当前位置:文档之家› 基于高斯混合隐马尔科夫模型的高速公路超车行为辨识与分析_吕岸

基于高斯混合隐马尔科夫模型的高速公路超车行为辨识与分析_吕岸

基于高斯混合隐马尔科夫模型的高速公路超车行为辨识与分析_吕岸
基于高斯混合隐马尔科夫模型的高速公路超车行为辨识与分析_吕岸

马尔科夫链在传染病预测中的应用

马尔科夫链在传染病预测中的应用 作者:付长贺, 邓甦, FU Chang-he, DENG Su 作者单位:沈阳师范大学数学与系统科学学院,辽宁,沈阳,110034 刊名: 沈阳师范大学学报(自然科学版) 英文刊名:JOURNAL OF SHENYANG NORMAL UNIVERSITY(NATURAL SCIENCE EDITION) 年,卷(期):2009,27(1) 被引用次数:2次 参考文献(8条) 1.施海龙.曲波.郭海强干旱地区呼吸道传染病气象因素及发病预测[期刊论文]-中国公共卫生 2006(04) 2.巴剑波.方旭东.徐雄利马尔科夫链在海军疟疾疫情预测中的应用[期刊论文]-解放军预防医学杂志 2001(02) 3.何江宏.陈启明基于Markov链的最优化预测模型及其应用研究[期刊论文]-合肥学院学报(自然科学版) 2006(01) 4.杨玉华传染病模型的研究及应用[期刊论文]-数学的实践与认识 2007(14) 5.邓甦.付长贺四种贝叶斯分类器及其比较[期刊论文]-沈阳师范大学学报(自然科学版) 2008(01) 6.余雷.薛惠锋.李刚传染病传播模型研究[期刊论文]-计算机仿真 2007(04) 7.王春平.王志锋.单杰随机时间序列分析法在传染病预测中的应用[期刊论文]-中国医院统计 2006(03) 8.吴家兵.叶临湘.尤尔科时间序列模型在传染病发病率预测中的应用[期刊论文]-中国卫生统计 2006(03) 相似文献(3条) 1.期刊论文孟胜利.徐葛林.程满荣.舒祥.雷勇良.朱风才.周敦金.王定明.明贺田.吴杰.严家新.杨晓明中国狂犬病病毒遗传多样性分析-中国生物制品学杂志2010,23(5) 目的 分析中国狂犬病病毒(RV)的遗传多样性,为我国狂犬病的预防提供理论依据.方法 采用RT-PCR技术扩增26株RV N基因,并进行测序,与GenBank登录的序列进行比对,构建进化树,分析RV的基因分型和分组情况以及时间和空间的动态进化.结果 中国RV分为2个大的进化分支(8组),分支Ⅰ包括1~4组,分支Ⅱ包括5~8组,组内核苷酸同源性≥93.2%,氨基酸同源性≥94.3%;组间核苷酸差异性≥8.0%,氨基酸差异性≥1.7%;运用贝叶斯中的马尔科夫链的蒙特卡洛方法,估计中国RV N基因核苷酸的平均碱基替代率为1.408 9×10-4取代/位点·年,共同祖先出现在公元968年.结论 中国狂犬病病毒株均属于基因1型狂犬病病毒,存在跨地域、跨宿主传播;我国分支Ⅰ狂犬病病毒株与泰国、越南、菲律宾、印度尼西亚、马来西亚等东南亚国家分离的狂犬病病毒株起源相同;分支Ⅱ的毒株在全球分布. 2.会议论文孟胜利.严家新.徐葛林.程满荣.吴杰.雷勇良.朱风才.周敦金.王定明.杨晓明中国狂犬病毒遗传多样性研究2009 在1969-2008年间,我们从全国各地共分离到60株街毒株,其中从犬脑中分离到41株,鼬獾中分离5株, 人脑中分离到4株,鹿脑中1株,我们对这61株狂犬病毒株的N基因的进行了序列测定,初步分析后选取26株代 表株与GenBank得到42株中国毒株N基因序列共计68株序列进行全面的进化分析。以探讨中国狂犬病毒株的基 因分型和分组情况、时间和空间的动态进化。结果表明:我们发现目前分离的中国毒株都属于基因1型狂犬病毒,可以分为2个大的进化分支共计8个组,分支I包括1-4组,分支Ⅱ包括5-8组,组内核苷酸同源性≥93.2%,氨基 酸同源性94.3%;组间核苷酸差异性至少是8.0%,氨基酸差异至少是1.7%;选择压力分析表明中国狂犬病毒处 于较强的净化选择约束下,狂犬病毒N蛋白中的核苷酸突变主要是同义突变;运用贝叶斯中的马尔科夫链的蒙特 卡洛方法估计中国狂犬病毒N基因核苷酸的平均喊基替代率为1.4089×10-4取代/位点/年,共同祖先出现在公元 1040年前;同一毒株或者核苷酸同源性很高的毒株在不同地点、不同宿主中出现表明中国狂犬病毒株存在跨地域、 跨宿主传播;我国狂犬病高发区流行的毒株(分 3.学位论文王家赠接触振子系统与接触粒子系统中的几类合作行为2008 本文主要研究非线性系统中的一些时空动力学与合作行为,分为连续系统和离散系统两个部分. 在第一部分中,我们研究时间连续、空间分立的接触振子系统的一些动力学行为.以 Josephson节方程作为基本振子,也就是经典力学中的单摆方程.依照循序渐进的原则,分别研究了:周期驱动下的振子、两个耦合振子、一维耦合多振子链.揭示了新的非线性动力学和合作行为. 在直流驱动的Josephson振子上加入周期驱动,形成两个相互竞争的频率.频率的竞争导致各种同步解.分别大阻尼和小阻尼两种情况,我们介绍了Poincaré映射在相平面上的不变曲线以及它的性质;利用Arnold舌头显示了参数空间上的分支特征.在小阻尼情况下,研究了混沌产生的特点. 对于两个具有不同自然频率的Josephson振子,在线性扩散耦合和正弦耦合两种情况下,研究了这些系统的不同状态之间的相变特征.同时在正弦耦合的系统中发现了混沌解的存在. 在一维耦合多振子链模型,取周期边界条件.在一定条件下,系统中会产生一类特殊的解.只要一点非常小的驱动力,整条链中的粒子就会同步地转动.这种解被命名为“超-旋转”态.我们揭示了这种解产生的机制. 在第二部分中,我们研究了复杂网络上的传染病动力学.主要使用了易感者一感染者一移除者(Susceptible-infected-removed;记为SIR,下同)模型.对于这种类型的传染病在任意网络上的传播,首先在亚宏观水平建立了一个马尔科夫链模型,得到了一些性质.到目前为止,我们对几类特殊结构的网络进行了解析处理.对于大量与实际更加接近的网络,我们还是用宏观的方法,建立了不同的平均场率方程模型,并分析传播的阈值条件. 对于任意网络上的SIR型传播,我们首先建立了一个时间齐次的马氏链模型,利用转移概率矩阵证明了马氏链的收敛性.利用这个模型,可以对几种特殊的网络结构进行解析求解. 实际问题中,各个节点传播疾病的能力往往是不一致的,所以不同的接触过程,它们传播疾病的概率是不一样的.体现在网络上,就是通过连线的传播率不是定常系数,而是有一个分布.在第六章中,我们研究了这个因素对于传播带来的影响. 节点和节点之间的连接并不总是完全随机的,有的带有一定的选择性。形成了相关性网络。关于相关性网络上的传播问题,已经有了一些理论结果.但是我们觉得有些地方值得进一步的商榷与提高.在第七章中,我们给出了求解SIR模型的新方法.基于连接矩阵,我们定义了计算相关性的方法. 在第八章中建立了有向网络上的传播模型,并进行了求解.得到了有向网络上传播阈值的约束条件.最后讨论了在有向网络上如何进行连接相关性度量的问题. 第九章是对本文中所做研究的总结与展望.

