当前位置:文档之家› Bragg光纤光栅的光谱分析

Bragg光纤光栅的光谱分析

Bragg光纤光栅的光谱分析
Bragg光纤光栅的光谱分析

课程设计任务书

学生姓名:专业班级:电子科学与技术0901班指导教师:葛华工作单位:信息工程学院

题目: Bragg光纤光栅的光谱仿真

初始条件:

计算机、beamprop软件(或Fullwave软件)

要求完成的主要任务:

1、课程设计工作量:2周

2、技术要求:

(1)学习beamprop软件(或Fullwave软件)。

(2)设计Bragg光纤光栅的光谱仿真

(3)对Bragg光纤光栅进行beamprop软件仿真工作。

3、查阅至少5篇参考文献。按《武汉理工大学课程设计工作规范》要求撰写设计报告书。全文用A4纸打印,图纸应符合绘图规范。

时间安排:

2012.6.25做课设具体实施安排和课设报告格式要求说明。

2012.6.25-6.28学习beamprop软件(或Fullwave软件),查阅相关资料,复习所设计内容的基本理论知识。

2012.6.29-7.5对Bragg光纤光栅的光谱仿真进行设计仿真工作,完成课设报告的撰写。

2012.7.6提交课程设计报告,进行答辩。

指导教师签名:年月日

系主任(或责任教师)签名:年月日

目录

摘要........................................................................................................................................... I Abstract ......................................................................................................................................II 绪论........................................................................................................................................ III 1光纤光栅 (1)

1.1光纤光栅的简介 (1)

1.2 Bragg光纤光栅定义 (1)

1.3光纤光栅的分类 (2)

1.4 光栅的分光性能 (3)

1.5 Bragg光纤光栅的光谱图 (3)

2 Beamprop软件介绍 (4)

3光谱仿真 (5)

3.1 Bragg光纤光栅的画法 (5)

3.2 Bragg光纤光栅的折射率分布 (7)

3.3 Bragg光纤光栅的光谱仿真 (8)

3.4 光栅光谱的分析 (9)

4 心得体会 (10)

参考文献 (11)

摘要

光栅光纤是一种新型的光学器件,现在已在光纤通信和传感等方面有着很重要的应用,并且随着全光通信网络和光纤传感技术的发展,将会发挥越来越重要的作用。它的研究和应用已经成为当前热点技术课题。Bragg光纤光栅光谱特性分析与研究也是研究人员重点关注的课题。

本文根据光栅光纤的工作理论,分析讨论了Bragg光纤光栅的光谱特性,为Bragg 光纤光栅的光谱特性的应用提供了理论依据。并通过Beamprop软件对光纤光栅的光谱进行了仿真。

关键词:Bragg光栅光纤、Beamprop软件、光谱仿真

Abstract

Optical fiber grating is a new type of optical device, now has set up a file in the optical fiber communication and sensing has very important application, and along with all optical communication network and the optical fiber sensing technology development, will play more and more important role. The research and application of it has become the hotspot technologies subject. Optical fiber Bragg grating spectrum analysis and research is also a researchers focus on topic.

In this paper, according to the theory of optical fiber grating work, discusses the Bragg fiber grating, the spectral characteristics of fiber grating for Bragg, the spectral characteristics of applied to provide the theory basis. And through the Beamprop software of fiber grating the spectra of the simulation.

Key words: optical fiber Bragg grating, Beamprop software, spectral simulation

绪论

Bragg光栅光纤(fiber Bragg grating,FBG)光谱特性分析与研究是研究人员重点关注的课题。光栅光纤是一种新兴的光学器件,现在已在光纤通信和传感等方面有很重要的应用。光栅光纤是在光纤中制作的一种无源器件,在光纤中沿轴向建立一种折射率周期性的分布,它能够对特定波长附近一定带宽内的光具有反射或损耗的作用。早期的光栅光纤是指光纤布拉格光栅,直到出现了长周期光栅光纤后,才有了两种分类。

