当前位置:文档之家› E+H 质量流量计80F 80M技术说明书

E+H 质量流量计80F 80M技术说明书

E+H 质量流量计80F 80M技术说明书
E+H 质量流量计80F 80M技术说明书

TI067D/06/en 50108972

Technical Information Proline Promass 84F, 84M Coriolis Mass Flow Measuring System

The universal and multivariable flowmeter for liquids and gases

for custody transfer

Applications

The Coriolis measuring principle operates independently of the physical fluid properties, such as viscosity and density.

?Extremely accurate, verified measurement of liquids (other than water) and for gases under high pressure (> 100 bar)

?Fluid temperatures up to +200 °C ?Process pressures up to 350 bar

?Mass flow measurement up to 2200 t/h Approvals for custody transfer:?PTB,

NMi

Approvals for hazardous area:?ATEX, FM, CSA, TIIS

Approvals in the food industry/hygiene sector:?3A,

FDA

Connection to process control system:?HART

Relevant safety aspects:

?Secondary containment (up to 100 bar), Pressure Equipment Directive

Features and benefits

The Promass measuring devices make it possible to simultaneously record several process variables (mass/density/temperature) for various process conditions during measuring operation.

The Proline transmitter concept comprises:

?Modular device and operating concept resulting in a higher degree of efficiency

?Diagnostic ability and data back-up for increased process quality

The Promass sensors, tried and tested in over 100000 applications, offer:

?Multivariable flow measurement in compact design ?Insensitivity to vibrations thanks to balanced two-tube measuring system

?Efficient protection against forces from piping thanks to robust construction

?Easy installation without taking inlet and outlet runs into account

Proline Promass 84F, 84M

2Endress+Hauser

Table of contents

Function and system design. . . . . . . . . . . . . . . . . . . . .3

Measuring principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3Measuring system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5

Measured variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5Measuring range in non-custody transfer mode . . . . . . . . . . . . . . . 5Measuring range in custody transfer mode . . . . . . . . . . . . . . . . . . 6Operable flow range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6Input signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7

Output signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7Signal on alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7Low flow cut off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7Galvanic isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Power supply. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8

Electrical connection Measuring unit . . . . . . . . . . . . . . . . . . . . . . 8Electrical connection, terminal assignment . . . . . . . . . . . . . . . . . . 9Electrical connection Remote version . . . . . . . . . . . . . . . . . . . . . . 9Supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9Switching on the power supply in custody transfer mode . . . 9Cable entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9Cable specifications,

remote version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9Power consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10Power supply failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10Potential equalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Performance characteristics. . . . . . . . . . . . . . . . . . . .10

Reference operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 10Maximum measured error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10Repeatability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12Influence of medium temperature . . . . . . . . . . . . . . . . . . . . . . . . 12Influence of medium pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Operating conditions: Installation . . . . . . . . . . . . . . .13

Installation instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13Inlet and outlet runs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17Length of connecting cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17System pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Operating conditions: Environment. . . . . . . . . . . . . .18

Ambient temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18Storage temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18Degree of protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18Shock resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18Vibration resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18Electromagnetic compatibility (EMC) . . . . . . . . . . . . . . . . . . . . . 18

Operating conditions: Process. . . . . . . . . . . . . . . . . .18

Medium temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18Medium pressure range (nominal pressure) . . . . . . . . . . . . . . . . 18Limiting flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19Pressure loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Custody transfer measurement . . . . . . . . . . . . . . . . .22

Custody transfer variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Suitability for custody transfer measurement, approval by the Standards Authorities, repeated calibration due to legal metrology controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22Definition of terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Verification process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23Stamp points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Mechanical construction . . . . . . . . . . . . . . . . . . . . . .25

Design / dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25Weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53Material load curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55Process connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Human interface . . . . . . . . . . . . . . . . . . . . . . . . . . . .61

Display elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61Unified control concept for both types of transmitter: . . . . . . . . . 61Language groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61Remote operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Certificates and approvals . . . . . . . . . . . . . . . . . . . . .61

CE mark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61Ex approval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61Sanitary compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61Other standards and guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . 61Pressure device approval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61Approval for custody transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . 62Suitability for custody transfer measurement . . . . . . . . . . . . . . . . 62

Ordering information. . . . . . . . . . . . . . . . . . . . . . . . .63

Accessories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63Registered trademarks. . . . . . . . . . . . . . . . . . . . . . . .63

Proline Promass 84F, 84M

Endress+Hauser 3

Function and system design

Measuring principle

The measuring principle is based on the controlled generation of Coriolis forces. These forces are always present when both translational and rotational movements are superimposed.F C = 2 · ?m (v · ω)F C = Coriolis force ?m = moving mass ω = rotational velocity

v = radial velocity in rotating or oscillating system

The amplitude of the Coriolis force depends on the moving mass ?m, its velocity v in the system, and thus on the mass flow. Instead of a constant angular velocity ω, the Promass sensor uses oscillation.

In the Promass F and M sensors, two parallel measuring tubes containing flowing fluid oscillate in antiphase, acting like a tuning fork. The Coriolis forces produced at the measuring tubes cause a phase shift in the tube oscillations (see illustration):

?At zero flow, in other words when the fluid is at a standstill, the two tubes oscillate in phase (1).

The phase difference (A-B) increases with increasing mass flow. Electrodynamic sensors register the tube oscillations at the inlet and outlet.

System balance is ensured by the antiphase oscillation of the two measuring tubes. The measuring principle operates independently of temperature, pressure, viscosity, conductivity and flow profile.

Density measurement

The measuring tubes are continuously excited at their resonance frequency. A change in the mass and thus the density of the oscillating system (comprising measuring tubes and fluid) results in a corresponding, automatic adjustment in the oscillation frequency. Resonance frequency is thus a function of fluid density. The microprocessor utilises this relationship to obtain a density signal.

Temperature measurement

The temperature of the measuring tubes is determined in order to calculate the compensation factor due to temperature effects. This signal corresponds to the process temperature and is also available as an output.The temperature measurement cannot be used to generate data for invoicing in applications subject to legal metrology controls.

Proline Promass 84F, 84M Measuring system The measuring system consists of a transmitter and a sensor. Two versions are available:

?Compact version: transmitter and sensor form a single mechanical unit.

?Remote version: transmitter and sensor are installed separately.

4Endress+Hauser

Proline Promass 84F, 84M

Endress+Hauser 5

Input

Measured variable

?Mass flow (proportional to the phase difference between two sensors mounted on the measuring tube to register a phase shift in the oscillation)

?Fluid density (proportional to resonance frequency of the measuring tube)?Fluid temperature (measured with temperature sensors)Measuring range in non-custody transfer mode

Measuring ranges for liquids (Promass F, M):

Measuring ranges for gases

The full scale values depend on the density of the gas. Use the formula below to calculate the full scale values:g max(G) = g max(F) ? ρ(G) / x [kg/m 3]

g max(G) = Max. full scale value for gas [kg/h]g max(F) = Max. full scale value for liquid [kg/h]ρ(G) = Gas density in [kg/m 3] for process conditions

x = 160 (Promass F DN 8...100, M); x = 250 (Promass F DN 150...250)Here, g max(G) can never be greater than g max(F)Calculation example for gas:?Sensor type: Promass F, DN 50

?Gas: air with a density of 60.3 kg/m 3 (at 20 °C and 50 bar)?Measuring range: 70000 kg/h ?

x = 160 (for Promass F DN 50)

Max. possible full scale value:

g max(G) = g max(F) ? ρ(G) / x [kg/m 3] = 70000 kg/h ?60.3 kg/m 3 ÷ 160 kg/m 3 = 26400 kg/h Recommended full scale values See →Page 19ff. (“Limiting flow”)

DN Range for full scale values (liquids) g min(F)...g max(F)

80...2000 kg/h 150...6500 kg/h 250...18000 kg/h 400...45000 kg/h 500...70000 kg/h 80

0...180000 kg/h 100 (only Promass F)0...350000 kg/h 150 (only Promass F)0...800000 kg/h 250 (only Promass F)

0...2200000 kg/h

Proline Promass 84F, 84M

6Endress+Hauser

Measuring range in custody transfer mode

Measuring ranges for liquids in mass flow (Promass F, M):

Measuring ranges for liquids in volume flow (also LPG) (Promass F, M):

Measuring ranges for high pressure fuel gases CNG (Promass M):

Operable flow range Over 20 : 1 for verified device Input signal

Status input (auxiliary input):

U = 3...30 V DC, R i = 5 k ?, galvanically isolated.

Configurable for: totalizer reset, positive zero return, error message reset, start zero point adjustment

DN Range for mass flow (liquids) Q min [kg/min]...Q max [kg/min]

Smallest measured quantity

[kg]

8 1.5...300.515 5...10022515...30054035...700205050 (10005080)

150...3000100100 (only Promass F)200...4500200150 (only Promass F)350...12000500250 (only Promass F)

1500 (35000)

1000

DN Promass F

DN Promass M

Range for volume flow (liquids)

(with P = 1 kg/dm 3)Q min [l/min]...Q max [l/min]

Smallest measured quantity

[l]88* 1.5...300.51515* 5...10022525*15...30054040*35...700205050*50 (1000508080)

150...3000100100200...4500200150350 (12000500250)

1500 (35000)

1000

* NMi approval only

DN

Range for mass flow (liquids)Q min [kg/min]...Q max [kg/min]

Smallest measured

quantity [kg]

Maximum pressure

[bar]

80.1...100.2160 / 350*150.3...400.5160 / 350*25

1.0 (100)

2.0

160 / 350*

* High pressure version

Proline Promass 84F, 84M

Endress+Hauser 7

Output

Output signal

Current output:

Active/passive selectable, galvanically isolated, time constant selectable (0.05...100 s), full scale value selectable, temperature coefficient: typically 0.005% o.r./°C, resolution: 0.5 μA ?Active: 0/4...20 mA, R L < 700 ? (for HART: R L ≥ 250 ?)