隐马尔科夫模型

隐马尔科夫模型 一、引入 二、定义 三、隐马尔科夫模型的计算 (1)估值问题 (2)解码问题 (3)训练问题 四、隐马尔科夫各种结构 H M M的由来 ?1870年,俄国有机化学家V l a d i m i r V.M a r k o v n i k o v第一次提出马尔科夫模型 ?马尔可夫模型和马尔可夫链

? 隐式马尔可夫模型(H M M ) 马尔可夫性 ? 如果一个过程的“将来”仅依赖“现在”而不依赖“过去”,则此过程具有马尔可夫性,或称此过程为马尔可夫过程 ? X (t+1) = f(X(t)) 马尔可夫链 ? 时间和状态都离散的马尔科夫过程称为马尔科夫链。 设在时刻t 的随机变量用t S 表示,其观察值用t s 表示,则如果当11s S ,

22s S =,……,t t s S =的前提下,11++=t t s S 的概率是如下式所示,则称为n 阶Markov 过程。 )|()|(1 1 111111t n t t n t t t t t t t s S s S P s S s S P +-+-++++===== (1) 这里t S 1 表示1S ,2S ,……,t S ,t s 1 表示1s ,2s ,……,t s ,t t s S 11=表示11s S =, 22s S =,……,t t s S =。特别的当如下式成立时,则称其为1阶Markov 过程, 又叫单纯马尔可夫过程。 )|()|(111 111t t t t t t t t s S s S P s S s S P =====++++ (2) 即:系统在任一时刻所处的状态只与此时刻的前一时刻所处的状态有关。而且,为了处理问题方便,考虑式(2)右边的概率与时间无关的情况,即: )|[)1,(1i t j t ij s S s S P t t P ===++ (3)

基于离散隐马尔科夫模型的语音识别技术

第24卷 第2期 2007年6月 河 北 省 科 学 院 学 报Journal of the Hebei Academy of Sciences Vol .24No .2June 2007 文章编号:1001-9383(2007)02-0008-04 基于离散隐马尔科夫模型的语音识别技术 高清伦,谭月辉,王嘉祯 (军械工程学院计算机工程系,河北石家庄 050003) 摘要:概述语音识别技术的基本原理,对当前三种主要识别技术———动态时间规整技术、隐含马尔科夫模型 技术及人工神经网络技术进行比较,重点介绍基于离散隐马尔科夫模型(DH MM )的语音识别系统的实现。关键词:语音识别;隐马尔科夫模型;动态时间规整;人工神经网络中图分类号:T N912.34 文献标识码:A Speech recogn iti on technology ba sed on d iscrete H MM GAO Q ing 2l un,TAN Yue 2hu i,WAN G J i a 2zhen (D epart m ent of Co m puter Engineering,O rdnance Engineering College,Shijiazhuang Hebei 050003,China ) Abstract:The conditi on and the basic p rinci p le of s peech recogniti on technol ogy are intr oduced,three differ 2ent kinds of s peech recogniti on syste m s such as DT W ,H MM ,ASR are compared,and p lace e mphasis on how t o realize DH MM in s peech recogniti on syste m is p resented e mphatically . Keywords:Speech recogniti on;H idden Markov Model (H MM );Dyna m ic Ti m e W ar p ing (DT W );A rtificial Neural Net w ork (ANN ) 语音识别技术是语音信号处理技术一个重要的研究方向,是让机器通过识别和理解过程把人 类的语音信号转变为相应的文本或命令的技术,它属于多维模式识别和智能计算机接口的范畴,涉及到声学、语音学、语言学、计算机科学、信号与信息处理和人工智能等诸多学科,是21世纪衡量一个国家信息科学技术发展水平的重要标准之一。 1语音识别技术概述 语音识别系统本质上是一种模式识别系统, 目前有很多语音识别算法,但其基本原理和基本 技术相似。一个完整的语音识别系统一般都包括有特征提取、模式匹配和参考模式库3个基本单元,它的基本结构如图1所示。 (1)特征提取 所谓特征提取就是从语音信号中提取用于语 音识别的有用信息,其基本思想是将预处理过的信号通过一次变换,去掉冗余部分,而把代表语音本质特征的参数抽取出来,如平均能量、平均跨零率、共振峰、LPC 系数、MFCC 系数等。 图1语音识别系统基本结构 (2)模式匹配 这是整个语音识别系统的核心,它是根据一定规则(如H MM )以及专家知识(如构词规则、语法规则、语义规则等),计算输入特征与参考模式 3收稿日期:2007-01-26 作者简介:高清伦(1976-),男,河北沧州人,硕士,主要从事信息工程理论应用方面的研究.

