当前位置:文档之家› 基于单片机的温度控制器设计

基于单片机的温度控制器设计

摘要

温度是工业控制中主要的被控参数之一,在日常生活中也经常要用到温度的检测及控制。本文介绍了一种以AT89C51单片机为核心控制器,以DS18B20为温度传感器的温度控制器。首先,通过对元器件的选择,设计控制器的硬件电路,包括测温电路、按键电路、温度控制继电器电路、LCD液晶显示电路,AT89C51单片机最小系统等;然后,设计相关应用程序,包括主程序,读出温度子程序、温度控制继电器程序、LCD显示程序、按键处理程序等;最后,通过仿真,对整个系统进行调试、分析。最终实现温度采集、显示、控制等功能。仿真结果表明,所设计的控制器能够完成所需功能,并且具有测量精准高、实时性好、使用方便等特点。

关键词:温度控制;AT89C52;温度显示;DS18B20

ABSTRACT

The temperature is one of the control parameters in the main industrial control,temperature detection and control are often used to in daily life.This paper introduces a kind of the temperature controller,AT89C51 is the controller,temperature sensor is DS18B20.At first,through the choice of components,hardware circuit design,including temperature measurement circuit,key circuit,temperature control relay circuit,LCD liquid crystal display circuit,AT89C51 single-chip microcomputer minimum systems;Then,design related applications,including the main program,read the temperature procedure,temperature control relay program,LCD display procedures,key procedures;Finally,through the simulation to the whole system commissioning,analysis,can realize temperature gathering,display,control,and other functions.The simulation results show that the designed controller can complete the function,and it has high precision measurement,good real-time,convenient use,etc.

Key word: Temperature control;AT89C52;Temperature display;DS18B20

目录

摘要.............................................................. I ABSTRACT ........................................................... II 第1章引言.. (1)

1.1 研究的背景及意义 (1)

1.2 国内外研究现状 (1)

1.3 研究的设想 (2)

第2章温度控制器总体设计 (3)

2.1 温度控制器的选择 (3)

2.1.1 基于51单片机的温度控制器 (3)

2.1.2 基于ARM的温度控制器 (3)

2.1.3 基于PLC的工业温度控制器 (4)

2.2 本设计的重难点 (5)

2.3 本章小结 (5)

第3章温度控制器的硬件电路设计 (6)

3.1 温度传感器的选择 (6)

3.1.1 数字温度传感器 (6)

3.1.2 热电阻温度传感器 (7)

3.1.3 方案选择 (7)

3.2 温度采集模块电路的设计 (7)

3.2.1 DS18B20介绍 (7)

3.2.2 温度传感器工作原理 (8)

3.2.3 DS18B20工作原理介绍 (10)

3.2.4 DS18B20使用中的注意事项 (11)

3.2.5 DS18B20和AT89C51单片机连接电路 (12)

3.3 显示模块设计 (12)

3.3.1 LCD液晶显示器简介 (12)

3.3.2 液晶模块简介 (13)

3.3.3 液晶显示部分与STC89C51单片机的接口 (15)

3.4 按键电路的设计 (16)

3.4.1 单片机检测按键的原理 (16)

3.4.2 矩阵键盘的设计 (17)

3.5 本章小结 (18)

第4章系统软件设计 (19)

4.1 主程序的设计 (19)

4.2 DS18B20初始化程序 (20)

4.3 LCD初始化程序的设计 (22)

4.4 继电器控制的程序 (23)

4.6 本章小结 (29)

第5章仿真结果及分析 (30)

5.1 系统仿真 (30)

5.2 仿真分析 (31)

5.3 本章小结 (31)

第6章结束语 (32)

6.1 研究总结 (32)

6.2 本次设计的不足 (32)

6.3 发展前景及展望 (32)

6.4 设计小结 (33)

致谢 (34)

参考文献 (35)

附录 (35)

附录1 程序清单 (36)

附录2 电路原理图 (63)

第1章引言

1.1 研究的背景及意义

温度控制器在生产和生活的领域已经得到了广泛的使用,如家电、汽车、以及各种工业生产过程等,控制电路也由于应用场合所要求的性能指标的不同而不同,在工业生产中,控制技术人员一直都在努力解决许多问题,如何提高温度控制对象的控制性能,以及怎样提高控制精度的问题。随着微机测量和控制技术的迅速发展与广泛应用,以单片机为核心的温度采集与控制系统的研发及应用在很大程度上提高了工业生产及生活中对温度的控制水平[1]。

1.2 国内外研究现状

由于微机测量和控制技术的迅速发展和广泛应用,以单片机为核心的温度采集与控制器的设计与应用大大提高了生活和工业生产过程中对温度的控制水平。国外研究对温度控制技术早在20世纪70年代的时候就已经开始了,比较早。最开始采用的组合仪表装置是模拟式的,能够实时采集和指示、记录以及控制现场的信息。80年代的末期开始出现的的温度控制系统是分布式的。当今正在开发和研制计算机数据采集的控制系统是多因子综合温度控制系统。这些年来,世界各国的温度测控技术发展的步伐加快,很多国家在实现自动化的基础上正向着完全自动化、无人化的方向大力发展温度控制系统。美国、日本的温度监测系统近20年来发展很快,他们结合本国条件做出了具有创新特色的成就,但其监控设备价格昂贵。

我国的温度测控系统的技术研究比较晚,开始于20世纪的80年代。我国的工程技术人员在不断地吸收发达国家的温度测控技术的基础之上,逐步掌握了温度室内微机控制系统的技术,但是该技术仅仅限于对温度的单项的环境因子进行控制。我国的温度测控设施计算机的应用发展,在从消化吸收、到简单应用阶段再到实用化、综合性应用阶段进行过渡和不断地发展。在技术上,则是以单片机控制的单参数和单回路的居多,目前还没有真正意义上的多参数温度综合控制系统,与发达国家比,还存在很大差距。我国近年引进了多达16个国家和地区的工厂环境控制系统,对吸收国外先进经验、推动工厂温度自动检测产生了积极的

作用。我国目前的温度测量控制系统离到工厂化还有很长的路要走,生产和实际中仍有许多的问题等着我们解决,如存在着装备配套的能力落后,产业化的程度低下,环境控制的水平滞后,软硬件的资源还不能共享和可靠性差等缺点。随着社会的不断发展,温度的测量以及控制变得越来越重要。本文拟采用STC89C52单片机设计了一种对温度进行实时测量及控制的系统。单片机STC89C52 能够根据温度传感器DS18B20 所采集的温度在液晶显示屏上实时显示,可以手动设置温度范围,通过继电器控制加热,从而把温度控制在设定的范围之内。所有温度数据均通过液晶显示器LCD显示出来。

1.3 研究的设想

本文拟设计一种基于微处理器的温度实时采集控制系统。温度控制器除需具有温度采集功能外,还要能实时显示温度数据,可以手动设置温度范围,通过继电器控制加热从而把温度控制在设定的范围之内等功能。通过对微处理器的选型、温度传感器的选择、显示器的选择以及设计外围电路完成硬件电路的设计。同时,还需要进行软件的设计完成所需功能。

系统通过矩阵键盘来设定要控制的温度大小,单片机STC89C52 能够根据温度传感器DS18B20 所采集的温度信号控制温度升降继电器,从而使温度稳定在设定的大小。所有温度数据均通过液晶显示器LCD显示出来。

第2章温度控制器总体设计

2.1 温度控制器的选择

2.1.1 基于51单片机的温度控制器

图2-1是基于51单片机的温度控制器框图。该控制器由温度采集模块、控制模块、显示模块、报警模块以及电源模块等组成。

基于单片机的温度控制器框图如图2-1所示。

单片机显示模块报警电路电源模块

温度采集

模块

键盘模块

图2-1 基于单片机温度控制器框图

15单片机是控制器的控制核心,因此单片机的选择,对所设计系统的实现以及功能的扩展有着很大的影响。单片机种类很多,在众多51系列单片机中,较为常用的是ATMEL 公司的AT89C51和AT89S52单片机,AT89C51片内4KROM是Flash 工艺的,使用专用的编程器自己就可以随时对单片机进行电擦除和改写,片内有128字节的RAM。而AT89S52含有在系统可编程的Flash存储器,片内有8K闪存,RAM的容量也较AT89C51大,为256字节。显然这种单片机优点更多,开发时间也大为缩短[2]。

2.1.2 基于ARM的温度控制器

图2-2是基于ARM处理器的温度控制器框图。此控制器主要是针对工业控制领域现场的仪器仪表而开发的。该框图包括了监控复位、ARM微处理器、电源、存储器扩展(RAM、Flash和EEPROM)、网络通信、D/A转换输出、人机交换接口(LED)、温度检测电路、A/D转换、RS232通信和CPLD控制电路(外围设备的译码、配置,

