当前位置:文档之家› 现代变频器HIVD 9x0_2x00(中文)

现代变频器HIVD 9x0_2x00(中文)

现代变频器HIVD 9x0_2x00(中文)
现代变频器HIVD 9x0_2x00(中文)

ABB变频器故障列表

ABB550变频器故障列表 故障代码控制盘上显示的 故障名称 故障描述及其纠正措施 1OVERCURRENT 过流 输出电流过大。检查和排除: ●电机过载。 ●加速时间过短(参数2202 ACCELER TIME1(加速时间1)和2205 ACCELER TIME2 (加速时间2))。 ●电机故障,电机电缆故障或接线错误。 2DC OVERVOLT 直流过压 中间回路DC电压过高。检查和排除: ●输入侧的供电电源发生静态或瞬态过电压。 ●减速时间过短(参数2203 DECELER TIME1(减速时间1)和2206 DECELER TIME2(减速 时间2))。 ●制动斩波器选型太小(如果有)。 ●确认过电压控制器处于正常工作状态(使用参数2005)。 3DEV OVERTEMP 过温 散热器过温。温度达到或超过极限值。 R1~R4:115℃ R5/ R6:125℃ 检查和排除: ●风扇故障。 ●空气流通受阻。 ●散热器积灰。 ●环境温度过高。 ●电机负荷过大。 4SHORT CIRC 短路 短路故障。检查和排除: ●电机电缆或电机短路。 ●供电电源扰动。 6DC UNDERVOLT 直流欠压 中间回路DC电压不足。检查和排除: ●供电电源缺相。 ●熔断器熔断。 ●主电源欠压。 9MOT OVERTEMP 电机过温 电机过热,基于传动的估算或温度反馈信号。 ●检查电机是否过载。 ●调整用于估算的参数(3005~3009)。 ●检查温度传感器和参数组35中的参数设置。 10PANEL LOSS 控制盘丢失 控制盘通讯丢失,并且: ●传动处于本地控制(控制盘显示LOC,本地),或 ●传动处于远程控制模式(REM,远程),且起/停/方向/给定值信号来自控制盘。

PLC-变频器控制自动扶梯系统

PLC-变频器控制自动扶梯系统 摘要】 自动扶梯是带有循环运动梯路向上或向下倾斜输送乘客的固定电力驱动设备,用以在建筑物的不同高度间运载人员上下的一种连续循环输送的运输工具。自动扶梯非常适合在车站、机场、商场等客流量较大的公共场合使用,目前国内使用的自动扶梯空载时仍是额定速度运行,采用同一速度运行模式,没有根据人流量的多少来调节拖动电动机的运转速度,具有耗能大,机械磨损大,使用寿命降低等缺点。本系统根据人流量自动调节扶梯的运行速度,对节约能量和延长扶梯的使用寿命起到巨大的作用。 【关键词】自动扶梯安全保护装置可编程控制变频控制 【前言】 自动扶梯是由一台特种结构型式的输送机和两台特殊结构型式的胶带输送机组合而成的,广泛应用于商厦、超市、地铁、车站、商务中心等客流量较大的公共场所,作为一种商用载人设备,因此自动扶梯的安全性非常重要,扶梯必须设置安全保护装置,以保证自动扶梯上的乘客绝对安全。自动扶梯的整体设计应该满足特定的商业规范,它必须经济、低噪声且运行平稳。采用合理的导轨梯路系统设计,即能降低运行阻力,节约能耗,减小噪声,延长使用寿命。 继电器控制的自动扶梯过去用得比较多,这种电气控制原理比较简单、直观,线路包括主电路、安全保护电路、控制电路、制动器电路以及照明电路等。由于触点较多,造成线路比较复杂,运行故障多,故障排除困难,目前这种控制线路的自动扶梯处于淘汰阶段。 采用可编程(PLC)控制方式的自动扶梯可克服继电器控制方式的缺点,达到可靠性高、编程简单、通用性强、维修方便等。采用变压变频调速技术,可灵活调节电动机的旋转速度。 使用先进的电动机控制技术,保证电动机的运行性能。使用新型的检测材料,可以更准确地检测各种外部信号、反馈信号,实现自动扶梯的闭环控制、智能控制。 一、PLC-变频器控制自动扶梯的安全保护装置 本系统共配备多个安全保护开关,如遇到非正常状况,其能自动切断自动扶梯的控制电源,使自动扶梯迅速停止运行。配备的安全保护装置包括: (一)必备安全保护装置

变频器最常见的十大故障

变频器最常见的十大故障 一、过流(OC) 过流是变频器报警最为频繁的现象。 1.1现象 (1)重新启动时,一升速就跳闸。这是过电流十分严重的现象。主要原因有:负载短路,机械部位有卡住;逆变模块损坏;电动机的转矩过小等现象引起。 (2)上电就跳,这种现象一般不能复位,主要原因有:模块坏、驱动电路坏、电流检测电路坏。重新启动时并不立即跳闸而是在加速时,主要原因有:加速时间设置太短、电流上限设置太小、转矩补偿(V/F)设定较高。 1.2实例 (1)一台LG-IS3-43.7kW变频器一启动就跳“OC” 分析与维修:首先打开机盖没有发现任何烧坏的迹象,在线测量IGBT(7MBR25NF-120)基本判断没有问题,为进一步判断问题,把IGBT拆下后测量7个单元的大功率晶体管开通与关闭都很好。在测量上半桥的驱动电路时发现有一路与其他两路有明显区别,经仔细检查发现一只光耦A3120输出脚与电源负极短路,更换后三路基本一样。模块装上上电运行一切良好。 (2)一台BELTRO-VERT2kW变频通电就跳“OC”且不能复位。 分析与维修:首先检查逆变模块没有发现问题。其次检查驱动电路也没有异常现象,估计问题不在这一块,可能出在过流信号处理这一部位,再次将其电路传感器拆掉后上电,显示一切正常,故认为传感器已坏,找一新品换上后带负载实验一切正常。 二、过压(OU) 过电压报警一般是出现在停机的时候,其主要原因是减速时间太短或制动电阻及制动单元有问题。 (1)实例 一台台安N2系列3.kW变频器在停机时跳“OU”。

