当前位置:文档之家› 图像大小的计算

图像大小的计算

图像大小的计算
图像大小的计算

图像大小的计算

一直为图片大小计算所吸引,近日搜索资料得知,与大家分享。

数码照片文件大小和拍摄时设置的分辨率和品质有关,还和被拍摄景物的色彩,纹理复杂程度有关,同样的相机设置拍白墙和风景文件大小是不一样的。找个编辑图片的软件,如Photoshop就可以只改变图片占用空间的大小,不会改变长和高,但要牺牲质量。用ACDsee也可另存为,然后可改变质量,降低文件就变小,大小不变。

文件大小是指一个文件占用电脑的磁盘空间的大小。不光是图片文件,其它任何类型的文件都要占用空间,而图片文件的大小与文件格式(JPG、BMP、PSD、GIF、TIFF、PNG、CDA等等)、文件的实际像素、实际尺寸都有直接的关系,但就算两张图片的以上几点都完全一样,文件的大小还可能是不相等的,因为每一张图片所包含的色彩信息量是不同的,一面白墙的相片跟一个MM的照片,文件大小铁定是不同的。

首先,图片大小的存储基本单位是字节(byte),每个字节是由8个比特(bit)组成。

1、位(bit)

来自英文bit,音译为“比特”,表示二进制位。位是计算机内部数据储存的最小单位,11010100是一个8位二进制数。一个二进制位只可以表示0和1两种状态(21);两个二进制位可以表示00、01、10、11四种(22)状态;三位二进制数可表示八种状态(23)……

2、字节(byte)

字节来自英文Byte,音译为“拜特”,习惯上用大写的“B”表示。字节是计算机中数据处理的基本单位。计算机中以字节为单位存储和解释信息,规定一个字节由八个二进制位构成,即1个字节等于8个比特(1Byte=8bit)。八位二进制数最小为00000000,最大为11111111;通常1个字节可以存入一个ASCII码,2个字节可以存放一个汉字国标码。

位在计算机中极少单独出现。它们几乎总是绑定在一起成为8位集合,称为字节。为什么一个字节中有8位呢?一个类似的问题是:为什么一打鸡蛋有12个呢?8位字节是人们在过去50年中不断对试验及错误进行总结而确定下来的。1字节(Byte)= 8位(bit)。所以,一个字节在十进制中的范围是[0~255],即256个数。

图片大小跟颜色模式有直接关系:

1.灰度模式:图片每一个像素是由1个字节数值表示,也就是说每一像素是由8为01代码构成。比如:240*320=76800px;76800*1(byte)/1024=75k;

2.RGB模式:即red blue green三原色简写。图片每一个像素是由3个字节数值表示,也就是说每一像素是由24为01代码构成。比如:240*320=76800px;76800*3(byte)/1024=225k;

3.CMYK模式:即青色(c)洋红(m)黄色(y)黑色(k)构成。图片每一个像素是由4个字节数值表示,也就是说每一像素是由8为01代码构成。.比如:240*320=76800px;76800*4(byte)/1024=300k;

4. dpi是指单位面积内像素的多少,也就是扫描精度,目前国际上都是计算一平方英寸面积内像素的多少。dpi越小,扫描的清晰度越低,由于受网络传输速

度的影响,web上使用的图片都是72dpi,但是冲洗照片不能使用这个参数,必须是300dpi或者更高350dpi。例如要冲洗4*6英寸的照片,扫描精度必须是300,那么文件尺寸应该是(4*300)*(6*300)=1200像素*1800像素=2160000px。2160000px*4Byte/1024/1024=0.823M

实例1:一幅1024x768的256色图像大小是多少?未压缩的。

答:1024x768*8bit=6291456bit/8/1024/1024=0.75M,因为256色图像是8位的。

怎么计算图片大小?

图片的颜色位数

单色的图象一位用来存储颜色信息,1位=1/8字节,所以体积=120*120*1/8=1.7k 因为软盘簇大小为512B,所以,只能占用2k了;

4位(2^4=16)占半字节,16色,所以,算体积时用一半就可以;

8位应该是2的8次方,就是256种颜色,256色要占用8位(2^8=256)也就是一字节;

16位是65536种颜色;

32位就是4294967269种颜色(42.9亿种颜色,真的有32bit的颜色吗?);

所以,图形体积=分辨率*占用位数(即常说的16/32位色)/8 或=分辨率*颜色信息占用的字节数

*.一幅彩色静态图像(RGB),设分辨率为256×512,每一种颜色用8bit表示,则该彩色静态图像的数据量为多少?

图像文件大小计算:文件的字节数=图像分辨率*图像量化位数/8

图像分辨率=X方向的像素数*Y方向的像素数

图像量化数=二进制颜色位数

256*512*3*8/8=393216B =384K

实例1:

1600*1200的解析度192万像素,在屏幕上用72DPI显示,那就是说每英寸上会有72个像素点,实际的图像大小就是 5.64米*4.23米计算是1600/72*25.4/100和1200/72*25.4/100

同样的如果要用于印刷300DPI,就是每英寸300个像素,就是1600/300*25.4/100和1200/300*25.4/100,图像的实际大小就变成了1.35米*1.01米了。

实例2:

问:一幅1024x768的256色图像大小是多少?

答:1024x768*8bit ,因为256色图像是8位的。

实例3:

130w象素的是1280*1024,大小和文件格式于压缩率有关,普通的jpeg大约在100到300之间。

象素数=横象素数*纵象素数,比如1280*1024=1310720,这就是130万。可以用公式12xy=象素数来计算图片大小,其中的x是横象素数的1/4,y是纵象素数的1/3。可以算得320w的图片大小是1920*1600左右。

同样格式的图片,以同样的比率压缩,那么Kb数于面积成正比。

颜色模式

颜色模式,是将某种颜色表现为数字形式的模型,或者说是一种记录图像颜色的方式。分为:RGB模式、CMYK模式、HSB模式、Lab颜色模式、位图模式、灰度模式、索引颜色模式、双色调模式和多通道模式。

目录

简介

原理

RGB颜色模式

CMYK模式

HSB颜色模式

Lab颜色模式

位图模式

灰度模式

索引颜色模式

双色调模式

多通道模式

简介

CorelDRAW、3Ds MAX、Photoshop等,都具有强大的图像处理功能,而对颜色的处理则是其强大功能不可缺少的一部分。因此,了解一些有关颜色的基本知识和常用的视频颜色模式,对于生成符合我们视觉感官需要的图像无疑是大有益处的。

原理

颜色的实质是一种光波。它的存在是因为有三个实体:光线、被观察的对象以及观察者。人眼是把颜色当作由被观察对象吸收或者反射不同波长的光波形成的。例如,当在一个晴朗的日子里,我们看到阳光下的某物体呈现红色时,那是因为该物体吸收了其它波长的光,而把红色波长的光反射到我们人眼里的缘故。当然,我们人眼所能感受到的只是波长在可见光范围内的光波信号。当各种不同波长的光信号一同进入我们的眼睛的某一点时,我们的视觉器官会将它们混合起来,作为一种颜色接受下来。同样我们在对图像进行颜色处理时,也要进行颜色的混合,但我们要遵循一定的规则,即我们是在不同颜色模式下对颜色进行处理的。RGB颜色模式

虽然可见光的波长有一定的范围,但我们在处理颜色时并不需要将每一种波长的颜色都单独表示。因为自然界中所有的颜色都可以用红、绿、蓝(RGB)这三种颜色波长的不同强度组合