实现系统的硬件软件化)等一些模块。

基于ARM 温度控制器框图如图2-2所示。

RS232

A/D 转换温度传感器

CPLD LCD

网络接口D/A 转换声光报警开关量输出键盘

电源模块、时钟电路、监督复位JTAC 接口和存储模块等

ARM 微处理器

图2-2 基于ARM 温度控制器框图

温度传感器用来测量外部温度信息,通过CPLD 控制,ARM 微处理器中处理A /D 转换后的数字信号,显示处理信息通过LCD 显示,由网络接121远程监控。当然,现场也可以通过键盘实时人工进行干预。通过RS232串口传送由ARM 微处理器处理的数据到上位机再进行显示存储。若是工作过程中出现了一些错误,立即产生声光报警。而且,键盘还可以在现场进行干预设置,处理故障等等。这里的ARM 单片机选用的是ATMEL 公司的32位AT91M40800。AT91M40800不但有ARM7TDMI 内核,而且它的内部还集成了有许多外围的一些设备,很多的内部寄存器就可以快速完成中断的处理。因为AT91M40800微处理器能够通过编程的EBI 和片外存储器达到相连,使它具有很快的访问速度;而且它还具有8个优先级的向量中断控制器和外部数据的控制器相连接,从而可以提高中断响应的速度。所以,AT91M40800微处理器十分的适用于工业实时的控制领域,也是嵌入式工业温度控制器中处理器的最佳选择。

2.1.3 基于PLC 的工业温度控制器

PLC 与其他微型计算机相比,更适于在恶劣的工业环境中运行,且数据处理功能大大增强, 具有强大的功能指令,编程也极为方便简单编程指令具有模块化功能,能够解决就地编程、监控、通讯等问题。PLC 的梯形图语言清晰、直观、可读性强, 易于掌握.PLC 具有丰富的功能指令,能实现加减乘除四则运算及数据传送比较移位等功能,还具有实时时钟指令,可方便的实现定时及时间和年月日的设置

与显示。

PLC的主要优点可概括如下:

1、高可靠性;

2、丰富的I/O接口模块;

3、采用模块化结构;

4、编程简单易学;

5、安装简单,维修方便。

2.1.4方案选择

上述三种方案各有其优点,且均适合在工业场合使用,但是基于ARM处理器的控制器设计方案,设计相对复杂,设计难度较大,开发周期较长;而基于PLC的温度控制器,设计成本高,灵活性较低,因此,本课题拟采用51单片机作为控制器的主控芯片,基于51单片机的温度控制器具有开发周期短,成本低,功耗低,设计简单等优点。

2.2 本设计的重难点

由于之前对51单片机的学习只限于理论,还没有真正利操作过51单片机的硬件和软件的实际开发,所以对51单片机进行编程和系统设计对我来说将会是一个很大的挑战。而数字温度传感器DS18B20的使用虽然使硬件电路大为简化,但是它的工作原理和各种时序非常复杂,要想使它正常工作,得到单片机要用到的温度采集信号,就必须对它的工作原理和各种时序非常熟悉,这些都是本次设计的重点和难点。

2.3 本章小结

本章介绍了数字温度控制器的设计思路,设计方案的选择,以及系统的组成和设计原理,介绍了主板电路和显示电路的原理,还介绍了数字温度传感器

DS18B20的特点,以及LCD的使用。并通过框图形式可以更直观、形象地描述了系统的整体组成结构。

第3章温度控制器的硬件电路设计

3.1 温度传感器的选择

温度是表征物体冷热程度的物理量,它可以通过物体随温度变化的某些特性(如电阻、电压变化等特性)来间接测量,利用这种物理特性制成的传感器称为温度传感器。常用的温度传感器有热电偶、热敏电阻、热电阻、集成温度传感器及数字式温度传感器等多种温度传感器。

3.1.1 数字温度传感器

典型的数字温度传感器如DS18B20,该传感器主要特性如下:

1、数据线供电是寄生电源方式下的供电方式,电压适应的范围更宽,电压范围:3.0~5.5V;

2、DS18B20在和微处理器的连接仅仅需一条总线即就可以实现DS18B20和微处理器双向的通信,它的单线接口方式十分特殊;

3、DS18B20可以支持多个点的组网功能,多个DS18B20可并联的在唯一的总线上,能够实现组网的多点测温;

4、转换的电路及全部传感器元件就像一只三极管集成在的集成电路内,DS18B20在使用的时候不需要任何的外围元件;

5、在-10~+85℃时精度为±0.5℃,测温范围-55℃~+125℃;

6、可分辨温度依次为0.5℃、0.25℃、0.125℃和0.0625℃,相对应的可以编程的分辨率是9~12位,可实现高精度测温;

7、12位分辨率时最多在750毫秒内把温度值转换为数字,在9位分辨率时最多在 93.75毫秒内把温度转换为数字,速度更快;

8、直接输出数字温度信号的测量结果,可传送CRC校验码,同时以"单总线"串行方式传送给CPU,有极强抗干扰和纠错能力;

9、负压特性:接反电源的极性时,芯片不会因发热而烧毁,但不能正常工作。

3.1.2 热电阻温度传感器

热电阻的测量精度高,性能稳定,使用方便,测量范围宽,在高精度、低温测量中占有重要的地位。热电阻传感器主要用于中低温度(-200℃~+650℃或850℃)范围的温度测量。常用的工业标准化热电阻有铂热电阻和铜热电阻。铂电阻传感器是利用金属铂(Pt)的电阻值随温度变化而变化的物理特性而制成的温度传感器。以铂电阻作为测温元件进行温度测量的关键是要能准确地测量出铂电阻传感器的电阻值。铂电阻具有适用范围广、测量范围大、稳定性高、重复性好、价格低廉、使用方便等优点,成为目前工业和实验室中温度测量应用最广泛普遍的传感元件之一,工业中应用较多的热电阻传感器如Pt100。

3.1.3 方案选择

对比上述两种方案,虽然Pt100的测量温度范围比较大,但是由于其测温原理是电阻值随着温度的改变而改变,需要设计非常优良的温度采集电路,其中应包括测温部分,线性化部分,放大部分,A/D 转换部分,这就会使外围的电路更加复杂。DS18B20是数字式温度传感器,只需一根总线就可以与单片机通信,是外围的电路大大简化,测量的精度更准确。因此本控制器的设计中,温度传感器拟选择DS18B20作为温度采集传感器。

3.2 温度采集模块电路的设计

3.2.1 DS18B20介绍

DS18B20引脚图如图3-1所示。

27.0

DQ 2VCC 3GND 1

U1

DS18B20

图3-1 DS18B20引脚图

DALLAS 最新的单线数字温度传感器DS18B20是一种新型“一线器件”,它的体积更小、更适用于多种场合、而且适用电压更宽、也更经济。DALLAS 半导体公司开发的数字化温度传感器DS18B20也是世界上第一片支持“一线总线”接口的数字温度传感器。温度的测量范围为-55~+125 摄氏度,能编程为9位~12 位转换精度,0.0625摄氏度的测温分辨率,分辨率的设定参数及用户设定的报警温度会存储在EEPROM 中,掉电后依然能保存。用符号扩展的16位数字量方式串行的输出被测温度;采用寄生电源方式产生,其工作的电源既可以远端引入;3 根或2根线上可并联多个DS18B20,CPU只需要一根端口线就能与诸多的DS18B20 通信,较少占用微处理器的端口,可以节省逻辑电路和大量的引线,因而用它来组成的测温系统,具有线路简单,在一根通信线,可挂

多个这样的数字温度计,非常的方便。

3.2.2 温度传感器工作原理

DS18B20的读写时序及测温原理与DS1820是相同的,得到的温度值的位数却会因为分辨率的不同而不同,而且进行温度转换时的延时时间从2s 减为750ms。DS18B20的测温原理:低温度系数的晶振,它是用以产生固定频率的脉冲信号给计数器1,它的振荡频率受到温度的影响非常的小。高温度系数的晶振,则它的振荡率会随着温度的变化而明显的改变,产生的信号就作为计数器2的脉冲输入。温度寄存器以及计数器1被预先设置在-55℃所对应的一个基数值。对从低温度系数晶振产生的脉冲,将会通过计数器1来进行减法的计数,当计数器1预置的值减到了0的时候,计数器1的预置值将重新装入,这时候温度寄存器的值就加1。计数器1也就重新开始进行计数,如此循环,停止温度寄存器值的累加时计数器2的计数值到0,所测温度就为此时温度寄存器中的数值。

DS18B20功能特点:

1.采用了总线技术,与单片机的通信只需要一根I/O线,在一根线上可以挂接多个的DS18B20。

2.每只DS18B20它是根据序列号来访问相应的器件,具有一个独有的,不可更改的64位的序列号,。

3.低压供电,电源范围为3--5V,可本地供电,也能直接通过数据线提供电源(即寄生电源2方式)。

4.在-10°C至+85°C范围内的可以达到精度为±0.5摄氏度,测温的范围为-55℃~+125摄氏度。

5.温度超过了的预定值的器件可以用报警搜索命令识别以及寻址。

6.用户可以自己设定报警上下限温度。

7.它转换12位的温度的最大时间为750毫秒,可编辑的数据位9--12位。

8.DS18B20的分辨率由用户通过EEPROM设置为9--12位。

9.DS18B20可以将检测到的温度值直接转化为数字量,并且通过串行通信方式

10.与主控制器进行数据的通信。

DS18B20有4个主要数据部件:

1. 光刻ROM中的64位序列号在出厂之前就已经被光刻好了,它可看作该DS18B20的地址的序列码。64位光刻ROM的排列为:开始的8位(28H)是产品类型的标号,接着48位是该DS18B20的自身序列号,最后的8位是前面的56位循环冗余校验码(CRC=X8+X5+X4+1)。光刻ROM的作用是让每一个DS18B20都不相同,这样的话就能够一根总线上可挂接多个的DS18B20。

2. DS18B20温度传感器能实现对温度的测量,以12位的转化为例:用16位的符号扩展二进制补码读数的形式提供,以0.0625℃/LSB的形式表达,其中S是符号位。

3. DS18B20温度传感器它的内部存储器包括一个高速暂存RAM以及一个非易失性的、可电擦除的EEPRAM,后者存放高温度和低温度的触发器 TH、TL以及结构寄存器。

4. 配置寄存器。

DS18B20内部结构及功能:

DS18B20内部的结构如图3-7所示。主要包括以下部分:电源,温度传感器,64位的ROM单总线接口,用于存放中间数据的高速暂存器RAM,用于存储用户设

定温度上下限的TH和TL触发器,控制逻辑,8为循环冗余校验码(CRC)发生器等7部分。DS18B20内部结构如图3-2所示。

VDD

温度传感器

高温触发器TH

低温触发器TL

配置触发器

8位CRC发生器64

RAM

线

存储器和控制逻辑

图3-2 DS18B20内部结构

3.2.3 DS18B20工作原理介绍

温度的读取:

DS18B20出厂时配置为12位,读取温度时共读取16位,所以要把后11位的2进制转化为10进制后再乘以0.0625就是所测的温度,还需判断正负。前5个的数字为符号位,若前5位为1时,读取的温度就为负数;若前5位为0时,读取的温度就为正数。

DS18B20写操作:

1.数据线首先置低电平“0”。

2.延时的时间为15ms。

3.再按从低位到高位的顺序发送字节(一次只能发送一位)。

4.延时的时间为45ms。

5.把数据线拉到高电平。

6.重复上(1)到(6)的操作,一直到所有的字节全部都发送完为止。

7.最后把数据线拉高。

DS18B20读操作:

1.把数据线拉高“1”。

2.延时2ms。

3.数据线拉低“0”。

4.延时15ms。

5.将据线拉高“1”。

6.延时15ms。

7.读数据线的状态得到了1个状态位,并且进行数据处理。

8.延时30ms。

3.2.4 DS18B20使用中的注意事项

DS18B20 虽具有连接方便、测温系统简单、占用口线少、测温的精度高等优点,然而在实际的应用中也应该注意以下几方面问题:

1.DS18B20 从测温结束直到把温度值转换成为了数字量,需要一些转换时间,这必须保证,不然会出现转换错误现象,从而使温度输出总是显示为85度。

2.在实际的使用中,应该使电源电压保持在5V 左右的大小,若是电源的电压过低了,就会降低所测得的温度精度。

3.较小的硬件开销就需要比较复杂的软件来进行补偿,因为DS1820和微处理器间数据是串行传送的,所以,对DS1820进行读写编程,就必须严格保证读写时序,否则就不能读取测得的温度值。

4.DS18B20的有关资料由于未提及单总线上所挂DS18B20 数量,就使人误认为能够挂任意多个的DS18B20,但在实际的应用中并不是这样的,如果在单总线上所挂载的DS18B20超过了8个,就要解决微处理器的总线驱动问题,在进行多点测温系统设计时必须注意这一点。

5.在DS18B20测温程序的设计中,向DS18B20 发出了温度转换命令后,程序总是要等待DS18B20的返回信号,若某个DS18B20 接触不好或这断线,当程序读该DS18B20 时,将会没有返回的信号,程序就进入了死循环,这一点在进行DS18B20

硬件连接和软件设计的时候也要给予重视[3][4]。

3.2.5 DS18B20和AT89C51单片机连接电路

DS18B20可以有两种供电的方式,一种用的是电源供电的方式,此时DS18B20的1脚接地,3脚接电源,2脚是信号线。另一种是寄生电源供电的一种方式,如图3-3 所示单片机端口接的是单总线,为了在DS18B20有效的时钟周期之内提供的电流足够,对总线的上拉可用一个MOSFET 管来完成。

当DS18B20处于温度A/D 转换操作和写存储器操作时,必须有强的上拉在总线上,上拉的最大开启时间为10微秒。采用寄生电源供电的供电方式时VDD 端接地,单线制由于只有一根线,因此发送接口必须是三态的[5]。

DS18B20与单片机的接口电路如图3-3所示。

XTAL2

18

XTAL1

19

ALE 30EA

31

PSEN 29RST

9

P0.0/AD039P0.1/AD138P0.2/AD237P0.3/AD336P0.4/AD435P0.5/AD534P0.6/AD633P0.7/AD732P1.01P1.12P1.23P1.34P1.45P1.56P1.67P1.78

P3.0/RXD 10P3.1/TXD 11P3.2/INT012P3.3/INT113P3.4/T014P3.7/RD

17

P3.6/WR 16P3.5/T115P2.7/A1528P2.0/A821P2.1/A922P2.2/A1023P2.3/A1124P2.4/A1225P2.5/A1326P2.6/A1427U1

AT89C51

27.0

DQ 2VCC 3GND

1

U2

DS18B20

R1

4.7k

图3-3 DS18B20与单片机的接口电路

3.3 显示模块设计

3.3.1 LCD 液晶显示器简介

显示器是人和机器交流信息的重要界面,早期的是以显像管(CRT/Cathode Ray Tube)显示器为主,但是随着技术的不断发展,各种各样的显示技术不断诞生,而

液晶(LCD)显示器由于具有耗电量较低、短小轻薄、无辐射的危险,平面直角显示,和稳定不闪烁的影像等优势,更是在近年来不断下跌的价格吸引下,逐渐取代了主流的CRT之地位。

液晶是一种既有液体的流动性还具光学特性的有机化合物,它的透明程度和呈现颜色受外加电场影响,利用这个特点就可以做成字符显示器。

液晶显示器(LCD)英文为Liquid Crystal Display,它是一种采用液晶控制透光度的技术来实现色彩的显示器。和CRT显示器比,LCD的优点是十分明显的。因为通过控制是否透光从而控制亮和暗,当色彩不变化时,液晶也就保持不变,这样就不用考虑刷新率的问题。

显示接口用来显示系统的状态,命令和采集的电压数据。本系统的显示部分用的是LCD液晶模块,采用的是一个16×1字符型液晶的显示模块。

点阵图形式的液晶显示器是由 M 行×N 列个显示单元组成的,若LCD 显示屏有64行,每行有 128列,每 8列对应 1 个字节的 8 个位,则每行有 16 字节,共有 16×8=128个点所组成,屏上 64×16 个显示单元和显示 RAM 区 1024 个的字节是相对应的,屏上相应位置的亮暗和每一个字节的内容是对应的。一个字符是由 6×8 或者 8×8一个点阵所组成的,所以要找到和屏上某几个位置相对应显示RAM区的 8 个字节,而且应该使每一个字节不的同位为‘1’状态,其它的则为‘0’,为‘1’的点亮,为‘0’的点为暗,这样就组成了某一个字符。但是对内部自带字符发生器的控制器来说,字符显示就会比较简单了,可以使控制器在文本方式下工作,根据在每行的列数找出显示RAM对应的地址和LCD开始显示的行列号,设立光标,在此送入该字符的对应代码就可以了。

3.3.2 液晶模块简介

LM016L结构及功能:

LM016L液晶模块采用了HD44780的控制器,hd44780是具有简单而功能较强的指令集,能实现字符移动,闪烁等一些功能,LM016L与单片机MCU通讯可以采用8位或者4位并行传输的两种方式,hd44780控制器是由两个8位的寄存器,地址计数器RAM(AC),和字符发生器ROMA(CGOROM)字符发生器RAM(CGRAM),显示数