分析与维修:首先要搞清楚“OU”报警的原因何在,这是因为变频器在减速时,电动机转子绕组切割旋转磁场的速度加快,转子的电动势和电流增大,使电机处于发电状态,回馈的能量通过逆变环节中与大功率开关管并联二极管流向直流环节,使直流母线电压升高所致,所以我们应该着重检查制动回路,测量放电电阻没有问题,在测量制动管(ET191)时发现已击穿,更换后上电运行,且快速停车都没有问题。 三、欠压(Uu) 欠压也是我们在使用中经常碰到的问题。主要是因为主回路电压太低(220V系列低于200V,380V系列低于400V),主要原因:整流桥某一路损坏或可控硅三路中有工作不正常的都有可能导致欠压故障的出现,其次主回路接触器损坏,导致直流母线电压损耗在充电电阻上面有可能导致欠压。还有就是电压检测电路发生故障而出现欠压问题。 3.1举例 (1)变频器上电跳“Uu” 分析与维修:经检查这台变频器的整流桥充电电阻都是好的,但是上电后没有听到接触器动作,因为这台变频器的充电回路不是利用可控硅而是靠接触器的吸合来完成充电过程的,因此认为故障可能出在接触器或控制回路以及电源部分,拆掉接触器单独加24V直流电接触器工作正常。继而检查24V直流电源,经仔细检查该电压是经过LM7824稳压管稳压后输出的,测量该稳压管已损坏,找一新品更换后上电工作正常。 (2)一台DANFOSSVLT5004变频器,上电显示正常,但是加负载后跳“DCLINKUNDERVOLT”(直流回路电压低)。 分析与维修:这台变频器从现象上看比较特别,但是你如果仔细分析一下问题也就不是那么复杂,该变频器同样也是通过充电回路,接触器来完成充电过程的,上电时没有发现任何异常现象,估计是加负载时直流回路的电压下降所引起,而直流回路的电压又是通过整流桥全波整流,然后由电容平波后提供的,所以应着重检查整流桥,经测量发现该整流桥有一路桥臂开路,更换新品后问题解决。 四、过热(OH)。 过热也是一种比较常见的故障,主要原因:周围温度过高,风机堵转,温度传感器性能不良,马达过热。 举例:一台ABBACS50022kW变频器客户反映在运行半小时左右跳“OH”。 分析与维修:因为是在运行一段时间后才有故障,所以温度传感器坏的可能性不大,可能变频器的温度确实太高,通电后发现风机转动缓慢,防护罩里面堵满了很多棉絮(因该变频器是用在纺织行业),经打扫后开机风机运行良好,运行数小时后没有再跳此故障。

