当前位置:文档之家› 6R型工业机器人标定算法与实验研究

6R型工业机器人标定算法与实验研究

6R型工业机器人标定算法与实验研究
6R型工业机器人标定算法与实验研究

工业机器人运动学标定及误差分析(精)

工业机器人运动学标定及误差分析 运动学标定是机器人离线编程技术实用化的关键技术之一,也是机器人学的重要内容,在机器人产业化的背景下有十分重要的理论和现实意义。机器人运动学标定以运动学建模为基础,几何误差参数辨识为目的,为机器人的误差补 偿提供依据。工业机器人在以示教方式工作时,以重复精度为主要指标;在以离 线编程方式工作时,主要工作指标变为绝对精度。但是,工业机器人重复精度较 高而绝对精度较低,难以满足离线编程工作时的精度,所以需要进行运动学标定 来提高其绝对精度。随着机器人离线编程系统的发展,工业机器人运动学标定日益重要。本文首先综合分析了工业机器人运动学标定的一些基本理论,为之后的运动学建模和标定提供理论基础。根据ABB IRB140机器人实际结构,本文建立 了D-H运动学模型,并讨论了机器人的正运动学问题和逆运动学问题的解;然后 指出了该模型在标定中存在的缺陷,结合一种修正后的D-H模型建立了本文用于标定的模型。并根据最终建立的运动学模型建立了机器人几何误差模型。本文 还在应用代数法求解机器人逆运动学问题的基础上,进行了应用径向基神经网络求解机器人逆解的研究。该方法结合机器人正运动学模型,以机器人正解为训练样本训练经遗传算法优化后的径向基神经网络(GA-RBF网络),实现从机器人工 作变量空间到关节变量空间的非线性映射,从而避免复杂的公式推导和计算。本文在讨论了两种构造机器人封闭运动链进行运动学标定的方法的基础上,提出了一种新的机器人运动学标定方法——虚拟封闭运动链标定法。并对该方法的原理、系统构成进行了详细的分析和说明。该方法通过一道激光束将末端位置误 差放大在观测平板上,能够获得更高精度的关节角的值,从而辨识出更为准确的 几何参数。为了验证本文提出的虚拟封闭运动链标定方法的有效性和稳定性,本文以ABB IRB140机器人为研究对象,利用有关数据进行了仿真分析,最终进行了标定试验,得出结论。 同主题文章 [1]. 王金友. 中国工业机器人还有机会吗?' [J]. 机器人技术与应用. 2005.(02) [2]. 李如松. 工业机器人的应用现状与展望' [J]. 组合机床与自动化加工技术. 1994.(04) [3]. 赖维德. 工业机器人知识讲座——第一讲什么是工业机器人' [J]. 机械工人.冷加工. 1995.(02) [4]. 世界工业机器人产业发展动向' [J]. 今日科技. 2001.(11) [5]. 人丁兴旺的机器人大家族' [J]. 网络科技时代(数字冲浪). 2002.(01)

机器人逆标定方法研究_王东署

收稿日期:2006-06-01 基金项目:国家863计划资助项目(2004AA001090) 作者简介:王东署(1973-),男,河南舞钢人,讲师,博士,主要研究方向:机器人标定及离线编程技术; 付志强(1971-),男,河南林州人,讲师,主要研究方向:电工电子. 文章编号:1001-9081(2007)01-0071-03 机器人逆标定方法研究 王东署1 ,付志强 2 (1.郑州大学电气工程学院,河南郑州450001; 2.河南交通职业技术学院计算机科学系,河南郑州450005) (wangdongshu@https://www.doczj.com/doc/391211559.html, ) 摘 要:在分析传统机器人位姿标定方法的基础上,提出了一种新的机器人标定方法:基于神经网络的逆标定方法。这种标定方法把机器人实际位姿和相应的关节角误差分别作为前馈神经网络的输入和输出来训练网络,从而获得机器人任意位姿时的关节角误差值,通过修改关节值来提高机器人的位姿精度。这种标定方法把所有因素引起的误差均归结为关节角误差,无须求解机器人逆运动学方程,实现了误差的在线补偿。把标定结果与基于运动学模型的参数法的标定结果进行了比较分析。仿真和试验结果均证明了这种方法比传统方法标定效果更好,且更方便简单,避免了其他传统标定方法繁琐的建模及参数辨识过程。 关键词:机器人;位姿误差;神经网络;逆标定中图分类号:TP242 文献标识码:A Study on robot i n verse ca li bra ti on WANG Dong 2shu 1 ,F U Zhi 2qiang 2 (1.School of Electrical Engineering,Zhengzhou U niversity,Zhengzhou Henan 450001,China ; 2.D epart m ent of Co m puter Science,Henan Co mm unication V ocational Technology College,Zhengzhou Henan 450005,China ) Abstract:An innovative r obot calibrati on app r oach:inverse r obot calibrati on based on neural net w ork,was p r oposed in this paper,based on the analysis of traditi onal calibrati on app r oach .This method t ook the r obot actual poses and corres ponding j oint err ors as inputs and out puts of a feed 2for ward neural net w ork res pectively,s o as t o achieve the real 2ti m e j oint err ors in arbitrary pose thr ough the neural net w ork,and pose accuracy was i m p r oved only thr ough correcting the j oints angles .This calibrati on came down all err or effects t o j oint err ors and need not res olve the inverse kinematics model,and achieved arbitrary j oint err ors real 2ti m e compensati on . Calibrati on results were compared with those obtained by traditi onal para metric methodol ogies .Si m ulati on and experi m ental results show that this method is more effective compared with the traditi onal calibrati on methods,and avoids the comp lex modeling and para meters identificati on . Key words:r obot;pose err or;neural net w ork;inverse calibrati on 0 引言 虽然工业机器人的重复精度很高,但其绝对精度却很差,对于没有标定的机器人,绝对精度误差可以达到几毫米。因此在很多应用中必须对机器人进行精确的标定。 机器人静态标定的传统方法是基于运动学模型的参数标定法[1~5]。该方法可以达到很高的精度,很多情况下能够达到机器人的重复精度。但这些方法几乎都没有考虑非几何尺寸因素引起的位姿误差,且需要建立复杂的误差模型,进行繁琐的离线标定,在动态变化的环境中缺乏柔性[6]。同时由于测量仪器的限制,对机器人姿态误差的标定研究较少。 为克服参数法存在的不足,有学者提出基于神经元网络的机器人逆运动学标定法[7~11]。该方法以关节角值和其对应误差分别作为神经网络的输入和输出来训练网络,得到在任意关节角时的误差值,通过修正关节角来实现位姿误差的补偿。和参数标定法相比,该方法更简单使用,精度更高。但由于要求解逆运动学方程,该方法计算量大且在奇异点附近标定效果不理想。 针对上述逆标定方法存在的不足,本文从机器人整个位姿的角度出发,提出了一种新的基于前馈神经网络的机器人逆标定法,对一激光加工机器人的位姿进行了精确的标定。该方法不需要求解逆运动学问题,计算量小,实现了误差的在线补偿,对于不存在退化问题的机器人的标定有一定的借鉴作用。 1  激光加工机器人运动学模型 图1 机器人结构示意图 第27卷第1期 2007年1月   计算机应用 Computer App licati ons   Vol .27No .1Jan .2007