RAM (DDRAM ),及指令寄存器(IR )以及数据寄存器(DR )忙标志(BF )。寄存指令码用IR ,只可以写入不可以读出,DR 用以寄存数据,数据是暂存从DDRAM 和CGRAM 读出,或内部操作自动的写入DDRAM 和CGRAM 的数据,当BF 为1时,液晶模块就会处于内部模式,不响应接受数据和外部操作指令,DDTAM 用以存储显示字符,能够存储总共80个字符码,CGROM 是由5*10点阵字符32种和8位字符码生成的5*7点阵字符160种.CGRAM 是专门给用户编写特殊字符而留的,容量只有64个字节,可以自定义4个5*10点阵字符或8个5*7点阵字符,AC 可存储CGRAM 和DDRAM 的地址,若是地址码随指令写入了IR 的话,那么IR 就自动把地址码装入AC ,与此同时,选择DDRAM 或者CGRAM [5]。LM016L 液晶模块的引脚图如图3-4所示。

D 7

14

D 613D 512D 411D 310D 29D 18D 07

E 6

R W 5R S 4V S S

1V D D 2V E E

3

LCD1

LM016L

图3-4 1601引脚图

LM016L 引脚介绍:

Vss (1脚):一般的会接地。 Vdd (2脚):一般接电源。

Vee (3脚):液晶显示器的对比度调整端,接电源时它的对比度是最弱的,接地时它的对比度却是最高的(如果对比度过高则会产生“鬼影”,使用时可通过一个10K 电位器用来调整对比度)。

RS (4脚):RS 是选择寄存器的引脚,低电平0时选择的是指令寄存器、高电平1时就会选择数据寄存器。

R/W (5脚):R/W 是读写的信号线,低电平(0)时则进行的是写操作,高电平(1)时

进行的是读操作。

E(6脚):E(或EN)端是使能(enable)端,也即下降沿使能。

DB0(7脚):底4位的三态、双向数据总线的 0位(最低位)。

DB1(8脚):底4位的三态、双向数据总线的1位。

DB2(9脚):底4位的三态、双向数据总线的 2位。

DB3(10脚):底4位的三态、双向数据总线的 3位。

DB4(11脚):高4位的三态、双向数据总线的4位。

DB5(12脚):高4位的三态、双向数据总线的 5位。

DB6(13脚):高4位的三态、双向数据总线的 6位。

DB7(14脚):高4位的三态、双向数据总线的7位(最高位)(也是busy flag)[6]。

寄存器选择控制如表3-1。

表3-1寄存器选择控制

RS R/W 操作说明

0 0 写入指令寄存器(清除屏等)

0 1 读busy flag(DB7),及读取位址计数器(DB0~DB6)值

1 0 写入数据寄存器(显示各字型等)

1 1 从数据寄存器中读取数据

3.3.3 液晶显示部分与STC89C51单片机的接口

如图3-5所示。用89C51的P0口作数据线,用P1.2、P1.1、P1.0分别作LCD 的E、R/W、RS。其中,E是下降沿触发片选信号,R/W是读写信号,RS是寄存器选择信号,本模块有如下设计要点:显示模块的初始化:首先要清屏,然后再设置8位接口数据位,显示的行数为1行,字型的为5×7点阵,然后再设置成整体显示,取消光标以及字体的闪烁,最后再设置成正向增量的方式且为不移位。送字

符给LCD 显示缓冲区,程序采用的是一个显示的字符,2个字符数组,另一则显示电压数据,相应数组中被送入要显示的字符或者数据,完成之后再统一的显示.LCD 显示的缓冲区送人一个要显示的字符或者数据,通过软件延时2.5毫秒后,再作个数是否够显示的判断,若不足够则地址加一,取下一个要显示的字符或者数据[6][7]。

液晶与80C51单片机连接电路如图3-5所示。

XTAL2

18

XTAL1

19

ALE 30EA

31

PSEN 29RST

9

P0.0/AD039P0.1/AD138P0.2/AD237P0.3/AD336P0.4/AD435P0.5/AD534P0.6/AD633P0.7/AD732P1.01P1.12P1.23P1.34P1.45P1.56P1.67P1.78

P3.0/RXD 10P3.1/TXD 11P3.2/INT012P3.3/INT113P3.4/T014P3.7/RD

17

P3.6/WR 16P3.5/T115P2.7/A1528P2.0/A821P2.1/A922P2.2/A1023P2.3/A1124P2.4/A1225P2.5/A1326P2.6/A1427U1

AT89C51

D 7

14

D 613D 512D 411D 310D 29D 18D 07

E 6

R W 5R S 4V S S

1V D D 2V E E

3

LCD1

LM016L

R110k R210k R310k R410k R510k R610k

R710k R810k

图3-5 液晶与89C51单片机的连接电路

3.4 按键电路的设计

3.4.1 单片机检测按键的原理

单片机的I/O 口即可以作为输出也可以作为输入使用,当该检测按键使用的是它的输入功能,我们把按键的其中一端接地,另一段与单片机的I/O 口相连,开

温度控制器的设计与制作共13页

温度控制器的设计与制作 一、功能要求 设计并制作一个温度控制器,用于自动接通或断开室内的电加热设备,从而使室内温度达到设定温度要求,并能实时显示室内温度。当室内温度大于等于设定温度时,控制器断 ?时,控制器接通电加热设备。 开电加热设备;当室内温度比设定温度小2C 控温范围:0~51C? 控温精度:≤1C? 二、硬件系统设计 1.硬件系统由七部分组成,即单片机及看门狗电路、温度检测电路、控制输出电路、键盘电路、显示电路、设置温度储存电路及电源电路。 (1)单片机及看门狗电路 根据设计所需的单片机的内部资源(程序存储器的容量、数据存储器的容量及I/O口数量),选择AT89C51-24PC较合适。为了防止程序跑飞,导致温度失控,进而引起可怕的后果,本设计加入了硬件看门狗电路IMP813L,如果它的WDI脚不处于浮空状态,在1.6秒内WDI不被触发(即没有检测到上什沿或下降沿),就说明程序已经跑飞,看门狗输出端WDO将输出低电平到手动复位端,使复位输出端RST发出复位信号,使单片机可靠复位,即程序重新开始执行。(注:如果选用AT89S51,由于其内部已具有看门狗电路,就不需外加IMP813L) (2)温度检测电路 温度传感器采用AD590,它实际上是一个与绝对温度成正比的电流源,它的工作电压为4~30V,感测的温度范围为-550C~+1500C,具有良好的线性输出,其输出电流与温度成正比,即1μA/K。因此在00C时的输出电流为273.2μA,在1000C时输出电流为373.2μA。温度传感器将温度的变化转变为电流信号,通过电阻后转变电压信号,经过运算放大器JRC4558运算处理,处理后得到的模拟电压信号传输给A/D转换部分。A/D转换器选用ADC0804,它是用CMOS集成工艺制成的逐次逼近型模数转换芯片,分辨率8位,转换时间100μs,基准电压0~5V,输入模拟电压0~5V。 (3)控制输出电路 控制信号由单片机的P1.4引脚输出,经过光耦TLP521-1隔离后,经三极管C8550直接驱动继电器WJ108-1C-05VDC,如果所接的电加热设备的功率≤2KW,则可利用继电器的常开触点直接控制加热设备,如果加热设备的功率>2KW,可以继电器控制接触器,由接触器直接控制加热设备。 (4)键盘电路 键盘共有四个按键,分别是S1(设置)、S2(+)、S3(-)、S4(储存)。通过键盘来设置室内应达到的温度,键盘采用中断方式控制。 (5)显示电路 显示电路由两位E10501_AR数码管组成,由两片74LS164驱动,实现静态显示,74LS164所需的串行数据和时钟由单片机的P3.0和P3.1提供。对于学过“串行口”知识的班级,实习时,可以采用串行口工作于方式0,即同步移位寄存器的输出方式,通过串行口输出显示数据(实时温度值或设置温度值);对于没学过“串行口”知识的班级,实习时,可以采用模拟串行口的输出方式,实现显示数据的串行输出。 (6)设置温度存储电路 为了防止设定温度在电源断电后丢失,此设计加入了储存电路,储存器选用具有I2C总线功能的AT24C01或FM24C01均可。每次通过键盘设置的室内设定温度都通过储存器储存起来,即使是电源断电,储存器存储的设定温度也不丢失,在电源来电后,单片机自动将设