?Passive: 4...20 mA; supply voltage V S 18...30 V DC; R i ≥ 150 ?Pulse / frequency output:

For custody transfer measurement, two pulse outputs can be operated, phase-shifted 90°.Passive, galvanically isolated, open collector, 30 V DC, 250 mA

?Frequency output: full scale frequency 2...10000 Hz (f max = 12500 Hz), on/off ratio 1:1, pulse width max. 2 s. For phase-shifted double pulse max. 5000 Hz.

?Pulse output: pulse value and pulse polarity selectable, pulse width configurable (0.05…2000 ms)

Signal on alarm

Current output:

Failsafe mode selectable (for example, according to NAMUR recommendation NE 43)Pulse / frequency output:Failsafe mode selectable

Status output:

De-energised by fault or power supply failure

Load

See “Output signal”

Low flow cut off

Switch points for low flow cut off are selectable.

Galvanic isolation All circuits for inputs, outputs, and power supply are galvanically isolated from each other.

Nominal diameter Low flow cutoff / factory settings (v ~ 0.04 m/s)[mm]SI units [kg/h]

US units [lb/min]

88.000.3001526.00 1.0002572.00 2.60040180.00 6.60050300.0011.00080720.0026.0001001200.0044.0001502600.0095.000250

7200.00

260.000

Proline Promass 84F, 84M

8Endress+Hauser

Power supply

Electrical connection Measuring unit

Connecting the transmitter, cable cross-section: max. 2.5 mm2A View A (field housing)

B View B (stainless steel field housing)

C View C (wall-mount housing)

a

Cable for power supply: 85...260 V AC, 20...55 V AC,16...62 V DC Terminal No. 1: L1 for AC, L+ for DC Terminal No. 2: N for AC, L- for DC

b Signal cable: Terminals No. 20–27 →Page 9

c Groun

d terminal for protectiv

e earth d Ground terminal for signal cable shield

e Service connector for connecting service interface FXA 193 (FieldCheck, FieldTool)f

Cover of the connection compartment

Proline Promass 84F, 84M

Endress+Hauser

9

Electrical connection, terminal assignment

Promass 84

Replacements for modules which are defective or which have to be replaced can be ordered as accessories.

Electrical connection Remote version

Supply voltage

85...260 V AC, 45...65 Hz 20...55 V AC, 45...65 Hz 16...62 V DC

Switching on the power supply in custody transfer mode

If the device is started in custody transfer mode, for example also after a power outage, system error No. 271 “POWER BRK. DOWN” flashes on the local display. The fault message can be acknowledged or reset using the "Enter" key or by means of the status input configured accordingly.

!

Note!

For correct measuring operation, it is not mandatory to reset the fault message.Cable entry

Power supply and signal cables (inputs/outputs):?Cable entry M20 x 1.5 (8...12 mm)

?Threads for cable entries, 1/2" NPT, G 1/2"Connecting cable for remote version:?Cable entry M20 x 1.5 (8...12 mm)

?Threads for cable entries, 1/2" NPT, G 1/2"

Cable specifications,remote version

?6 x 0.38 mm 2 PVC cable with common shield and individually shielded cores ?Conductor resistance: ≤ 50 ?/km ?Capacitance core/shield: ≤ 420 pF/m ?Cable length: max. 20 m

?

Permanent operating temperature: max. +105 °C

Operation in zones of severe electrical interference:

The measuring device complies with the general safety requirements in accordance with EN 61010, the EMC requirements of EN 61326/A1, and NAMUR recommendation NE 21/43.

Terminal No. (inputs/outputs)

Order variant 20 (+) / 21 (-)22 (+) / 23 (-)24 (+) / 25 (-)26 (+) / 27 (-)84***-***********M

Status input

Frequency output 2

Frequency output 1

Current output HART

Proline Promass 84F, 84M

10Endress+Hauser

Power consumption

AC: <15 VA (including sensor)DC: <15 W (including sensor)Switch-on current

?max. 13.5 A (< 50 ms) at 24 V DC ?max. 3 A (< 5 ms) at 260 V AC

Power supply failure

Lasting min. 1 power cycle:

?EEPROM or HistoROM T-DAT saves measuring system data if power supply fails.

?HistoROM/S-DAT: exchangeable data storage chip which stores the data of the sensor (nominal diameter, serial number, calibration factor, zero point, etc.)

?See Note on Page 9 (switching on the power supply in custody transfer mode)Potential equalisation

No measures necessary.

Exception: explosion protected equipment must be included in the potential equalization.

Performance characteristics

!

Note!

The accuracy solely refers to the measuring device suitable for custody transfer measurement and not to the measuring system.

Reference operating conditions

Error limits following ISO/DIS 11631:?20...30 °C; 2...4 bar

?Calibration systems as per national norms

?Zero point calibrated under operating conditions

?Field density calibrated (or special density calibration)

Maximum measured error

The following values refer to the pulse/frequency output. Deviation at the current output is typically ±5 μA.Mass flow (liquid):

±0.10% ± [(zero point stability / measured value) x 100]% o.r.Mass flow (gas):Promass F:

±0.35% ± [(zero point stability / measured value) x 100]% o.r.Promass M:

±0.50% ± [(zero point stability / measured value) x 100]% o.r.Volume flow (liquid)Promass F:

±0.15% ± [(zero point stability / measured value) x 100]% o.r.Promass M:

±0.25% ± [(zero point stability / measured value) x 100]% o.r.o.r. = of reading

Proline Promass 84F, 84M

Endress+Hauser 11

Zero point stability (Promass F, M):

Sample calculation

Maximum measured error in % of reading (example: Promass 84 F / DN 25)

Calculation example (mass flow, liquid):

Given: Promass 84 F / DN 25, measured value flow = 8000 kg/h

Max. measured error: ±0.10% ± [(zero point stability / measured value) x 100]% o.r.Maximum measured error → ±0.10% ±0.54 kg/h ÷ 8000 kg/h ? 100% = ±0.107%Density (liquid)Standard calibration (1g/cc = 1 kg/l):Promass F ±0.01 g/cc Promass M ±0.02 g/cc

DN

Max. full scale value [kg/h] or [l/h]

Zero point stability

Promass F [kg/h] or [l/h]

Promass M [kg/h] or [l/h]

820000.0600.1001565000.2000.32525180000.5400.904045000 2.25 2.255070000 3.50 3.50801800009.009.0010035000014.00?150********.00?250

2200000

88.00

?

Proline Promass 84F, 84M

12Endress+Hauser

Special density calibration (optional), not for high temperature version Promass F ±0.001 g/cc Promass M ±0.002 g/cc

After field density calibration or under reference conditions:Promass F ±0.0005 g/cc Promass M ±0.0010 g/cc Temperature Promass F, M:

±0.5 °C ±0.005 x T (T = fluid temperature in °C)

Repeatability

Mass flow (liquid):

±0.05% ± [1/2 x (zero point stability / measured value) x 100]% o.r.Mass flow (gas):

±0.25% ± [1/2 x (zero point stability / measured value) x 100]% o.r.Volume flow (liquid):Promass F:

±0.05% ± [1/2 x (zero point stability / measured value) x 100]% o.r.Promass M:

±0.10% ± [1/2 x (zero point stability / measured value) x 100]% o.r.o.r. = of reading

Zero point stability: see “Max. measured error”

Calculation example (mass flow, liquid):

Given: Promass 84 F / DN 25, measured value flow = 8000 kg/h

Repeatability: ±0.05% ± [(1/2 x zero point stability / measured value) x 100]% o.r.Repeatability → ±0.05% ±1/2 ? 0.54 kg/h ÷ 8000 kg/h ? 100% = ±0.053%Density measurement (liquid)Promass F:

±0.00025 g/cc (1 g/cc = 1 kg/l)Promass M:±0.0005 g/cc

Temperature measurement

±0.25 °C ±0.0025 x T (T = fluid temperature in °C)

Influence of medium temperature

When there is a difference between the temperature for zero point adjustment and the process temperature, the typical measured error of the Promass sensor is ±0.0002% of the full scale value / °C.

Proline Promass 84F, 84M

Endress+Hauser 13

Influence of medium pressure

The table below shows the effect on accuracy of mass flow due to a difference between calibration pressure and process pressure.

Operating conditions: Installation

Installation instructions

Note the following points:

?No special measures such as supports are necessary. External forces are absorbed by the construction of the instrument, for example the secondary containment.

?The high oscillation frequency of the measuring tubes ensures that the correct operation of the measuring system is not influenced by pipe vibrations.

?No special precautions need to be taken for fittings which create turbulence (valves, elbows, T-pieces, etc.), as long as no cavitation occurs.