ABB机器人零点校准方法

FlexPendant 的操作方式 1、操作 FlexPendant 时,通常左手持设备,右手在触摸屏上操作。具体手持方法如图12所示 图12 2、手持操作器主要部件如图13所示 图 13 3、控制柜上的主要按钮和端口如图14所示 图 14 4、控制柜上钥匙开关的位置于意义如图15所示 图15 注:手动全速模式不建议使用 校准机器人零点位置的具体方法 注:需要点击操作的地方都做了浅红色标记 第一步: 选择手动操纵(参看图1,首先把钥匙开关打到手动位置) 方法: 1> 点击 ABB 2> 点击手动操纵

图 1第二步:选择动作模式(参看图2 和图3) 方法: 1> 点击动作模式 2> 点击轴1 - 3 或者轴4 - 6 3> 点击确定 第三步:选择工具坐标(参看图2 和图4) 方法: 1> 点击工具坐标 2> 点击 tGripper 3> 点击确定 图2图3第四步:选择移动速度(参看图2 和图5) 方法: 1> 点击增量 2> 点击中或者小 3> 点击确定 图 4 图 5 第五步:手动移动机器人各轴到机械零点位置(参看图2) 方法: 此时图2上操纵杆方向处显示操纵杆移动方向于轴的对应关系

注意: 如果先前选择轴1 - 3 则 1> 操纵杆上下移动为2轴动作 2> 操纵杆左右移动为1轴动作 3> 操纵杆顺/逆时针旋转为3轴动作 如果先前选择轴4 - 6 则 1> 操纵杆上下移动为5轴动作 2> 操纵杆左右移动为4轴动作 3> 操纵杆顺/逆时针旋转为6轴动作 1> 左手持示教器,四指握住示教器使能开关(在示教器下方黑色胶皮里面) 2> 右手向唯一一个方向轻轻移动操纵杆,把各轴按顺序移动到各自机械绝对零点 图 6 A(六轴机器人) 图 6B(四轴机器人) 移动顺序,依次为6轴→5轴→4轴→3轴→2轴→1轴,否则会使4,5,6轴升高以致于看不到零点位置。 机械零点位置如图6所示,当所有六个轴全部对准机械零点位置以后,机器人的姿态正如图6所示。 第六步:更新转数计数器(参看图1,此时可以示教器使能开关) 方法: 1> 点击 ABB 2> 点击校准 3> 点击 ROB_1 (参看图7)

机器人零点标定方法

机器人零点标定方法 设备维修技术档案系列资料一.哪些情况需要标定零点: 零点是机器人坐标系的基准,没有零点,机器人就没有办法判断自身的位置。 机器人在如下情况下要重新标定零点: 1.进行更换电机、机械系统零部件之后。 2.超越机械极限位置,如机器人塌架。 3.与工件或环境发生碰撞。 4.没在控制器控制下,手动移动机器人关节。 5.整个硬盘系统重新安装。 6.其它可能造成零点丢失的情况。 二.零点标定: 按下面方法可以标定零点: *千分表:手工检测,输入数据的方法。 *EMT:电子仪表自动标定记录的方法。 我们这里只介绍EMT方法。 1.机器人切换到手动方式T1。 2.用左上角第一个软键切换工作方式到出现“+/-”号加手形图标为止。 3.左手扣住左侧底面使能杆,屏幕右侧将出现纵列布置的A1-A6图标。 4.按右侧对应轴的“+”或“-”软键,移动要标定的轴到零点前预停位置,使得机械臂关节两侧刻槽对准。 5.把EMT安装到对应轴指定的仪表零点触头安装底座位置。6.EMT电缆插头连接到机器人X32插口。 7.此时,如预停位置正确,则EMT右侧两个灯同时点亮。不亮时,可以用手动操作重新微调位置。 8.按软键SETUP(设定)。 9.在下级菜单中选择MASTER(管理,这里指标定零点)。10.在下级菜单中选择EMT,回车。屏幕显示出准备标定的机器人轴号:

如:Robot axis 1 Robot axis 2 Robot axis 3 Robot axis 4 Robot axis 5 Robot axis 6 11.按软键MASTER,显示信息“Start key required(需要按启动键)”。 12.扣住使能杆,按软键Program start forwards(程序正向启动,即左侧硬键盘的“+”号外套顺时针箭头)。对应轴在程序控制下移动。当EMT检测到参考点(参考刻槽),移动停止,零点位置被记录到计算机,对应轴标定显示被清除。 ***注意: 1)标定一定要从低轴号开始,否则系统将报警。 2)A1、A6轴关节的一侧刻度槽改成螺钉或突起标记,和其它轴不同,要注意。 三.反标定: 一个不可靠的零点也可以删除。步骤是: 1.按软键SETUP(设定)。 2.在下级菜单中选择MASTER(管理,这里指零点标定)。3.在下级菜单中选择EMT,回车。屏幕显示出准备删除零点的机器人轴号: 如:Robot axis 1 Robot axis 2 Robot axis 3 Robot axis 4 Robot axis 5 Robot axis 6 4.按软键UNMASTER,对应轴的零点被删除。该轴可以重新标定零点。 生产部设备工装科陈刚 2003/8/21 修改:2005/7/24

基于D-H模型的机器人运动学参数标定方法

基于D-H模型的机器人运动学参数标定方法 摘要:通用机器人视觉检测站中的机器人是整个测量系统中产生误差的最主要环节,而机器人的连杆参数误差又是影响其绝对定位精度的最主要因素。借助高精度且可以实现绝对坐标测量的先进测量设备——激光跟踪仪,及其功能强大的CAM2 Measure 4.0配套软件,并利用串联六自由度机器人运动的约束条件,重新构建起D-H模型坐标系,进而对运动学参数进行修正,获得关节变量与末端法兰盘中心位置在基坐标系下的准确映射关系,以提高机器人的绝对定位精度,最后通过进一步验证,证明取得了较为理想的标定结果。 关键词:视觉检测站;工业机器人;绝对定位精度;激光跟踪仪;D-H模型; Robot kinematic parameters calibration based on D-H model Wang Yi (State key laboratory of precision measuring technology and instruments, Tianjin University, 300072,China) Abstract:Robot for universal robot visual measurement station is the most primary part causing errors in the entire system and link parameter errors of industrial robot have a great influence on accuracy. Employing laser tracker, which can offer highly accurate measurement and implement ADM (absolute distance measurement), as well as relevant software, making use of movement constrain of series-wound six-degree robot, D-H model coordinates were rebuilt. Accordingly, kinematic parameters were modified, and precise mapping from joint variables to the center of the end-effector in base coordinate was obtained and accuracy got improved. At last, result is proved acceptable by validation. Keywords: visual measurement station; industrial robot; accuracy; laser tracker; D-H model; 引言:随着立体视觉技术的不断完善与发展,利用机器人的柔性特点,发展基于立体视觉的通用测量机器人三维测试技术逐渐成为各大机器人生产厂家非常重视的市场领域。机器人的运动精度对于工业机器人在生产中的应用可靠性起着至关重要的作用。机器人各连杆的几何参数误差是造成机器人系统误差的主要环节,它主要是由于制造和安装过程中产生的连杆实际几何参数与理论参数值之间的偏差造成的。通常,机器人以示教再现的方式工作,轨迹设定好之后,只在某些固定点之间运动,这种需求使得机器人的重复性精度被设计得很高,可以达到0.1毫米以下,但是绝对定位精度很差,可以到2、3毫米,甚至更大[1]。常见的标定方法可分为三类:一、建立微分运动学模型,然后借助标定工具测量一定数目的机器人姿态,最后用反向求解的方法得到真实值与名义值之间的偏差[2]。二、使用标定工具获得一系列姿态的数据,然后对数据用线性或非线性迭代求解的方法得到机器人几何参数的修正值[3],[4]。 三、建立机器人运动学模型,用直接测量的方法修正模型参数[5],[6],[7],[8]。最近,世界著名工业机器人生厂商ABB公司运用了莱卡激光跟踪仪以保证其产品的精度。使用激光跟踪仪标定机器人不再需要其它的测量工具,从而也就省去了标定测量工具的繁琐工作;同时,这一方法是对机器人的各个运动学几何参数进行修正,结果会使机器人在整个工作空间内的位姿得到校准,而不会像用迭代求解的方法那样,只是对某些测量姿态进行优化拟合,可能会造成在非测量点处残留比较大的误差;再者,随着机器人的机械磨损,机器人的运动学参数需要重新标定,而激光跟踪仪测量系统配置起来简单,特别适合于工业现场标定。正是鉴于以

halcon相机标定和测量示例

Halcon单相机标定和测量示例相机标定有很多方式:九点标定法、棋盘格标定法、圆形阵列标定法;本次采用圆形阵列标定法。 1Halcon相机标定 1.1标定板描述文件编制 此次相机标定采用的是网购的标定板(直接在万能的某宝搜halcon标定板),如图1。采购的时候卖家会提供标定板的相应参数,如图2。 图1标定板 图 2 标定板参数