基于PLC的锅炉温度控制系统毕业设计

基于PLC的锅炉温度控制系统 作者姓名xxx 专业自动化 指导教师姓名xxx 专业技术职务讲师

目录 摘要 (1) 第一章绪论 (3) 1.1课题背景及研究目的和意义 (3) 1.2国内外研究现状 (3) 1.3项目研究内容 (4) 第二章 PLC和组态软件基础 (5) 2.1可编程控制器基础 (5) 2.1.1可编程控制器的产生和应用 (5) 2.1.2可编程控制器的组成和工作原理 ··············错误!未定义书签。 2.1.3可编程控制器的分类及特点 (7) 2.2组态软件的基础 (8) 2.2.1组态的定义 (8) 2.2.2组态王软件的特点 (8) 2.2.3组态王软件仿真的基本方法 (8) 第三章 PLC控制系统的硬件设计 (9) 3.1 PLC控制系统设计的基本原则和步骤 (9) 3.1.1 PLC控制系统设计的基本原则 (9) 3.1.2 PLC控制系统设计的一般步骤 (9) 3.1.3 PLC程序设计的一般步骤 (10) 3.2 PLC的选型和硬件配置 (11) 3.2.1 PLC型号的选择 (11) 3.2.2 S7-200CPU的选择 (12) 3.2.3 EM235模拟量输入/输出模块 (12) 3.2.4 热电式传感器 (12) 3.2.5 可控硅加热装置简介 (12) 3.3 系统整体设计方案和电气连接图 (13) 3.4 PLC控制器的设计 (14) 3.4.1 控制系统数学模型的建立 (14)

3.4.2 PID控制及参数整定 (14) 第四章 PLC控制系统的软件设计 (16) 4.1 PLC程序设计的方法 (16) 4.2 编程软件STEP7--Micro/WIN 概述 (17) 4.2.1 STEP7--Micro/WIN 简单介绍 (17) 4.2.2 计算机与PLC的通信 (18) 4.3 程序设计 (18) 4.3.1程序设计思路 (18) 4.3.2 PID指令向导 (19) 4.3.3 控制程序及分析 (25) 第五章组态画面的设计 (29) 5.1组态变量的建立及设备连接 (29) 5.1.1新建项目 (29) 5.2创建组态画面 (33) 5.2.1新建主画面 (33) 5.2.2新建PID参数设定窗口 (34) 5.2.3新建数据报表 (34) 5.2.4新建实时曲线 (35) 5.2.5新建历史曲线 (35) 5.2.6新建报警窗口 (36) 第六章系统测试 (37) 6.1启动组态王 (37) 6.2实时曲线观察 (38) 6.3分析历史趋势曲线 (38) 6.4查看数据报表 (40) 6.5系统稳定性测试 (42) 结束语 (43) 参考文献 (44) 致谢 (45)

单片机课程设计(温度控制器)

基于单片机的温度控制器设计 内容摘要:该温度报警系统以AT89C51单片机为核心控制芯片,实现温度检测报警功能的方案。该系统能实时采集周围的温度信息,程序内部设定有报警上下限,根据应用环境不同可设定不同的报警上下限。该系统实现了对温度的自动监测和自动调温功能。 关键词:AT89C51ADC0808 温度检测报警自动调温 Abstract:The temperature alarm system AT89C51 control chip, realize temperature detection alarm function scheme. The system can collect real-time temperature information around that internal procedures set alarm equipped, according to different application environment can be set different alarm upper. The system realizes the automatic monitoring of temperature. The instrument can achieve the automatic thermostat function. Keywords:AT89C51 ADC0808Temperature detectingalarmautomatic thermostat 引言:本课题是基于单片机的温度控制器设计,经过对对相关书籍资料的查阅确定应用单片机为主控模块通过外围设备来实现对温度的控制。实现高低温报警、指示和低温自加热功能(加热功能未在仿真中体现)。 1.设计方案及原理 1.1设计任务 基于单片机设计温度检测报警,可以实时采集周围的温度信息进行显示,并且可以根据应用环境不同设定不同的报警上下限。 1.2设计要求 (1)实时温度检测。 (2)具有温度报警功能。 (3)可以设报警置温度上下限。 (4)低于下限时启动加热装置。 1.3总体设计方案及论证

温度控制器的设计

目录 第一章课程设计要求及电路说明 (3) 1.1课程设计要求与技术指标 (3) 1.2课程设计电路说明 (4) 第二章课程设计及结果分析 (6) 2.1课程设计思想 (6) 2.2课程设计问题及解决办法 (6) 2.3调试结果分析 (7) 第三章课程设计方案特点及体会 (8) 3.1 课程设计方案特点 (8) 3.2 课程设计心得体会 (9) 参考文献 (9) 附录 (9)

第一章课程设计要求及电路说明 1.1课程设计要求与技术指标 温度控制器的设计 设计要求与技术指标: 1、设计要求 (1)设计一个温度控制器电路; (2)根据性能指标,计算元件参数,选好元件,设计电路并画出电路图; (3)撰写设计报告。 2、技术指标 温度测量范围0—99℃,精度误差为0.1℃;LED数码管直读显示;温度报警指示灯。

1.2课程设计电路说明 1.2.1系统单元电路组成 温度计电路设计总体设计方框图如图1所示,控制器采用单片机AT89S51,温度传感器采用DS18B20,用3位LED数码管以串口传送数据实现温度显示。 1.2.2设计电路说明 主控制器:CPU是整个控制部分的核心,由STC89C52芯片连同附加电路构成的单片机最小系统作为数据处理及控制模块. 显示电路:显示电路采用4个共阳LED数码管,用于显示温度计的数值。报警电路:报警电路由蜂鸣器和三极管组成,当测量温度超过设计的温度时,该电路就会发出报警。 温度传感器:主要由DS18B20芯片组成,用于温度的采集。 时钟振荡:时钟振荡电路由晶振和电容组成,为STC89C52芯片提供稳定的时钟频率。

第二章课程设计及结果分析 2.1课程设计 2.1.1设计方案论证与比较 显示电路方案 方案一:采用数码管动态显示 使用一个七段LED数码管,采用动态显示的方法来显示各项指标,此方法价格成本低,而且自己也比较熟悉,实验室也常备有此元件。 方案二:采用LCD液晶显示 采用1602 LCD液晶显示,此方案显示内容相对丰富,且布线较为简单。 综合上述原因,采用方案一,使用数码管作为显示电路。 测温电路方案 方案一:采用模拟温度传感器测温 由于本设计是测温电路,可以使用热敏电阻之类的器件利用其感温效应,在将随被测温度变化的电压或电流采集过来,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来,这种设计需要用到A/D转换电路,感温电路比较麻烦。 方案二:采用数字温度传感器 经过查询相关的资料,发现在单片机电路设计中,大多数都是使用传感器,所以可以采用一只温度传感器DS18B20,此传感器,可以很容易直接读取被测温度值,进行转换,就可以满足设计要求。 综合考虑,很容易看出,采用方案二,电路比较简单,软件设计也比较简单,故采用了方案二。 2.1.2设计总体方案 根据上述方案比较,结合题目要可以将系统分为主控模块,显示模块,温度采集模块和报警模块,其框图如下:

基于单片机的温控器

天津理工大学 课程设计报告 题目:基于单片机的温控器设计 学生姓名李天辉学号 20101009 届 2013 班级电气4班 指导教师专业电气工程及其自动化

说明 1. 课程设计文本材料包括设计报告、任务书、指导书三部分,其中 任务书、指导书由教师完成。按设计报告、任务书、指导书顺序装订成册。 2. 学生根据指导教师下达的任务书、指导书完成课程设计工作。 3. 设计报告内容建议主要包括:概述、系统工作原理、系统组成、设计内容、小结和参考资料。 4. 设计报告字数应在3000-4000字,采用电子绘图、采用小四号宋 体、1.25倍行距。 5.课程设计成绩由平时表现(30%)、设计报告(30%)和提问成绩(40%) 组成。

课程设计任务书、指导书 课程设计题目: Ⅰ.课程设计任务书 一、课程设计的内容和要求(包括原始数据、技术要求、工作量) 当今社会,温控器已经广泛应用于电冰箱、空调和电热毯等领域中。其优点是控制精度高,稳定性好,速度快自动化程度高,温度和风速全自动控制,操作简单可靠,对执行器要求低,故障率低,效果好。目前国内外生产厂家正在研究开发第三代智能型室温空调温控器,应用新型控制模型和数控芯片实现智能控制。现在已有国内厂家生产出了智能型室温空调温控器,并已应用于实际工程。 本课程设计要求设计温度控制系统,主要由温度数据采集、温度控制、按键和显示、通讯等部分组成。温度采集采用NTC或PTC热敏电阻(或由电位器模拟)或集成温度传感器、集成运算放大器构成的信号调理电路、AD转换器组成。温控部分采用交流开关BT136通过改变导通角进行调压限流达到控制加热丝温度的目的。 温度控制算法采用PID控制,可以采用普通PID或模糊PID。对控制PID参数进行整定,进行MATLAB仿真,说明控制效果。进行程序编制。 设计通讯协议,并能够通过RS485总线将数据传回上位机。2.课程设计的要求 1、选择相应元器件设计温度控制系统原理图并绘制PCB版图。 2、进行PID控制算法仿真,设计PID参数,或模糊PID规则。 3、系统功能要求:a要能够显示实时温度;b能够进行温度设置;c 能够进行PID参数设定;d能够把数据传回上位机;e可以设定本机地址。F温度控制范围0~99.9度。 4、编制程序并调试通过,并有程序流程图。