?For mechanical reasons and in order to protect the pipe, it is advisable to support heavy sensors.

?Please refer to the verification ordinances for the installation conditions of the approval for custody transfer in question.

!

Note!

The necessary steps for creating a measuring system and obtaining approval from the Standards Authorities must be clarified with the authority for legal metrology controls responsible.Mounting location

Entrained air or gas bubbles in the measuring tube can result in an increase in measuring errors Avoid the following locations:

?Highest point of a pipeline. Risk of air accumulating.

?Directly upstream of a free pipe outlet in a vertical pipeline.

Mounting location

DN Promass F [% o.r./bar]Promass M [% o.r./bar]Promass M / (high pressure)

[% o.r./bar]

8No influence 0.0090.00615No influence 0.0080.00525No influence 0.0090.00340-0.0030.005-50-0.008No influence -80-0.009No influence

?100-0.012??150-0.009??250

-0.009

?

?

o.r. = of reading

Proline Promass 84F, 84M

14Endress+Hauser

The proposed configuration in the following diagram, however, permits installation in a vertical pipeline. Pipe restrictors or the use of an orifice plate with a smaller cross-section than the nominal diameter prevent the sensor from running empty during measurement.

Installation in a vertical pipe (e.g. for batching applications)1Supply tank 2Sensor

3Orifice plate, pipe restrictions (see Table)4Valve

5

Batching tank

DN

815254*********)1501)2501)

? Orifice plate, pipe restriction 6 mm 10 mm 14 mm 22 mm 28 mm 50 mm 65 mm 90 mm 150 mm

1) only Promass F

Proline Promass 84F, 84M

Orientation

Make sure that the direction of the arrow on the nameplate of the sensor matches the direction of flow

(direction in which the fluid flows through the pipe).

Vertical

Recommended orientation with upward direction of flow (View V). When fluid is not flowing, entrained solids

will sink down and gases will rise away from the measuring tube. The measuring tubes can be completely

drained and protected against solids build-up.

Horizontal

The measuring tubes must be horizontal and beside each other. When installation is correct the transmitter

housing is above or below the pipe (View H1/H2). Always avoid having the transmitter housing in the same

horizontal plane as the pipe.

Please note the special installation instructions! see Page16

In order to ensure that the maximum permissible ambient temperature for the transmitter (–20...+60 °C,

optional –40...+60 °C) is not exceeded, we recommend the following orientations:

m = For fluids with low temperatures, we recommend the horizontal orientation with the transmitter head

pointing upwards (Fig. H1) or the vertical orientation (Fig. V).

n = For fluids with high temperatures, we recommend the horizontal orientation with the transmitter head

pointing downwards (Fig. H2) or the vertical orientation (Fig. V).

Endress+Hauser15

Proline Promass 84F, 84M

16Endress+Hauser

Special installation instructions for Promass F

"

Caution!

The two measuring tubes for Promass F are slightly curved. The position of the sensor, therefore, has to be matched to the fluid properties when the sensor is installed horizontally .

Promass F, installed horizontally 1Not suitable for fluids with entrained solids. Risk of solids accumulating.2

Not suitable for outgassing fluids. Risk of air accumulating.

Heating

Some fluids require suitable measures to avoid loss of heat at the sensor. Heating can be electric, e.g. with heated elements, or by means of hot water or steam pipes made of copper.

"

Caution!

?Risk of electronics overheating! Consequently, make sure that the adapter between the sensor and

transmitter and the connection housing of the remote version always remain free of insulating material. Note that a certain orientation might be required, depending on the fluid temperature see Page 15.

?When using electrical heat tracing whose heat is regulated using phase control or by pulse packs, it cannot be ruled out that the measured values are influenced by magnetic fields which may occur, (i.e. at values greater than those permitted by the EC standard (Sinus 30 A/m)). In such cases, the sensor must be magnetically screened (except for Promass M).

The secondary containment can be shielded with tin plates or electric sheets without privileged direction (e.g. V330-35A) with the following properties:–Relative magnetic permeability μr ≥ 300–Plate thickness d ≥ 0.35 mm

?Information on permissible temperature ranges →Page 18

Special heating jackets which can be ordered as accessories from Endress+Hauser are available for the sensors.Thermal insulation

Some fluids require suitable measures to avoid loss of heat at the sensor. A wide range of materials can be used to provide the required thermal insulation.

Proline Promass 84F, 84M

Zero point adjustment

All Promass measuring devices are calibrated with state-of-the-art technology. The zero point determined in

this way is imprinted on the nameplate. Calibration takes place under reference operating conditions.

→Page10ff.

Consequently, the zero point adjustment is generally not necessary for Promass!

Experience shows that the zero point adjustment is advisable only in special cases:

?To achieve highest measuring accuracy also with very small flow rates.

?Under extreme process or operating conditions (e.g. very high process temperatures or very high viscosity

fluids).

Note the following before you perform a zero point adjustment:

?A zero point adjustment can be performed only with fluids that contain no gas or solid contents.

?Zero point adjustment is performed with the measuring tubes completely filled and at zero flow

(v = 0 m/s). This can be achieved, for example, with shut-off valves upstream and/or downstream of the

sensor or by using existing valves and gates.

–Normal operation → valves 1 and 2 open

–Zero point adjustment with pump pressure → Valve 1 open / valve 2 closed

–Zero point adjustment without pump pressure → Valve 1 closed / valve 2 open

Zero point adjustment and shut-off valves

Inlet and outlet runs There are no installation requirements regarding inlet and outlet runs.

Length of connecting cable Max. 20 meters (remote version)

System pressure It is important to ensure that cavitation does not occur, because it would influence the oscillation of the

measuring tube. No special measures need to be taken for fluids which have properties similar to water under

normal conditions.

In the case of liquids with a low boiling point (hydrocarbons, solvents, liquefied gases) or in suction lines, it is

important to ensure that pressure does not drop below the vapour pressure and that the liquid does not start

to boil. It is also important to ensure that the gases that occur naturally in many liquids do not outgas. Such

effects can be prevented when system pressure is sufficiently high.

Consequently, it is generally best to install the sensor:

?downstream from pumps (no danger of vacuum),

?at the lowest point in a vertical pipe.

Endress+Hauser17

Proline Promass 84F, 84M

18Endress+Hauser

Operating conditions: Environment

Ambient temperature range

Standard: –20...+60 °C (sensor, transmitter)Optional: –40...+60 °C (sensor, transmitter)

!

Note!

?Install the device at a shady location. Avoid direct sunlight, particularly in warm climatic regions.?At ambient temperatures below –20 °C the readability of the display may be impaired.Storage temperature –40...+80 °C (preferably +20 °C)

Degree of protection Standard: IP 67 (NEMA 4X) for transmitter and sensor Shock resistance According to IEC 68-2-31

Vibration resistance

Acceleration up to 2 g, 10...150 Hz, following IEC 68-2-6Electromagnetic compatibility (EMC)

To EN 61326/A1 and NAMUR recommendation NE 21

Operating conditions: Process

Medium temperature range

Sensor Promass F:–50...+200 °C Promass M:–50...+150 °C Seals:Promass F:No internal seals Promass M:

Viton –15...+200 °C; EPDM –40...+160 °C; silicon –60...+200 °C; Kalrez –20...+275 °C;FEP sheathed (not for gas applications): –60...+200 °C

Medium pressure range (nominal pressure)

Flanges:

Promass F:

DIN PN 16...100 / ANSI Cl 150, Cl 300, Cl 600 / JIS 10K, 20K, 40K, 63K Promass M:

DIN PN 40...100 / ANSI Cl 150, Cl 300, Cl 600 / JIS 10K, 20K, 40K, 63K Promass M (high pressure version):

Measuring tubes, connector, couplings: max. 350 bar

!

Note!

Material load diagrams for the process connections can be found on →Page 55ff.

Proline Promass 84F, 84M

Endress+Hauser 19

Pressure ranges of secondary containment:Promass F:

DN 8...50: 40 bar or 600 psi; DN 80: 25 bar or 375 psi;DN 100...150: 16 bar or 250 psi; DN 250: 10 bar or 150 psi Promass M:100 bar or 1500 psi

#

Warning!

In case a danger of measuring tube failure exists due to process characteristics, e.g. with corrosive process fluids, we recommend the use of sensors whose secondary containment is equipped with special pressure monitoring connections (ordering option). With the help of these connections, fluid collected in the secondary containment in the event of tube failure can be bled off. This is especially important in high pressure gas applications. These connections can also be used for gas circulation and/or detection. Dimensions Limiting flow

See “Measuring range” section. →Page 63ff.

Select nominal diameter by optimising between required flow range and permissible pressure loss. An overview of max. possible full scale values can be found in the "Measuring range" Section.

?The minimum recommended full scale value is approx. 1/20 of the max. full scale value.?In most applications, 20...50% of the maximum full scale value can be considered ideal.

?Select a lower full scale value for abrasive substances such as fluids with entrained solids (flow velocity <1 m/s).

?For gas measurement the following rules apply:

–Flow velocity in the measuring tubes should not be more than half the sonic velocity (0.5Mach).–The maximum mass flow depends on the density of the gas: formula →Page 5ff.