而得,这就是人们常说的三基色原理。因此,这三种光常被人们称为三基色或三原色。有时候我们亦称这三种基色为添加色(Additive Colors),这是因为当我们把不同光的波长加到一起的时候,得到的将会是更加明亮的颜色。把三种基色交互重叠,就产生了次混合色:青(Cyan)、洋红(Magenta)、黄(Yellow)。这同时也引出了互补色(Complement Colors)的概念。基色和次混合色是彼此的互补色,即彼此之间最不一样的颜色。例如青色由蓝色和绿色构成,而红色是缺少的一种颜色,因此青色和红色构成了彼此的互补色。在数字视频中,对RGB 三基色各进行8位编码就构成了大约1677万种颜色,这就是我们常说的真彩色。顺便提一句,电视机和计算机的监视器都是基于RGB颜色模式来创建其颜色的。

CMYK模式

CMYK颜色模式是一种印刷模式。其中四个字母分别指青(Cyan)、洋红(Magenta)、黄(Yellow)、黑(Black),在印刷中代表四种颜色的油墨。CMYK模式在本质上与RGB模式没有什么区别,只是产生色彩的原理不同,在RGB模式中由光源发出的色光混合生成颜色,而在CMYK模式中由光线照到有不同比例C、M、Y、K油墨的纸上,部分光谱被吸收后,反射到人眼的光产生颜色。由于C、M、Y、K在混合成色时,随着C、M、Y、K四种成分的增多,反射到人眼的光会越来越少,光线的亮度会越来越低,所有CMYK模式产生颜色的方法又被称为色光减色法。

HSB颜色模式

从心理学的角度来看,颜色有三个要素:色泽(Hue)、饱和度(Saturation)和亮度(Brightness)。HSB颜色模式便是基于人对颜色的心理感受的一种颜色模式。它是由RGB三基色转换为Lab模式,再在Lab模式的基础上考虑了人对颜色的心理感受这一因素而转换成的。因此这种颜色模式比较符合人的视觉感受,让人觉得更加直观一些。它可由底与底对接的两个圆锥体立体模型来表示,其中轴向表示亮度,自上而下由白变黑;径向表示色饱和度,自内向外逐渐变高;而圆周方向,则表示色调的变化,形成色环。

Lab颜色模式

Lab颜色是由RGB三基色转换而来的,它是由RGB模式转换为HSB模式和CMYK模式的桥梁。该颜色模式由一个发光率(Luminance)和两个颜色(a,b)轴组成。它由颜色轴所构成的平面上的环形线来表示色的变化,其中径向表示色饱和度的变化,自内向外,饱和度逐渐增高;圆周方向表示色调的变化,每个圆周形成一个色环;而不同的发光率表示不同的亮度并对应不同环形颜色变化线。它是一种具有“独立于设备”的颜色模式,即不论使用任何一种监视器或者打印机,Lab的颜色不变。其中a表示从洋红至绿色的范围,b表示黄色至蓝色的范围。位图模式

位图模式用两种颜色(黑和白)来表示图像中的像素。位图模式的图像也叫作黑白图像。因为其深度为1,也称为一位图像。由于位图模式只用黑白色来表示图像的像素,在将图像转换为位图模式时会丢失大量细节,因此Photoshop提供了几种算法来模拟图像中丢失的细节。在宽度、高度和分辨率相同的情况下,位图模式的图像尺寸最小,约为灰度模式的1/7和RGB模式的1/22以下。

灰度模式

灰度模式可以使用多达256级灰度来表现图像,使图像的过渡更平滑细腻。灰度图像的每个像素有一个0(黑色)到255(白色)之间的亮度值。灰度值也可以用黑色油墨覆盖的百分

比来表示(0%等于白色,100%等于黑色)。使用黑折或灰度扫描仪产生的图像常以灰度显示。

索引颜色模式

索引颜色模式是网上和动画中常用的图像模式,当彩色图像转换为索引颜色的图像后包含近256种颜色。索引颜色图像包含一个颜色表。如果原图像中颜色不能用256色表现,则Photoshop会从可使用的颜色中选出最相近颜色来模拟这些颜色,这样可以减小图像文件的尺寸。用来存放图像中的颜色并为这些颜色建立颜色索引,颜色表可在转换的过程中定义或在生成索引图像后修改。

双色调模式

双色调模式采用2-4种彩色油墨来创建由双色调(2种颜色)、三色调(3种颜色)和四色调(4种颜色)混合其色阶来组成图像。在将灰度图像转换为双色调模式的过程中,可以对色调进行编辑,产生特殊的效果。而使用双色调模式最主要的用途是使用尽量少的颜色表现尽量多的颜色层次,这对于减少印刷成本是很重要的,因为在印刷时,每增加一种色调都需要更大的成本。

多通道模式

多通道模式对有特殊打印要求的图像非常有用。例如,如果图像中只使用了一两种或两三种颜色时,使用多通道模式可以减少印刷成本并保证图像颜色的正确输出。6. 8位/16位通道模式在灰度RGB或CMYK模式下,可以使用16位通道来代替默认的8位通道。根据默认情况,8位通道中包含256个色阶,如果增到16位,每个通道的色阶数量为65536个,这样能得到更多的色彩细节。Photoshop可以识别和输入16位通道的图像,但对于这种图像限制很多,所有的滤镜都不能使用,另外16位通道模式的图像不能被印刷。

名词解释——图像压缩色彩空间位数

图像压缩(Compression)

图像文件有两种压缩方式:无损压缩和有损压缩。

无损压缩

无损压缩的效果与WinZip压缩相似。在WinZip压缩中,如果你把一个文件压缩成Zip文件,然后重新解压缩,打开原来的文件,你会发现解压后的文件跟原文件并没有任何差异。在压缩和解压缩的过程中并没有任何信息缺失。数码图像的TIFF格式便能让用户对其进行无损压缩。

有损压缩

有损压缩通过丢弃信息减少图像体积(大小),就像为文件编写摘要。当你需要为10页的文件编写摘要时,这些摘要可能只占9页甚至1页,没看过原文件的人不可能从你的摘要中还原出原文件,因为你在编写摘要的过程中已经丢弃了一部分原文件的信息。JPEG就是一种有损压缩的图像格式。

下面的表格展示了一张500万象素图片(2,560 x 1,920)以不同格式压缩的效果。

色彩空间(Color Spaces)

RGB加色法(Additive RGB Colors)

人类肉眼中的锥形细胞对红、绿、蓝(RGB)三种颜色最为敏感。我们感知到的其他颜色都是由这三种颜色按不同比例混合所得的。电脑显示屏发射出红、绿、蓝三种颜色的混合光线,产生不同颜色。例如,红色和绿色混合产生黄色;红、绿、蓝三原色混合产生白色。

CMYk减色法(Subtractive CMYk Colors)

一件印刷品通过反射落在其身上的光线,间接地让我们看到它的颜色。例如,一张黄色的纸会吸收白光(自然光)中的蓝色部分,反射红色和绿色部分,因而显出黄色。这种做法跟显示器直接发出红色和绿色光线而产生黄色的效果是非常相似的。打印机通过青色(Cyan),洋红(Magenta),黄色(Yellow)墨水的不同比例混合,创造出其他不同的颜色。CMYk的原色结合并相减,得产生黑色。但实际上打印机会用到黑色的墨水,加强黑色的效果。因此,CMYk最后的“k”就是代表黑色(black)。

CMYk减色法(Subtractive CMYk Colors)