数电-可调温度控制器

数电-可调温度控制器

绍兴文理学院电子设 计竞赛 2012年6月5日 作者:郭鹏程程攀邵美才

可调温度控器 【大二组】 目录: 目录: (3) 摘要 (4) 1.方案设计与论证 (5) 2.理论计算与分析 (5) 1.加热电阻功率10%~90%连续可调部分: (6) 3.电路图 (8) 4.测试方法与测试数据 (11) 5.对测试结果分析总结 (11)

摘要 本设计利用1N4148二极管的正面压降守温度影响的特性,来检测电路加热器的温度是否超过最大值;再通过最大温度值对应的二极管正面压降与一定值压降比较,若加热器温度达到最大值,则比较器输出高电平,比较器的输出接场效应管(IRF540)来控制电路的导通与断开,同时实现加热器功率连续可调并有八档循环控制与显示。模拟小汽车乘员使用的加热座椅垫功能。 关键词 占空比;PN结;比较器;555多谐振荡器;4051;40161;4511;LM324

1.方案设计与论证 方案一: 一个八选一模拟开关CD4051控制电路输出电压改变,功率电阻两端电压八 档变化。串联滑动变阻器接入电路控制功率电阻连续变化。一个四位二进制同步计数器CD40161和一个BCD —7段锁存译码驱动器CD4511通过按键(档位控制)间断闭合使一个共阴7段数码管显示0~7数字实现八档数字显示。 方案二: 555多谐振荡器和电位器通过调节输出电压的占空比使加热电阻的功率从 10%~90%可调。一个八选一模拟开关CD4051分别对应电阻接入控制555多谐振荡器输出电平占空比使加热电阻的功率1~8档循环调节。一个四位二进制同步计数器CD40161和一个BCD —7段锁存译码驱动器CD4511通过按键(档位控制)间断闭合使一个共阴7段数码管显示0~7数字实现八档数字显示。方案二符合设计要求。 2.理论计算与分析 电路断路 调节电位器阻值 555充电时间变化 电阻超温 按键改变阻值 555充电时间变化 占空比改变 电阻功率改变 占空比改变

基于单片机的温度控制器设计

技术参数和设计任务:1、利用单片机AT89S51实现对温度物理量的控制,以实现对温度控制的目的;2、为达到电源输出5V电压目标,完成电源电路的设计;3、为达到数码管显示目标,完成显示电路的设计;4、为达到键盘控制的目标,完成键盘电路的设计;5、为达到检测温度的目标,完成检测电路的设计;6、完成报警设计;7、进行软件设计[分配系统资源,编写系统初始化和主程序模块;编写数字调节器软件模块;编写A/D转换器处理程序模块;编写输出控制程序模块;其它程序模块(数字滤波、显示与键盘等处理程)等等。一、本课程设计系统概述1、系统原理温度传感器 DS18B20 从设备环境的不同位置采集温度,单片机 AT89S51 获取采集的温度值,经处理后得到当前环境中一个比较稳定的温度值,再根据当前设定的温度上下限值,通过加热和降温对当前温度进行调整。当采集的温度经处理后超过设定温度的上限时,单片机通过三极管驱动继电器开启降温设备 (压缩制冷器) ,当采集的温度经处理后低于设定温度的下时 , 单片机通过三极管驱动继电器开启升温设备 (加热器) 。当由于环境温度变化太剧烈或由于加热或降温设备出现故障,或者温度传感头出现故障导致在一段时间内不能将环境温度调整到规定的温度限内的时候,单片机通过三极管驱动扬声器发出警笛声。系统中将通过串口通讯连接PC机存储温度变化时的历史数据,以便观察整个温度的控制过程及监控温度的变化全过程。2、系统结构图本设计以AT89S51单片机为主控核心设计的一个温度控制系统,低温时可控制加热设备,高温时控制风扇,超出设定最高温度值时蜂鸣器发出声响报警。 图1 总体硬件方框图 3、文字说明控制方案(1)温度测量部分方案 DS18B20是DALLAS公司生产的一线式数字温度传感器,它具有微型化、低功耗、高性能抗干扰能力、强易配处理器等优点,特别适合用于构成多点温度测控系统,可直接将温度

温度控制器课程设计要点

郑州科技学院 《模拟电子技术》课程设计 题目温度控制器 学生姓名 专业班级 学号 院(系)信息工程学院 指导教师 完成时间 2015年12月31日

郑州科技学院 模拟电子技术课程设计任务书 专业 14级通信工程班级 2班学号姓名 一、设计题目温度控制器 二、设计任务与要求 1、当温度低于设定温度时,两个加热丝同时通电加热,指示灯发光; 2、当水温高于设定温度时,两根加热丝都不通电,指示灯熄灭; 3、根据上述要求选定设计方案,画出系统框图,并写出详细的设计过程; 4、利用Multisim软件画出一套完整的设计电路图,并列出所有的元件清单; 5、安装调试并按规定格式写出课程设计报告书. 三、参考文献 [1]吴友宇.模拟电子技术基础[M]. 清华大学出版社,2009.52~55. [2]孙梅生.电子技术基础课程设计[M]. 高等教育出版社,2005.25~28. [3]徐国华.电子技能实训教程[M]. 北京航空航天大学出版社,2006.13 ~15. [4]陈杰,黄鸿.传感器与检测技术[M].北京:高等教育出版社,2008.22~25. [5]翟玉文等.电子设计与实践[M].北京:北京中国电力出版社,2005.11~13. [6]万嘉若,林康运.电子线路基础[M]. 高等教育出版社,2006.27 ~29. 四、设计时间 2015 年12月21 日至2015 年12 月31 日 指导教师签名: 年月日

本设计是一种结构简单、性能稳定、使用方便、价格低廉、使用寿命长、具有一定的实用性等优点的温度控制电路。本文设计了一种温度控制器电路,该系统采用模拟技术进行温度的采集与控制。主要由电源模块,温度采集模块,继电器模块组成。 现代社会科学技术的发展可以说是突飞猛进,很多传统的东西都被成本更低、功能更多、使用更方便的电子产品所替代,本课程设计是一个以温度传感器采用LM35的环境温度简易测控系统,用于替代传统的低精度、不易读数的温度计。但系统预留了足够的扩展空间,并提供了简单的扩展方式供参考,实际使用中可根据需要改成多路转换,既可以增加湿度等测控对象,也能减少外界因素对系统的干扰。 首先温度传感器把温度信号转换为电流信号,通过放大器变成电压信号,然后送入两个反向输入的运算放大器组成的比较器电路,让电位器来改变温度范围的取值,最后信号送入比较器电路,通过比较来判断控制电路是否需要工作。此方案是采用传统的模拟控制方法,选用模拟电路,用电位器设定给定值,反馈的温度值与给定的温度值比较后,决定是否加热。 关键词:温度传感器比较器继电器

温度测控仪设计-毕业设计

温度测控仪设计 学生:XXX 指导教师:XXX 容摘要:本文主要介绍了智能温度测量仪的设计,包括硬件和软件的设计。先对该测量仪进行概括性介绍,然后介绍该测量仪在硬件设计上的主要器件:“Pt100热电阻”、AT89C51单片机和LCD显示器以及描述测量仪的总体结构原理。在本设计中,是以铂电阻PT100作为温度传感器,采用恒流测温的方法,通过单片机进行控制,用放大器、A/D 转换器进行温度信号的采集。总体来说,该设计是切实可行的。 关键词:温度 Pt100热电阻 AT89C51单片机 LCD显示器

Design of and control instrument Abstract: This paper describes the design of the intelligent temperature measuring instrument, including hardware and software design. Be the first general description of the measuring instrument, and then describes the hardware design of the measuring instrument's main device: "Pt100 thermal resistance", AT89C51 microcontroller and LCD display, and describe the principle of measuring the overall structure. In this design, as is the PT100 platinum resistance temperature sensor, temperature measurement using constant current method, through the microcontroller to control, amplifier, A/D converter for temperature signal acquisition. Overall, the design is feasible. Keywords:temperature Pt100 thermal resistance AT89C51 microcontroller LCD monitor .