基于隐马尔科夫模型的股指预测

基于隐马尔科夫模型的股指预测和股指期货模拟交易研究 张莎莎河南大学在读研究生商学院 引言 计算标的股票价格的加权值得到的结果,即是股票指数。股指期货也可称为股价指数期货、期指,是指以股价指数为标的物的标准化期货合约,双方约定在未来的某个特定日期,可以按照事先确定的股价指数的大小,进行标的指数的买卖,到期后通过现金结算差价来进行交割。2010年2月20日,中国金融期货交易所沪深300股指期货合约,以及详细的业务规程,由中国证监会正式批准施行。自2010年4月16日以来,在上海和深圳将近有300个股票指数期货合约正式开始交易。与股指期货相对应的是套期保值、组合风险管理和风险套利。对股票指数的预测,如果投资者判断的方向正确,那么就可以获得高回报,否则他们将遭受巨大损失。无论是在哪个或者领域,人们都希望找到一种能够预测股票走势的定量方法,以达到获得超额收益的目的。所谓的市场时机,就是要选择购买(做多)和卖出(做空)的时间,创造一套模拟程序来预测指数走势。根据时间和方法的选择,可划分为基本的定时和定时技术。基于时机的宏观经济,能够影响资产价格或行业预测的资产价格,一般适用于长期市场,决定未来发展趋势;而定时技术的选择,即使是在重复类似的交易价格的前提下,来确定资产价格的趋势,只要有足够的自由裁量权的赢家还是可以获得超额收益,主要适用于短期市场甚至高频市场。早在上世纪八十年代末,就有国外学者把隐马尔可夫模型定义为一个双重嵌套的随机过程。而国内金融工程领域对该模型的研究尚处于不成熟阶段。罗军2009年做出的广发证券研究报告表明,在国内,该模型在周择时的应用上还是卓有成效的。 一、相关理论 (一)马尔科夫过程 马尔科夫过程,指的是一类具有马尔科夫性的随机过程,因安德烈·马尔可夫(A.A.Markov,1856-1922)而得名。对于这个过程,如果该过程当前的状态是确定的,那么与之相应的过去的历史状态和以后的未来状态是不相关的。可将其定义如下:

隐马尔科夫链及其应用

隐马尔科夫链及其应用学习概率的时候,大家一定都学过马尔科夫模型吧,当时就觉得很有意思,后来看了数学之美之隐马模型在自然语言处理中的应用后,看到隐马尔科夫模型竟然能有这么多的应用,并且取得了很好的成果,更觉的不可思议,特地深入学习了一下,这里总结出来。马尔科夫过程 马尔科夫过程可以看做是一个自动机,以一定的概率在各个状态之间跳转。考虑一个系统,在每个时刻都可能处于N 个状态中的一个,N 个状态集合是 {S1,S2,S3,...SN}。我们现在用q1,q2,q3,…qn 来表示系统在t=1,2,3,…n 时刻下的状态。在t=1时,系统所在的状态q 取决于一个初始概率分布PI ,PI(SN)表示t=1时系统状态为SN 的概率。马尔科夫模型有两个假设: 1. 系统在时刻t 的状态只与时刻t-1处的状态相关;(也称为无后效性) 2. 状态转移概率与时间无关;(也称为齐次性或时齐性)第一条具体可以用如下公式表示: P(q t =S j |q t-1=S i ,q t-2=S k ,…)= P(q t =S j |q t-1=S i )其中,t 为大于1的任意数值,Sk 为任意状态第二个假设则可以用如下公式表示:P(q t =S j |q t-1=S i )= P(q k =S j |q k-1=S i )其中,k 为任意时刻。下图是一个马尔科夫过程的样例图:卷问题,而且可保障各类管路习题到位。在管对全部高中资料试卷电气设备,在安装过程下高中资料试卷调控试验;对设备进行调整使卷总体配置时,需要在最大限度内来确保机组

可以把状态转移概率用矩阵A 表示,矩阵的行列长度均为状态数目,aij 表示P(Si|Si-1)。 隐马尔科夫过程 与马尔科夫相比,隐马尔科夫模型则是双重随机过程,不仅状态转移之间是个随机事件,状态和输出之间也是一个随机过程,如下图所示:此图是从别处找来的,可能符号与我之前描述马尔科夫时不同,相信大家也能理解。通过管线敷设技术不仅可以解决吊顶层配置不规范高中资料试卷问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