Proline Promass 84F, 84M Pressure loss Pressure loss depends on the properties of the fluid and on its flow. The following formulas can be used to

approximately calculate the pressure loss:

Pressure loss coefficient for Promass F

DN d[m]K K1K2

8 5.35 ? 10–3 5.70 ? 1079.60 ?107 1.90 ? 107

158.30 ? 10–3 5.80 ? 106 1.90 ? 10710.60 ? 105

2512.00 ? 10–3 1.90 ? 106 6.40 ? 106 4.50 ? 105

4017.60 ? 10–3 3.50 ? 105 1.30 ? 106 1.30 ? 105

5026.00 ? 10–37.00 ? 104 5.00 ? 105 1.40 ? 104

8040.50 ? 10–3 1.10 ? 1047.71 ? 104 1.42 ? 104

10051.20 ? 10–3 3.54 ? 103 3.54 ? 104 5.40 ? 103

15068.90 ? 10–3 1.36 ? 103 2.04 ? 104 6.46 ? 102

250102.26 ? 10–3 3.00 ? 102 6.10 ? 103 1.33 ? 102

Pressure loss diagram for water

20Endress+Hauser

超声波流量计工作原理及常见问题概述

超声波流量计工作原理及常见问题概述 一、工作原理 1、概述 超声流量计是一个测量仪表,它利用声学原理来测定流过管道的流体的流速。在气体的测量现场主要的检测元件包括一对或几对超声传感器。这些传感器都安装在管壁上,每一组传感器的表面都彼此具有规定的几何关系。 由一个传感器发射的超声脉冲由同一组内另一个传感器接收,反过来也如此。Q.Sonic-3 采用了一个单反射声道的方案,在对面的管壁处声脉冲有一次反射。此方案使声道的总长度增加,从而能改善分辨率(灵敏度)并拓宽流量计的范围度,如图2-1所示。 图2-1 信号反射路径 2 、流速的测量 超声脉冲穿过管道从一个传感器到达另一个传感器,就像一个渡船的船夫在横渡一条河。当气体不流动时,声脉冲以相同的速度(声速,C)在两个方向上传播。如果管道中的气体有一定流速V(该流速不等于零),则顺着流动方向的声脉冲会传输得快些,而逆着流动方向的声脉冲会传输得慢些。这样,顺流传输时间tD 会短些,而逆流传输时间tU会长些。这里所说的长些或短些都是与气体不流动时的传输时间相比而言;这样就有: L tD = ——————— -------------- (2.1) C + V ? cos 和 L tU = ——————— -------------- (2.2) C — V ? cos 式中,L代表两个传感器之间声道的直线长度,可按下式确定L: L D —— = ———— -------------- (2.3) 2 sin ^ 采用电子学手段来测量此传输时间。根据时间倒数的差,可按下式计算流速V ^ L 1 1 V = ————(—————)-------(2.4)

热式质量流量计工作原理与常见问题分析

热式质量流量计工作原理与常见问题分析 【摘要】介绍了热式质量流量计的工作原理与特点,同时分析了流量计在使用过程中经常出现的故障及处理方法,最后对日常维护做了简要说明。 【关键词】热式质量流量计;工作原理;常见故障;处理方法;日常维护 引言 热式质量流量计在传统化工企业中不多常用,但在聚甲醛精细化工企业中,由于使用化工原料三氟化硼,因三氟化硼是剧毒腐蚀性化学品,作为三聚甲醛反应过程的催化剂,使用量很小,而且要求测量准确、调节精密,常规流量仪表无法达到三氟化硼的测量要求,从而采用专用流量计--三氟化硼热式质量流量计实现测量调节,以达到工艺装置生产的要求。本文适用于聚甲醛化工企业中在线使用的SLAMF50SH1CD1K2A1K411AA热式质量流量计(品牌BROOKS),其他同类型仪表可参照使用。 1 工作原理 热式气体质量流量计是利用热扩散原理测量气体流量的仪表。传感器由两个基准级热电阻(RTD)组成。一个是速度传感器RH,一个是测量气体温度变化的温度传感器RMG。当这两个RTD置于被测气体中时,其中传感器RH被加热,另一个传感器RMG用于感应被测气体温度。随着气体流速的增加,气流带走更多热量,传感器RH的温度下降。 根据热效应的金氏定律,加热功率P、温度差△T(TRH-TRMG)与质量流量Q有确定的数学关系式。P/△T=K1+K2 f(Q)K3 K1、K2、K3是与气体物理性质有关的常数。热式气体质量流量计独特的温度差测量方式克服了采用恒温差原理的热式气体质量流量计测量煤气流量时因煤气中含水、油和杂质而造成的很大的零点漂移,导致无法测量的弊端。 2 常见故障及处理方法 2.1 故障:流量计工作不稳定;处理方法:保证流量计前压力稳定,投运方法正确。 投运流量计时做到流量计前的平稳,不能直接开钢瓶减压阀代替流量计前手阀。在更换钢瓶或切换流量计时,要关闭流量计前手阀,待压力稳定在操作压力0.7Mpa以下,慢慢打开手阀。突然的流量涌动会造成器件损坏。更换钢瓶或切换流量计时由工艺人员和仪表人员共同完成,相互督促。切忌用压缩空气对管线进行吹扫。 2.2 故障:流量计堵塞;处理方法:流量计前的过滤器及流量计需要定期清

七星电子流量计 D07-7B_7BM使用手册

D07 - 7B 型质量流量控制器 D07-7BM 型质量流量计使用手册 版本2013.6

目录 1. 使用须知................................... 1 6.2.1 开机预热.. (15) 2. 用途和特点.............................. 1 6.2.2 检查和调整零点 (15) 3. 主要技术指标........................... 3 6.2.3 通气工作 (15) 4. 结构和工作原理........................ 4 6.2.4 关机 (15) 4.1 结构....................................... 4 7. 注意事项 (15) 4.2 工作原理................................. 5 7.1 禁用流量介质 (15) 5. 安装和接线...........................7 7.2 使用腐蚀性气体问题 (15) 5.1 外形及安装尺寸........................7 7.3 阀口密封问题 (16) 5.2 气路接头形式...........................8 7.4 阀控操作注意 (16) 5.3 连接电缆插头...........................9 7.5 安装位置问题 (16) 5.4 与计算机或外部信号的连接.........11 7.6 注意工作压差 (16) 5.5调零和外调零...........................12 7.7 标定和不同气体的换算 (17) 6. 使用方法和操作步骤..................13 7.8 D07-7B,7BM标准订单填写格式 (18) 6.1 质量流量控制器的操作...............13 8. 故障判断和处理 (21) 6.1.1 开机操作..............................13 9. 保证、保修与服务 (23) 6.1.2 清洗功能..............................14 9.1 产品保证和保修.. (23) 6.1.3 显示仪与计算机连接的操作......14 9.2 保修对使用的要求.. (23) 6.1.4 直接与计算机连接的操作.........14 9.3 服务.. (23) 6.1.5 阀控功能..............................15 10. 附录 (24) 6.1.6 关机操作..............................15 10.1气体质量流量转换系数 (24) 6.2 质量流量计的操作...................15 10.2转换系数使用说明 (26) MASS FLOW CONTROLLER & MASS FLOW METER

防爆流量计说明书

GLC250/500矿用本安型超声波流量传感器产品使用说明书 山东中煤电器有限公司 2013年3月25日

目录 1.概述 (3) 1.1主要用途及使用范围 (3) 1.2型号组成及代表意义 (3) 1.3使用环境条件 (3) 2结构特征与工作原理 (4) 2.1结构 (4) 2.2工作原理 (4) 3技术特性 (5) 3.1产品执行标准 (5) 3.2主要参数 (5) 3.3关联设备 (5) 3.4尺寸重量 (5) 3.4.1 尺寸 (5) 3.4.2 重量 (5) 4安装、调试 (5) 4.1安装条件、技术要求 (6) 4.2安装 (6) 4.2.1传感器的安装 (6) 4.2.2主机的安装 (11) 4.2.3接线 (11) 4.3调试 (12) 5使用、操作 (14) 6故障分析与排除 (14) 7保养、维修 (15) 8运输、贮存 (15) 9开箱及检查 (15) 10订货 (15)

安装使用产品前,应详细阅读使用说明书 矿用本安型超声波流量传感器使用说明书 1.概述 1.1主要用途及使用范围 矿用本安型超声波流量传感器(以下简称流量传感器)采用低电压多脉冲平衡发射接收专利技术设计的一种全新通用时差型多功能超声波传感器,适用于工业环境下连续测量不含大浓度悬浮粒子或气体的大多数清洁均匀液体的流量和热量。 流量传感器使用了最新的著名国际半导体厂商生产的元器件,低功耗,高可靠性,抗干扰,适用性好。优化的智能信号自适应处理,用户无需任何电路调整。 先进的电路设计、器件选用、优秀的硬件、软件设计,使流量传感器成为国内目前矿山行业的首选产品。 1.2型号组成及代表意义 流量范围:500m3/h 管径范围:250mm 超声波原理 流量 矿用传感器及敏感元件 1.3使用环境条件 ——环境温度-5℃~40℃; ——海拔高度不超过2000m; ——空气相对湿度不大于95%(25℃时); ——在有瓦斯、煤尘爆炸危险的场所; ——在无破坏绝缘的腐蚀性气体或蒸汽的场所; ——在无显著振动和冲击的场所;