一件印刷品通过反射落在其身上的光线,间接地让我们看到它的颜色。例如,一张黄色的纸会吸收白光(自然光)中的蓝色部分,反射红色和绿色部分,因而显出黄色。这种做法跟显示器直接发出红色和绿色光线而产生黄色的效果是非常相似的。打印机通过青色(Cyan),洋红(Magenta),黄色(Yellow)墨水的不同比例混合,创造出其他不同的颜色。CMYk的原色结合并相减,得产生黑色。但实际上打印机会用到黑色的墨水,加强黑色的效果。因此,CMYk最后的“k”就是代表黑色(black)。

数码相机传感器上的象素负责收集光子,并通过光电二极管把光子转化成电荷,继而通过一系列处理,形成图像。我们在“动态范围”专题里面已经谈到,一旦接收光子的“桶”(bucket)满载,由额外光子转化成的电荷便会溢出,并且这种溢出对象素值是没有影响的,因此会导致象素值的感光不足或感光过度。当电荷溢出至其旁边的象素,使旁边的象素在处理光子过程中感光过度(例如描述天空的明亮的象素有电荷溢出,使树叶或树枝边缘的较暗的象素感光过度),这时候就是“高光溢出”。高光溢出不仅会使画面损失细节,而且增加了紫边出现的机会。

一些传感器带有“高光溢出保护”(anti-blooming gates)功能,吸收溢出的电荷,减少溢出电荷对附近象素的滋扰。这种功能基本能抑止高光溢出,除非照片光暗对比非常强烈或由于人为原因造成照片严重过曝。

位数(Bits)

在计算机术语中,信息的最小单位是1“位”(bit),而这1位的值就是0或者1。位数和二进制的结合,使电脑就像被数以百万个“开关”所控制。由此我们可以推出,假如某幅图像位数为1位,则这二进制中的1位只可以记录两个信号:黑(0)和白(1)。假如图像变成2位,这2位便能记录(2*2)4个色调:00 (黑), 01 (灰), 10 (灰), and 11 (白)。同理,当图像位数为8位时,图像便可记录从00000000 (0)至11111111 (255)一共(2*8)256个色调。

JPEG通常是24位图像,因为24位刚好能为3个颜色通道(RGB)分别储存8位信息。24位的JPEG图像能记录 256 x 256 x 256 = 16.7百万种颜色。

32位浮点格式(Floating Point Format,面向高级用户)在“传感器的线性特征”专题中,我们知道超过半数的色调是用来描述光亮的环境的。因此,即使一幅16位的图像也只有16级色调用来描述昏暗的环境,而描述光亮环境的则有32,768级色调。人类肉眼的非线性特征与传感器的线性特征恰恰相反,人类

视觉对昏暗部分的细节比光亮部分的细节敏感得多。一幅32位的整数图像为图像的描述提供了更多色调,但是它同样受高光部分不成比例色调级数的限制。然而,32位的浮点图像更有效的运用了这“32位”,更好地解决了以上问题。传统的整数图像用32位描述4,294,967,296个整数,而浮点图像用23位描述分数,8位描述指数,1位作为标记,详情如下:

V = (-1)^S * 1.F * 2 ^ (E-127):

S = 标记(Sign),1位,有2个可能值;

F = 分数(Fraction),23位,有8,388,608个可能值;

E = 指数(Exponent),8位,有256个可能值。

实际上,浮点图像让"0"级和"1"级之间几乎拥有无数个色调级数,"1"级和"2"级之间拥有超过800万个色调,"65,534"级和"65,535"级之间也拥有128个色调--这比32位整数图像更加符合我们人类视觉的非线性特征。正是由于能储存无穷小的数字,32位浮点格式可以记录无限的动态范围。换句话说,32位浮点格式能记录无限动态范围,即记录更多昏暗的细节,而它所占的体积仅为每通道16位图像的一倍,非常节省空间和减低处理难度。一个更精确的格式会使动态和色调范围的压缩更加平滑。这种格式计算机绘图中十分常用,Adobe Photoshop CS2也开始支持该格式的图像处理。

色彩位数

色彩位数:色彩深度又称色彩位数,是指扫描仪对图像进行采样的数据位数,也就是扫描仪所能辨析的色彩范围。目前有18位、24位、30位、36位、42位和48位等多种。

色彩深度计算机图形学领域表示在位图或者视频帧缓冲区中储存1像素的颜色所用的位数,它也称为位/像素(bpp)。色彩深度越高,可用的颜色就越多。

目录

组成单位

应用领域

1.数码摄像头

2.扫描仪

组成单位

色彩深度是用“n位颜色”(n-bit colour)来说明的。若色彩深度是n位,即有2∧n种颜色选择,而储存每像素所用的位数就是n。常见的有:

(单色):黑白二色。

2位:4种颜色,用于CGA。

4位:16种颜色,用于CGA、EGA及VGA。

8位灰阶:都是黑、灰、白色之间,有256个层次。

15或16位彩色(高彩色):电脑所用的三原色是红、绿和蓝。在15位彩色中,每种原色有25=32个层次,共32768种颜色;而在16位彩色中,绿色有26=64个,共有65536个颜色。24位彩色(真彩色):每种原色都有256个层次,它们的组合便有256*256*256种颜色。32位彩色:除了24位彩色的颜色外,额外的8位是储存重叠图层的图形资料(alpha频道)。另外有高动态范围影像(High Dynamic Range Image),这种影像使用超过一般的256色阶来储存影像,通常来说每个像素会分配到32+32+32个bit来储存颜色资讯,也就是说对于每一个原色都使用一个32bit的浮点数来储存.

应用领域

数码摄像头

色彩位数又称彩色深度,数码摄像头的彩色深度指标反映了摄像头能正确记录色调有多少,色彩位数的值越高,就越可能更真实地还原亮部及暗部的细节。色彩位数以二进制的位(bit)为单位,用位的多少表示色彩数的多少。目前几乎所有的数码摄像头的色彩位数都达到了24位(也就是能表达2的24次方种颜色),可以生成真彩色的图象。总之色彩位数高,就可以得到更大的色彩动态范围。也就是说,对颜色的区分能够更加细腻。

数码摄像头最常见的是24位,30位的摄像头极少见到。具体来说,一般摄像头中每种基色采用8位或10位表示,三种基色红、绿、蓝总的色彩位数为基色位数乘以3,即8×3=24位或者10×3=30位。摄像头色彩位数反映了摄像头能正确表示色彩的多少,以24位为例,三基色(红、绿、蓝)各占8位二进制数,也就是说红色可以分为2的8次方=256个不同的等级,绿色和蓝色也是一样。那么它们的组合为256×256×256=16777216,即大约1600万种颜色,而30位可以表示10亿种。色彩深度值越高,就越能真实地还原色彩。

扫描仪

色彩位数(色彩深度)又称色深。是用于表示扫描仪所能辨析的色彩范围的指标。通常,扫描仪的色彩位数越多,就越能真实反映原始图像的色彩,扫描仪所反映的色彩就越丰富,所扫出图像的效果也越真实,当然所形成的数据量也随之增大,造成图像文件体积也加大。对于某些应用环境,扫描仪色彩位数指标,甚至比分辨率更重要。色彩位数的具体指标是用“位”(bit,即2的多少次方)来描述,24位彩色表明扫描仪可分辨1670万种颜色,30位真彩是6.87亿种颜色,而36位真彩色是1670亿种颜色。尽管大多数显卡只支持24位色彩,但由于CCD 与人眼感光曲线的不同,为了保证色彩还原的准确,就需要进行修正,这就要求扫描仪的色彩位数至少要达到36位才能获得比较好的色彩还原效果。因此,现在尽量应选购36位以上色彩位数的扫描仪。