变频器中PLC自动控制技术的运用 林堃

变频器中PLC自动控制技术的运用林堃 发表时间:2019-06-11T11:20:34.960Z 来源:《中国电气工程学报》2019年第3期作者:林堃 [导读] 随着科学技术的发展,现代化建设的发展也日新月异。PLC自动控制技术具有功能强大、稳定性高和可靠性强等优点,且综合使用价值很高。与传统控制技术相比,将PLC自动控制技术引进变频器中,能够对传统直流调速方式进行升级,提升继电器中各个触点准确性,促进变频器系统运行速率,进而强化变频器使用功能。所以将PLC自动控制系统与变频器有效结合,对我国社会经济的发展具有积极作用。本文首先分析了PLC自动控制技术应用 引言 变频器中PLC自动控制技术的应用,深刻影响着我国工业生产的发展。PLC自动控制系统实质上是可编程的逻辑控制器在工业生产上对计算机进行控制的技术方式,功能性强大,目前在电气控制行业内的应用最为广泛。变频器技术作为变频技术中不可或缺的技术组成部分,是技术人员一直研究如何代替直流调速技术的重点。变频器中使用的变频技术,在传统上人工操作是其主要的方法,但这一方法在实际操作的使用中太过繁杂,在PLC自动控制技术应用于变频器中后,变频器数据分析能力加强,设备的应用需求得到满足,变频器的应用范围也被扩大,这个问题就被很好的加以解决了。 1PLC自动控制技术应用概述 ProgrammableLogicController叫做PLC控制系统,简称PLC,又叫做“可编程逻辑控制”器,PLC控制系统主要为工业生产发展而设计的一种关于电脑数字运算操作的电子装备,主要发展设备内部存储程序,按顺序进行控制的逻辑运算。PLC自动控制技术是一种微型计算机控制技术,PLC自动控制技术,广泛应用于工业生产中。应用生产中可以有效提高企业生产的效率,提高产品的销量和质量,PLC自动控制技术的编程简单、操作方便。从事PLC自动控制技术的相关编程人员,不需要具备丰富的计算机知识,根据简单的学习就可以进行PLC编程操作。在经济发展领域中,PLC自动控制系统具有实用性高,稳定性高,使用寿命长等特点,PLC自动控制系统在实际应用中,可与其他相关设备进行相互结合,PLC自动控制系统发出信号,对其他相关设备进行有效控制,使PLC自动控制的发展前景更加广阔,在实际工作中具有更多的优势。 2PLC模块选择 目前,变频器产品在市场上的种类有很多,价格也参差不齐,在给工业生产企业宽松选择空间的同时,也造成了一定的选择难度。在实际运行中,变频器产品不同,带有的负荷也就有了差异,因此,工业生产企业要以产品工艺特点和实际情况为基准去配备合适的变频器,不该盲目选择。变频器中PLC自动控制技术的应用,变频器的性能参数只是设计人员需要注意的一点内容,具体的选择还要参考实际的应用,同时,不同模块要尽量保证规格相同,以期在之后的PLC自动控制上方便于管理。选择PLC型号时,变频器特性必须要考虑进去,信号格式也要与变频器相匹配。在实际的工业生产中,不同的机械运行,匹配的变频器也是不同的,而且要保证变频器的质量,不然企业的经济利益必然会受到影响。PLC模块选择中,机型、I/O模功能模块的对照应该放在首位,PLC系统只有和变频器相匹配,才能发挥最大的效率,此外,信号类型、输入接线连接、电压等级也要作为参考内容,这样才能让PLC系统与变频器形成最优配合,最大化的体现其使用价值。 3PLC自动控制技术在变频器中的应用 3.1通信协议的实现 我国的企业如今可以通过通信协议实现变频器对plc自动控制技术进行控制,专用协议和统一通信协议是我国的主要应用的通信协议,在运行过程中,PLC自动控制系统主要是运用专用通信协议对变频器进行控制。根据通信协议的自身条件,通信协议可以划分为modbus通信协议与自由口通信协议,采用自由口通信协议对变频器多自动控制系统进行控制,变频器和PLC自动控制系统通过自由口通信协议进行控制的,可以有效地实现对程序的自由控制,可以实现不同型号的变频器输入信号的相互转换。采用自由口通信协议有许多优点,所以工业生产企业一般完成程序编写完成后,再用自由口通信模式,这样可以进一步提高变频器在实际工作过程中的自由性、可靠性及安全性。modbus通信协议本质上属于串行通信行应用中的一种,所以PLC自动控制系统与变频器使用modbus通信协议的工作中,可以支持各种形式的检验。PLC自动控制系统采取合理的通信协议规划,有效进行通信协议系统规划,这些细节关乎了电器的使用质量,及时有效的对机器进行的监督和控制,提升变频器的使用质量,降低变频器在运行过程中的风险,提高工作效率。提高了PLC自动控制系统在运行过程中,对变频器的效率,满足工业企业发展的各种需求。 3.2通信协议实现方法 通信协议主要分为通用协议、专用协议两种。根据不同情况,划分自由口通信协议以及MODBUS通信协议。在变频器中应用的专用通信协议,是变频器与PLC之间制定的通信协议,利用这种专用通信,实现对变频器的自动化控制。利用自由口通信协议,能够确保PLC系统有效控制系统中各项自由程序,同时变频器各个信号之间也能进行有效通信。基于这些内容,在编写程序之后,相关工作人员必须对相关通讯程序进行及时的调试,确保PLC自动控制系统在变频器中的稳定性,发挥其应有的价值。MODBUS通信协议长期属于通信行业核心标准,相关人员必须这一通信特点进行分析,考虑到其作为串行通信协议的一种,在实践运用中,为LPC、CRC校验提供支持。 3.3实现变频器自动化控制的主要方式 将PLC自动控制技术运用到变频器当中,自动化控制的实现主要通过I/O端子。PLC控制系统与I/O端子正是PLC自动化控制技术主要内容,将两个方面内容有机结合起来,并合理利用,才能发挥PLC的作用。在具体实现过程中,主要包括两个方向,其一是将数字输入端与PLC进行连接,这种方式需要满足PLC自动化控制系统中携带I/O端子,利用导线加以控制;其二是模拟量端子和PLC系统相连接,这种实现方式下,PLC自身并不携带模拟量端子,将PLC系统后台控制拓展模块和变频器模拟量端子进行连接,从而实现自动化控制效果。这两种实现方式,都可以对变频器进行有效设置,若变频器输入的数字量较多,则能获得较多固定频率。通过上文介绍,我们知道通信协议是变频器现场总线控制的核心,DP通信协议是一种关键手段,其主要由协议层、网络数据以及电报头组成。并通过有效的定义方式,实现系统上下层结构之间的良好传输,且避免两者之间相互干扰,提升变频器运行的可靠性,确保各项工作都能够顺利完成,让变频器能够通过上级自动化系统指令进行工作。 结语 在变频器中PLC自动控制技术的实际运用中,变频器应用中出现的一些常见影响变频器整体运行效率的问题,通过PLC自动控制系统就

变频器控制字状态字

字体大小:大| 中| 小2010-02-11 12:51 - 阅读:143 - 评论:3 工控网曾有过关于主题的文章,很精华,没找到链接,抱歉!下面给您一篇我曾摘自工控网的技术文章: 1.通讯方式的设定:PPO 4,这种方式为0 PKW/6 PZD,输入输出都为6个PZD,(只需要在STEP7里设置,变频器不需要设置); PROFIBUS的通讯频率在变频器里也不需要设置,PLC方面默认为1.5MB. 在P60=7设置下,设置P53=3,允许CBP(PROFIBUS)操作. P918.1设置变频器的PROFIBUS地址. 2.设置第一与第二个输入的PZD为PLC给变频器的控制字,其余四个输入PZD这里没有用到. 设置第一与第二个输出的PZD为变频器给PLC的状态字,设置第三个为变频器反馈给PLC 的实际输出频率的百分比值, 第四个为变频器反馈给PLC的实际输出电流的百分比值,其余两个输出PZD这里没有用到. 3.PLC给变频器的第一个PZD存储在变频器里的K3001字里. K3001有16位,从高到底为3115到3100(不是3001.15到3001.00). 变频器的参数P554为1时变频器启动为0时停止,P571控制正转,P572控制反转. 如果把P554设置等于3100,那么K3001的位3100就控制变频器的启动与停止,P571设置等于3101则3101就控制正转, P572设置等于3102则3102就控制反转.(变频器默认P571与P572都为1时正转,都为0时为停止).