热式质量流量计原理与概述

热式质量流量计原理及概述 2010-5-31 瑞特仪表编辑:东升 热式质量流量计(以下简称TME)是利用传热原理,即流动中的流体与热源(流体中加热的物体或测量管外加热体)之间热量交换关系来测量流量的仪表,过去我国习称量热式流量计。当前主要用于测量气体。 20世纪90年代初期,世界围TMF销售金额约占流量仪表的8%,约4.5万台。国90年代中期销售量估计每年1000台左右。过去流程工业用仪表主要是热分布式,近几年才开发热散(或冷却)效应式。 1. 原理和结构 热式流量仪表用得最多有两类,即1)利用流动流体传递热量改变测量管壁温度分布的热传导分布效应的热分布式流量计(thenmaI prohIe fIowmeter)曾称量热式TMF;2)利用热消散(冷却)效应的金氏定律(King s Iaw)TMF。又由于结构上检测元件伸入测量管,也称浸入型(immersion type )或侵入型(intrusion type)。有些在使用时从管外插入工艺管的仪表称作插入式(insertion type)。 热分布式TMF的工作原理如图1所示,薄壁测量 管3外壁绕着两组兼作加热器和检测元件的绕组 2,组成惠斯登电桥,由恒流电源5供给恒定热量, 通过线圈绝缘层、管壁、流体边界层传导热量给 管流体。边界层热的传递可以看作热传导方式实 现的。在流量为零时,测量管上的温度分布如图 下部虚线所示,相对于测量管中心的上下游是对 称的,由线圈和电阻组成的电桥处于平衡状态; 当流体流动时,流体将上游的部分热量带给下游, 导致温度分布变化如实线所示,由电桥测出两组 线圈电阻值的变化,求得两组线圈平均温度差 ΔT。便可按下式导出质量流量qm,即 (1) 式中 cp -------被测气体的定压比热容; A -------测量管绕组(即加热系统)与周围环境热交换系统之间的热传导系数; 在总的热传导系数A中,因测量管壁很薄且具有相对较高热导率,仪 表制成后其值不变,因此A的变化可简化认为主要是流体边界层热导 率的变化。当使用于某一特定围的流体时,则A、cp均视为常量,则 质量流量仅与绕组平均温度差成正比,如图2 Oa 段所示。 Oa段为仪 表正常测量围,仪表出口处流体不带走热量,或者说带走热量极微;

热式质量流量计原理及概述

精品整理 热式质量流量计原理及概述 编辑:潘东升江苏瑞特仪表有限公司2010-5-31 )是利用传热原理,即流动中的流体与热源(流体中加热的物体或测量管外TME 热式质量流量计(以下简称 加热体)之间热量交换关系来测量流量的仪表,过去我国习称量热式流量计。当前主要用于测量气体。年代中期销售量估万台。国内90销售金额约占流量仪表的8%,约4.590 20世纪年代初期,世界范围TMF 台左右。过去流程工业用仪表主要是热分布式,近几年才开发热散(或冷却)效应式。计每年1000 1. 原理和结构利用流动流体传递热量改变测量管壁温度分布的热传导分布效应的热分布式1)热式流量仪表用得最多有两类,即。TMF(效应的金氏定律King s Iaw)thenmaI prohIe fIowmeter)曾称量热式TMF;2)利用热消散(冷却)(流量计)。有些在使用intrusion type又由于结构上检测元件伸入测量管内,也称浸入型(immersion type )或侵入型()。时从管外插入工艺管内的仪表称作插入式(insertion type TMF 热分布式1.1 )(1cp -------被测气体的定压比热容;式中A -------测量管绕组(即加热系统)与周围环境热交换系统之间的热传导系数; K -------仪表常数。

页脚内容. 精品整理 TMF 1.2基于金氏定律的浸入型 金氏定律的热丝热散失率表述各参量间关系,如式所示。2)2(单位长度热散失率,H/L -------J/m?h; 式中--------ΔT热丝高于自由流束的平均升高温度,K;--------λ流体的热导率,J/h?m?K; cV---------定容比热容,J/kg?k;3kg/m密度,---------ρ;

luz型流量计说明书

专利号:.2 渝制 00000645 号 认证企业 L U X Z 型 一体化智能旋进旋涡流量计 使用说明书

LUXZ型智能旋进旋涡流量计 1 概述 LUXZ型智能旋进旋涡流量计(以下简称流量计)是本公司拥有自主产权的新一代智能一体化的流量测 量仪表。适用于石油、化工、钢铁、冶金、电力、轻工、环保及市政建设等行业中的天然气、煤气、压缩空气、氧气、二氧化碳及其它化工介质等流量的测量及控制。流量计执行国家计量检定规程JJG198-94和Q/JY 1-2008企业标准。 2 特点 集高精度压力传感器、温度传感器、流量传感器和 智能流量积算单元为一体。该流量计能直接测量和显示 出被测介质的瞬时流量、累积流量、压力、温度等参数。 并对压力、温度、压缩因子进行自动跟踪补偿运算。 采用机电仪一体化技术,结构紧凑,无机械可动部 件,稳定性好,寿命长; 低流速特性好,对仪表的前后直管段要求低(前5D, 后2D),操作方便,安装费用低; 采用微功耗高新技术,既可由一节1#锂电池供电使用。 又可由外电源供电运行。整机功耗低; LUXZ型智能旋进旋涡流量计 采用高性能微处理器,软件功能强大,(对温度、压 力)具有调零调量程功能,性能优越; 2.6采用大屏幕液晶显示,可直接整版显示出工作状态下的瞬时流量、标准状态下的瞬时流量、累积流量、压力、温度等参数。读数方便,清晰直观。(见右图) 具有实时数据储存功能,可防止换电池和突然掉电数据丢失。在断电状态下,内部参数可永久性保持; 采用双检测流量传感器,运用电路处理技术。在提高测量精度与流量范围的同时,有效地抑制了因为 管道振动对流量计带来的影响,使流量计计量更为准确可靠; 防爆型式为:工厂用本质安全型; 防爆标志为:ExibⅡBT5; 防护等级为:IP54; 3 主要技术性能指标 基本参数

质量流量计说明书 - 复制

型科氏力质量流量计选型安装说明书

目录 1. 概述———————————————————————————————————2 2. 测量原理—————————————————————————————————2 3. 产品技术参数———————————————————————————————2 3.1技术指标————————————————————————————————2 3.2保温夹套型参数—————————————————————————————2 3.3 防爆标志————————————————————————--———————2 3.4规格型号及基本参数表: ———————————————————————--——3 4. 产品的结构组成—————————————————————————--————3 5. 安装、调试及操作—————————————————————--———————4 5.1仪表的安装———————————————————————————————4 5.2安装环境要求——————————————————————————————6 5.3 外形及安装尺寸—————————————————————--———————6 5.4变送器(二次表)操作说明————————————————————————7 5.4.1本安型流量计变送器(二次表)———————————-----———————7 5.4.1.1本安型流量计变送器后面板—————————————--——-—————7 5.4.1.2本安型流量计变送器前面板说明———————————--———-————7 5.4.2一体型流量计变送器(二次表)———————————--————————8 5.4.2.1一体型流量计变送器(二次表)接线说明——————--————————8 5.4.2.2一体型流量计变送器前面板说明————————————--——————9 5.4.3操作说明———————————————————————--——————9 5.4.3.1正常操作菜单———————————————————————————9 5.4.3.2置零点——————————————————————————————10 5.4.3.3提示菜单—————————————————————————————10 5.4.3.4设置菜单—————————————————————————————10 5.5 电流、频率输出,批量控制及RS485通讯————————————————11 5.5.1 电流、频率输出————————————————————--——————11 5.5.2 批量控制—————————————————————————--————11 5.5.3自动清零(dp-0)和数字滤波(Filter)————————————--————12 5.5.4 RS485通讯—————————————————————————--———12 5.5.5 电源——————————————————————————-——--———13 6. 计量校准————————————————————————————-—————13 7. 故障排除————————————————————————————-—————13 8. 保养与维修————————————————————————————-————14 9. 选型方法—————————————————————————————-————14 10. 符号单位对照—————————————————————————--—————19 11. 菜单流程——————————————--—————————————--—————21

节流式流量计的工作原理

节流式流量计的工作原理 节流式流量计是一种典型的差压式流量计.是目前工业生产中用来测量气体、液体和蒸气流量的最常用的一种流量仪表. 据调查统计,在炼钢厂、炼油厂等工业生产系统中所使用的流量计有(70—80)%左右是节流式流量计.在整个工业生产领域中,节流式流量计也占流量仪表总数的一半以上.节流式流量计所以得到如此广泛的应用,主要是因为它具有以下两个非常突出的优点: ①结构简单,安装方便,工作可靠,成本低,又具有一定准确度.能满足工程测量的需要. ②有很长的使用历史,有丰富的、可靠的实验数据,设计加工已经标准化.只要按标准设计加工的节流式流量计,不需要进行实际标定,也能在已知的不确定度范围内进行流量 测量. 尤其是第二个优点,使得节流式流量计在制造和使用上都非常方便.因为对一个流量计,特别是大流量测量用的流量汁,在检定时将会遇到各种各样的困难.