色彩位数是扫描仪对采样来的每一个象素点,提供的不同通道的数字化位数的叠加值。

它一般采用RGB 三通道的数值总和来表达。常见的24bit、30bit、36bit彩色扫描仪,它们每通道的量化数值分别为8位,10位,12位,表示其每通道内有256、1024、4096阶层次的信息。扫描仪的色彩位数是指对扫描进来的每一个彩色象素点的色彩位数,这是扫描仪与打印机指标上的一个最大的不同点。一般,扫描仪的色彩位数取决于扫描仪内部的模数转换器的精度。当色彩位数精度增加时,扫描设备可以捕捉的色彩细节也会增多。但是,如想仅仅通过增加模数转换器的精度,来提高扫描仪的色彩精度,其对扫描图象品质的提高程度也较为有限。因为影响扫描仪的色彩精度的因素,除了有较高的模数转换精度外,还需要有完善的光路系统设计。透镜质量、CCD 质量以及扫描时光学器件的振动,都会增加扫描仪的噪声,从而影响扫描品质。

超分辨率图像重建方法综述_苏衡

第39卷第8期自动化学报Vol.39,No.8 2013年8月ACTA AUTOMATICA SINICA August,2013 超分辨率图像重建方法综述 苏衡1,2周杰1张志浩1 摘要由于广泛的实用价值与理论价值,超分辨率图像重建(Super-resolution image reconstruction,SRIR或SR)技术成为计算机视觉与图像处理领域的一个研究热点,引起了研究者的广泛关注.本文将超分辨率图像重建问题按照不同的输入输出情况进行系统分类,将超分辨率问题分为基于重建的超分辨率、视频超分辨率、单帧图像超分辨率三大类.对于其中每一大类问题,分别全面综述了该问题的发展历史、常用算法的分类及当前的最新研究成果等各种相关问题,并对不同算法的特点进行了比较分析.本文随后讨论了各不同类别超分辨率算法的互相融合和图像视频质量评价的方法,最后给出了对这一领域未来发展的思考与展望. 关键词超分辨率图像重建,计算机视觉,图像处理,方法综述 引用格式苏衡,周杰,张志浩.超分辨率图像重建方法综述.自动化学报,2013,39(8):1202?1213 DOI10.3724/SP.J.1004.2013.01202 Survey of Super-resolution Image Reconstruction Methods SU Heng1,2ZHOU Jie1ZHANG Zhi-Hao1 Abstract Because of its extensive practical and theoretical values,the super-resolution image reconstruction(SRIR or SR)technique has become a hot topic in the areas of computer vision and image processing,attracting many researchers attentions.This paper categorizes the SR problems according to their input and output conditions into three main cat-egories:reconstruction-based SR,video SR and single image SR.For each category,the development history,common algorithm classes and state-of-the-art research achievements are reviewed comprehensively.We also analyze the charac-teristics of di?erent algorithms.Afterwards,we discuss the combination of di?erent super-resolution categories and the evaluation of image and video qualities.Thoughts and foresights of this?eld are given at the end of this paper. Key words Super-resolution image reconstruction,computer vision,image processing,survey Citation Su Heng,Zhou Jie,Zhang Zhi-Hao.Survey of super-resolution image reconstruction methods.Acta Auto-matica Sinica,2013,39(8):1202?1213 超分辨率图像重建(Super resolution image re-construction,SRIR或SR)是指用信号处理和图像处理的方法,通过软件算法的方式将已有的低分辨率(Low-resolution,LR)图像转换成高分辨率(High-resolution,HR)图像的技术.它在视频监控(Video surveillance)、图像打印(Image printing)、刑侦分析(Criminal investigation analysis)、医学图像处理(Medical image processing)、卫星成像(Satellite imaging)等领域有较广泛的应用. 收稿日期2011-08-31录用日期2013-01-29 Manuscript received August31,2011;accepted January29, 2013 国家自然科学基金重大国际(地区)合作研究项目(61020106004),国家自然科学基金(61005023,61021063),国家杰出青年科学基金项目(61225008),教育部博士点基金(20120002110033)资助 Supported by Key International(Regional)Joint Research Pro-gram of National Natural Science Foundation of China(6102010 6004),National Natural Science Foundation of China(61005023, 61021063),National Science Fund for Distinguished Young Scholars(61225008),and Ph.D.Programs Foundation of Min-istry of Education of China(20120002110033) 1.清华大学自动化系北京100084 2.北京葫芦软件技术开发有限公司北京100084 1.Department of Automation,Tsinghua University,Beijing 100084 2.Beijing Hulu Inc.,Beijing100084 超分辨率问题的解决涉及到许多图像处理(Im-age processing)、计算机视觉(Computer vision)、优化理论(Optimization problem)等领域中的基本问题[1],例如图像配准(Image registration)、图像分割(Image segmentation)、图像压缩(Image com-pression)、图像特征提取(Image feature extrac-tion)、图像质量评价(Image quality estimation)、机器学习(Machine learning)、最优化算法(Opti-mization algorithm)等,超分辨率是这些基本问题的一个具体应用领域,同时也对它们的研究进展起到了推动的作用.因此超分辨率问题本身的研究具有重要的理论意义.目前超分辨率问题已经成为相关研究领域的热点之一. 在上世纪80~90年代,就有人开始研究超分辨率图像重建的方法,1984年Tsai的论文[2]是最早提出这个问题的文献之一.在这之后有很多相关的研究对超分辨率的问题进行更加深入的讨论.有关超分辨率问题的研究成果,在计算机视觉、图像处理与信号处理领域的顶级会议和期刊都有大量收录. 1998年,Borman等[3]发表了一篇超分辨率图像重建的综述文章.2001年,Kluwer出版了一本详细介

图像峰值信噪比的计算

1数字图像处理 数字图像处理是利用计算机(或数字技术)对图像信息进行加工处理,以改善图像质量、压缩图像数据或从图像数据中获取更多信息。数字图像处理的主要方法可分为两大类:空域法和变换域法。 a. 空域法 把图像看作是平面中各个象素组成的集合,然后直接对这个二维函数进行相应的处理。 b. 频域法(变换域法) 首先对图像进行正交变换,得到变换域系数阵列,然后再实行各种处理,处理后再反变换到空间域,得到处理结果。这类处理包括:滤波、数据压缩和特征提取等。 1.图像压缩编码基础 图像压缩即去除多余数据。以数学的观点来看,图像压缩过程实际上就是将二维像素阵列变换为一个在统计上无关联的数据集合。因此,图像压缩是指以较少的比特有损或无损地表示原来的像素矩阵的技术,也称图像编码。 图像压缩编码的必要性和可能性: 图像压缩编码的目的是以尽量少的比特数表征图像,同时保持复原图像的质量,使它符合预定应用场合的要求。压缩数据量、提高有效性是图像压缩编码的首要目的。图像编码是一种信源编码,其信源是各种类型的图像信息。 图像数据可以进行压缩有以下几方面的原因。首先,原始图像数据是高度相关的,存在很大的冗余度。如图像内相邻象素之间的空间冗余度。序列图像前后帧之间的时间冗余度。多光谱遥感图像各谱间的频率域冗余度。数据冗余造成比特数浪费,消除这些冗余就可以节约码字,也就达到了数据压缩的目的。其次,基用相同码长表示不同出现概率的符号也会造成符号冗余度。如果采用可变长编码技术,对出现概率高的符号用短码字、对出现概率低的符号用长码字表示,就可消除符号冗余度,从而节约码字。允许图像编码有一定的失真也是图像可以压缩的一个重要原因。