经过这些设置后K3001就是PLC给变频器的第一个控制字. 此时K3001的3100到3115共16位除了位3110控制用途都不是固定的,所以当设置P554设置等于3101时则3101可以控制启动与停止, P571等于3111时则3111控制正转,等等. K3001的位3110固定为“控制请求”,这位必须为1变频器才能接受PLC的控制讯号,所以变频器里没有用一个参数对应到这个位, 必须保证PLC发过来第一个字的BIT 10为1. 这里设置为:P554=3100,P571=3101,P572=3102,当PLC发送W#16#0403时(既 0000,0100,0000,0011)变频器正转. 4.PLC给变频器的第二个PZD存储在变频器里的K3002字里. 变频器的参数P443存放给定值. 如果把参数P443设置等于K3002,那么整个字K3002就是PLC给变频器的主给定控制字. PLC发送过来的第二个字的大小为0到16384(十进制),(对应变频器输出的0到100%),当为8192时,变频器输出频率为25Hz. 5.变频器的输出给PLC的第一个PZD字是P734.1,第二个PZD字是P734.2,等等. 要想把PLC接收的第一个PZD用作第一个状态字,需要在变频器里把P734.1=0032(既字 K0032), 要想把PLC接收的第二个PZD用作第二个状态字,需要在变频器里把P734.2=0033(既字 K0032). (K0032的BIT 1为1时表示变频器准备好,BIT 2表示变频器运行中,等等.) (变频器里存贮状态的字为K0032,K0033等字,而变频器发送给PLC的PZD是P734.1,P734.2等) 在变频器里把P734.3=0148,在变频器里把P734.4=0022,则第三个和第四个变频器PZD分别包

PLC控制变频器的几种方法

在工业自动化控制系统中,最为常见的是PLC和变频器的组合应用,并且产生了多种多样的PLC控制变频器的方法,其中采用RS-485通讯方式实施控制的方案得到广泛的应用:因为它抗干扰能力强、传输速率高、传输距离远且造价低廉。但是,RS-485的通讯必须解决数据编码、求取校验和、成帧、发送数据、接收数据的奇偶校验、超时处理和出错重发等一系列技术问题,一条简单的变频器操作指令,有时要编写数十条PLC梯形图指令才能实现,编程工作量大而且繁琐,令设计者望而生畏。? 本文介绍一种非常简便的三菱FX系列PLC通讯方式控制变频器的方法:它只需在PLC主机上安装一块RS-485通讯板或挂接一块RS-485通讯模块;在PLC的面板下嵌入一块造价仅仅数百元的“功能扩展存储盒”,编写4条极其简单的PLC梯形图指令,即可实现8台变频器参数的读取、写入、各种运行的监视和控制,通讯距离可达50m或500m。这种方法非常简捷便利,极易掌握。本文以三菱产品为范例,将这种“采用扩展存储器通讯控制变频器”的简便方法作一简单介绍。 2、三菱PLC采用扩展存储器通讯控制变频器的系统配置 2.1 系统硬件组成 FX2N系列PLC(产品版本V 3.00以上)1台(软件采用FX-PCS/WIN-C V 3.00版); FX2N-485-BD通讯模板1块(最长通讯距离50m); 或FX0N-485ADP通讯模块1块+FX2N-CNV-BD板1块(最长通讯距离500m); FX2N-ROM-E1功能扩展存储盒1块(安装在PLC本体内);

带RS485通讯口的三菱变频器8台(S500系列、E500系列、F500系列、F700系列、A500系列、V500系列等,可以相互混用,总数量不超过8台;三菱所有系列变频器的通讯参数编号、命令代码和数据代码相同。); RJ45电缆(5芯带屏蔽); 终端阻抗器(终端电阻)100Ω; 选件:人机界面(如F930GOT等小型触摸屏)1台。 2.2 硬件安装方法 (1) 用网线专用压接钳将电缆的一头和RJ45水晶头进行压接;另一头则按图1~图3的方法连接FX2N-485-BD通讯模板,未使用的2个P5S端头不接。 (2) 揭开PLC主机左边的面板盖, 将FX2N-485-BD通讯模板和FX2N-ROM-E1功能扩展存储器安装后盖上面板。 (3) 将RJ45电缆分别连接变频器的PU口,网络末端变频器的接受信号端RDA、RDB之间连接一只100Ω终端电阻,以消除由于信号传送速度、传递距离等原因,有可能受到反射的影响而造成的通讯障碍。 2.3 变频器通讯参数设置 为了正确地建立通讯,必须在变频器设置与通讯有关的参数如“站号”、“通讯速率”、“停止位长/字长”、“奇偶校验”等等。变频器内的Pr.117~Pr.124参数用于设置通讯参数。参数设定采用操作面板或变频器设置软件FR-SW1-SETUP-WE在PU口进行。 2.4 变频器设定项目和指令代码举例

变频器控制字状态字

字体大小: | | 2010-02-11 12:51 - 阅读:143 - :3 工控网曾有过关于主题的文章,很精华,没找到链接,抱歉!下面给您一篇我曾摘自工控网的技术文章: 1.通讯方式的设定:PPO 4,这种方式为0 PKW/6 PZD,输入输出都为6个PZD,(只需要在STEP7里设置,变频器不需要设置);PROFIBUS的通讯频率在变频器里也不需要设置,PLC方面默认为. 在P60=7设置下,设置P53=3,允许CBP(PROFIBUS)操作. 设置变频器的PROFIBUS地址. 2.设置第一与第二个输入的PZD为PLC给变频器的控制字,其余四个输入PZD这里没有用到. 设置第一与第二个输出的PZD为变频器给PLC的状态字,设置第三个为变频器反馈给PLC的实际输出频率的百分比值, 第四个为变频器反馈给PLC的实际输出电流的百分比值,其余两个输出PZD这里没有用到. 给变频器的第一个PZD存储在变频器里的K3001字里. K3001有16位,从高到底为3115到3100(不是到. 变频器的参数P554为1时变频器启动为0时停止,P571控制正转,P572控制反转.