光栅光纤以其特有的高波长选择,与光纤系统兼容,插入损耗低,结构简单,体积小等性能,广泛应用于光源,光放大,光纤色散补偿,光信号处理,光纤传感等领域,是下一代高速光纤通信系统中不可缺少的关键器件之一。随着互联网和多媒体通信的发展,数据传输量正在迅猛的增长,光纤通信技术受到广泛重视。密集波分时复用技术的采用,可以大大提高光纤通信的容量。但是如何方便的在光纤线路上实现高速数据的密集波分时复用和全光解复用,以及如何实现光纤传输过程中的色散补偿,是人们亟待解决的两个问题。不过,随着光纤Bragg光栅的出现,这两个难题的解决变得容易了。至此,光纤光栅以其独特的滤波和色散特性,对光纤通信中的光发送、光放大、光纤色散补偿、光接收等各个方面产生重大影响,预示着光纤通信技术新阶段的到来,成为下一代高速光纤通信系统中不可缺少的器件,被认为是继光纤放大器之后光纤通信技术发展的又一里程碑。由于光纤光栅在高速通信领域的重要使用价值和可以预期的在其它一些领域的广泛应用前景,目前已成为全世界的研究热点。

研究Bragg光栅光纤光谱特性的意义目的在于现代通信发展的需求,在人们快速发展的生活变化中有很重要的历史意义。

1光纤光栅

1.1光纤光栅的简介

光栅也称衍射光栅。是利用多缝衍射原理使光发生色散(分解为光谱)的光学元件。它是一块刻有大量平行等宽、等距狭缝(刻线)的平面玻璃或金属片。光栅的狭缝数量很大,一般每毫米几十至几千条。单色平行光通过光栅每个缝的衍射和各缝间的干涉,形成暗条纹很宽、明条纹很细的图样,这些锐细而明亮的条纹称作谱线。

谱线的位置随波长而异,当复色光通过光栅后,不同波长的谱线在不同的位置出现而形成光谱。光通过光栅形成光谱是单缝衍射和多缝干涉的共同结果。

光纤光栅是20世纪90年代以来国际上新兴的一种在光纤通信、光纤传感等光电子处理领域有着广泛应用前景的基础性光纤器件。当光纤的纤芯沿着总线的折射率形成一定的周期性变化时,就构成了光纤光栅。光栅形成的强弱与折射率调制成正比。由于折射率的调制,使光纤中传输的倒模的有效折射率发生了改变,从而使传输的模式发生变化。光纤光栅同衍射体光栅一样,通过光纤光栅对光纤中传输的模式的衍射,产生新的衍射模式与光纤中传输的模式相互作用,从而达到各种滤波的效果。

1.2 Bragg光纤光栅定义

FBG是Fiber Bragg Grating的缩写,即光纤布拉格光栅。

Bragg光纤光栅是利用光纤材料的光敏性,通过紫外光曝光的方法将入射光相干场图样写入纤芯,在纤芯内产生沿纤芯轴向的折射率周期性变化,从而形成空间的相位光栅,其作用实质上是在纤芯内形成一个窄带的(透射或反射)滤波器或反射镜。当一束宽光谱光经过光纤光栅时,满足光纤光栅布拉格条件的波长将产生反射,其余的波长透过光纤光栅继续传输。

利用这一特性可制造出许多性能独特的光纤器件。这些器件具有反射带宽范围大、附加损耗小、体积小,易与光纤耦合,可与其它光器件兼容成一体,不受环境尘埃影响等一系列优异性能。目前应用主要集中在光纤通信领域(光纤激光器、光纤滤波器)和光纤传感器领域(位移、速度、加速度、温度的测量)。

光纤光栅的光学特性主要是由光纤的物理结构、紫外线引起的折射率调制类型、折射率调制强度、光纤光栅的长度所决定。

从广义上讲,光纤光栅可分为Bragg光纤光栅(也称为短周期光纤光栅或反射光栅)和长周期光纤光栅(也称之为投射性光纤光栅)。一般情况下,Bragg光纤光栅的周期约为500nm,与工作波长处于同一数量级;二长周期光纤光栅的周长可达200um。