用halcon标定助手标定的时候需要用到标定板的描述文件,此文件可以用gen_caltab算子自己编制。如下为函数说明:gen_caltab( : : XNum, YNum, MarkDist, DiameterRatio, CalPlateDescr, CalPlatePSFile : ) 函数说明:创建一个标定文件和相应的脚本文件。 函数参数: Xnum:输入X方向标记(圆点)的数量,Xnum>1; Ynum:输入Y方向标记(圆点)的数量,Ynum>1; MarkDist:标记圆圆心间距离,单位“m”;(我看过一个资料翻译为标记点大小,差点被坑死) DiameterRatio:两标记点距离和标记直径的比值,默认:0.5。0

校准机器人零点位置的具体方法

校准机器人零点位置的具体方法 注:需要点击操作的地方都做了浅红色标记 第一步: 选择手动操纵(参看图1,首先把钥匙开关打到手动位置)方法: 1> 点击ABB 2> 点击手动操纵 图 1 第二步: 选择动作模式(参看图2 和图3) 方法: 1> 点击动作模式 2> 点击轴1 -3 或者轴4 -6 3> 点击确定 第三步: 选择工具坐标(参看图2 和图4) 方法: 1> 点击工具坐标 2> 点击tGripper

图 2 图 3 第四步: 选择移动速度(参看图2 和图5) 方法: 1> 点击增量 2> 点击中或者小

图 4 图 5 第五步: 手动移动机器人各轴到机械零点位置(参看图2) 方法: 此时图2上操纵杆方向处显示操纵杆移动方向于轴的对应关系注意: 如果先前选择轴1 -3 则

1> 操纵杆上下移动为2轴动作 2> 操纵杆左右移动为1轴动作 3> 操纵杆顺/逆时针旋转为3轴动作 如果先前选择轴4 -6 则 1> 操纵杆上下移动为5轴动作 2> 操纵杆左右移动为4轴动作 3> 操纵杆顺/逆时针旋转为6轴动作 1> 左手持示教器,四指握住示教器使能开关(在示教器下方黑色 胶皮里面) 2> 右手向唯一一个方向轻轻移动操纵杆,把各轴按顺序移动到各 自机械绝对零点

图 6

移动顺序,依次为6轴→5轴→4轴→3轴→2轴→1轴,否则会使4,5,6轴升高以致于看不到零点位置。 机械零点位置如图6所示,当所有六个轴全部对准机械零点位置以后,机器人的姿态正如图6所示。 第六步: 更新转数计数器(参看图1,此时可以示教器使能开关) 方法: 1> 点击ABB 2> 点击校准 3> 点击ROB_1 (参看图7) 图7 4> 点击转数计数器(参看图8) 5> 点击更新转数计数器…(会弹出一个警告界面) 6> 点击是

爱普生机器人原点校准方法

EPSON机械手脉冲零点校正 一、工具: 钢板尺(或卡尺)、EPSON机械手编程软件RC+5.0等。 二、应用场合: 1.当机械手和驱动器的型号及序列号不一致时,即机械手和不同序列号的控制器混搭使用, 需要重新校准机械手的位置(重新校准机械手脉冲零位)。 2.更换马达等其他问题。 三、机械手脉冲零点位置校正: 具体调节步骤如下: 1.拆除机械手丝杆上夹具,同时保证机械手有足够运动空间,用RC+5.0软件连接机械手LS3,在软件中打开机器人管理器,如下图所示: .点击“motor on”按钮,即给机械手上电;接着点击“释放所有”按钮,即释 放机械手4个伺服马达刹车;具体如图: 2.点击“motor on”按钮,即给机械手上电;接着点击“释放所有”按钮,即释 放机械手4个伺服马达刹车;具体如图:

— 3.手动将机械手调整到脉冲零点位置;如下图所示: +Z方向 +X方向 +Y方向 具体细节: 1)因为刹车释放后,手动可以拖动J1与J2轴,手动拖动使J1与J2轴如下图所示: 2)同理,手动移动丝杆使3、4轴如图所示:( U轴0位,丝杆端面对应外套上的指针;丝

—杆底部端面到机体底部为75mm,用钢尺量,相差在2mm内可接受。) 3.保持机械手目前手动零点位置不动,先点击“锁定所有”按钮,即锁定机械手 伺服马达刹车;接着点击“motor off”按钮,即关闭机械手;具体如图: 4. 保持机械手目前手动零点位置不动,手动将机械手内编码器重置,具体是在 软件中打开命令窗口(ctrl+M)中输入: Encreset 1 按回车 Encreset 2按回车 Encreset 3按回车 Encreset 3,4按回车 如图: 5. 保持机械手目前手动零点位置不动,重启控制器,具体操作如图:

工业机器人的工具坐标系、工件坐标系、世界坐标系标定

第3章机器人的坐标系及标定 机器人的坐标系是机器人操作和编程的基础。无论是操作机器人运动,还是对机器人进行编程,都需要首先选定合适的坐标系。机器人的坐标系分为关节坐标系、机器人坐标系、工具坐标系、世界坐标系和工件坐标系。通过本章的内容,掌握这几种坐标系的含义其标定方法。 3.1 实验设备 六自由度机器人 3.2 机器人的坐标系 对机器人进行轴操作时,可以使用以下几种坐标系: (1)关节坐标系—ACS(Axis Coordinate System) 关节坐标系是以各轴机械零点为原点所建立的纯旋转的坐标系。机器人的各个关节可以独立的旋转,也可以一起联动。 (2)机器人(运动学)坐标系—KCS(Kinematic Coordinate System) 机器人(运动学)坐标系是用来对机器人进行正逆运动学建模的坐标系,它是机器人的基础笛卡尔坐标系,也可以称为机器人基础坐标系或运动学坐标系,机器人工具末端(TCP)在该坐标系下可以进行沿坐标系X轴、Y轴、Z轴的移动运动,以及绕坐标系轴X轴、Y轴、Z轴的旋转运动。 (3)工具坐标系—TCS(Tool Coordinate System) 将机器人腕部法兰盘所持工具的有效方向作为工具坐标系Z轴,并把工具坐标系的原点定义在工具的尖端点(或中心点)TCP(TOOL CENTER POINT)。 但当机器人末端未安装工具时,工具坐标系建立在机器人的法兰盘端面中心点上,Z轴方向垂直于法兰盘端面指向法兰面的前方。 当机器人运动时,随着工具尖端点(TCP)的运动,工具坐标系也随之运动。用户可以选择在工具坐标系下进行示教运动。TCS坐标系下的示教运动包括沿工具坐标系的X轴、Y轴、Z轴的移动运动,以及绕工具坐标系轴X轴、Y轴、Z轴的旋转运动。 (4)世界坐标系—WCS(World Coordinate System) 世界坐标系是空间笛卡尔坐标系。运动学坐标系和工件坐标系的建立都是参照世界坐标系建立的。在没有示教配置的情况下,默认的世界坐标系和机器人运动学坐标系重合。在世界坐标系下,机器人工具末端可以沿坐标系X轴、Y轴、Z轴进行移动运动,以及绕坐标系轴X轴、Y轴、Z轴旋转运动。 (5)工件坐标系—PCS(Piece Coordinate System) 工件坐标系是建立在世界坐标系下的一个笛卡尔坐标系。机器人沿所指定的工件 18

利用姿态约束的并联机器人运动学标定方法

第42卷 第12期2008年12月 西 安 交 通 大 学 学 报 J OU RNAL O F XI′AN J IAO TON G U N IV ERSIT Y Vol.42 №12 Dec.2008 利用姿态约束的并联机器人运动学标定方法 任晓栋1,2,冯祖仁1,2,苏承平1,2 (1.西安交通大学系统工程研究所,710049,西安;2.西安交通大学机械制造系统工程国家重点实验室,710049,西安) 摘要:为了提高并联机器人运动精度,提出了一种利用姿态约束的运动学标定方法.借助一个双轴倾角仪,建立了机器人末端2个姿态角恒定约束,根据这种约束构造了相应的辨识模型和标定算法.标定算法得益于倾角仪重复精度和分辨率高于位置精度的特点,不受其位置精度和量程的限制,同时可避免施加机械约束给并联机器人主动关节带来特殊要求.仿真计算表明,在杆长测量精度为2μm、倾角仪重复精度为01001°的条件下,经过标定后并联机器人的位置精度可达011mm,姿态精度可达0101°. 关键词:姿态约束;运动学标定;并联机器人 中图分类号:TP24212 文献标志码:A 文章编号:02532987X(2008)1221445205 Method for Kinematic C alibration of Parallel Robots Using Orientation Constraint REN Xiaodong1,2,FEN G Zuren1,2,SU Chengping1,2 (1.Systems Engineering Institute,Xi′an Jiaotong University,Xi′an710049,China;2.State Key Laboratory of Manufacturing Systems Engineering,Xi′an Jiaotong University,Xi′an710049,China) Abstract:A new calibration met hod using orientation constraint is p resented to improve t he accu2 racy of parallel robot s.Wit h t he use of a commercial biaxial inclinometer,two attit ude angles of t he end2effecter are kept constant at different measurement configurations.The corresponding calibration algorit hm is built t hrough t he orientation constraint.Instead of positioning accuracy, repeatability and resolution of t he inclinometer are used to const ruct t he orientation const raint, and t he measurement range of t he inclinometer has no effect on t he calibration met hod.Moreo2 ver,t he act uators of t he parallel robot s do not need to operate in passive mod because t he orienta2 tion const raint is not const ructed by t he mechanical locking device.Simulation result s show t hat t he po sition accuracy and t he orientation accuracy reach0.1mm and0101°,respectively,wit h measurement p recision on leg lengt hs of2μm and repeatability on inclinometer of01001°. K eyw ords:orientation const raint;kinematic calibration;parallel robot s 精度是评价并联机器人工作性能的一项重要指标.运动学标定通过准确辨识机器人的机构参数来修正控制器中的模型参数,能够在不增加并联机器人制造成本的条件下,有效提高运动精度. 现有的并联机器人运动学标定方法可以分为外部标定法和自标定法2大类.外部标定法需要借助外部传感器直接或者间接地检测末端位姿信息全集[1]或者子集[224].这类方法原理简单,但要获取高精度的位姿信息非常困难,通常需要借助代价昂贵的检测设备.自标定方法则无需检测末端位姿信息,通常根据机器人内部冗余传感器的输出[5]或者利用由机械装置产生的运动约束来构造相应的辨识模型[627],但缺点是内部传感器的安装无法适用于已经建造的机构,而施加机械约束通常需要机器人的主 收稿日期:2008204221. 作者简介:任晓栋(1979-),男,博士生;冯祖仁(联系人),男,教授,博士生导师. 基金项目:国家重点基础研究发展规划资助项目(2007CB311006);国家高技术研究发展计划资助项目(2006AA04Z222).