单片机智能温控器课程设计

单片机课程设计 说明书 专业:机械设计制造及其自动化 设计题目:智能温控器 设计者: 指导老师: 设计时间:

一、课题名称:一个基于51单片机的智能温控器课程 设计 二、主要技术指标及工作内容和要求:本设计以MCS-51系列单片机为核心,采用常用电子 器件设计,一个电源开关,两个控制温度设定按键(增大/减小),四位数码管分别显示设 定温度和实际温度,量程为0~99度,打开电源开关后设定温度初始化为26度。 1,按键输入采用中断方式,两个按键分别接INT0和INT1。 2,采用铂电阻(Pt100)温度传感器进行温度测量,模数转换采用ADC0809。 3,单片机根据设定温度S和实测温度P控制继电器R的动作,死区设为2度:当P<=S-1时,控制R接通电加热回路; 当P>S+1时,控制R断开电加热回路; 当S-1

自制恒温控制器

自制恒温控制器 该恒温控制器电路能使电器按预定的温度自动开启或关闭。可用于恒温箱的温度自动控制、电风扇的自动开启,具有制作简单,用途广泛等优点。其电路原理图如下图所示。 A1为三端稳压集成块,它输出稳定的12V直流电压供整机用电。RP、R1和Rt组成温度检测电路,Rt为负温度系数的热敏电阻器,它的阻值随环境温度升高而下降。555时基电路A2接成触发延迟电路,当②脚电位低于l/3V DD时,555时基电路置位,③脚输出高电平,继电器K得电吸合,其触点K一1闭合,接通电器电源使电器得电工作。此时电路为暂稳态,正电源即通过R2向C4充电,使阈值端⑥脚电位不断上升,当升至复位电平时,电路翻转复位,③脚输出低电平,继电器释放,触点K一1跳开,电器就停止工作。本电路设计巧妙之处是在其控制端⑤脚与电源正端之间串接了一只二极管VD5,使控制端⑤脚电位被钳位在12V—0.7V=11.3V 左右,从而使⑥脚复位电平由原来的2/3VDD(即8V)抬高到11.3V。其目的可采用较小定时阻容元件R2与C4,即可获得较长的定时时间。采用图示数据,延迟时间约3min。设置延迟电路的目的是为了避免在预定温度附近可能造成电器M频繁开机与停机的不良现象。

恒温控制的具体工作过程是:当室内温度升高到预定值时,Rt阻值小于(R RP+R1)的一半,此时A2的②脚电位低于1/3VDD,电路翻转置位,③脚输出高电平,继电器K吸合,电器运转。室内温度逐渐下降后,Rt的阻值随之增大,②脚电位开始升高并大于1/3VDD,此时电路仍处在暂态,即C4继续充电,电路不会翻转,电器仍运转。直至C4电压充至11.3V左右时,电路翻转复位,③脚输出低电平,继电器K释放,电器才停止运转。显然电路设置的延迟电路可解决当室内温度迅速变化时造成电路在预定温度附近频繁开机与关机。倘若室内温度又升高到预定温度时,电路能重复上述过程使电器自动重新开机。 Rt可选用NTH2074型负温度系数热敏电阻。VD5、VD6均为1N4148型硅开关二极管。K用JZC一22F、DCl2V小型中功率电磁继电器,其触点容量可达5A。

(完整word版)基于51单片机的温度控制系统设计

基于51单片机的水温自动控制系统 0 引言 在现代的各种工业生产中 ,很多地方都需要用到温度控制系统。而智能化的控制系统成为一种发展的趋势。本文所阐述的就是一种基于89C51单片机的温度控制系统。本温控系统可应用于温度范围30℃到96℃。 1 设计任务、要求和技术指标 1.1任务 设计并制作一水温自动控制系统,可以在一定范围(30℃到96℃)内自动调节温度,使水温保持在一定的范围(30℃到96℃)内。 1.2要求 (1)利用模拟温度传感器检测温度,要求检测电路尽可能简单。 (2)当液位低于某一值时,停止加热。 (3)用AD转换器把采集到的模拟温度值送入单片机。 (4)无竞争-冒险,无抖动。 1.3技术指标 (1)温度显示误差不超过1℃。 (2)温度显示范围为0℃—99℃。 (3)程序部分用PID算法实现温度自动控制。 (4)检测信号为电压信号。 2 方案分析与论证 2.1主控系统分析与论证 根据设计要求和所学的专业知识,采用AT89C51为本系统的核心控制器件。AT89C51是一种带4K字节闪存可编程可擦除只读存储器的低电压,高性能CMOS 8位微处理器。其引脚图如图1所示。 2.2显示系统分析与论证 显示模块主要用于显示时间,由于显示范围为0~99℃,因此可采用两个共阴的数码管作为显示元件。在显示驱动电路中拟订了两种设计方案: 方案一:采用静态显示的方案 采用三片移位寄存器74LS164作为显示电路,其优点在于占用主控系统的I/O口少,编程简单且静态显示的内容无闪烁,但电路消耗的电流较大。 方案二:采用动态显示的方案 由单片机的I/O口直接带数码管实现动态显示,占用资源少,动态控制节省了驱动芯片的成本,节省了电 ,但编程比较复杂,亮度不如静态的好。 由于对电路的功耗要求不大,因此就在尽量节省I/O口线的前提下选用方案一的静态显示。

模电课设—温度控制系统设计

目录 1.原理电路的设计 (11) 1.1总体方案设计 (11) 1.1.1简单原理叙述 (11) 1.1.2设计方案选择 (11) 1.2单元电路的设计 (33) 1.2.1温度信号的采集与转化单元——温度传感器 (33) 1.2.2电压信号的处理单元——运算放大器 (44) 1.2.3电压表征温度单元 (55) 1.2.4电压控制单元——迟滞比较器 (66) 1.2.5驱动单元——继电器 (88) 1.2.6 制冷部分——Tec半导体制冷片 (99) 1.3完整电路图 (1010) 2.仿真结果分析 (1111) 3 实物展示 (1313) 3.1 实物焊接效果图 (1313) 3.2 实物性能测试数据 (1414) 3.2.1制冷测试 (1414) 3.2.2制热测试 (1818) 3.3.3性能测试数据分析 (2020) 4总结、收获与体会 (2121) 附录一元件清单 (2222) 附录二参考文献. (2323)

摘要 本课程设计以温度传感器LM35、运算放大器UA741、NE5532P及电压比较器LM339 N为电路系统的主要组成元件,扩展适当的接口电路,制作一个温度控制系统,通过室温的变化和改变设定的温度,来改变电压传感器上两个输入端电压的大小,通过三极管开关电路控制继电器的通断,来控制Tec制冷片的工作。这样循环往复执行这样一个周期性的动作,从而把温度控制在一定范围内。学会查询文献资料,撰写论文的方法,并提交课程设计报告和实验成品。 关键词:温度;测量;控制。

Abstract This course is designed to a temperature sensor LM35, an operational amplifier UA741,NE5532P and a voltage comparator LM339N circuit system of the main components. Extending the appropriate interface circuit, make a temperature control system. By changing the temperature changes and set the temperature to change the size of the two input ends of the voltage on the voltage sensor, an audion tube switch circuit to control the on-off relay to control Tec cooling piece work. This cycle of performing such a periodic motion, thus controlling the temperature in a certain range. Learn to query the literature, writing papers, and submitted to the curriculum design report and experimental products. Key words: temperature ; measure ;control

温度控制系统毕业设计

摘要 在日常生活及工农业生产中,对温度的检测及控制时常显得极其重要。因此,对数字显示温度计的设计有着实际意义和广泛的应用。本文介绍一种利用单片机实现对温度只能控制及显示方案。本毕业设计主要研究的是对高精度的数字温度计的设计,继而实现对对象的测温。测温系数主要包括供电电源,数字温度传感器的数据采集电路,LED显示电路,蜂鸣报警电路,继电器控制,按键电路,单片机主板电路。高精度数字温度计的测温过程,由数字温度传感器采集所测对象的温度,并将温度传输到单片机,最终由液晶显示器显示温度值。该数字温度计测温范围在-55℃~+125℃,精度误差在±0.5℃以内,然后通过LED数码管直接显示出温度值。数字温度计完全可代替传统的水银温度计,可以在家庭以及工业中都可以应用,实用价值很高。 关键词:单片机:ds18b20:LED显示:数字温度. Abstract In our daily life and industrial and agricultural production, the detection and control of the temperature, the digital thermometer has practical significance and a wide range of applications .This article describes a programmer which use a microcontroller to achieve and display the right temperature by intelligent control .This programmer mainly consists by temperature control sensors, MCU, LED display modules circuit. The main aim of this thesis is to design high-precision digital thermometer and then realize the object temperature measurement. Temperature measurement system includes power supply, data acquisition circuit, buzzer alarm circuit, keypad circuit, board with a microcontroller circuit is the key to the whole system. The temperature process of high-precision digital thermometer, from collecting the temperature of the object by the digital temperature sensor and the temperature transmit ted to the microcontroller, and ultimately display temperature by the LED. The digital thermometer requires the high degree is positive 125and the low degree is negative 55, the error is less than 0.5, LED can read the number. This digital thermometer could