除此之外,光纤光栅依据光栅的周期是否均匀,可分为均匀光纤光栅和非均匀光纤光栅;根据折射率是否等幅度调制,可分为普通的光纤光栅和变迹光纤光栅;根据折射率的调制平面与光纤的纤轴垂直是否,可分为一般的光纤光栅和闪耀光纤光栅。不同的光纤光栅有其不同的工作特性,有着特殊的用途。

(1)短周期光纤光栅(FBG,也叫反射或布喇格光栅):光栅周期一般为零点几个微米,耦合发生在正向与反向传输的模式之间,它的一个重要特性是将某一频段内的光反射回去。

图1.3.1 短周期光纤光栅

(2)长周期光纤光栅(LPG,也叫传输光栅):光栅周期在100μm以上,耦合发生在同向传输的模式之间,它的特性是将导波中某频段的光耦合到包层中损耗掉而让其他频段的光通过。

图1.3.2 长周期光纤光栅

光栅的分光原理可以从多缝夫琅禾费衍射图样中联想位置的公式

sin d m θλ= 0,1,2...m =±± (式1.4.1)

看出。上式表明,对应于亮线的衍射角θ与波长λ有关。因此,对应于给定间距d (通常称为光栅常数)的光栅,当用多色光照明时,不同波长的同一级亮线,处零级外均不重合,即发生色散。这就是光栅的分光原理。对应于不同波长的同一级亮线称为光栅光谱线。

在光栅理论中,上式称为光栅方程,它是使用光栅的基本方程式。但是上式只适用于入射光垂直入射到光栅面的情况,对于更普遍的斜入射的情形,该式应修改为

(sin sin )d i m θλ±= 0,1,2...m =±± ( 式1.4.2)

其中,i 为入射角,θ为反射角,在考察与入射光同一侧的衍射光谱时,上式取正号;在考察与入射光异侧的衍射光谱时,上式取负号,上式对于透射光栅同样适用。

1.5 Bragg 光纤光栅的光谱图

布拉格光纤光栅对光纤中传输的光具有反射作用,它的一个重要特性是将某一频段内的光反射回去。反射光的光谱宽度比较窄,一般可以达到1nm 以下,也可以有几纳米。其实质上是在纤芯内形成一个窄带的(透射或反射)滤波器或反射镜。当一束宽光谱光经过光纤光栅时,满足光纤光栅布拉格条件的波长将产生反射,其余的波长透过光纤光栅继续传输。如图1.5所示,是光栅的光谱响应(grating spectral response )图。

图1.5 Bragg 光纤光栅的光谱图

2 Beamprop 软件介绍

Beamprop 软件是一个高度集成了计算机辅助设计和模拟仿真的专业软件,专用

于设计集成光学波导元件和光路。此软件由美国RSOFT 公司出品,1994年投入市场,被大学及产业公司的开发设计人员广泛使用。此软件使用先进的有限差分光束传播法 (finite-difference beam propagation method, FD-BPM)来模拟分析光学器件。用户界面友好,分析和设计光学器件轻松方便。

图2 Beamprop 软件界面

直波导模式

分支波导模弧形波导模式 模拟区模式 偏移量参考 角度参考 波导Z 轴 变量表 监视路径设置 监视器设置 水平方向翻转 垂直方向翻转 旋转 参数扫描

计算波导折射率

3光谱仿真

3.1 Bragg光纤光栅的画法

Rsoft CAD Layout软件提供了专门的光纤光栅的画图工具,如下图3.1.1所示,在实用程序(utility)中,提供了光栅布局(Grating Layout)选项,选定该选项即可完成新建Bragg光纤光栅的工作。

图3.1.1 新建Bragg光纤光栅

在弹出了对话框中完成相应的参数设置,如图3.1.2所示。其中结构类型(Structure Type)应选择Fiber,即所绘图形为3D模式。折射率之差(Index Difference)设为0.01,此时恰好满足纤芯折射率(Core Index)=包层折射率(Cladding Index)+折射率之差(Index Difference)。

