场方向与电子旋转方向,而与光的传播方向无关。值得注意的是,天然旋光的旋转方向与光的传播方向有关,而磁致旋光的旋转方向与光的传播方向无关,而决定于外加磁场的方向。如图 3.5 所示,若将出射光再反射回晶体,则通过天然旋光晶体的线偏光沿原路返回后振动面将回复原位,而通过磁致旋光晶体的线偏光将继续旋光,其振动面与原振动面夹角更大。磁致旋转现象是由于外磁场存在时物质的原子或分子中的电子进动而引起的。这种进动的结果,使物体对顺时针与逆时针的圆偏振光产生不同的折射率。因此方向不同的圆偏振光的传播速度不同,引起了振动面的旋转。 四.

塞曼效应实验报告

近代物理实验报告 塞曼效应实验 学院 班级 姓名 学号 时间 2014年3月16日

塞曼效应实验实验报告 【摘要】: 本实验通过塞曼效应仪与一些观察装置观察汞(Hg)546.1nm谱线(3S1→3P2跃迁)的塞曼分裂,从理论上解释、分析实验现象,而后给出横效应塞满分裂线的波数增量,最后得出荷质比。 【关键词】:塞曼效应、汞546.1nm、横效应、塞满分裂线、荷质比 【引言】: 塞曼效应是原子的光谱线在外磁场中出现分裂的现象,是1896年由荷兰物理学家塞曼发现的。首先他发现,原子光谱线在外磁场发生了分裂;随后洛仑兹在理论上解释了谱线分裂成3条的原因,这种现象称为“塞曼效应”。在后来进一步研究发现,很多原子的光谱在磁场中的分裂情况有别于前面的分裂情况,更为复杂,称为反常塞曼效应。 塞曼效应的发现使人们对物质光谱、原子、分子有更多了解,塞曼效应证实了原子磁矩的空间量子化,为研究原子结构提供了重要途径,被认为是19世纪末20世纪初物理学最重要的发现之一。利用塞曼效应可以测量电子的荷质比。在天体物理中,塞曼效应可以用来测量天体的磁场。本实验采取Fabry-Perot(以下简称F-P)标准具观察Hg的546.1nm谱线的塞曼效应,同时利用塞满效应测量电子的荷质比。 【正文】: 一、塞曼分裂谱线与原谱线关系 1、磁矩在外磁场中受到的作用 (1)原子总磁矩在外磁场中受到力矩的作用: 其效果是磁矩绕磁场方向旋进,也就是总角动量(P J)绕磁场方向旋进。 (2)磁矩在外磁场中的磁能:

由于或在磁场中的取向量子化,所以其在磁场方向分量也量子化: ∴原子受磁场作用而旋进引起的附加能量 M为磁量子数 g为朗道因子,表征原子总磁矩和总角动量的关系,g随耦合类型不同(LS耦合和jj耦合)有两种解法。在LS耦合下: 其中: L为总轨道角动量量子数 S为总自旋角动量量子数 J为总角动量量子数 M只能取J,J-1,J-2 …… -J(共2J+1)个值,即ΔE有(2J+1)个可能值。 无外磁场时的一个能级,在外磁场作用下将分裂成(2J+1)个能级,其分裂的能级是等间隔的,且能级间隔 2、塞曼分裂谱线与原谱线关系: (1) 基本出发点:

大气波导与微波超视距雷达

以大气电离层为“反射镜”,工作于高频(High Frequency, HF) 波段的OTH-B 天波超视距雷达的典型探测半径可达1800 海里(e.g. MD 空军的AN/FPS-118),但天线阵体型过于庞大,尺度以千米计,无法安装于机动式武器-传感器平台(如水面战舰) 之上。

MD 海军AN/TPS-71 ROTHR (Relocatable Over-the-Horizon Radar) “可再部署型” 天波超视距雷达。 地波超视距雷达的典型探测半径为180 海里(绿色),庞大的HF 天线阵同样无法应用于水面战舰等空间紧的机动平台。由于工作波长达数十米,高频超视距雷达的分辨率相当糟糕,且很难捕捉到小尺寸目标(如反舰导弹)。

高频超视距雷达的性能缺陷十分明显,空中预警平台成本则高昂,数量有限,且要伴随舰队长时间远洋活动须获得大型CATOBAR 航母的支持,舰载微波超视距雷达的吸引力不言而喻。无线电波在大气中传播的速度接近,但不等于其在真空中的传播速度。随着大气温度,湿度,压强的变化,无线电波传播速度相应改变,大气对无线电波的折射率也就发生变化。接近地球表面的大气折射率为 1.000250 至 1.000400,变化幅度看似微小,却足以引起无线电传播路径的弯曲。通常情况下大气折射率随着海拔升高而逐渐降低,造成无线电传播路径向下方弯曲(见上图)。理想大气条件下这一折射作用的效果是使雷达地平线/水天线的距离比光学地平线/水天线高出约1/6,但如果某一高度区间大气的温度和/或湿度迅速变化,则可导致其无线电传播路径的弯曲度超过地球曲率,令雷达波束折向地面/水面方向,从而实现超视距探索。 n = 大气折射率,数值为光速/大气中的无线电传播速度 p = 干燥空气压强 T = 大气绝对温度 es = 大气中的水蒸气分压 通常所谓利用大气散射实现微波雷达超视距探测的说法实际上是错误的。由大气构成不均一导致的对流散射(下) 虽能够有效地扩展微波通讯的覆盖半径,却因反射信号强度大幅度下降且传播路径无法确定而难以用于雷达探测(被动电子侦察手段却可利用散射信号推算发射源方位,不过这也是十分耗时费力的工作)。真正的微波超视距雷达所依赖的,是由折射率迅速变化的气层提供的大气波导通道(上)。