实验一图像去噪

实验一图像去噪 在现代医学中,医学影像技术广泛应用于医学诊断和临床治疗,成为医生诊断和治疗的重要手段和工具。如今,医学图像在医疗诊断中起着不可低估的重要作用,核磁共振,超声,计算机X射线断层扫描以及其他的成像技术等,都是无侵害的器官体外成像的有效手段。这些技术丰富了正常的何病态的解剖知识,同时也成为诊断和医疗体系的重要组成部分。 然而,由于不同的成像机理,医学图像往往存在时间、空间分辨率和信噪比的矛盾。医学成像收到各种实际因素的影响,如患者的舒适度,系统的要求等等,需要快速成像。图像中的噪声大大降低了图像的质量,使一些组织的边界变得模糊,细微结构难以辨认,加大了对图像细节识别和分析的难度,影响医学诊断。因此医学图像的去噪处理既要能有效的去处噪声,又要能很好的保留边界和结构信息。本实验通过对测试图像加不同类型的噪声,然后分别用各种滤波法处理,然后以定量分析各种滤波方法的特点。 一.实验原理 1.噪声的分类 根据噪声的统计特征可分为平稳随机噪声和非平稳随机噪声两种。根据噪声产生的来源,大致可以分为外部噪声和内部噪声两类。外部噪声主要有四种常见的形式: (1)光和电的基本性质引起的噪声。如电流可看作电子或空穴运动,这些粒子运动产生随机散粒噪声,导体中的电子流动的热噪声,光量子运动的光量子噪声等。 (2)由机械运动引起的噪声。如接头震动使电流不稳,磁头或磁带抖动等。(3)设备元器件及材料本身引起的噪声。 (4)系统内部电路的噪声。 而在图像中,噪声主要有三个特点: (1)叠加性 (2)随机性 (3)噪声和不同图像区域之间的相关性。

医学图像中,典型的噪声有:高斯噪声,锐利噪声,指数噪声,均匀噪声,脉冲噪声等等。 2.去噪的方法 人们根据实际图像的特点、噪声的统计特征和频谱分布规律, 发展了各式各样的去噪方法, 其中最为直观的方法是根据噪声能量一般集中于高频、而图像频谱则分布于一个有限区间的这一特点, 采用低通滤波来进行去噪的方法, 从本质上讲, 图像去噪的方法都是低通滤波的方法, 而低通滤波是一把双刃剑, 它在消除图像噪声的同时, 也会消除图像的部分有用的高频信息, 因此, 各种去噪方法的研究实际是在去噪和保留高频信息之间进行的权衡。 图像平滑处理视其噪声图像本身的特性而定, 可以在空间域也可以在频率域采用不同的措施。空间域里的一些方法是噪声去除, 即先判断某点是否为噪声点, 若是, 重新赋值, 如不是按原值输出。另一类方法是平均, 即不依赖于噪声点的识别和去除, 而对整个图像进行平均运算。在频域里是对图像频谱进行修正, 一般采用低通滤波方法, 而不像在空域里直接对图像的像素灰度级值进行运算。在空间域对图像平滑处理常用领域平均法,中值滤波和秩统计滤波。 2.1 多帧平均法 根据噪声空域随机性的特点,可以有效的压缩噪声,增强有用的信息。设噪声为加性噪声,即: g(x,y)=f(x,y)+n(x,y) 式中个g(x,y)为输出图像,f(x,y)为有用信息,n(x,y)为噪声。被测物保持不动,得到M帧图像,进行叠加后,除以m,使m>M,得到平均图像。 2.2 空间域滤波器 2.1.1 均值滤波 均值滤波是将一个像素及其邻域中所有像素的平均值赋给输出图像中相应的像素, 从而达到平滑的目的。其过程是使一个窗口在图像上滑动, 窗口中心位置的值用窗内各点值的平均值来代替, 即用几个像素的灰度平均值来代替一个像素的灰度。其主要的优点是算法简单、计算速度快, 但其代价是会造成图像一定程度的模糊。为解决邻域平均法造成图像模糊的问题, 可采用阈值法、K 邻点平均法、梯度倒数加权平滑法、最大均匀性平滑法、小斜面模型平滑法等。它们

函数图像公式大全升级版

蕾博士函数图像变换公式大全 一、点的变换.设),(00y x P ,则它 (1)关于x 轴对称的点为),(00y x -; (2)关于y 轴对称的点为),(00y x -; (3)关于原点对称的点为),(00y x --; (4)关于直线x y =对称的点为),(00x y ; (5)关于直线x y -=对称的点为),(00x y --; (6)关于直线b y =对称的点为)2,(00y b x -; (7)关于直线a x =对称的点为),2(00y x a -; (8)关于直线a x y +=对称的点为),(00a x a y +-; (9)关于直线a x y +-=对称的点为),(00x a a y -+-; (10)关于点),(b a 对称的点为)2,2(00y b x a --; (11)按向量),(b a 平移得到的点为),(00b y a x ++. 二、曲线的变换.曲线0),(=y x F 按下列变换后所得的方程: (1)按向量),(b a 平移,得到0),(=--b y a x F ; (2)关于x 轴对称,得到0),(=-y x F ; (3)关于y 轴对称,得到0),(=-y x F ; (4)关于原点对称,得到0),(=--y x F ; (5)关于直线a x =对称,得到0),2(=-y x a F ; (6)关于直线b y =对称,得到0)2,(=-y b x F ; (7)关于点),(b a 对称,得到0)2,2(=--y b x a F ; (8)关于直线x y =对称,得到0),(=x y F ; (9)关于直线a x y +=对称,得到0),(=+-a x a y F ;

超分辨率算法综述

超分辨率复原技术的发展 The Development of Super2Re solution Re storation from Image Sequence s 1、引言 在图像处理技术中,有一项重要的研究内容称为图像融合。通常的成像系统由于受到成像条件和成像方式的限制,只能从场景中获取部分信息,如何有效地弥 补观测图像上的有限信息量是一个需要解决的问题。图像融合技术的含义就是把相关性和互补性很强的多幅图像上的有用信息综合在一起,产生一幅(或多幅) 携带更多信息的图像,以便能够弥补原始观测图像承载信息的局限性。 (图象融合就是根据需要把相关性和互补性很强的多幅图象上的有用信息综合在一起,以供观察或进一步处理,以弥补原始单源观测图象承载信息的局限性,它是一门综合了传感器、图象处理、信号处理、计算机和人工智能等技术的现代高新技术,于20 世纪70 年代后期形成并发展起来的。由于图象融合具有突出的探测优越性,在国际上已经受到高度重视并取得了相当进展,在医学、遥感、计算机视觉、气象预报、军事等方面都取得了明显效益。从图象融合的目标来看,主要可将其归结为增强光谱信息的融合和增强几何信息的融合。增强光谱信息的融合是综合提取多种通道输入图象的信息,形成统一的图象或数据产品供后续处理或指导决策,目前在遥感、医学领域都得到了比较广泛的应用。增强几何信息的融合就是从一序列低分辨率图象重建出更高分辨率的图象(或图象序列) ,以提 高图象的空间分辨率。对图象空间分辨率进行增强的技术也叫超分辨率 (super2resolution) 技术,或亚像元分析技术。本文主要关注超分辨率(SR) 重建技术,对SR 技术中涉及到的相关问题进行描述。) (我们知道,在获取图像的过程中有许多因素会导致图像质量的下降即退化,如 光学系统的像差、大气扰动、运动、离焦和系统噪音,它们会造成图像的模糊和变形。图像复原的目的就是对退化图像进行处理,使其复原成没有退化前的理想图像。按照傅里叶光学的观点,光学成像系统是一个低通滤波器,由于受到光学衍射的影响,其传递函数在由衍射极限分辨率所决定的某个截止频率以上值均为零。显然,普通的图像复原技术如去卷积技术等只能将物体的频率复原到衍射极