隐马尔可夫模型及其应用

小论文写作: 隐马尔可夫模型及其应用 学院:数学与统计学院专业:信息与计算科学学生:卢富毓学号:20101910072 内容摘要:隐马尔可夫模型是序列数据处理和统计学习的重要概率模型,已经成功被应用到多工程任务中。本小论文首先从隐马尔可夫模型基本理论和模型的表达式出发,进一步阐述了隐马尔可夫模型的应用。 HMM 隐马尔可夫模型(Hidden Markov Model,HMM)作为一种统计分析模型,创立于20世纪70年代。80 年代得到了传播和发展,成为信号处理的一个重要方向,现已成功地用于语音识别,行为识别,文字识别以及故障诊断等领域。 隐马尔可夫模型状态变迁图(例子如下) x—隐含状态 y—可观察的输出 a—转换概率(transition probabilities) b—输出概率(output probabilities) 隐马尔可夫模型它用来描述一个含有隐含未知参数的马尔可夫过程。其难点是从可观察的参数中确定该过程的隐含参数。然后利用这些参数来作进一步的分析,例如模式识别。 在正常的马尔可夫模型中,状态对于观察者来说是直接可见的。这样状态的转换概率便是全部的参数。而在隐马尔可夫模型中,状态并不是直接可见的,但受状态影响的某些变量则是可见的。每一个状态在可能输出的符号上都有一概率分布。因此输出符号的序列能够透露出状态序列的一些信息。 HMM的基本理论 隐马尔可夫模型是马尔可夫链的一种,它的状态不能直接观察到,但能通过观测向量序列观察到,每个观测向量都是通过某些概率密度分布表现为各种状态,每一个观测向量是由一个具有相应概率密度分布的状态序列产生。所以,隐马尔可夫模型是一个双重随机过程----具有一定状态数的隐马尔可夫链和显示随机函数集。自20世纪80年代以来,HMM被应用于语音识别,取得重大成功。到了

基于隐马尔可夫模型(hmm)的模式识别理论

基于隐马尔可夫模型(hmm)的模式 识别理论 报告人: 时间:2020年4月21日 地点:实验室

概述 基于隐马尔可夫模型(hmm)的模式识别方法在模式识别中有着广泛的应用。如语音识别、手写字识别、图想纹理建模与分类。hmm还被引入移动通信核心技术“多用户的检测”。近年来,另外在生物信息可学、故障诊断等领域也开始得到应用。 近几年已经已被学者用于人脸识别的研究之中,是今年来涌现出来的优秀人脸识别方法之一。 经过不断改进,尤其是最近的嵌入式隐马尔可夫模型(ehmm)已经在人脸识别方面取得很大的进展,经过实验,识别率较高,有很好的鲁棒性等优点。 隐马尔可夫模型基本理论依据来源于随机过程中马尔可夫过程理论。

马尔可夫及其马尔可夫过程 马尔可夫(A. Markov ,1856—1922)俄国数学家. 他开创了一种无后效性随机过程的研究,即在已知当前状态的情况下,过程的未来状态与其过去状态无关,这就是现在大家熟悉的马尔可夫过程.马尔可夫的工作极 大的丰富了概率论的内容,促使它成为自然科学和技术直接有关的最重要的数学领域之一. 在工程技术方面目前已被广泛用于通信,模式识别方面。

x(t) 与马尔可夫过程相关的概念. 随机变量与随机过程把随机现象的每个结果对应一个数,这种对应关系 称为随机变量.例如某一时间内公共汽车站等车乘客的人数,电话交换台 在一定时间内收到的呼叫次数等等,都是随机变量的实例. 随机过程随机过程是一连串随机事件动态关系的定量描述.即和“时间” 相关的随机变量。一般记为x(t)。比如在一天24小时,在每个整点时刻徐 州火车站的旅客数量。 马尔可夫过程与马尔可夫链设x(t)是一随机过程,过程在时刻t0+1所处 的状态与时刻t0所处的状态相关,而与过程在时刻t0之前的状态无关,这 个特性成为无后效性.无后效的随机过程称为马尔可夫过程(Markov Process). 举例:比如在万恶的旧社会流离失所的百姓在每天的饥饿程度是一个随机 过程。假如他们在t0时刻(今天)的饥饿状态是五分饱,他们在t0+1所 (明天)的饥饿状态的概率取决于t0时刻(今天),而和t0时刻(今天) 之前(昨天、前天。。。)无关。这样的一个随机过程就是一个马尔可 夫过程。