注释的HALCON的标定校正程序

注释的HALCON的程序 时间:2015-11-12 13:25:58阅读:4评论:0收藏:0[点我收藏+]标签:des si代码it la sp文件数据ha *关闭窗口 dev_close_window () dev_close_window () *打开指定大小、颜色背景的窗口 dev_open_window (0, 0, 768/2, 576/2, ‘black‘, WindowHandle1) dev_update_pc (‘off‘) dev_update_window (‘off‘) dev_update_var (‘off‘) dev_update_time (‘off‘) dev_set_draw (‘margin‘) dev_set_line_width (3) * * Calibrate the camera.(标定相机)步骤一 * * 标定板描述文件 CaltabName := ‘caltab_big.descr‘ * make sure that the file ‘CaltabDescrName‘ is in the current directory, * the HALCONROOT/calib directory, or use an absolut path

*初始相机参数:焦距、畸变系数Kappa,Sx,Sy,Cx,Cy,ImageWidth,ImageHeight StartCamPar := [0.008,0,0.0000086,0.0000086,384,288,768,576] *物体在空间坐标系中的位姿数组 NStartPose := [] *行角点数组 NRow := [] *列角点数组 NCol := [] *X、Y、Z从标定表文件获取计算值 caltab_points (CaltabName, X, Y, Z) *创建空的图像元组 gen_empty_obj (Images) *图像的数目 NumImages := 10 *接下来for循环,依次读取、处理NumImages张图像 for I := 1 to NumImages by 1 *读取图像:Image得到图像数据 read_image (Image, ‘calib/calib-3d-coord-‘+I$‘02d‘) *将单个Image加入元组Images中 concat_obj (Images, Image, Images) *显示Image dev_display (Image) *在图像中找到标定板的区域:图像,标定板描述文件,滤波核大小,二值化值

爱普生机器人原点校准方法

爱普生机器人原点校准 方法 Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】

E P S O N机械手脉冲零点校正 一、工具: 钢板尺(或卡尺)、EPSON机械手编程软件RC+5.0等。 二、应用场合: 1.当机械手和驱动器的型号及序列号不一致时,即机械手和不同序列号的控制器混搭使用,需要重新校准机械手的位置(重新校准机械手脉冲零位)。 2.更换马达等其他问题。 三、机械手脉冲零点位置校正: 具体调节步骤如下: 1.拆除机械手丝杆上夹具,同时保证机械手有足够运动空间,用RC+5.0软件连接机械手LS3,在软件中打开机器人管理器,如下图所示: .点击“motoron”按钮,即给机械手上电;接着点击“释放所有”按钮,即释放机械手4个伺服马达刹车;具体如图: 2.点击“motoron”按钮,即给机械手上电;接着点击“释放所有”按钮,即释放机械手4个伺服马达刹车;具体如图: 3.手动将机械手调整到脉冲零点位置;如下图所示:

+Z方向 +X方向 +Y方向 具体细节: 1)因为刹车释放后,手动可以拖动J1与J2轴,手动拖动使J1与J2轴如下图所示: 2)同理,手动移动丝杆使3、4轴如图所示:(U轴0位,丝杆端面对应外套上的指针;丝杆底部端面到机体底部为75mm,用钢尺量,相差在2mm内可接受。) 3.保持机械手目前手动零点位置不动,先点击“锁定所有”按钮,即锁定机械手伺服马达刹车;接着点击“motoroff”按钮,即关闭机械手;具体如图: 4.保持机械手目前手动零点位置不动,手动将机械手内编码器重置,具体是在软件中打开命令窗口(ctrl+M)中输入: Encreset1按回车 Encreset2按回车

外文资料翻译--应用坐标测量机的机器人运动学姿态的标定翻译-精品

毕业设计(论文)外文资料翻译 系部:机械工程系 专业:机械工程及自动化 姓名: 学号: 外文出处:The Internation Journal of Advanced (用外文写) Manufacturing Technology 附件: 1.外文资料翻译译文;2.外文原文。 指导教师评语: 签名: 年月日注:请将该封面与附件装订成册。