如果把P554设置等于3100,那么K3001的位3100就控制变频器的启动与停止,P571设置等于3101则3101就控制正转, P572设置等于3102则3102就控制反转.(变频器默认P571与P572都为1时正转,都为0时为停止). 经过这些设置后K3001就是PLC给变频器的第一个控制字. 此时K3001的3100到3115共16位除了位3110控制用途都不是固定的,所以当设置P554设置等于3101时则3101可以控制启动与停止, P571等于3111时则3111控制正转,等等. K3001的位3110固定为“控制请求”,这位必须为1变频器才能接受PLC的控制讯号,所以变频器里没有用一个参数对应到这个位, 必须保证PLC发过来第一个字的BIT 10为1. 这里设置为:P554=3100,P571=3101,P572=3102,当PLC发送W#16#0403时(既0000,0100,0000,0011)变频器正转. 给变频器的第二个PZD存储在变频器里的K3002字里. 变频器的参数P443存放给定值. 如果把参数P443设置等于K3002,那么整个字K3002就是PLC给变频器的主给定控制字. PLC发送过来的第二个字的大小为0到16384(十进制),(对应变频器输出的0到100%),当为8192时,变频器输出频率为25Hz. 5.变频器的输出给PLC的第一个PZD字是,第二个PZD字是,等等.

变频器常见故障代码及处理实例

一、过流(OC) 令狐采学 过流是变频器报警最为频繁的现象。 1.1现象 (1) 重新启动时,一升速就跳闸。这是过电流十分严重的现象。主要原因有:负载短路,机械部位有卡住;逆变模块损坏;电动机的转矩过小等现象引起。 (2) 上电就跳,这种现象一般不能复位,主要原因有:模块坏、驱动电路坏、电流检测电路坏。 (3) 重新启动时并不立即跳闸而是在加速时,主要原因有:加速时间设置太短、电流上限设置太小、转矩补偿(V/F)设定较高。 1.2 实例 (1) 一台LG-IS3-4 3.7kW变频器一启动就跳“OC” 分析与维修:打开机盖没有发现任何烧坏的迹象,在线测量IGBT(7MBR25NF-120)基本判断没有问题,为进一步判断问题,把IGBT拆下后测量7个单元的大功率晶体管开通与关闭都很好。在测量上半桥的驱动电路时发现有一路与其他两路有明显区别,经仔细检查发现一只光耦A3120输出脚与电源负极短路,

更换后三路基本一样。模块装上上电运行一切良好。 (2) 一台BELTRO-VERT 2.2kW变频通电就跳“OC”且不能复位。 分析与维修:首先检查逆变模块没有发现问题。其次检查驱动电路也没有异常现象,估计问题不在这一块,可能出在过流信号处理这一部位,将其电路传感器拆掉后上电,显示一切正常,故认为传感器已坏,找一新品换上后带负载实验一切正常。二、过压(OU) 过电压报警一般是出现在停机的时候,其主要原因是减速时间太短或制动电阻及制动单元有问题。 2.1 实例 一台台安N2系列3.7kW变频器在停机时跳“OU”。 分析与维修:在修这台机器之前,首先要搞清楚“OU”报警的原因何在,这是因为变频器在减速时,电动机转子绕组切割旋转磁场的速度加快,转子的电动势和电流增大,使电机处于发电状态,回馈的能量通过逆变环节中与大功率开关管并联的二极管流向直流环节,使直流母线电压升高所致,所以我们应该着重检查制动回路,测量放电电阻没有问题,在测量制动管(ET191)时发现已击穿,更换后上电运行,且快速停车都没有问题。三、欠压(Uu)

施耐德变频器故障代码对照表

施耐德变频器故障代码对照表OC 过电流 1. 加速时间过短 2. 减速时间过短 3. V/F曲线不合适 4. 载波频率不合适 5. 直流制动时制动电压过高 6. 直流制动时制动时间过长 7. 直流制动时制动频率过高 8. 输出侧短路 9. 变频器瞬间停止输出,对旋转中电机实施再起动 10. 变频器周围环境温度过高 11. 电机堵转或负载太重 12. 负载发生急剧变化 13. 外部接线错误 14. 电机绕组与电机外壳短路 15. 电机接线与大地短路 16. 电源瞬间变化 17. 干扰 18. 是否是特殊电机(如特殊电机,阻抗比较小) 19. 变频器逆变电路存在问题

20. 变频器正反转切换 21. 变频器与电机间的接线松动 1. 延长加速时间 2. 延长减速时间 3. 检查并更改V/F设定 4. 检查并更改载波频率 5. 降低直流电压 6. 减小制动时间 7. 降低制动频率 8. 检查输出测是否短接 9. 等待电机停转后再起动 10. 检查冷却风扇是否正常,环境温度是否正常 11. 检查电机及负载 12. 减小负载的突变 13. 重新检查接线 14. 检查电机 15. 检查电机接线 16. 检查输入电源 17. 检查接地线、屏蔽线接地情况及端子情况 18. 更换电机或更改变频器功能参数 19. 变频器维修

20. 延长加减速时间和正反转切换死区时间 21. 检查变频器与电机间的连线 OE 过压 1. 输入电压异常 2. 减速时间过短 3. 负载惯性较大 4. 瞬间掉电,得电后重新运行正在运转的电机 5. 变频器运转中,切断电机与变频器的连接 6. 能耗制动电阻选择不合适 7. 外部接线错误 1. 检查输入电压 2. 延长减速时间 3. 延长减速时间或使用制动装置 4. 等待电机停转后再起动 5. 更改操作顺序 6. 根据负载重新选择制动电阻 7. 重新检查接线 OL 过载 1. 负载过大 2. V/F曲线不合适 3. 加速时间设定不合适,进行急加速