简易温度控制器制作

电子技术综合训练 设计报告 题目:简易温度控制器制作 姓名:谢富臣 学号:08220404 班级:控制工程2班 学院:电信学院 日期:2010.07.16

摘要 我们本次课程设计的主题是做一个简易温度控制器。具体方法是采用热敏电阻作为温度传感器,将温度模拟量转化为数字量,再利用比较运算放大器与设置温度值进行比较,输出高或低电平至电路控制元件从而对控制对象进行控制。整个电路分为四个部分:测温电路,比较电路,报警电路,控制电路。其中后三者为技术重点。

目录 第一部分:任务要求 (4) 第二部分:概述 (5) 第三部分:技术要求及方案 (6) 第四部分:工作原理 (7) 第五部分:单元电路 (8) 第六部分:参考文献 (10) 第七部分:总结及体会 (11) 第八部分:附录 (12)

一:任务要求 2010 年春季学期

二:概述 设计并制作一个温度监控系统,用温度传感器检测容器内水的温度,以检测到的温度信号控制加热器的开关,将水温控制在一定的范围之内。具体要求如下: 1、当水温小于50℃时,H1、H2两个加热器同时打开,将容器内的水加热,; 2、当水温大于50℃,但小于60℃时,H1加热器打开,H2加热器关闭; 3、当水温大于60℃时,H1、H2两个加热器同时关闭; 4、当水温小于40℃,或者大于70℃时,用红色发光二极管发出报警信号; 5、当水温在40℃~70℃之间时,用绿色发光二极管指示水温正常; 6、电源:220V/50HZ的工频交流电供电。 (注:直流电源部分仅完成设计即可,不需制作,用实验室稳压电源调试) 按照以上技术完成要求设计出电路,绘制电路图,对设计的电路用Multisim或OrCAD/PspiceAD9.2进行必要的仿真,仿真通过后购买元器件,用万用板焊接电路,然后对制作的电路完成调试,撰写设计报告,通过答辩。设计电路时,应考虑方便调试。 三:技术要求及方案

基于单片机的空调温度控制器设计设计

基于单片机的空调温度控制器设计设计

接口技术课程设计报告基于单片机的空调温度控制器设计 摘要 设计了基于AT89C52的高精度家用空调温度控制系统,系统硬件主要由电源电路、温度采集电路(DS18B20)、键盘、显示电路、输出控制电路及其他辅助电路组成;软件采用8051C语言编程;该系统可以完成温度的显示、温度的设定、空调的控制等多项功能。 关键词:单片机;DS18B20;温度检测;显示

目录 1 设计目的及要求 (1) 1.1 设计目的和意义 (1) 1.2 设计任务与要求 (1) 2 硬件电路设计 (2) 2.1 总体方案设计 (2) 2.2 功能模块电路设计 (3) 2.2.1 单片机的选型 (3) 2.2.2 振荡电路设计 (5) 2.2.3 复位电路设计 (5) 2.2.4 键盘接口电路设计 (6) 2.2.5 温度测量电路设计 (6) 2.2.6 系统显示电路设计 (7) 2.2.7 输出控制电路设计 (8) 2.3 总电路设计 (8) 2.4 系统所用元器件 (9) 3 软件系统设计 (10) 3.1 软件系统总体方案设计 (10) 3.2 软件流程图设计 (10) 4 系统调试 (12) 5 总结 (13)

5.1 本系统存在的问题及改进措施 (13) 参考文献 (14) 附录1:系统的源程序清单 (15) 附录2:系统的PCB图 (39)

1 设计目的及要求 1.1 设计目的和意义 21世纪的人们生活质量不断提高,同时也对高科技电子产业提出了更高的要求,为了使人们生活更人性化、智能化。我设计了这一基于单片机的空调温度控制系统,人们只有生活在一定的温度环境内才能长期感觉舒服,才能保证不中暑不受冻,所以对室内温度要求要高。对于不同地区空调要求不同,有的需要升温,有的需要降温。一般都要维持在21~26°C。 目前,虽然我国大量生产空调制冷产品,但由于我国人口众多,需求量过盛,在我国的北方地区,还有好多家庭还没有安装有效地室内温控系统。温度不能很好的控制在一定的范围内,夏天室内温度过高,冬天温度过低,这些均对人们正常生活带来不利的影响,温度、湿度均达不到人们的要求。以前温度控制主要利用机械通风设备进行室内、外空气的交换来达到降低室内温度,实现室内温度适宜人们生活。以前通风设备的开启和关停,均是由人手动控制的,即由人们定时查看室内外的温度、湿度情况,按要求开关通风设备,这样人们的劳动强度大,可靠性差,而且消耗人们体力,劳累成本过高。为此,需要有一种符合机械温控要求的低成本的控制器,在温差和湿度超过用户设定值范围时,启动制冷通风设备,否则自动关闭制冷通风设备。鉴于目前大多数制冷设备现在状况,我设计了一款基于MCS51单片机的空调温度控制系统。 1.2 设计任务与要求 系统要求利用单片机设计一空调温度控制器,能够实时检测并显示室温,能够利用键盘设定温度,并且和室温进行比较,当室温低于设定温度时,系统能够驱动加热系统工作,当室温高于设定温度时,系统能够驱动制冷系统工作,当两者温度相等时,不做动作。

基于51单片机的多功能温度控制器的设计

基于51单片机的多功能温度控制器的设计 在某些工业生产过程中,如恒温炉、仓库储藏、花卉种植、小型温室等领域都对温度有着严格的要求,需要对其加以检测和控制。传统的温度测量方法是将温度传感器输出的模拟信号放大后送至远端A/D转换器,最后单片机对A/D转换后的数据进行分析处理。这种方法的缺点是模拟信号在传输的过程中存在损耗并且容易受到外界的干扰,导致测量的温度精度不高。 文中以STC89C52RC单片机为控制核心,利用美国Dallas公司最新推出的单总线数字温度传感器DSl8820测量温度,单片机处理后对温度进行控制,并将温度显示在LCDl602上,还可通过按键设置温度上下限值实现温度超限报警等功能。 1 系统的组成和工作原理 多功能温度控制系统的结构,系统由六部分组成:控制核心部分、温度数据采集部分、加热装置控制部分、液晶显示部分、按键输入部分和报警提示部分。单片机启动温度采集电路完成温度的一次转换,然后读出转换后的数字量并转化成当前的温度呈现在显示模块中,并将当前的温度与通过按键输入电路设定的保持恒温度数进行比较,以实现温度的控制。还可以通过按键设置温度的上下限值以实现超温或低温报警提示功能。本系统的设计目标要对温度的控制精度达到0.1℃。 1.1 报警电路 报警电路采用蜂鸣器作为发声装置,当温度高于设定的上限值或低于下限值,给蜂鸣器送周期为1s,占空比为50%的方波,报警的时间可以持续1分钟或等待按键解除报警,这由软件控制实现。 1.2 按键电路 采用2×3的小键盘,键盘的识别可以采用两种方法:行扫描法和行反转法。两种方法都要注意消除按键的抖动。文中采用行扫描法并做成子程序,出口参数为按键的键值。定义键K1设置TH,K2设置TL,K3调高TH或TL,K4调低TH或TL,K5对TH或TL的数值进行确认。 1.3 温度检测电路 温度检测电路采用智能温度传感器DSl8820,它与单片机相连只需要3线,减少了外部的硬件电路。DSl8820主要性能特点如下: (1)测温的范围为-55~125℃,最大分辨率可以达到0.0625℃; (2)电源电压范围为3.0~5.5V; (3)供电模式:寄生供电和外部供电; (4)封装形式有两种:3脚的TO-92封装和8脚的SOIC封装; (5)可编程的温度转换分辨率,分辨率为9~12位(包括1位符号位),由配置寄存器决定具体位数,配置寄存器的格式如表1所示。 其中RlR0是用来设定分辨率的,分辨率的定义如表2所示。 由表2可以看出,分辨率设定得越高,温度转换所需要的时间就越长,因此应根据实际应用的需要来选择合适的分辨率。本文中选取12位分辨率,每隔1秒检测一次温度。12位分辨率的温度数据值格式如下: 当S=0表示测得的温度为正值,当S=l表示测得的温度为负值。 1.3.1 DSl8820的存储器结构 DSl8820的存储器有高速暂存RAM和非易失性电擦写EEPROM。高速暂存RAM的内容从低

相关主题
文本预览
相关文档 最新文档