函数图像平移公式

函数图像平移公式 设在直角坐标系xoy 中有一函数为)(x f y =则其图像平移公式有: 1. 把图像向右平移(X 轴正方向)m (m>0)个单位,再向上平移(Y 轴的正方向)n (n>0)个单位后所得的图像的解析式为)(m x f n y -=- 2. 把图像向右平移m (m>0)个单位,再向下平移n (n>0)个单位后所得的图像的解析式为)(m x f n y -=+ 3. 把图像向左平移m (m>0)个单位,再向上平移n (n>0)个单位后所得的图像的解析式为)(m x f n y +=- 4. 把图像向左平移m (m>0)个单位,再向下平移n (n>0)个单位后所得的图像的解析式为)(m x f n y +=+ 这些规律可总结为:左右平移“X 左加右减”上下平移“下加上减” 说明:利用这个规律写平移后函数图像的解析式只需要考查是用m x +还是用m x -替换)(x f y =中的x,是用n y +还是用n y -来替换)(x f y =中的y,使用起来很方便。 例一、 抛物线3422---=x x y 向左平移3个单位,再向下平移4个单位,求所得抛物线 的解析式。 解:根据左右平移“X 左加右减”上下平移“下加上减”的规律分别用3+x 、4+y 去替换抛物线3422 ---=x x y 中的x 、y 就可以得到平移后的抛物线的解析式,所以平移后的抛物线的解析式为3)3(4)3(242-+-+-=+x x y 即371622---=x x y 例二、 将一抛物线向左平移2个单位,再向上平移3个单位所得到抛物线的解析式为322+-=x x y 求此抛物线的解析式。 解:所求抛物线可以看成是将抛物线322 +-=x x y 向右平移2个单位,再向下平移3个单位所得。所以所求抛物线的解析式为3)2(2)2(32+---=+x x y 即862+-=x x y 例三、 求将直线15-=x y 向左平移3个单位,再向上平移5个单位所得到直线的解析式 解:所求直线的解析为1)3(55-+=-x y 即145+=x y

关于图像超分辨率重构的现状研究

关于图像超分辨率重构的现状研究 摘要:图像超分辨率的重构技术是近20年来兴起的一门新的数字图像处理技术。随着计算机硬件技术和软件设计技术的不断发展,各种图像超分辨率重构算法被提出。综述超分辨率重构的相关研究,指出图像超分辨率重构技术近几年来的一些研究成果。 关键字:图像超分辨率;图像超分辨率重构;迭代法投影法 Abstract:Image super-resolution reconstruction technology is nearly 20 years the rise of a new digital image processing technology. With the continuous development of computer hardware and software design technology, all kinds of image super-resolution reconstruction algorithm was proposed. Of related studies on super-resolution reconstruction, and points out that the technology of image super-resolution reconstruction in recent years, some of the research. Keywords:image super-resolution; image super-resolution reconstruction; iterative projection method 1引言 超分辨率重构算法始于20世纪80年代,其目的在于恢复一些已丢失的频率分量。在成像过程中,由于受成像系统的物理性质和天气条件的影响,图像中存在着光学和运动模糊、采样不足和附加噪声等退化现象,图像空间分辨率较低。而在实际应用中,需要高分辨率的图像,如在遥感检测、军事侦查、交通及安全监控、医学诊断和模式识别等方面。在现有的传感器不作改变的情况下,人们希望利用信号处理的方法,通过一系列低分辨率图像来重构高分辨率图像。这种从同一场景的低分辨率图像序列中,通过信息融合来提高空间分辨率的方法通常被称为超分辨率重构。

超分辨率算法综述

图像超分辨率算法综述 摘要:介绍了图像超分辨率算法的概念和来源,通过回顾插值、重建和学习这3个层面的超分辨率算法,对图像超分辨率的方法进行了分类对比,着重讨论了各算法在还原质量、通用能力等方面所存在的问题,并对未来超分辨率技术的发展作了一些展望。 关键词:图像超分辨率;插值;重建;学习; Abstract:This paper introduced the conception and origin of image super resolu- tion technology. By reviewing these three kinds of methods(interpolation,reconstruct, study), it contrasted and classified the methods of image super-resolution,and at last, some perspectives of super-resolution are given. Key words: image super-resolution;interpolation;reconstruct;study;

1 引言 1.1 超分辨率的概念 图像超分辨率率(super resolution,SR)是指由一幅低分辨率图像(low resolution,LR)或图像序列恢复出高分辨率图像(high resolution, HR)。HR意味着图像具有高像素密度,可以提供更多的细节,这些细节往往在应用中起到关键作用。要获得高分辨率图像,最直接的办法是采用高分辨率图像传感器,但由于传感器和光学器件制造工艺和成本的限制[1],在很多场合和大规模部署中很难实现。因此,利用现有的设备,通过超分辨率技术获取HR图像(参见图1)具有重要的现实意义。 图1 图像超分辨率示意图 图像超分辨率技术分为超分辨率复原和超分辨率重建,许多文献中没有严格地区分这两个概念,甚至有许多文献中把超分辨率图像重建和超分辨率图像复原的概念等同起来,严格意义上讲二者是有本质区别的,超分辨率图像重建和超分辨率图像复原有一个共同点,就是把在获取图像时丢失或降低的高频信息恢复出来。然而它们丢失高频信息的原因不同,超分辨率复原在光学中是恢复出超过衍射级截止频率以外的信息,而超分辨率重建方法是在工程应用中试图恢复由混叠产生的高频成分。几何处理、图像增强、图像复原都是从图像到图像的处理,即输入的原始数据是图像,处理后输出的也是图像,而重建处理则是从数据到图像的处理。也就是说输入的是某种数据,而处理结果得到的是图像。但两者的目的是一致的,都是由低分辨率图像经过处理得到高分辨率图像。另外有些文献中对超分辨率的概念下定义的范围比较窄,只是指基于同一场景的图像序列和视频序列的超分辨处理,实际上,多幅图像的超分辨率大多数都是以单幅图像的超分辨率为基础的。在图像获取过程中有很多因素会导致图像质量下降,如传感器的形

几类信号信噪比的计算_百度上传

1,确知信号的信噪比计算 这里的“确知信号”仅指信号的确知,噪声可以是随机的。某些随机信号,例如幅度和相位随机的正弦波,如果能够准确估计出它的相位和幅度等参数也可以认为是“确知信号”。 接收到的确知信号通过减去确知信号的方法得到噪声电压或电流,高斯噪声的数学期望为0,方差除以或乘上电阻得到噪声功率。确知信号的大小的平方的积分除以或乘上电阻得到信号功率。信噪比等于这两个功率相除,因此可以不用考虑电阻的大小。 clear all; clc; SIMU_OPTION = 3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 1, deterministic signal snr calc %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if (SIMU_OPTION==1) SAM_LEN = 1e6; PERIOD = 1e3; SNR_DB = 30 signal = sin((1:SAM_LEN)*2*pi/PERIOD); signal_wgn = awgn(signal,SNR_DB,'measured'); wgn = signal_wgn - signal; snr_db_calc = 10*log10(var(signal)/var(wgn)) end