基于隐马尔科夫模型的移动应用端行为模式识别

摘要:随着移动应用的普及,作为恶意行为识别的基础,移动应用端的行为模式分析也成为当前研究热点。本文创新地从系统环境数据入手,通过对系统多方面数据的监控,建立隐马尔可夫模型,使用该模型对后续行为产生的系统环境数据进行隐马尔科夫估值计算,从而实现对后续行为模式的识别,同时在后续识别过程中不断优化模型。本文通过实验证明该方式具有一定有效性,为移动应用端行为模式识别提供了更多可能。 关键词:移动应用端;隐马尔可夫模型;行为模式 中图分类号:tp311.5 文献标识码:a 文章编号:1006-4311(2016)19-0173-03 0 引言 在移动设备迅速普及的今天,开展移动安全性研究势在必行。目前针对移动应用端恶意行为检测的方式主要是对移动应用端的应用程序进行反编译,分析其源码是否存在于恶意行为代码特征库,以此作为评判标准。但随着恶意行为代码特征库的不断增加会导致系统开销增大,检测速度变慢。另外,随着黑客们使用的代码混淆技术的发展,也使之能够逃避这种静态分析手段[1]。 因为程序的运行会造成系统环境数据变化,所以系统环境数据可以反映系统运行情况。本文提出一种基于隐马尔可夫模型的行为模式识别方式,通过对移动应用端系统运行环境的cpu使用率、内存使用率、进程数、服务数、流量数监测获得时间序列数据,对特定行为进行隐马尔科夫建模,以待测行为的时间序列与特定的模型之间相似度为评判标准,并在每次评判之后优化模型[2]。该方法目的在于有效识别行为模式,对移动端恶意行为分析的后续研究提供前提,丰富了行为检测的手段,具有一定的实用价值。 1 马尔可夫模型介绍 2 隐马尔可夫模型介绍 2.1 隐马尔可夫模型 在马尔可夫模型中,每一个状态代表一个可观察的事件。而在隐马尔科夫模型中观察到的事件是状态的随机函数,因此隐马尔科夫模型是一双重随机过程,其中状态转移过程是不可观察的,而可观察的事件的随机过程是隐蔽的状态转换过程的随机函数(一般随机过程)[3]。对于一个随机事件,有一观察值序列:o=o1,o2,…ot,该事件隐含着一个状态序列:q=q1,q2,…qt。 2.2 隐马尔科夫模型使用前提 假设1:马尔可夫性假设(状态构成一阶马尔可夫链)p(qi|qi-1…q1)=p(qi|qi-1)假设2:不动性假设(状态与具体时间无关)p(qi+1|qi)=p(qj+1|qj),对任意i,j 成立。 假设3:输出独立性假设(输出仅与当前状态有关)p(o1,…ot|q1,…,qt)=∏p(ot|qt)隐马尔科夫模型在解决实际问题的过程中,需要事先知道从前一个状态st-1,进入当前状态st的概率p(st|st-1),也称为转移概率,和每个状态st产生相应输出符号ot的概率p(ot|st),也称为发射概率。描述它的数学表达式为:λ={n,m,a,b,∏},下面对各个参数逐一描述: n表示隐状态s的个数,其取值为{s1,s2,…,sn}, m表示显状态o的个数,其取值为{o1,o2,…,on}, 2.3 隐马尔科夫可以解决的三个问题 ①评估问题:已知一个显状态序列o={o1,o2,…,on},并且有确定的λ={n,m,a,b,∏}组成的hmm参数,求发生此显状态的概率p(o|hmm)有效的解决算法是前向算法。 3 基于隐马尔科夫的移动应用端行为模式识别 3.1 获取时间序列

基于隐马尔可夫模型的入侵检测方法

基于隐马尔可夫模型的入侵检测方法 赵婧,魏彬,罗鹏 摘要:针对当前网络安全事件频发以及异常检测方法大多集中在对系统调用数据的建模研究上等问题,提出一种基于隐马尔可夫模型的入侵检测方法。该算法基于系统调用和函数返回地址链的联合信息来建立主机进程的隐马尔可夫模型。此外,针对常用训练方法存在的不足,设计了一种快速算法用以训练模型的各个参数。实验结果表明:基于系统调用和函数返回地址链的联合信息的引入能够有效区分进程的正常行为和异常行为,大幅度降低训练时间,取得了良好的运算效果。 关键词:入侵检测;隐马尔可夫模型;系统调用序列 入侵检测作为一种网络安全防卫技术,可以有效地发现来自外部或内部的非法入侵,因此针对入侵检测算法的研究具有重要的理论和很强的实际应用价值。 基于动态调用序列对系统的入侵行为进行发掘是入侵检测领域主要的检测方法之一。自Forrest在1996年首次提出使用系统调用进行异常检测的思路和方法以来,有很多基于此的改进算法被提出。 文献提出一种基于频率特征向量的系统调用入侵检测方法,将正常系统调用序列抽取出的子序列的频率特征转换为频率特征向量。文献提出基于枚举序列、隐马尔科夫2种方法建立系统行为的层次化模型。然而,这类方法在误报率以及漏报率方面仍与实际需求有着一定的差距。 此外,由于隐马尔可夫模型(hiddenmarkovmodel,HMM)是一种描述离散时间内观察数据非常强大的统计工具,因此在基于主机的入侵检测研究中,HMM方法是目前重要的研究方向之一。 美国新墨西哥大学的Warrender等首次于1999年在IEEESymposiumonSecurityandPrivacy 会议上提出将HMM应用于基于系统调用的入侵检测中。2002年,Qiao等提出使用HMM对系统调用序列进行建模,利用TIDE方法划分状态序列的短序列,建立正常数据的状态短序列库来进行检测。2003年,Cho等提出用HMM对关键的系统调用序列进行建模。文献设计了一种双层HMM模型进行入侵检测,而其中所用到的训练方法存在局部最优以及时间效率较低等问题限制了其在实际中的应用。文献依据在网络数据包中发现的频繁情节,设计了基于HMM的误用检测模型。文献设计了一种基于节点生长马氏距离K均值和HMM的网络入侵检测方法。近些年,针对此方面的研究热度依然不减。然而,从目前的研究情况看,虽然基于隐马尔可夫模型的入侵检测技术能取得较好的检测效果,但是也存在着如下几个问题: 1)基于HMM的入侵检测技术主要集中在对主机的命令序列或者系统调用序列进行建模,单一的数据源提供的信息较少,因此检测效果仍然不够理想。 2)在线学习问题,隐马尔可夫模型的建立需要消耗大量的时间和空间对参数进行调整学习,这导致了HMM难以得到有效的利用。综上所述,为克服现有模型算法所存在的问题,提出一种新的基于系统调用和进程堆栈信息的HMM入侵检测方法,该方法的主要思想是将系统调用和函数返回地址信息作为检测数据源,并利用HMM来构建主机特权进程的正常行为模型。其次,针对经典模型训练法存在局部最优且算法的复杂度较高等问题,设计一个更为简单的训练算法来计算HMM的参数,进而提升算法效率。最后,设计了附加观察值和附加状态等参数,用以消除非完备的数据以及零概率对模型的影响。 1、隐马尔可夫模型 马尔可夫模型中的每个状态都与一个具体的观察事件相互对应,但实际问题可能会比Markov链模型所描述的情况更复杂,人们所能观察到的事件一般情况下并不是与状态完全