PLC通过现场总线控制变频器

PLC通过现场总线控制变频器的运行 设计一个实际工程中用过的PLC通过现场总线控制变频器的例子(如:西门子PLC通过Profibus现场总线控制MM440变频器或6se70系列变频器;再如罗克韦尔的PLC通过DeviceNet总线控制其SSc160系列变频器或PowerFlex4,40,400,PowerFlex70,700,700s,700L等类型的变频器),需要把PLC型号、相应的变频器型号、各种参数及情况、控制系统实现的功能等说明清楚,贴出程序并加以说明。 一、先说说配置情况吧; 1、硬件配置: 1.1 PLC,使用的是ABB AC500系列的CPU+CM578扩展模块。任何一款AC500的CPU都可支持,只需额外增加一块通讯模块即可实现现场总线的方式。目前我介绍的是CM578通讯模块,该模块是支持CANopen现场总线的。 1.2 变频器,邦飞利ACT401系列变频器+CM-CAN通讯模块。ACT401系列变频器是邦飞利公司应用当今先进的电机磁场定向控制理论,采用高性能的功率模块,利用德国先进的变频器制造工艺,制造出的新一代变频器。CM-CAN通讯模块是ACT401系列变频器通讯子板,用于将变频器扩展到CANopen网络中。 2、拓扑结构 使用SyCon软件实现网络拓扑以及PDO的配置。 从上图可以看出,CM578作为CANopen主站,ACT401系列变频器作为CANopen从站。地址分别设置为4和90。通信波特率为:500kbit/s. 通过SyCon配置的基本情况是:PLC对变频器的控制字和给定频率(PDO1(rx)),以及变频器的状态字与变频器实际输出频率(PDO2(tx))。控制字是指PLC对变频器发出的控制字以及故障复位指令;状态字是指变频器当前的状态机以及故障位的状态。 二、控制情况 1、PLC根据变频器状态机的状态,通过送给变频器相应的控制字来实现对变频器的控制,PLC送给变频器的控制字是通过PDO来实现的。具体控制逻辑图如下。

PLC与变频器控制的自动恒压供水系统解析

PLC与变频器控制的自动恒压供水系统 1 系统简介 为改善生产环境,沱牌公司投资清洁水技改工程并建成一座日产水2.5万顿的供水系统,分别建设了抽水泵系统、加压泵系统和高位水池。根据公司用水需求特点,从抽水泵系统过来的水一部分直接供给生产用水部门,一部分则需通过加压泵输送到高位水池,而供给生产用水部门的水压与供给高位水池的水压相差较大。同时高位水池距抽水泵房较远达十多公里,高位水池的液位高低和加压泵系统的设计以及如何与抽水泵系统“联动”也是较难解决的。 鉴于以上特点,从技术可靠 和>'https://www.doczj.com/doc/331112698.html,/jingjilunwen/' target='_blank' class='infotextkey'>经济实用角度综合考虑,我们设计了用PLC控制与变频器控制相结合的自动恒压控制供水系统,同时通过主水管线压力传递 较>'https://www.doczj.com/doc/331112698.html,/jingjilunwen/' target='_blank' class='infotextkey'>经济地实现了加压泵系统与抽水泵系统“远程联动”的控制目的。 2 系统方案 系统主要由三菱公司的PLC控制器、ABB公司的变频器、施耐德公司的软启动器、电机保护器、数据采集及其辅助设备组成(见图1)。 2.1 抽水泵系统 整个抽水泵系统有150KW深井泵电机四台,90KW深井泵电机两台,采用变频器循环工作方式,六台电机均可设置在变频方式下工作。采用一台 150KW和一台90KW的软起动150KW和90KW的电机。当变频器工作在50HZ,管网压力仍然低于系统设定的下限时,软起动器便自动起动一台电机投入到工频运行,当压力达到高限时,自动停掉工频运行电机。一次主电路接线示意图见图2所示。

变频器常见故障代码及处理实例

一、过流(OC) 过流是变频器报警最为频繁的现象。 1.1现象 (1) 重新启动时,一升速就跳闸。这是过电流十分严重的现象。主要原因有:负载短路,机械部位有卡住;逆变模块损坏;电动机的转矩过小等现象引起。 (2) 上电就跳,这种现象一般不能复位,主要原因有:模块坏、驱动电路坏、电流检测电路坏。 (3) 重新启动时并不立即跳闸而是在加速时,主要原因有:加速时间设置太短、电流上限设置太小、转矩补偿(V/F)设定较高。 1.2 实例 (1) 一台LG-IS3-4 3.7kW变频器一启动就跳“OC” 分析与维修:打开机盖没有发现任何烧坏的迹象,在线测量IGBT(7MBR25NF-120)基本判断没有问题,为进一步判断问题,把IGBT拆下后测量7个单元的大功率晶体管开通与关闭都很好。在测量上半桥的驱动电路时发现有一路与其他两路有明显区别,经仔细检查发现一只光耦A3120输出脚与电源负极短路,更换后三路基本一样。模块装上上电运行一切良好。 (2) 一台BELTRO-VERT 2.2kW变频通电就跳“OC”且不能复位。 分析与维修:首先检查逆变模块没有发现问题。其次检查驱动电路也没有异常现象,估计问题不在这一块,可能出在过流信号处理这一部位,将其电路传感器拆掉后上电,显示一切正常,故认为传感器已坏,找一新品换上后带负载实验一切正常。 二、过压(OU) 过电压报警一般是出现在停机的时候,其主要原因是减速时间太短或制动电阻及制动单元有问题。 2.1 实例 一台台安N2系列3.7kW变频器在停机时跳“OU”。 分析与维修:在修这台机器之前,首先要搞清楚“OU”报警的原因何在,这是因为变频器在减速时,电动机转子绕组切割旋转磁场的速度加快,转子的电动势和电流增大,使电机处于发电状态,回馈的能量通过逆变环节中与大功率开关管并联的二极管流向直流环节,使直流母线电压升高所致,所以我们应该着重检查制动回路,测量放电电阻没有问题,在测量制动管(ET191)时发现已击穿,更换后上电运行,且快速停车都没有问题。 三、欠压(Uu) 欠压也是我们在使用中经常碰到的问题。主要是因为主回路电压太低(220V系列低于200V,380V系列低于400V),主要原因:整流桥某一路损坏或可控硅三路中有工作不正常的都有可能导致欠压故障的出现,其次主回路接触器损坏,导致直流母线电压损耗在充电电阻上面有可能导致欠压.还有就是电压检测电路发生故障而出现欠压问题。 3.1 举例 (1) 一台CT 18.5kW变频器上电跳“Uu”。 分析与维修:经检查这台变频器的整流桥充电电阻都是好的,但是上电后没有听到接触