节流式流量计通常由能将流体流量转换成差压信号的节流装置及测量差压并显示流量的差压计组成.安装在流通管道中的节流装置也称“一次装置”,它包括节流件、取压装置和前后直管段.显示装置也称“二次装置”,它包括差压信号管路利测量中所需的仪表. 不少国家对节流装置做了很多研究工作.AGA(美国气体协会)和ASME(美国机械工程师协会)从本世纪初就开始进行节流装置的实验,研究结果分别在1969年和1971年的报告中发表.DIN(德国工业标准)中,早就对节流装置进行了规定,到1969年已经过六次修订国际标难化组织(ISO)在汇总了各国的研究成果的基础上,分别于1967年和1968年出版了ISO/R541和ISO/R781,作为节流装置的国际标准.1980年又对前面的两个文件进行了修订,出版了适合于孔板、喷嘴和文丘里管的国际标准ISO 5167.我国也于1981年出版了流量测量节流装置的国家标准GB 2624,对角接取压、法兰取压的标准孔板和角接取压标准喷嘴做了具体规定. 使用标准节流装置时,流体的性质和状态必须满足下列条件: ①流体必须充满管道和节流装置,并连续地流经管道. ②流体必须是牛顿流体,即在物理上和热力学上是均匀的、单相的,或者可以认为是单相的,包括混合气体,溶液和分散性粒子小于o.1

热式质量流量计哪家好

热式质量流量计哪家好 热式气体质量流量计是基于热扩散原理而设计的,该仪表采用恒温差法对气体进行准确测量。具有体积小、数字化程度高、安装方便,测量准确等优点。传感器部分由两个基准级铂电阻温度传感器组成,仪表工作时,一个传感器不间断地测量介质温度T1;另一个传感器自加热到高于介质温度T2,它用于感测流体流速,称为速度传感器。 该温度ΔT=T2-T1,T2>T1,当有流体流过时,由于气体分子碰撞传感器并将T2的热量带走,使T2的温度下降,若要使ΔT保持不变,就要提高T2的供电电流,气体流动速度热快,带走的热量也就越多,气体流速和增加的热量存在固定的函数关系,这就是恒温差原理。 其中ρg—流体比重(和密度相关) V—流速 K—平衡系数 Q—加热量(和比热及结构相关) ΔT—温度差 由于传感器温度比介质(环境)温度总是自动恒定高出30℃左右,所以热式气体流量 计从原理上不需要温度补偿。 热式气体质量流量计适用介质温度范围为-40-220℃。 (1)式中流体比重和密度相关

其中ρg—工况体积下的介质密度(kg/m3) ρn—标准条件下介质密度(101.325Kpa、20℃)(kg/m3) P—工况压力(kPa) T—工况温度(℃) 从(1)(2)式可以看出,流速和工况压力,气体密度,工况温度函数关系已确定。恒温差热式气体质量流量计不但不受温度影响,而且不受压力的影响,热式气体质量流量计是真正的直接式质量流量计,用户不必对压力和温度进行修正。 热式气体质量流量计具有如下技术优势: ①真正的质量流量计:对气体流量测量无需温度和压力补偿,测量方便、准确。可得到气体的质量流量或者标准体积流量。 ②宽量程比:可测量流速高至100Nm/s底至0.5Nm/s的气体,可以用于气体检漏。 ③抗震性能好使用寿命长:传感器活动部件和压力传感部件,不受震动对测量精度的影响。 ④安装维修简便:在现场条件允许的情况下,可以实现不停产安装和维护。 ⑤数字化设计:整体数字化电路测量,测量准确、维修方便。 ⑥采用RS-485通讯:或HART通讯,可以实现工厂自动化、集成化。 热式质量流量计厂家——上海有恒测控是集研发、生产、销售为一体的现代化仪器仪表制造企业,主要从事工业自动化仪器仪表的生产销售及安装成套、自动化项目的系统集成、工程服务及特殊需求定制。代表设备有涡街流量计、涡轮流量计、热式质量流量计等各类型

E—mag E型电磁流量计使用说明书

E—mag E型电磁流量计使用说明书 A 流量计与传感器 1 产品功能用途 产品特点 电磁流量计是一种应用法拉第电磁感应定律的流量计。本产品系采用当代电磁流量计最新技术制造,具有下列特点: a) 测量不受流体密度、粘度、温度、压力和电导率变化的影响; b) 测量管内无阻碍流动部件,无压损,直管段要求较低; c) 系列公称通径DN3~DN3000。传感器衬里和电极材料有多种选择; d) 转换器采用新颖励磁方式,功耗低、零点稳定、精确度高。流量范围度可达1500:1; e) 转换器可与传感器组成一体型或分离型; f) 转换器采用16位高性能微处理器,2×16LCD显示,参数设定方便,编程可靠; g) 流量计为双向测量系统,内装三个积算器:正向总量、反向总量及差值总量;可显示正、反流量,并具有多种输出:电流、脉冲、数字通讯、HART; h) 转换器采用表面安装技术(SMT),具有自检和自诊断功能; i)橡胶和聚氨酯衬里传感器为本质沉浸结构; j) 防爆型仪表可用于相应的防爆场所。 主要用途 E-mag E电磁流量计用于测量封闭管道中导电液体和浆液的体积流量,适用于化工、电力、矿冶、给排水、造纸、医药、食品等部门。 2 产品形式和组成 组成 电磁流量计由电磁流量传感器和电磁流量转换器两大部分组成。 产品形式(图1) E-mag E电磁流量计的传感器衬里和电极有多种材料供用户选择。 转换器以操作键形式区分有按键和磁键两种形式。 转换器同传感器可组成一体型流量计或分离型流量计。一体型流量计公称通径仅限于

图1 产品组成形式 编码与铭牌(图2) E-mag E型电磁流量计有多项选择内容,为便于用户选型订货和工厂生产管理.采用数字编码来表示产品全部要素,铭牌中的编码,见首页"E-mag E 型电磁流量计选型编码表"。 由于转换器是根据配套传感器进行最终调试,请务必保持转换器标牌中的编码编号与整机铭牌中编码编号的一致。流量计所附铭牌上载明了编码主要参数,流量计的实际工作温度和压力严禁超出规定值。 图2 铭牌 外形及安装尺寸 转换器外形及安装尺寸(见图3) 图3 E-mag E 分离型转换器外形图 传感器和一体型外形及安装尺寸(见图4~图7)

质量流量计工作原理的学习

质量流量计工作原理的学习 质量流量计以科氏力为基础,在传感器内部有两根平行的T型振管,中部装有驱动线圈,两端装有拾振线圈,质量流量计直接测量通过流量计的介质的质量流量,还可测量介质的密度及间接测量介质的温度。质量流量计是一种重要的流量测量仪表。质量流量计是采用感热式测量。 流体的体积是流体温度和压力的函数,它是一个因变量,而流体的质量是一个不随时间、空间温度、压力的变化而变化的量。如前所述,常用的流量计中,如孔板流量计、涡轮流量计、涡街流量计、电磁流量计、转子流量计、超声波流量计和椭圆齿轮流量计等的流量测量值是流体的体积流量。在科学研究、生产过程控制、质量管理、经济核算和贸易交接等活动中所涉及的流体量一般多为质量。采用上述流量计仅仅测得流体的体积流量往往不能满足人们的要求,通常还需要设法获得流体的质量流量。以前只能在测量流体的温度、压力、密度和体积等参数后,通过修正、换算和补偿等方法间接地得到流体的质量。这种测量方法,中间环节多,质量流量测量的准确度难以得到保证和提高。随着现代科学技术的发展,相继出现了一些直接测量质量流量的计量方法和装置,从而推动了流量测量技术的进步。 流体的体积是流体温度、压力和密度的函数。在工业生产和科学研究中,仅测量体积流量是不够的,由于产品质量控制、物料配比测定、成本核算以及生产过程自动调节等许多应用场合的需要,还必须了解流体的质量流量。 质量流量计的测量方法,可分为间接测量和直接测量两类。间接式测量方法通过测量体积流量和流体密度经计算得出质量流量,这种方式又称为推导式;直接式测量方法则由检测元件直接检测出流体的质量流量。 1.间接式质量流量计 间接式质量流量测量方法,一般是采用体积流量计和密度计或两个不同类型的体积流量计组合,实现质量流量的测量。常见的组合方式主要有3种。 (1)节流式流量计与密度计的组合 由前述知,节流式流量计的差压信号P ?正比于2 qρ,如图1所示,密度计 v 连续测量出流体的密度ρ,将两仪表的输出信号送入运算器进行必要运算处理,即可求出质量流量为

(全面质量管理)质量流量计简明使用手册

质量流量计简明使用手册

P/N 2007年7月 简明使用手册

目录第一章传感器安装3 1.1概述3 1.2安装注意事项3 1.3传感器的安装方向3 1.4电气连接注意事项3 第二章仪表接线与上电3 2.1概述3 2.2变送器的型号识别。3 2.3变送器与传感器连接3 2.4最大布线距离3 2.5电源规格3 2.6变送器、显示组件方向调整3 2.7变送器输出3 第三章流量计组态3 3.1概述3 3.2组态项目3 3.3变送器的显示器面板结构3 3.4组态过程变量的测量单位3 3.5组态变送器的毫安输出3 3.6组态变送器的脉冲/频率输出3

3.7变送器的回路测试3 3.8显示器菜单功能 (3) 3.9流量计调零3 第四章流量计投用及报警状态3 4.1流量计投用3 4.2获取报警3 附录1报警代码含义表3 附录2核心处理器检查3 附录3传感器检查3 附录4软件版本4.x变送器的显示器菜单3