2,随机信号的信噪比计算 2.1,窄带信号加宽带噪声的信噪比计算 可以使用周期图FFT方法,即得到信号加噪声的功率谱,利用信号和噪声的频率特性,通过积分的方法将信号和噪声的功率计算出来,这样就得到信噪比。窄带信号是相对整个信号频率带而言。 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 2, sin signal + white gauss noise %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if (SIMU_OPTION==2) SAM_LEN = 1e6; PERIOD = 1e3; SNR_DB = 30 signal = sin((1:SAM_LEN)*2*pi/PERIOD); signal_wgn = awgn(signal,SNR_DB,'measured'); signal_wgn_fft = fft(signal_wgn); signal_wgn_psd = (abs(signal_wgn_fft)).^2 / SAM_LEN; signal_wgn_psd_db = 10*log10(signal_wgn_psd); signal_wgn_psd = signal_wgn_psd(1:SAM_LEN/2); snr_db_calc = 10*log10(max(signal_wgn_psd)/(sum(signal_wgn_psd)-max(signal_wgn_psd) )) end

图像超分辨率重建

收稿日期:2008唱08唱21;修回日期:2008唱10唱28 作者简介:王培东(1953唱),男,黑龙江哈尔滨人,教授,硕导,CCF会员,主要研究方向为计算机控制、计算机网络、嵌入式应用技术;吴显伟(1982唱),男(回族),河南南阳人,硕士,主要研究方向为计算机控制技术(wu_xianwei@126.com). 一种自适应的嵌入式协议栈缓冲区管理机制 王培东,吴显伟 (哈尔滨理工大学计算机科学与技术学院,哈尔滨150080) 摘 要:为避免创建缓冲区过程中必须指定大小和多次释放而导致可能的内存泄露和代码崩溃的弊端,提出一种自适应的嵌入式协议栈的缓冲区管理机制AutoBuf。它是基于抽象缓冲区接口而设计的,具有自适应性,支持动态内存的自动分配与回收,同时实现了嵌入式TCP/IP协议栈各层之间的零拷贝通信。在基于研究平台S3C44B0X的Webserver网络数据监控系统上的测试结果表明,该缓冲区的设计满足嵌入式系统网络通信的应用需求,是一种高效、可靠的缓冲区管理机制。 关键词:嵌入式协议栈;抽象缓冲区;零拷贝;内存分配 中图分类号:TP316 文献标志码:A 文章编号:1001唱3695(2009)06唱2254唱03doi:10.3969/j.issn.1001唱3695.2009.06.077 Designandimplementationofadaptivebufferforembeddedprotocolstack WANGPei唱dong,WUXian唱wei (CollegeofComputerScience&Technology,HarbinUniversityofScience&Technology,Harbin150080,China) Abstract:Toavoidtraditionalmethodofcreatingbuffer,whichmusthavethesizeofbufferandfreememoryformanytimes,whichwillresultinmemoryleaksandcodescrash.ThispaperproposedaflexiblebuffermanagementmechanismAutoBufforembeddednetworkprotocolstack.Itwasadaptiveandscalableandbasedonanabstractbufferinterface,supporteddynamicme唱moryallocationandbackup.ByusingtheAutoBufbuffermanagementmechanismwithdatazerocopytechnology,itimplementedtotransferdatathroughtheembeddednetworkprotocolstack.ThemanagementmechanismhadbeenappliedtotheWebserversystembaseonS3C44b0Xplatformsuccessfully.Theresultsinrealnetworkconditionshowthatthesystemprovidesagoodper唱formanceandmeetsthenecessaryofembeddednetworksystem.Keywords:embeddedstack;abstractbuffer;zero唱copy;memoryallocation 随着网络技术的快速发展,主机间的通信速率已经提高到了千兆数量级,同时多媒体应用还要求网络协议支持实时业务。嵌入式设备网络化已经深入到日常生活中,而将嵌入式设备接入到互联网需要网络协议栈的支持。通过分析Linux系统中TCP/IP协议栈的实现过程,可以看出在协议栈中要有大量数据不断输入输出,而管理这些即时数据的关键是协议栈中的缓冲区管理机制,因此对嵌入式协议栈的缓冲区管理将直接影响到数据的传输速率和安全。通用以太网的缓冲区管理机制,例如4.4BSDmbuf [1] 和现行Linux系统中的sk_buf [2] 多是在大内存、 高处理速率的基础上设计的,非常庞大复杂。由于嵌入式设备的硬件资源有限,特别是可用物理内存的限制,通用的协议栈必然不适用于嵌入式设备,在应用时要对标准的TCP/IP协议进行裁剪 [3] 和重新设计缓冲区管理机制。 1 缓冲区管理机制的性能需求分析 缓冲区管理 [4] 是对内存提供一种统一的管理手段,通过该 手段能够对可用内存提供分配、回收、数据操作等行为。内存的分配操作是根据一定的内存分配策略从缓冲区中获得相应大小的内存空间;缓冲区的数据操作主要是向缓冲区写数据,从缓冲区读数据,在缓冲区中删除数据,对空闲的内存块进行合并等行为;内存的回收就是将已空闲的内存重新变为可用内存,以供存 储其他新的数据。 为了满足长度不一的即时数据的需求,缓冲区对内存的操作主要集中在不断地分配、回收、合并空闲的内存块等操作。因为网络中的数据包小到几个字节大到几千个字节,不同长度的数据对内存的需求必然不同。现存嵌入式设备中的内存多是以物理内存,即实模式形式存在的,没有虚拟内存的形式,对内存的操作实际是操作真实的物理内存,所以对内存操作要特别谨慎。在传统使用动态分配的缓冲区(通过调用malloc()/free())在函数之间传递数据。尽管该方法提供了灵活性,但它也带来了一些性能影响。首先考虑对缓冲区的管理(分配和释放内存块)。如果分配和释放不能在相同的代码位置进行,那么必须确保在某个内存块不再需要时,释放一次(且仅释放一次)该内存块是很重要的,否则就会导致内存泄露。其次是必须确定缓冲区的大小才能分配该内存块。然而,确定数据大小并非那么容易,传统做法是采用最大的数据尺寸的保守估计。而采用保守估计预分配的内存大小总是远超过实际需要的大小,而且没有一定的范围标准,这样难免会导致资源的严重浪费。 随着数据在协议栈中的不断流动,内存块的多次释放和多次分配是难以避免的,而保守估计对于有限的资源来说又是一种浪费的策略。因此为了能有效地利用资源,设计一种可自控的、不用预判断大小的数据缓冲区接口就势在必行。 第26卷第6期2009年6月  计算机应用研究 ApplicationResearchofComputers Vol.26No.6Jun.2009

三角函数公式及图像

锐角三角函数公式 sin α=∠α的对边 / 斜边 cos α=∠α的邻边 / 斜边 tan α=∠α的对边/ ∠α的邻边 cot α=∠α的邻边/ ∠α的对边 倍角公式 Sin2A=2SinA?CosA Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1 tan2A=(2tanA)/(1-tanA^2) (注:SinA^2 是sinA的平方 sin2(A)) 三倍角公式 sin3α=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cosα·cos(π/3+α)cos(π/3-α) tan3a = tan a · tan(π/3+a)· tan(π/3-a) 三倍角公式推导 sin3a =sin(2a+a) =sin2acosa+cos2asina 辅助角公式 Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中 sint=B/(A^2+B^2)^(1/2) cost=A/(A^2+B^2)^(1/2) tant=B/A Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B