变频器注意事项

6SE70 一、O008闭锁看参数R550的状态显示 1、控制字BIT0 OFF1 P554,故障复位后启动命令P554还在,则闭锁,此时停止后 再启动,正常 2、控制字BIT1 OFF2 P555 P556 P557为0,改为1即可 3、控制字BIT2 OFF3 P558 P559 P560为0,改为1即可 4、控制字BIT3 逆变器使能P561为0则启动时会显示O011,改为1即可 5、控制字BIT4 斜坡使能P562为0则启动时速度为0.00,改为1即可 6、控制字BIT5 斜坡开始P563为0则启动时速度为0.00,改为1即可 7、控制字BIT6 设定值使能P564为0则启动时速度为0.00,改为1即可 8、控制字BIT8 点动0 (P568),P554为0时有效 9、控制字BIT9 点动1 (P569)P554为0时有效 当P568和P569同时为1时,变频器启动时显示O008,闭锁。不需要点动功能时,将两个参数设成0. 10、控制字BIT11 正转(P571) 11、控制字BIT12 反转(P572) P571和P572一个为1,一个为0,则能实现正反转;或两个都为1,则变频器直接由速度给定P443控制;如果都为0,则启动时速度为0,并报警A035 12、控制字BIT13 电位计+ (P573)P554为1时有效 13、控制字BIT14 电位计- (P574)P554为1时有效 正常时两个参数为0,当都为1时,速度为0,无法控制变频器的速度。 14、控制字BIT15 外部故障P575为0则报F035,改为1即可 一般正常启动运行的控制字显示是R550: 1 0 0 1 1 1 0 0 0 1 1 1 1 1 1 0 上例是P571=1 P572=1,反转靠速度给定。当然也可以一个为1,一个为0,但是不能都为0,否则无法给定速度,且报警A035。 二、BICO数据组切换。 P590参数切换 有可能故障出在:参数已经设置好,能够实现功能,比如网络控制,P554.1=3100,P443.1=3002(即第一套参数),但无法启动,此时看R012(BICO参数组)是否为1,如果等于2,说明P590为1,则改成0后正常。 三、故障代码 F011:过流 F021:过热 F015 F053:堵转(检查编码器) F037:变频器的模拟量输入选择了电流型,且低于下限4mA(如果选择了4—20mA)。

(完整版)基于PLC控制的变频器调速系统

目录 目录 (1) 第一章系统的功能设计分析和总体思路 (2) 1.1 概述 (2) 1.2 系统功能设计分析 (3) 1.3 系统设计的总体思路 (3) 第二章PLC 和变频器的型号选择 (4) 2.1 PLC 的型号选择 (4) 2.2 变频器的选择和参数设置 (6) 2.2.1 变频器的选择 (6) 2.2.2 变频调速原理 (7) 2.2.3 变频器的工作原理 (7) 2.2.4 变频器的快速设置 (8) 第三章硬件设计以及PLC 编程 (11) 3.1 开环控制设计及PLC 编程 (11) 3.1.1 硬件设计 (11) 3.1.2 PLC 软件编程 (12) 3.2 闭环控制设计 (17) 3.2.1 硬件和速度反馈设计 (17) 3.2.3 闭环的程序设计以及源程序 (19) 第四章实验调试和数据分析 (23) 4.1 PID 参数整定 (23) 4.2 运行结果 (24) 第五章总结和体会 (25) 第六章附录 (26) 6.1 变频器内部原理框图 (26) 第七章参考文献 (27) 第一章系统的功能设计分析和总体思路 1.1 概述 调速系统快速性、稳定性、动态性能好是工业自动化生产中基本要求。在科学研究和生产实践的诸多领域中调速系统占有着极为重要的地位特别是在国防、汽车、冶金、机械、石油等工业

中,具有举足轻重的作用。调速控制系统的工艺过程复杂多变,具有不确定性,因此对系统要求更为先进的控制技术和控制理论。 可编程控制器(PLC可编程控制器是一种工业控制计算机,是继续计算机、 自动控制技术和通信技术为一体的新型自动装置。它具有抗干扰能力强,价格便宜,可靠性强,编程简朴,易学易用等特点,在工业领域中深受工程操作人员的喜欢,因此PLC已在工业控制的各个领域中被广泛地使用。 目前在控制领域中,虽然逐步采用了电子计算机这个先进技术工具,特别是石油化工企业普遍采用了分散控制系统(DCS。但就其控制策略而言,占统治地位的仍旧是常规的PID控制。PID结构简朴、稳定性好、工作可靠、使用中不必弄清系统的数学模型。PID 的使用已经有60 多年了,有人称赞它是控制领域的常青树。 变频调速已被公认为是最理想、最有发展前景的调速方式之一,采用变频器构成变频调速传动系统的主要目的,一是为了满足提高劳动生产率、改善产品质量、提高设备自动化程度、提高生活质量及改善生活环境等要求;二是为了节约能源、降低生产成本。用户根据自己的实际工艺要求和运用场合选择不同类型的变频器。 组态软件是指一些数据采集与过程控制的专用软件,它们是在自动控制系统监控层一级的软件平台和开发环境,使用灵活的组态方式,为用户提供快速 构建工业自动控制系统监控功能的、通用层次的软件工具。在组态概念出现之前,要实现某一任务,都是通过编写程序来实现的。编写程序不但工作量大、周期长,而且轻易犯错误,不能保证工期。组态软件的出现,解决了这个问题。对于过去需要几个月的工作,通过组态几天就可以完成。组态王是海内一家较有影响力的组态软件开发公司开发的,组态王具有流程画面,过程数据记录,趋势曲线,报警窗口,生产报表等功能,已经在多个领域被应用。