设置完毕后,点击OK,即可得到Bragg光纤光栅的截面图,如图3.1.3所示。

图3.1.2 光栅布局的参数设置

图3.1.3 Bragg光纤光栅的截面图

3.2 Bragg光纤光栅的折射率分布

如图3.2.1,是Bragg光纤光栅在XY面的截面图,右侧色带中不同颜色对应不同的折射率,在第一步新建光纤光栅中已设置了背景折射率(Background Index)是1.4629, 折射率之差(Index Difference)为0.01,所以该光纤光栅中的折射率应在1.4629-1.4729

范围内变化。

图3.2.1 Bragg光纤光栅在XY面折射率分布

同理可得Bragg光纤光栅在YZ面和XZ面的折射率分布图,且两者是类似的,下图3.2.2是Bragg光纤光栅在YZ面折射率分布情况。

图3.2.2 Bragg光纤光栅在YZ面折射率分布

3.3 Bragg光纤光栅的光谱仿真

通过相应参数和选项的设置与选择,如图3.3.1,3.1.2所示,即可得出最后的仿真结果,如图3.3.3所示,其中FWHM表示半最大值宽度,power spectrum of reflectio表示功率谱的反射。

3.3.1 Simulation仿真参数的设置 3.3.2 仿真输出参数的设置

图3.3.3 光栅光谱响应图

3.4 光栅光谱的分析

如图3.4.1所示,通过改变调制深度ModDelta,重新观察光栅光谱响应图。

根据理论分析:光栅形成的强弱与折射率调制成正比,由于折射率的调制,使光纤

中传输的倒模的有效折射率发生了改变,从而

使传输的模式发生变化。它的一个重要特性是

将某一频段内的光反射回去。反射光的光谱宽

度一般可以达到1nm以下,也可以有几纳米。

当一束宽光谱光经过光纤光栅时,满足光纤光

栅布拉格条件的波长将产生反射,其余的波长

透过光纤光栅继续传输。

将图3.4.2与图3.3.3对比发现,改变调制

深度ModDelta,光栅光谱响应发生明显变化,

半最大值宽度(FWHM),波段范围都发生相

应的改变,与理论相符。

3.4.1改变参数ModDelta

图3.4.2 光栅光谱响应图

4 心得体会

通过这次的课程设计,使我对光电子技术这门课程有了进一步的了解,在课程设计过程中,通过翻阅资料,上网搜索等,我对Bragg光纤光栅的原理有了更深一层次的认识,既增强了我的理解能力,也使我能更好的运用所学的知识。开始时我还不太明白Bragg光纤光栅的工作原理,但通过对所学知识更深入的了解和同学的讲解和帮助,最终使我克服的难关,并成功的做出了设计。两周的锻炼中,我有过对知识的掌握不足时的迷茫,也有过思路不清是的懊恼,但一路走来,我却收获了知识,收获的希望和努力后的成果。通过这次的课程设计加深了我对理论知识的理解,同时增强了我的逻辑思维能力,另一方面也是对课堂所学理论知识作一个总结和补充。

本次课程设计,我重新学习和弄清楚了Bragg光纤光栅的原理及其设计,并且初步学会用beamprop进行仿真。课程设计也让我学会了要充分的查找资料,利用身边的资源以及学会冷静的面对课程设计中出现的问题,从而去有效地解决问题。在此我要感谢老师的孜孜教诲和同学的帮助,我相信这十几天的不懈努力会给我未来的学习带来很多的启发,我会在以后的工作生活中更好的理论联系实际,证明自己的能力

参考文献

[1] 张自嘉.光纤光栅理论基础与传感技术.北京:科学出版社,2009

[2] 赵勇. 光纤光栅及其传感技术. 北京:国防工业出版社,2007.1

[3] 饶云江、王义平、朱涛.光纤光栅原理及应用北京:科学出版社,2006.8.