附件1:外文资料翻译译文 应用坐标测量机的机器人运动学姿态的标定 这篇文章报到的是用于机器人运动学标定中能获得全部姿态的操作装置—— 坐标测量机(CMM)。运动学模型由于操作器得到发展, 它们关系到基坐标和工件。工件姿态是从实验测量中引出的讨论, 同样地是识别方法学。允许定义观察策略的完全模拟实验已经实现。实验工作的目的是描写参数辨认和精确确认。用推论原则的那方法能得到在重复时近连续地校准机器人。 关键字:机器人标定坐标测量参数辨认模拟学习精确增进 1. 前言 机器手有合理的重复精度(0.3毫米)而知名, 但仍有不好的精确性(10.0 毫米)。为了实现机器手精确性,机器人可能要校准也是好理解。在标定过程中,几个连续的步骤能够精确地识别机器人运动学参数,提高精确性。这些步骤为如下描述: 1 操作器的运动学模型和标定过程本身是发展,和通常有标准运动学模型的工具实现的。作为结果的模型是定义基于厂商的运动学参数设置错误量, 和识别未知的,实际的参数设置。 2 机器人姿态的实验测量法(部分的或完成) 是拿走为了获得从联系到实际机 器人的参数设置数据。 3 实际的运动学参数识别是系统地改变参数设置和减少在模型阶段错误量的 定义。一个接近完成辨认由分析不同中间姿态变量P和运动学参数K的微分关系决定: 于是等价转化得: 两者择一, 问题可以看成为多维的优化问题,这是为了减少一些定义的错误功能到零点,运动学参数设置被改变。这是标准优化问题和可能解决用的众所周知的方法。

Halcon标定文件资料地生成及标定板规格

Halcon标定文件的生成 Halcon标定文件的生成 图一 Halcon标定文件的生成,需要有以下几个步骤: 1.创建一个标定数据模板,由create_calib_data算来完成。 2.指定相机的类型,初始化相机内部参数,由set_calib_data_cam_param算子来完成。 3.指定标定板的描述文件,由set_calib_data_calib_object算子完成。 4.收集观察数据,有算子set_calib_data_observ_points完成。也就是收集标定板上圆点的中心坐标,跟各个校正板的位置姿态。 5.配置校正过程。由算子set_calib_data完成。 6.将数据整合进行标定计算。calibrate_cameras 7.获得标定参数。get_calib_data 8.记录标定参数,write_cam_par

StartCamPar := [0.016, 0, 0.0000074, 0.0000074, 326, 247, 652, 494] 解释一下这个数组的意思。 面阵相机有14或18个参数(根据想相机的畸变模式),对于线阵相机有17个参数。这些参数可以分开为内部相机参数、外部相机参数。 面阵相机(division模式): Focus(焦距):远焦镜头镜头焦距的长度 Kappa:扭曲系数 Sx,Sy:两像素间距 Cx,Cy:中心点坐标 Whith,Height:图像的宽高 面阵相机(polynomia模式): Focus(焦距):远焦镜头镜头焦距的长度 K1, K2, K3, P1,P2:扭曲系数 Sx,Sy:两像素间距 Cx,Cy:中心点坐标 Whith,Height:图像的宽高 线阵相机不做具体介绍 Halcon标定板规格 2011-12-23 12:56 68人阅读评论(1) 收藏举报

halcon单摄像机标定

In the reference manual,operator signatures are visualized in the following way: operator ( iconic input : iconic output : control input : control output ) 在HALCON所有算子中,变量皆是如上格式,即:图像输入:图像输出:控制输入:控制输出,其中四个参数任意一个可以为空。控制输入量可以是变量、常量、表达式,控制输出以及图像输入和输入必须是变量,以存入算子计算结果中。 1.caltab_points:从标定板中读取marks中心坐标,该坐标值是标定板坐标系统里的坐标值,该坐标系统以标定板为参照,向右为X正,下为Y正,垂直标定板向下为Z正。该算子控制输出为标定板中心3D坐标。 2.create_calib_data:创建Halcon标定数据模型。输出 一个输出数据模型句柄。 3.set_calib_data_cam_param:设定相机标定数据模型中设置相机参数的原始值和类型。设置索引,类型,以及相机的原始内参数等。 4.set_calib_data_calib_object:在标定模型中设定标定对象。设定标定对象句柄索引,标定板坐标点储存地址。 5.find_caltab:分割出图像中的标准标定板区域。输出为标准的标定区域,控制 6.find_marks_and_pose:抽取标定点并计算相机的内参数。输出MARKS 坐标数组,以及估算的相机外参数。 即标定板在相机坐标系中的位姿,由3个平移量和3个旋转量构成。 7.set_calib_data_observ_points( : : CalibDataID, CameraId x, CalibObjIdx,CalibObjPoseIdx, Row, Column, Index, Pose : ) 收集算子6的标定数据,将标定数据储存在标定数据模型中。输入控制分别为标定数据模型句柄,相机索引,标定板索引,位姿索引,行列坐标,位姿。