变频器故障代码表

变频器故障代码与处理大全F0001 过流 ?电动机的功率(P0307)与变频 器的功率(P0206)不对应 ?电动机电缆太长 ?电动机的导线短路 ?有接地故障 检查以下各项: 1. 电动机的功率(P0307)必须与变频器的功 率(P0206)相对应。 2. 电缆的长度不得超过允许的最大值。 3. 电动机的电缆和电动机部不得有短路或 接地故障 4. 输入变频器的电动机参数必须与实际使用 的电动机参数相对应 5. 输入变频器的定子电阻值(P0350)必须正 确无误 6. 电动机的冷却风道必须通畅,电动机不得过 载 > 增加斜坡时间 > 减少“提升”的数值 Off2 F0002 过电压 ?禁止直流回路电压控制器 (P1240=0) ?直流回路的电压(r0026)超过 了跳闸电平(P2172) ?由于供电电源电压过高,或者电 动机处于再生制动方式下引起 过电压。 ?斜坡下降过快,或者电动机由大 惯量负载带动旋转而处于再生 制动状态下。 检查以下各项: 1. 电源电压(P0210)必须在变频器铭牌规定 的围以。 2. 直流回路电压控制器必须有效(P1240), 而且正确地进行了参数化。 3. 斜坡下降时间(P1121)必须与负载的惯量

相匹配。 4. 要求的制动功率必须在规定的限定值以。注意 负载的惯量越大需要的斜坡时间越长;外形尺寸FX 和GX 的变频器应接入制动电阻。 Off2 F0003 欠电压 ?供电电源故障。 ?冲击负载超过了规定的限定值。 检查以下各项: 1. 电源电压(P0210)必须在变频器铭牌规定的围以。 2. 检查电源是否短时掉电或有瞬时的电压降低。 3. 使能动态缓冲(P1240=2) Off2 F0004 变频器过温 ?冷却风量不足 ?环境温度过高。 检查以下各项: 1. 负载的情况必须与工作/停止周期相适应 2. 变频器运行时冷却风机必须正常运转 3. 调制脉冲的频率必须设定为缺省值 4. 环境温度可能高于变频器的允许值 Off2 F0005 变频器 I2T 过热保 护 ?变频器过载。 ?工作 / 间隙周期时间不符合要 求。 ?电动机功率(P0307)超过变频 器的负载能力(P0206)。 检查以下各项: 1. 负载的工作/间隙周期时间不得超过指定的允许值。 2. 电动机的功率(P0307)必须与变频器的功率(P0206)相匹配 Off2 故障的排除

变频器控制字状态字

变频器控制字状态字标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

字体大小: | | 2010-02-11 12:51 - 阅读:143 - :3 工控网曾有过关于主题的文章,很精华,没找到链接,抱歉!下面给您一篇我曾摘自工控网的技术文章: 1.通讯方式的设定:PPO 4,这种方式为0 PKW/6 PZD,输入输出都为6个PZD,(只需要在STEP7里设置,变频器不需要设置); PROFIBUS的通讯频率在变频器里也不需要设置,PLC方面默认为. 在P60=7设置下,设置P53=3,允许CBP(PROFIBUS)操作. 设置变频器的PROFIBUS地址. 2.设置第一与第二个输入的PZD为PLC给变频器的控制字,其余四个输入PZD这里没有用到. 设置第一与第二个输出的PZD为变频器给PLC的状态字,设置第三个为变频器反馈给PLC 的实际输出频率的百分比值, 第四个为变频器反馈给PLC的实际输出电流的百分比值,其余两个输出PZD这里没有用到. 给变频器的第一个PZD存储在变频器里的K3001字里. K3001有16位,从高到底为3115到3100(不是到.

变频器的参数P554为1时变频器启动为0时停止,P571控制正转,P572控制反转. 如果把P554设置等于3100,那么K3001的位3100就控制变频器的启动与停止,P571设置等于3101则3101就控制正转, P572设置等于3102则3102就控制反转.(变频器默认P571与P572都为1时正转,都为0时为停止). 经过这些设置后K3001就是PLC给变频器的第一个控制字. 此时K3001的3100到3115共16位除了位3110控制用途都不是固定的,所以当设置P554设置等于3101时则3101可以控制启动与停止, P571等于3111时则3111控制正转,等等. K3001的位3110固定为“控制请求”,这位必须为1变频器才能接受PLC的控制讯号,所以变频器里没有用一个参数对应到这个位, 必须保证PLC发过来第一个字的BIT 10为1. 这里设置为:P554=3100,P571=3101,P572=3102,当PLC发送W#16#0403时(既 0000,0100,0000,0011)变频器正转. 给变频器的第二个PZD存储在变频器里的K3002字里. 变频器的参数P443存放给定值. 如果把参数P443设置等于K3002,那么整个字K3002就是PLC给变频器的主给定控制字.

相关主题
文本预览
相关文档 最新文档