隐马尔科夫链及其应用

隐马尔科夫链及其应用 学习概率的时候,大家一定都学过马尔科夫模型吧,当时就觉得很有意思,后来看了数学之美之隐马模型在自然语言处理中的应用后,看到隐马尔科夫模型竟然能有这么多的应用,并且取得了很好的成果,更觉的不可思议,特地深入学习了一下,这里总结出来。 马尔科夫过程 马尔科夫过程可以看做是一个自动机,以一定的概率在各个状态之间跳转。 考虑一个系统,在每个时刻都可能处于N个状态中的一个,N个状态集合是{S1,S2,S3,...SN}。我们现在用q1,q2,q3,…qn来表示系统在t=1,2,3,…n时刻下的状态。在t=1时,系统所在的状态q取决于一个初始概率分布PI,PI(SN)表示t=1时系统状态为SN的概率。 马尔科夫模型有两个假设: 1.系统在时刻t的状态只与时刻t-1处的状态相关;(也称为无后效性) 2.状态转移概率与时间无关;(也称为齐次性或时齐性) 第一条具体可以用如下公式表示: P(q t=S j|q t-1=S i,q t-2=S k,…)= P(q t=S j|q t-1=S i) 其中,t为大于1的任意数值,Sk为任意状态 第二个假设则可以用如下公式表示: P(q t=S j|q t-1=S i)= P(q k=S j|q k-1=S i) 其中,k为任意时刻。 下图是一个马尔科夫过程的样例图:

可以把状态转移概率用矩阵A表示,矩阵的行列长度均为状态数目,aij表示P(Si|Si-1)。 隐马尔科夫过程 与马尔科夫相比,隐马尔科夫模型则是双重随机过程,不仅状态转移之间是个随机事件,状态和输出之间也是一个随机过程,如下图所示: 此图是从别处找来的,可能符号与我之前描述马尔科夫时不同,相信大家也能理解。

隐马尔科夫

隐马尔科夫模型 1.隐马尔科夫模型的定义及相关术语 定义:隐马尔科夫模型是关于时序的模型,其描述一个隐藏的马尔科夫链随机生成不可观测的随机状态序列,再由各个状态生成一个观测,从而生成可观测的随机序列的过程。 状态序列:隐藏的马尔科夫链随机生成状态序列; 观测序列:每一个状态可以生成一个观测,则状态序列可以生成观测序列。 模型参数:隐马尔科夫模型有三个参数:初始概率分布π,状态转移概率分布A,观测概率分布B。 2隐马尔科夫模型建立基于的假设 (1)齐次马尔科夫性假设。 隐藏的马尔科夫链在任意时刻t的状态只依赖于其前一刻的状态,与其他时刻的状态和观测无关,也与t时刻无关。 (2)观测独立性假设。 任意时刻的观测只与本时刻的状态有关,与其他状态及观测无关。 3隐马尔科夫的三个问题 (1)概率计算问题。给定隐马尔科夫模型λ=(π,A,B)和观测序列O,计算在该模型下,该观测序列出现的概率。 (2)学习问题。隐马尔科夫模型参数的学习。给定观测序列,估计模型λ=(π,A,B)的参数,使得在该模型下该观测序列出现的概率最大。 (3)预测问题。给定模型参数和观测序列,求最有可能的状态序列。 4.概率计算 前向计算和后向计算。<统计学习方法>P177有例子。 5.学习算法 (1)监督学习。 根据观测序列和状态序列组合。采用极大似然的思想估计状态转移概率:

^1a =ij ij N j A Aij =∑ 其中,ij A 表示训练集中状态i 转移到状态j 中频数。 同样可以得到,状态为j 观测为k 的概率: ^1jk ij M jk k B b A ==∑ (2)非监督学习方法。 当我们只知道观测序列O 而不知道状态序列I 时,可以将状态序列I 看做隐变量,从而采用EM 算法进行求解,则我们要求解的目标是: (|)(|,)(|)I P O P O I P I λλλ=∑ EM 算法的E 步: Q 函数: 其中(,|)(|,)|P I O P I O P λλλ---= (O ),因为分母为常数,所以省略。即上式仍符合: (,)=(log (,|)|,)I Q E P O I O λλλλ--的形式。 有: i11112221(,|)=()()...()i i i i iT iT iT T P O I b o a b o a b o λπ- 则: i1()(1)()11(,)log (,|)(log())(,|)(log(()))(,|) T T i t i t i t t I I t I t Q P O I a P O I b o P O I λλπλλλ---- +===++∑∑∑∑∑ 上式,右侧的三项分别独自包含了模型参数的一项,下面分别对每一项进行分析。 对第一项运用朗格朗日乘子法计算: 首先写出拉格朗日函数: i 1i 11log (,|)(()1)N N i i P O i i r πλπ-===+-∑∑ s.t. i 1)1)N i π=-∑=0; 对i π求偏导并令结果为0得到: 1i (,|)0P O i i r λπ- =+= (2)