第一章传感器安装 1.1概述 相对于其他类型的流量计,质量流量计具有安装简便、易于使用、测量精度高以及直接质 量测量等优点,尤其是没有直管段要求的特点,用户可因地制宜的选择安装位置,节约安 装成本。 1.2安装注意事项 1.2.1安装位置应避免电磁干扰。传感器、变送器的安装位置以及电缆铺设应尽量远离易产生强电磁场 的设备,如大功率马达、变压器设施、变频设备等。 1.2.2工艺管道应对中,两侧法兰应平行。严禁用传感器硬行拉直上、下游工艺管道,否则将影响测量 甚至损坏传感器。另外在两侧的工艺管道近法兰处(约2~10倍管径处)应有稳固的支撑。 1.2.3在传感器的上、下游管道上,建议安装截止阀及旁路以方便调零、日常维护及确保传感器在不工 作时亦可处于满管状态。使用流量计下游的调节阀进行流量控制。 1.2.4在测量易汽化介质时,流量计下游建议安装压力表,供检查下游压力,流量计后建议工艺管与流 量计保持同口径一段距离,以及流量计后有阀门可以用以调节适当的背压,防止汽化或气 穴发生。若介质在流量计中发生汽化或气穴将影响测量精度,严重时导致流量计无法正常 工作。 1.2.5安装时要注意流量计外壳上的流向标志,其箭头指向与变送器内部组态的流量方向是一致的。 流量方向箭头 工艺连接 吹扫接头(可选) 核心处理器外壳 认证标签 标定标签

德国EH恩德斯豪斯电磁流量计不显示的检查步骤

德国E+H恩德斯豪斯电磁流量计不显示的检查步骤 电磁流量计,是一种新型的流量仪表,可以测量管内导电介质体积的流量。并且电磁流量计以其独特的优势,广泛地应用于化工、环保、冶金、医药、造纸、给排水等行业。尽管如此,但在使用中电磁流量计依然会出现故障问题,如不显示。下面小编就为大家介绍电磁流量计不显示的原因。 首先,我们来了解下电磁流量计的优势: 1、以其具有测量通道是一段无阻流检测件的光滑直管,不易阻塞而适用于测量含有固体颗粒或纤维的液固二相流体; 2、同时电磁流量计不产生因检测流量所形成的压力损失,仪表的阻力仅是同一长度管道的沿程阻力,节能效果显著,对于要求低阻力损失的大管径供水管道是最为适合; 3、电磁流量计所测得的体积流量,实际上不受流体密度、粘度、温度、压力和电导率(只要在某阀值以上)的变化影响不明显; 4、与其它大部分流量仪表相比,前置直管段要求较低; 5、电磁流量计测量范围度大,通常为20:1~50:1,可选流量范围宽; 6、电磁流量计的口径范围比其它品种流量仪表宽,从几毫米到3米; 7、可测量正反双向流量,也可测脉动流量,只要脉动频率低于激磁频率很多; 8、仪表输出本质上是线性的; 9、易于选择与流体接触件的材料品种,可应用于腐蚀性流体等优点。 其次,当德国E+H恩德斯豪斯电磁流量计不显示的检查步骤在使用中出现不显示的情况时,我们可以从以下几个方面进行检查: 1、检查电源是否接通 2、检查电源保险丝是否完好; 3、检查供电电压是否符合要求; 4、检查显示器对比度调节是否能够调节,并且调节是否合适; 5、如果上述前3项A、B、C都正常,第D项显示器对比度调节不能够调节请将转换器交生产厂维修。 德国E+H恩德斯豪斯电磁流量计不显示的检查步骤

热式气体质量流量计的工作原理

热式气体质量流量计的工作原理 本文主要介绍热式气体质量流量计的工作原理,安装技术规范、调试方法以及应用注意事项和ST98A流量计在滨化热力公司锅炉中的应用及常见故障处理方法。 3、质量流量计插入深度等于管内径的1/2+12.7+管厚。 4、接线 1)、出于安全因素的考虑,ST98特别要求220V AC电源采用三线制,其中一根接地线必须连接到流量变送器接线端子排的接地终端。 2)、因传统4~20mA的I/O产品对变频驱动设备等产生的高频噪声干扰较为敏感,且现场的电气高频噪声污染较为严重。避免仪表信号传输回路遭受干扰,对输出信号电缆采用屏蔽电缆,且屏蔽层在靠近变送器一端接地,DCS机柜一端包裹保护起来。 5、现场传感器部分按照图三、四联接

五、调试 使用ST98流量变送器提供的RJ-12通讯串口与FCI的FC88通讯器进行链接通讯。 第一、将风机负荷调节至40%,在过程连接头A处插入传感器总长度1/3,记录FC88 T状态下流量值,继续推进传感器至2/3处,记录流量值,最后全部推进,记录流量值。然后将传感器分别移至B和C点记录数据。 第二、将风机负荷调节至60%,在过程连接头A处插入传感器总长度1/3,记录FC88 T状态下流量值,继续推进传感器至2/3处,记录流量值,最后全部推进,记录流量值,然后将传感器分别移至B和C点记录数据。 第三、将风机负荷调节至80%,在过程连接头A处插入传感器总长度1/3,记录FC88 T状态下流量值,继续推进传感器至2/3处,记录流量值,最后全部推进,记录流量值。然后将传感器分别移至B和C点记录数据。把3个不同负荷下的9个数据相加除9,既为不同负荷下瞬时流量值。 示例:负荷40%点 A位置三个数据分别为:365NCMH、500 NCMH、700 NCMH。B位置三个数据分别为:200 NCMH、600 N CMH、900 NCMH, C位置三个数据分别为:800 NCMH、900 NCMH、1000 NCMH,9个数据相加,计算平均值是663 NCMH,这就是此管道的瞬时流量值,最佳安装点是A3或B2 。若安装在A3点,K系数为663除以7 00所得值0.947。若安装在B2点, K系数为663除以600所得值为1.105。三种不同负荷状态下数据计算,可寻出最佳的安装位置以及流场分布点,便于减小误差。 六、菜单控制和结构 1、大部分条目需要敲至少两个键:一个字母加[ENTER]键,或一个或多个数字加[ENTER]键。 2、所以有的用户条目由输入模式(input Mode)?<提示开始,只是当设备处于主功能模式下(这时需按[EN TER]选择条目)时除外。 3、 Y/N表示是(Y),保存或者改变参数,或否(N),不要保存或改变参数。 4、使用backspace(后退一格)[BKSP]键可以退后。 常用菜单选项表

热式质量流量计说明书

热式质量流量计 【热式质量流量计性能特点】: 热式气体质量流量计是利用热传导原理测量气体质量流量的仪表。热式质量流量计的传感器由两个基准级热电阻(铂RTD)组成。一个是质量速度传感器T1,一个是测量气体温度变化的温度传感器T2。当这两个RTD置于被测气体中时,其中传感器T1被加热到气体温度以上的一个恒定的温差,另一个传感器T2用于感应被测气体温度。随着气体质量流速的增加,气流带走更多热量,传感器T1 的温度下降,要维持T1、T2恒定的温度差,T1的加热功率就要增大。根据热效应的金氏定律,加热功率P、温度差△T(T1-T2)与质量流量Q有确定的数学关 系式。 P/△T=K1+K2 f(Q)K3 K1、K2、K3是与气体物理性质有关的常数。 【热式质量流量计的应用】: ● 氧气、氮气、氢气、氯气及多组分 气体测量。 ● 高炉煤气、焦炉煤气测量。 ● 烟道气测量。 ● 沼气、水处理中的曝气和氯气测量。 ● 压缩空气测量。 ● 天然气,液化气,火炬气,等气体流量测量 ● 电厂高炉的一次风、二次风流量测量 ● 矿井下通风或排风系统流量测量 【热式质量流量计特点】: ● 测量气体质量流量,无需温度、压力补偿。 ● 量程比大,测量流速范围:0.1Nm/s~100Nm/s。 ● 无压力损失,适用已知截面积的任意形状管道。 ● 耐腐蚀型传感器,适合测量腐蚀性气体。 ● 插入式传感器可以在线安装和维护。 ● 全量程段的专家算法,保证了测量的准确度。 适于贸易结算或气体检漏。 ● 液晶显示器:8位字段式+24位提示符。 ● 测量显示:质量流量、标况体积流量、累计流量、北京时间、累计运行时间。 ● 瞬时流量最大显示值:999999.9 ● 累计流量最大显示值:99999999×103 ● 信号输出:4~20mA、RS-485 ● 内置MENU(菜单)、CUS(光标移动)、UP(数值增加)、ENT(确认)四个按键,用于参数的设定。

罗斯蒙特2700 1700质量流量计中文手册

2700/1700面板操作 一. 屏幕显示说明: SELECT--- 确认键 SCROLL---- 选择键 LED---状态指示灯 二. 显示器密码: 如果需要密码,CODE的字样就会出现在密码屏幕的顶部. 输入密码时候,通过使 用SCROLL来选择数字, 并用SELECT移到下一个字符, 一次只好输入一个字符. 如果你面对显示器密码屏幕, 却不知道密码, 在60秒内不按下任何显示器光敏开关.则此密码屏幕将自动退回到初始屏幕. 三. 调零步骤:

四. 显示器回路测试:

五. 显示器查看报警: LED指示灯状态及报警查看

六. 管理累积量和库存量:

七: 测量单位设置: SELECT+SCROLL 按4秒SEE ALARM [SCROLL] OFFLINE MAINTAIN [SELECT] [SCROLL] CONFIG [SELECT] MASS [SELECT] 可以按SCROLL选择你要的单位选定后按SELECT 按SCROLL直到出现EXIT [SELECT] 体积单位和密度单位设置和上述步骤相同 八量程设置(LRV URV) [SELECT+SCROLL] 按4秒SEE ALARM [SCROLL] OFFLINE MAINTAIN [SELECT] 继续按SCROLL直到出现MAO1 [SELECT] SRC MAO1 [SELECT] MFLOW [SELECT] SRC MAO1 [SCROLL] 4 MAO1 输入最小量程 [SCROLL+SELECT] 4 MAO1 [SCROLL] 20 MAO1 [SELECT] 输入最大量程 [SELECT+SCROLL] 20 MAO1 [SCROLL] EXIT 按SELECT退出. 其他量程设置和上述步骤相同. NOTE: SELECT+SCROLL 表示两个键同时按下

艾默生罗斯蒙特2700_1700质量流量计中文手册

2700/1700面板操作 一.屏幕显示说明: SELECT---确认键 SCROLL----选择键 LED---状态指示灯二.显示器密码: 如果需要密码,CODE的字样就会出现在密码屏幕的顶部.输入密码时候,通过使用SCROLL来选择数字,并用SELECT移到下一个字符,一次只好输入一个字符. 如果你面对显示器密码屏幕,却不知道密码,在60秒内不按下任何显示器光敏开关.则此密码屏幕将自动退回到初始屏幕. 三.调零步骤: Scroll OFF-LINE MAINT I Sorotl OFF-LIME ZZERO exit

四.显示器回路测试: SQt MA01 Sei MAO3 Select a Scroll ■AflIliTStrril Jfrw的I 叮 ScroJi OFF-LINE MAINT Sekci ScrdI OF匚LINE SIM 鼬led Scroll S*tFO Sd&ct Scroll * Sel DOI Sei DOz Select Scroll 4 mA 12 mA 20 mA 1 KHz ID KHi ON O'FF

五.显示器查看报警: LED指示灯状态及报警查看 报警按照报警队列中前优先级排列.要查S队列中杲指定报警: 1,同时按下Scroll II和fel旣t按钮.当屏幕上出现“SEE ALAR/时,松开按 钮. 卷阅图7T 2,按Select按钮 3,如杲屏幕上交替岀现FCK ALI/轧则按Scroll I按粗. 4如果屏幕上岀现50 ALART ,则到第6步, 5,按ScBll按钮S看队列中的每人ft警。S了解显示器显示的报置比码的含义’ 请参阅第KU1章节: ft按Seel I按钮直到屏暮上a现'*EXIT" ° 7,技Select按a

eh流量计说明书

eh 流量计说明书 篇一:EH6400A电子表头操作说明 EH6400A电子表头操作说明仪表通电后首先显示产品型号及版本号,再显示仪表功能F12 34 及生产日期,进入运行状态。现场显示=F10XXXX 二线制4-20mA=F11XXXX 三线制4-20mA=FXX01XX 脉冲输出=FXXXX01 RS485 通讯非标 1、键盘说明 EH6400A共有三个按键【S】【+】【- 】,二种按键方式(短按和长按(按住不松直到显示变化)), 【S】:运行状态下,(短按)单次量和累计量切换。(长按)清零单次量。 设置状态下,(短按)移动闪烁位(即修改位) 【+】:运行状态下,(长按)清零累计量设置状态 下,(短按)闪烁位加1(即修改位) 【- 】:设置状态下,(短按)闪烁位加1(即修改 位)(长按)表示【确认】 2、参数设置 EH6400A在运行状态下,(长按)【- 】进入密码输入状态。输入正确的密码后,(长按)【- 】仪表进入设置状态。仪表设置状态共有四组操作菜单《L 参数设置》《 F 参数设置》《C参数设置》《修改密码》四组操作通过(长按)【- 】

进行循环切换。需要修改某个参数时可通过【S】【+】【-】 (短按)来实现。 3、退出设置 EH6400A在设置状态下, 按【+】+【- 】(表示同时按,后类同)仪表显示SAUEd,此时 (长按)【- 】仪表保存参数成功显示SUCCESS闪动即返回运行状态,保存失败则显示Err 闪动即返回运行状态。(短按)【S】则不保存返回运行状态。 4、参数说明第一组参数:L00 系数0(主系数)(单 位0.00000L/ 脉冲) L01 -- 系数 1 L02 -- 系数 2 L03 -- 系数 3 L04 -- 系数 4 L05 -- 第一个分段值(单位000.000m3/h ) L06 -- 第二个分段值 L07 -- 第三个分段值 L08 -- 第四个分段值 L09 -- 分段开关(0:不分段,1:分段)注不分段时采用系数0(主系数)。

常见流量计的种类及特点

常见流量计的种类及特点 测量流体流量的仪表统称为流量计或流量表.流量计是工业测量中重要的仪表之一.随着工业生产的发展,对流量测量的准确度和范围的要求越来越高,流量测量技术日新月异.为了适应各种用途,各种类型的流量计相继问世。目前已投入使用的流量计已超过100种。从不同的角度出发,流量计有不同的分类方法。常用的分类方法有两种,一是按流量计采用的测量原理进行归纳分类:二是按流量计的结构原理进行分类。 一、按测量原理分类 (1)力学原理:属于此类原理的仪表有利用伯努利定理的差压式、转子式;利用动量定理的冲量式、可动管式;利用牛顿第二定律的直接质量式;利用流体动量原理的靶式;利用角动量定理的涡轮式;利用流体振荡原理的旋涡式、涡街式;利用总静压力差的皮托管式以及容积式和堰、槽式等等。 (2)电学原理:用于此类原理的仪表有电磁式、差动电容式、电感式、应变电阻式等。 (3)声学原理:利用声学原理进行流量测量的有超声波式.声学式(冲击波式)等。 (4)热学原理:利用热学原理测量流量的有热量式、直接量热式、间接量热式等。 (5)光学原理:激光式、光电式等是属于此类原理的仪表。 (6)原于物理原理:核磁共振式、核幅射式等是属于此类原理的仪表. (7)其它原理:有标记原理(示踪原理、核磁共振原理)、相关原理等。 二、按流量计结构原理分类 按当前流量计产品的实际情况,根据流量计的结构原理,大致上可归纳为以下几种类型: 1.容积式流量计 容积式流量计相当于一个标准容积的容器,它接连不断地对流动介质进行度量。流量越大,度量的次数越多,输出的频率越高。容积式流量计的原理比较简单,适于测量高粘度、低雷诺数的流体。根据回转体形状不同,目前生产的产品分:适于测量液体流量的椭圆齿轮流量计、腰轮流量计(罗茨流量计)、旋转活塞和刮板式流量计;适于测量气体流量的伺服式容积流量计、皮膜式和转简流量计等.2.叶轮式流量计 叶轮式流量计的工作原理是将叶轮置于被测流体中,受流体流动的冲击而旋转,以叶轮旋转的快慢来反映流量的大小。典型的叶轮式流量计是水表和涡轮流量计,其结构可以是机械传动输出式或电脉冲输出式。一般机械式传动输出的水表准确度较低,误差约±2%,但结构简单,造价低,国内已批量生产,并标准化、通用化和系列化。电脉冲信号输出的涡轮流量计的准确度较高,一般误差为±0.2%一0.5%。 3.差压式流量计(变压降式流量计) 差压式流量计由一次装置和二次装置组成.一次装置称流量测量元件,它安装在被测流体的管道中,产生与流量(流速)成比例的压力差,供二次装置进行流量显示。二次装置称显示仪表。它接收测量元件产生的差压信号,并将其转换为相应的流量进行显示.差压流量计的一次装置常为节流装置或动压测定装置(皮托管、均速管等)。二次装置为各种机械式、电子式、组合式差压计配以流量显示仪表.差压计的差压敏感元件多为弹性元件。由于差压和流量呈平方根关系,故流量显示仪表都配有开平方装置,以使流量刻度线性化。多数仪表还设有流量积算装置,以显示累积流量,以便经济核算。这种利用差压测量流量的方法历史悠久,比较成熟,世界各国一般都用在比较重要的场合,约占各种流量测量方式的70%。发电厂主蒸汽、给水、凝结水等的流量测量都采用这种表计。 4.变面积式流量计(等压降式流量计) 放在上大下小的锥形流道中的浮子受到自下而上流动的流体的作用力而移动。当此作用力与浮子的“显示重量”(浮子本身的重量减去它所受流体的浮力)相平衡时,俘子即静止。浮子静止的高度可作为流量大小的量度。由于流量计的通流截面积随浮子高度不同而异,而浮子稳定不动时上下部分的压力差相等,因此该型流量计称变面积式流量计或等压降式流量计。该式流量计的典型仪表是转子(浮子)流量计。 5.动量式流量计 利用测量流体的动量来反映流量大小的流量计称动量式流量计.由于流动流体的动量P与流体的密度

相关主题
文本预览
相关文档 最新文档