似动现象实验报告

似动现象实验报告

似动现象 李璐2010210781 (华中师范大学心理学院)武汉,430079 摘要:本实验采用心理实验系统(PES)测定了3名被试在12种时距和3种空距条件下产生似动现象的情况。实验结果表明:先后呈现两个红色亮点产生似动现象的最优空距为2cm,最优时距为5ms。关键词:似动现象;时距;空距 1 引言 运动知觉是对空间中的物体运动特性的知觉。似动现象就是运动知觉现象的一种,属于运动错觉。两个间隔一定距离的静止刺激物,以适当的时间间隔先后呈现。观察者会产生刺激物由一点移动到另一点的感觉,这种现象称为似动现象。似动是由于先后呈现的刺激作用于感受野使机体产生了与真实运动相似的生理刺激。第一个刺激停止后,它所引起的神经兴奋还会持续一个短暂的时间,在这个短暂的时间内如果出现第二个刺激,它所引起的神经兴奋就会与第一个刺激所引起的暂时持续的兴奋相连,所以感觉上第一个刺激就移动到第二个刺激的地方。似动是生活中的一种普遍现象,电

视和电影就是利用这种现象使观众产生连续运动的知觉的。 德国心理学家M.韦特海默,于1912年最早用实验方法研究了似动现象。从此以后,似动现象的实验室研究,多半是是关于其产生的客观条件及影响因素的,对它的解释尚处于假设的阶段,目前能确定的是,似动现象发生在较高的信息加工水平,它是动觉信息同刺激位置信息整合在一起的结果。 影响似动现象的产生的原因有很多,客观条件方面有刺激呈现的空距、时距,刺激物的强度、形状、数目等,主观条件方面包括个人经验、暗示、个体差异等,其中,刺激的数目越多越容易产生似动现象。由于产生似动的最适宜的时距和空距依赖刺激的形状、强度而变化,所以在不同的实验条件下,产生似动的最优时距、空距不同。如K.Marbe所得的最优时距为200ms,最优空距为4.5°;M.Wertheimer 得到的最优时距为60ms;叶绚等得到的最优空距为2cm;北大杨傅民等得到的产生似动的最优空距为2cm,最优时距为200ms。 本实验将通过测定3名被试对黑色屏幕上

LTE大气波导干扰缓解之特殊子帧配比回退方案外场测试规范 -

L T E大气波导干扰缓解之特殊子帧配比回退方案外场测试规范-V2(总7页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

LTE大气波导干扰缓解之特殊子帧配比回退方案外场测试规范(一阶段) 版本号:v1.0 44

目录 前言.............................................. 错误!未指定书签。 1. 范围............................................ 错误!未指定书签。 2.术语、定义和缩略语............................................................. 错误!未指定书签。 3.测试环境................................................................................. 错误!未指定书签。 3.1.测试环境................................................................... 错误!未指定书签。 3.2.配合测试设备........................................................... 错误!未指定书签。 4.测试用例................................................................................. 错误!未指定书签。 4.1.特殊子帧配比回退效果全网定性分析................... 错误!未指定书签。 4.2.特殊子帧配比回退效果局部定量分析................... 错误!未指定书签。 5.编制历史................................................................................. 错误!未指定书签。

塞曼效应实验报告

塞曼效应实验 实验原理 1、磁矩在外磁场中受到的作用 (1)原子总磁矩在外磁场中受到力矩的作用: 其效果是磁矩绕磁场方向旋进,也就是总角动量(PJ)绕磁场方向旋进。 (2)磁矩在外磁场中的磁能: 由于或在磁场中的取向量子化,所以其在磁场方向分量也量子化: ∴原子受磁场作用而旋进引起的附加能量 M为磁量子数 g为朗道因子,表征原子总磁矩和总角动量的关系,g随耦合类型不同(LS耦合和jj耦合)有两种解法。在LS耦合下:

2、塞曼分裂谱线与原谱线关系: (1) 基本出发点: ∴分裂后谱线与原谱线频率差 由于 定义为洛仑兹单位: 3、谱线的偏振特征: 塞曼跃迁的选择定则为:ΔM=0 时为π成份(π型偏振)是振动方向平行于磁场的线偏振光,只有在垂直于磁场方向才能观察到,平行于磁场方向观察不到;但当ΔJ=0时,M2=0到M1=0的跃迁被禁止。

当ΔM=±1时,为σ成份,σ型偏振垂直于磁场,观察时为振动垂直于磁场的线偏振光。 平行于磁场观察时,其偏振性与磁场方向及观察方向都有关:沿磁场正向观察时(即磁场方向离开观察者:) ΔM= +1为右旋圆偏振光(σ+偏振) ΔM= -1为左旋圆偏振光(σ-偏振) 也即,磁场指向观察者时:⊙ ΔM= +1为左旋圆偏振光 ΔM= -1为右旋圆偏振光 分析的总思路和总原则: 在辐射的过程中,原子和发出的光子作为整体的角动量是守恒的。 原子在磁场方向角动量为 ∴在磁场指向观察者时:⊙B 当ΔM= +1时,光子角动量为,与同向 电磁波电矢量绕逆时针方向转动,在光学上称为左旋圆偏振光。 ΔM= -1时,光子角动量为,与反向 电磁波电矢量绕顺时针方向转动,在光学上称为右旋圆偏振光。

相关主题
文本预览
相关文档 最新文档