基于隐马尔科夫模型的命名实体识别

基于马尔科夫模型的命名实体识别 NE识别的数学描述 利用HMM解决序列标注问题,即给定一个观察值的序列,要寻找一个最优的标记序列,使得条件概率最大。根据贝叶斯公式可得: 在NE识别问题中,X是给定的句子,观察值为词性或词,则上式中P(X)对所有的类别都是一样的,因此可以忽略不考虑。则上面的公式可以转化为下面的形式: 即HMM实质式求解一个联合概率。上式中的标记序列Y可以看做是一个马尔科夫链,则对上式利用乘法公式有: 基于HMM的NE识别的问题就是如何在给定的模型下,从一定观察值序列的所有可能的状态下,选取最有的标记序列。常用的方法是viterbi算法,它属于动态规划算法,动态规划的思想是把问题分解,先解决最基本的子问题,再逐步外推寻找更大的子问题的最优解,在有限步后达到整个问题的最优解,即得到最有的NE标记序列 隐马尔科夫模型 观察到的事件是状态的随机函数,该模型是一个双重的随机过程,其中模型的状态转换过程是不可观察的。可观察的事件的随机过程是隐藏的状态转换过程的随机函数。形式化的描述为一个五元组。 1. S表示模型中的状态,N是模型的状态数。所有独立的状态定义为,且用来表示t时刻的状态。 2. O表示每个状态的观察值,M表示每个状态上对应的可能的观察值的数目。观察值对应于模型系统的实际输出,观察值记为: 3. 状态转移概率矩阵,其中,1<=i,j<=N,表示从状态i转移到状态j的概率,满足:>=0,;且。 4. 输出观察值概率分布矩阵,其中表示在状态下,t时刻出现的概率,即,1<=j<=N,1<=k<=M. 5. 初始状态分布向量,其中,即在t=1时刻处于状态的概率,满足:。 HMM模型需解决的三个问题: (1)评估问题。给定一个观察序列,以及模型,如何有效的计算,也就是这个观测序列有多大可能是由该模型产生的; (2)解码问题。给定观测序列以及模型,如何选择一个状态序列,使得观测序列O式最具可能的,即求解; (3)学习问题。如何能够通过调整参数以最大化 ICTCLAS分词的词性列表 名词(1个一类,7个二类,5个三类) 名词分为以下子类: n 名词 nr 人名 nr1 汉语姓氏 nr2 汉语名字 nrj 日语人名 nrf 音译人名 ns 地名

隐马尔科夫模型学习总结.pdf

隐马尔科夫模型学习总结 by terry__feng 隐马尔科夫模型,这个久违的老朋友。大三上学期在实验室的时候,由于实验室项目需用到语音识别,所以就使用了微软的Microsoft Speech SDK,也关注了一下语音识别的原理,其中有以HMM作为模型进行识别的。后来实验室的机器人项目中上位机的软件使用到了人脸识别的功能。实验室有关于识别的工程源代码,但是工程庞大,结构复杂,并且里面有很多没有用到的功能,并且程序经常莫名其妙的跑飞,还存在严重的内存泄露问题。所以就自己另起炉灶,重新编写上位机软件。其中的人脸识别用到的核心算法的代码就来源于这个工程。它使用到的技术不是PCA和LDA,而是HMM和DCT。那时候为了看明白HMM实现的原理,在图书馆看了关于模式识别的书,但有基本都是工程相关的,所以说原理性的知识牵扯的不多,自己也就是学习了大概,只是摸熟了里面使用到的各种牛逼的算法,比如Forward-backward,Viterbi,Baum-Welch。但是各种算法原理的理解上就差得远了。没有什么理论的基础,也不知如何学起,最终未能继续。后来又通过吴军老师的《数学之美》了解到隐马尔科夫模型在语音识别中的重要作用。 时隔快两年了,从李航博士的《统计学习方法》中又看到了HMM模型的魅影,里面对其原理进行了深刻的剖析,能够学习之内心自是欣慰至极。于是便花了几天的时间读了关于HMM的几章,现在算是有点收获,总结一下(大部分内容来自对吴军老师的《数学之美》和李航博士的《统计学习方法》的总结)。 文章主要包括信息传递模型、HMM模型简介,和对所使用的三个主要算法:前向后向算法、Baum-Welch算法和维特比算法进行了总结。由于公式比较的多……所以生成pdf版的了。 1、信息传递的模型 任何信息都是通过一定的媒介从一端传递到另一端。对于信息源的传输者 来说,其所需传输的序列可假设为S={s 1,s 2 ,s 3 ,…,s n },而处于媒介另一端的观 测者观测到的序列是O={o 1,o 2 ,o 3 ,…,o m }。对于观测者来说,他接收到序列O的 目的是为了明白传输者的意图,这样才能达到信息交流的目的。也就是说,观测者能够做的事情就是使用观测到的数据(即序列O)去揣测传输者要传输的数据(即序列S)。但是仅仅根据序列O能够揣测出来的序列S的可能性太多了,哪一个猜到的序列S是我们想要的呢? 按照概率论的观点,我们可以把上面的问题建立数学模型。 P(S|O)=P(s1,s2,s3,…,s n|o1,o2,o3,…,o m) 上式的意思是:对于一个给定的观测序列o1,o2,o3,…,o m,它的原序列是 s1,s2,s3,…,s n的概率。然而s1,s2,s3,…,s n的可能取值有很多,究竟哪一个才是自己想要的呢?所以便有了下面的式子: s1,s2,s3,…,s n=argmax all s1,s2,s3,…,s n P(S|O)(1.1)也就是说找到概率最大的原序列,或者说是最有可能的原序列。利用贝叶斯定理可以把上式转化得:

《机器学习MachineLearning》教学大纲

《机器学习(Machine Learning)》教学大纲 学分:5 学时:90 开课单位:软件学院 任课教师及职称(学位):汪浩教授、龙浩副教授、李第平博士 教学内容及要求 1、课程简介:世界的本质是数据(参见维克托·迈尔·舍恩伯格《大数据时代》),数据挖掘的任务是从大量数据中发现隐藏的、未知的和潜在的知识或模式的过程。机器学习(Machine Learning, ML)是数据挖掘的基础,为数据挖掘提供了基本工具,是大数据时代重要的课程。机器学习涉及概率论、统计学、最优化理论、算法复杂性理论等多门课程,本课程将讨论机器学习方法背后的基本数学原理,机器学习方法的基本数学模型,以及机器学习的基本方法和算法。 2、教学目的与要求:了解和掌握回归分析、分类、聚类、降维等机器学习的基本算法,同时掌握这些方法背后的数学原理,学习这些算法的基本原理,并能利用对应的软件包进行数据分析和挖掘。 3、主要内容 第一章引言(10课时) 教学目的和基本要求:了解机器学习的基本内容,机器学习的分类,机器学习的三要素,机器学习的模型评估和选择。 教学重点、难点:机器学习三要素,机器学习模型评估与选择 教学基本内容: 1.1.什么是机器学习 1.2.机器学习分类 ●有监督学习 ●无监督学习 ●半监督学习 1.3.机器学习三要素

●模型 ●策略 ●算法 1.4.机器学习模型评估与选择 ●训练误差与测试误差 ●过拟合与模型选择 第二章回归分析(12课时) 教学目的和基本要求:了解回归分析的作用,掌握回归分析的基本方法。 教学重点、难点:最小二乘法、最大似然法。 教学基本内容: 1.1线性建模:最小二乘法 1.2回归分析用于预测 1.3正则化最小二乘法 1.4线性建模:最大似然法 第三章机器学习的贝叶斯方法(12课时) 教学目的和基本要求:学习掌握共轭模型和非共轭模型等两种贝叶斯推理的基本方法。 教学重点、难点:图模型、共轭模型、最大后验估计MAP,拉普拉斯近似等。教学基本内容: 3.1 图模型 3.2 贝叶斯估计的共轭模型 ●硬币游戏 ●后验概率 ●三个场景 ●边缘似然估计 3.3 贝叶斯计的非共轭模型 ●非共轭模型 ●二值响应 ●最大后验估计MAP

基于隐马尔科夫模型的人脸识别

基于隐马尔科夫的人脸识别 1人脸检测及常用算法 人脸检测,指的是从输入的图像(或者视频)中确定人脸的位置、大小和姿态的过程, 是进行人脸识别的基础,也是实现人脸识别功能的一个关键环节。 人脸检测是一种计算机视觉中的模式识别问题,就是将所有的人脸作为一个模式,而非人脸作为另一种模式,人脸检测的核心问题就是将人脸模式和非人脸模式区别开来。人脸检测的算法主要分为两大类,基于先验知识的和基于后验知识的学习和训练的算法。 常见人脸检测的算法有:基于特征子脸人脸检测算法:该算法将所有人脸的集合视作一个人脸子空间,通过检测样本与子空间之间的投影距离检测样本中是否存在人脸;基于模板匹配的人脸检测算法:该算法先设计一个代表标准人脸的模板,将进行检测的样本与标准模板进行比对,通过考察样本与标准模板的匹配程度,设置合理的阈值来检测样本中是否存在人脸;神经网络人脸检测算法:该算法是一种学习算法,用于学习的训练集分为属于人脸图像的训练集和非人脸图像的训练集两类,通过学习从而产生分类器进行人脸检测;基于纹理模型的算法,对于人脸图像的灰度共生矩阵进行计算可以获得倒数分差、惯量相关特征这三个特征矩阵,然后通过迭代计算求得人脸图像矩阵中的参数。使用这种方法取得的模型就被称为人脸纹理模型。若人脸姿态有旋转,通过对眼睛进行定位可以计算出人脸的旋转角度或者使用投影直方图FFT 变换等方法确定人脸旋转的方向,再进行人脸检测。 1.1Haar 特征 Harr 特征是一种矩形特征,在特征提取时由四类特征组成特征模板—边缘特征、圆心环绕特征、线性特征和特定方向的特征。特征模板包括白色矩形和黑色矩形两种。白色矩形内像素和(Sum 白)减去黑色矩形像素和(Sum 黑)就是模板的特征值。Haar 特征反映的是图像中相邻矩形区域的灰度变化。 Haar 特征的每一个特征值feature 可以表示为: ()i N i i r rectsum feature ?=∑=1 ω 其中i ω表示矩形的权重,()i r rectsum 表示矩形所包围图像的灰度值之和。Paul Viola 和Michacl Joncs 提出积分图算法提高图像举行特征的计算速度。 对于对象中的任意一点()y x ,A ,其灰度值为()y x i ,,积分图()()∑' ≤≤'''=y y x x y x i y x ii ,,,, 经过对图片的一次遍历,就可以得到图像中每一个点的积分图的值。 假设需要计算矩形 D 的特征,其顶点为点 1、2、3、4。这样,矩形 D 的

相关主题
文本预览
相关文档 最新文档