降幂公式 sin^2(α)=(1-cos(2α))/2=versin(2α)/2 cos^2(α)=(1+cos(2α))/2=covers(2α)/2 tan^2(α)=(1-cos(2α))/(1+cos(2α)) 推导公式 tanα+cotα=2/sin2α tanα-cotα=-2cot2α 1+cos2α=2cos^2α 1-cos2α=2sin^2α 1+sinα=(sinα/2+cosα/2)^2 =2sina(1-sin²a)+(1-2sin²a)sina =3sina-4sin³a cos3a =cos(2a+a) =cos2acosa-sin2asina =(2cos²a-1)cosa-2(1-sin²a)cosa =4cos³a-3cosa sin3a=3sina-4sin³a =4sina(3/4-sin²a) =4sina[(√3/2)²-sin²a] =4sina(sin²60°-sin²a) =4sina(sin60°+sina)(sin60°-sina) =4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]

红外光谱信噪比

红外光谱信噪比 翁老爷子的新书《傅里叶变换红外光谱分析》(第2版)中,有一段对红外仪器信噪比的无奈描述: “红外仪器的信噪比是衡量一台仪器性能好坏的一项非常重要的技术指标。但是信噪比的测量方法目前没有统一的、公认的标准,因此,各个红外仪器公司所给定的仪器信噪比没有可比性。每个红外仪器公司都有信噪比的测量方法,因此,信噪比指标的验收只能按照仪器公司的验收方法进行验收。” 看来这个“红外信噪比”真个是乱花渐欲迷人眼,让人雾里看花隔一层啊!但是zwyu我充分发挥超人的大打特打、死缠烂打、穷追猛打的精神,欲对“红外信噪比”进行一次非官方、全方位的刨根问底,追踪探秘。各位好奇同学请跟进! 正文 信噪比(signal-to-noise ratio,简记为SNR ),顾名思义,就是信号值与噪声值的比,这一比值当然是越高越好。可是,翻遍《GB/T21 186-2007 傅立叶变换红外光谱仪》,《GB/T 6040-2002 红外光谱分析方法通则》(见红外光谱相关标准与检定规程大合集)以及其他的

一些行业性、地方性的检定规程(国家级的傅里叶变换红外光谱仪检定规程至今还未出台),甚至中国药典,愣是找不到关于信噪比的只言片语的定义。信噪比指标对红外仪器性能的评判很重要,怎么会找不找呢?且慢,注意标准中屡屡提到的“基线噪声”(100%T线噪声)XXXX:1或1:XXXX,还往往标了P-P或RMS,这不就是我们熟悉的信噪比的表示方法吗?哈哈,总算找到你了。 艰难的看过标准上的描述(没办法,中国国标写的水平就是高!?),为了各位同学能够顺利读懂,我将它写为白话现代汉语版: 红外信噪比,是通过基线(100%T线)噪声来表征。也就是,在样品室中不放样品的情况下(空光路),测得一条假定理想的100%T透射光谱。信号,当然就是100%T了,如果没有噪声,那么这条光谱将是一条严格的纵坐标为100%T的直线,但是,实际情况是噪声总是存在的,这就使得这条光谱的各个波数点上的值不见得一定是100%T,可能高一些(比如100.1%T),也可能低一些(比如9 9.9%T)。P-P(峰-峰值)噪声的意思就是说刚才测得的那条光谱在某一段波数区间内(比如2200~2100cm-1)的最大值与最小值之差,比如说是100.1%T-99.9%T=0.2%T。前面说了,信号是假定为100%T,那么,根据信噪比的定义,信号值/噪声值,比如100%T/0.2%T=500(注意此处单位相消,也就是说,信噪比用信号噪声比值表示的话,是一个无量纲的数)。此时,我们可以说,这台红外光谱仪的信噪比是500:1。换句话说,我们知道了P-P(峰-峰值)噪声,我们也就自

高等数学公式大全及常见函数图像

高等数学公式大全及常 见函数图像 文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

高等数学公 式 导数公式: 基本积分表: a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22 = '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 π π

人脸图像超分辨率的自适应流形学习方法

第20卷第7期2008年7月 计算机辅助设计与图形学学报 JO U RN A L O F COM PU T ER -AID ED D ESIG N &COM P U T ER G RA PH ICS Vo l 120,N o 17 July,2008 收稿日期:2007-11-06;修回日期:2008-03-111基金项目:国家科技支撑计划重点项目(2006BAK07B04).张雪松,男,1977年生,博士研究生,工程师,主要研究方向为数字图像复原与超分辨率、模式识别、红外图像实时处理.江 静,女,1979年生,硕士,讲师,主要研究方向为数字图像处理.彭思龙,男,1971年生,博士,研究员,博士生导师,主要研究方向为小波分析、图像处理、视频增强、模式识别. 人脸图像超分辨率的自适应流形学习方法 张雪松1) 江 静2) 彭思龙 1) 1)(中国科学院自动化研究所国家专用集成电路设计工程技术研究中心 北京 100190)2) (华北科技学院机械与电气工程系 北京 101601)(xuesong.zhang@https://www.doczj.com/doc/301011779.html,) 摘要 样本规模与使用方法是基于学习的超分辨率中的一个重要问题.面向人脸图像超分辨率重建,提出一种基 于局部保持投影(L P P)的自适应流形学习方法.由于能够揭示隐含在高维图像空间中的非线性结构,L PP 是一种可以在局部人脸流形上分析其内在特征的、有效的流形学习方法.通过在L P P 特征子空间中动态搜索出与输入图像块最相似的像素块集合作为学习样本,实现了自适应样本选择,并且利用动态样本集合通过基于像素块的特征变换方法有效地恢复出低分辨率人脸图像中缺失的高频成分.实验结果证实:通过在局部人脸流形上自适应地选择学习样本,文中方法可以仅使用相对少量的样本来获得很好的超分辨率重建结果.关键词 人脸图像;超分辨率;局部保持投影;流形学习;非监督学习中图法分类号 T P391.4 Adaptive Manifold Learning Method for Face Hallucination Zhang Xuesong 1) Jiang Jing 2) Peng Silong 1) 1)(National AS I C Desig n Eng inee ring Center ,Institute of A utomation,Chinese A cad emy of S cie nces ,B eij ing 100190)2) (Dep artment of M ec hanic s and E lectricity En gineering ,N or th Ch ina I nstitu te of S cie nce and Te chnolog y ,B eij ing 101601) Abstract T he size of training set as well as the usage thereof is an important issue of learning -based super -resolution.T his w or k presents an adaptive learning metho d for face hallucination using Locality Preserving Pr ojectio n (LPP).LPP is an efficient manifold learning m ethod that can be used to analy ze the lo cal intrinsic features on the manifold of local facial areas by virtue of its ability to reveal no n -linear structures hidden in the hig h -dim ensional image space.We fulfilled the adaptive sam ple selection by searching out patches online in the LPP sub -space,w hich makes the resultant training set tailor ed to the testing patch,and then effectively r estored the lo st hig h -frequency com ponents of the low -resolution face image by patched -based eig en transform ation using the dy namic training set.The ex perim ental r esults fully dem onstrate that the proposed m ethod can achieve goo d super -reso lution reconstruction perfo rmance by utilizing a relative small am ount o f samples. Key words face im ag e;super -r esolutio n;lo cality preserv ing projections;m anifold learning;unsuperv ised learning 超分辨率是指根据多张低分辨率图像重建出高分辨率图像的过程,在不同的应用中,输入的低分辨率图像可以是某个静态场景的图像序列 [1-3] (序列中 的图像间存在相对运动)或者是一段动态场景的视频[4-5].这些超分辨率方法通常是基于/重建约束0的:即认为低分辨率图像是待求高分辨率图像在不

相关主题
文本预览
相关文档 最新文档