机器人柔性坐标测量系统现场校准技术研究

机器人柔性坐标测量系统现场校准技术研究 发表时间:2017-10-30T10:07:22.517Z 来源:《基层建设》2017年第20期作者:田华 [导读] 摘要:机器人柔性坐标测量系统可实现大工件尺寸的在线大测量。 宁夏计量测试院宁夏银川 750200 摘要:机器人柔性坐标测量系统可实现大工件尺寸的在线大测量。是自动化生产线的关键质量监控设备。现场标定技术是柔性坐标测量系统的关键技术之一,标定精度直接影响系统的测量精度。手眼关系、机器人运动学模型参数和机器人坐标系是现场标定的主要内容。通过对中介目标的设计、手眼关系激光跟踪仪测量方法,转换精度不受运动误差影响;校准领域的建立,基于不变的距离测量的现场标定模型链接参数;根据机器人的运动学正解和激光跟踪仪的动力学模型,应用奇异值分解法求解基于机器人基坐标系的高精度矩阵转移登记。激光跟踪仪标定后,可以利用测量系统实现机器人参考球的快速在线标定,减小模型参数对系统测量精度的影响。实验结果表明,标定系统的整体误差小于0.2mm。 关键词:工业机器人;视觉测量;现场校准;手眼关系;奇异值分解;基准球 前言 工业机器人柔性坐标测量系统的优势相结合的快速、非接触、视觉测量、基于柔性机器人自动化,实现大型工件100%工业现场的在线实时测量,已成为一个关键设备大型工件自动生产线和生产过程监控。柔性坐标测量系统采用一个或多个机器人,并在关节末端安装视觉传感器,并结合测量、控制和数据管理软件。 测量是建立在机器人运动学模型和计算机控制下的传感器模型的基础上的。结构复杂的测量系统,链节的大小,影响测量精度的因素很多,且彼此相关,其中最难控制的系统的精度,主要原因如下: (1)机器人是由多个手臂和关节,是一种自由的结构多机,运动学模型是由许多参数的加工和装配,环境的影响,机械变形误差,有一个与理论值偏差大,使用的参数会发生变化,和机器人定位精度水平不高; (2)在工业现场建立高精度的机器人基坐标系与工件坐标系之间的坐标变换关系(以下称为机器人的外部姿态)非常困难; (3)简单的手眼标定引入了带有误差的机器人运动学模型,降低了手眼关系的校准精度。 1手眼关系的建立 手眼关系是机器人末端凸缘坐标系(工具坐标系)与视觉传感器坐标系之间的过渡关系。由于视觉传感器坐标系不能直接测量,手眼关系标定必须借助于辅助手段。测量系统用来测量一个(多个姿势)或多个已知的空间点,当机器人的运动模型和参数已知时,可以计算出眼睛的关系。该方法比较简单,但标定结果包括机器人运动模型误差,精度难以提高。 为了建立高精度的手眼关系,提出了一种中间目标方法。同时测量了中间目标视觉传感器和激光跟踪仪,建立了传感器坐标与跟踪器坐标系之间的转换关系,建立了机器人端部坐标与坐标的关系。该方法不依赖于机器人运动学模型,不将模型误差引入到标定结果中,从而保证了标定精度。 首先设计了中间目标,建立了目标坐标系。目标是一个平坦的衬底,在9个小球体,另一侧是4个激光跟踪仪靶标磁座。在建立目标坐标系前进行标定,并用三坐标测量机精确测量靶坐标中的球体中心和靶磁铁。当校准视觉传感器测量9个小球的目标坐标(在传感器坐标系),视觉传感器对目标的激光跟踪仪目标Tst磁座坐标之间的转换,建立了激光跟踪仪坐标系统之间的转换和目标的Ttl,传感器坐标系和跟踪坐标系统之间的关系可设置。然后使用激光跟踪仪测量机器人末端凸缘,建立激光跟踪仪坐标系到机器人凸缘坐标系的转换关系Tlr,视觉传感器坐标系与末端凸缘坐标系的转换关系为: Tsr=TlrXTtlXTst 整个标定过程不使用机器人运动学模型,都依靠高精度的激光跟踪仪,保证手眼关系标定的准确性。 2工业机器人的工作原理及分类 2.1工作原理 工业机器人是将数控机床的伺服轴与遥控操纵器的连杆机构联接在一起,通过编程输入预先设定的机械手动作,机器人系统就可以离开人的辅助而独立运行。此外,机器人能够根据制造业的生产需求及相关要求提前将操作程序设置好,随后机器人按照事先设置好的操作程序进行作业。一般情况下,工业操作机器人的整个操作流程环节由闭环系统、机器人本体、运动控制器、传感器、伺服驱动器等几个模块协同操作完成。在工厂最常见的工业机器人多为关节型机械结构,而且每一个关节均可以视为独立的控制电机,然后由计算机控制功率,将电路放大,从而实现对工业机器人的有效控制,完成一系列的工业生产操作。 2.2分类 按工业机器人产业化发展时间可以将其分为3大类: (1)示教再现工业机器人(第一代工业机器人)。这类工业机器人的构成部件主要有机器人本体、示教盒、运动控制器。其中示教盒主要负责编程和保存信息;运动控制器在运动状态下可以充分地发挥作用,实现对程序的解析,指导机器人本体完成相应的工业生产动作。 (2)离线编程工业机器人(第二代工业机器人)。这类工业机器人采用离线式计算机模型仿真技术,首先建立实体模型,利用正逆解算法实现对实体模型的操作控制;同时,构建相应的运行路径规划,实现三维动画仿真;最后,在检验无误的状态下通过离线编程,指导机器人本体完成相应的工业生产动作。 (3)智能工业机器人(第三代工业机器人)。这类工业机器人融合了第一代、第二代工业机器人的优势,在能力上更胜一筹,不仅拥有较强的感觉能力,而且具备独立判断、记忆、决策能力,对提升工业生产效率及质量具有重要的指导意义。同时,这类工业机器人能够利用传感器及时获取外部信息,并进行相应的信息处理、反馈。 3工业机器人的发展趋势 3.1国际发展趋势 全球工业机器人数量呈递增态势,应用广泛,市场前景较好。据统计,全世界的工业机器人数量已达到230多万台,其中亚洲增长速度最为突出。工业机器人正朝着精密化、智能化、微型化方向发展,广泛应用于农业、建筑、医学、军事等各大领域。实践证明,工业机

相关主题
文本预览
相关文档 最新文档