[4] 李川、张以谟、赵永贵、李立京.光纤光栅:原理、技术与传感应用.北京:科学出版社2005.10

[5] 吴朝霞、吴飞.光纤光栅传感原理及应用 .北京:国防工业出版社 2011.3

本科生课程设计成绩评定表

指导教师签字:

年月日

一光纤光栅光谱特性测试系统的设计

实验一光纤光栅光谱特性测试系统的设计 一.实验目的和任务 1.熟悉PC光谱仪的使用方法 2.了解光环行器的工作原理和主要功能。并测量光环行器的插入损耗、隔离度、方向性、回波损耗参数。 3.了解光纤光栅的光谱特性 4.应用PC光谱仪、光环行器测量光纤光栅的光谱特性 二.PC光谱仪 PC光谱仪是用来测量光源或其它器件经光纤输出的光的波长和能量的关系图(即光谱特性)。 图1.1 PC光谱仪的软件界面 本实验用的PC光谱仪的硬件是插入计算机ISA槽的ISA2000卡。该卡有一个光输入孔。测试波长范围为紫外-可见光-近红外。 PC光谱仪的软件界面如图1.1所示。 界面中,主要工具栏按扭介绍: 1.数据光标左移按扭,每点击该按扭一次,数据光标左移一个像素的距离。连续点击该按扭,可以找到波峰位置。

2.数据光标右移按扭,每点击该按扭一次,数据光标右移一个像素的距离。连续点击该按扭,可以找到波峰位置。 3.开始/结束扫描波形按钮。第一次点击该按扭,开始扫描,显示出扫描波形,并且能感觉波形在动。再次点击该按扭,结束扫描,波形静止。 4.点击该按扭,增加波长显示范围,即水平方向缩小波形。如果要在水平方向放大波形,操作方法为:左击波形的左侧,拖动鼠标到波形的右侧,释放鼠标,即可。 5.纵坐标自动调整按钮,如果波形出现削顶或者波形太低,左击该按钮,可以自动调整波形高度。右击该按钮,取消自动调整纵坐标操作。 6.计算按钮,点击该按钮,显示波形的中心波长、峰值波长、半最大值全宽等参数。 使用该PC光谱仪测量光谱特性的步骤: 1.将待测光输入到ISA2000卡的光输入孔内,运行程序“Spectra Wiz”, 即可进入软件运行窗口。 2.点击开始/结束扫描波形按钮,开始扫描波形,再点击一次该按钮,结束扫描波形。 3.点击横坐标调整按钮,显示波形到界面适当位置。如果要在水平方向放大波形,就左击波形的左侧,拖动鼠标到波形的右侧,释放鼠标,即可。 4.点击纵坐标调整按钮,调整波形到适当高度。 5.点击计算按钮,显示相关参数数据。 三.光环行器 (一)光环行器的工作原理 光环行器是一种多端口输入输出的非互易器件,具有正向顺序导通而反向传输阻止的特性,可以完成正反向传输光的分离,在双向长途干线通信、密集波分复用器及光时域反射计(OTDR)中有广泛的应用。 制造光环行器的方法有几种,但所有的光环行器的工作原理是相同的,比如3端口的光环行器,在端口1输入的光信号只有在端口2输出;在端口2输入的光信号只有在端口3输出,而在端口3输入的光信号只能在端口1输出。但是在许多应用中,这最后一种状态是不必要的,因此,大多数商用环行器都被设计成“非理想”状态,即吸收从端口3输入的任何信号。3端光环行器的原理图如图1.2所示:

光纤光栅技术论文

光纤光栅及其技术在电力行业上的应用 摘要:分析光纤光栅解调的基本原理和常用解调方法的工作机理、性能和特点,从光纤传感 技术的优势出发,介绍了光纤光栅传感智能结构的优点,对波长解调方法如匹配解调法、可 调谐激光器法、干涉法、滤波法等做了详细的讨论,阐述了相应的系统设计方案,并对各 种方法的优、缺点进行了分析和讨论。提出光纤光栅传感器在实际应用中所面临的主要技术 难题,分析现有的解决方案,讨论光纤光栅传感器在进一步实用化中需要解决的难题及其未 来的发展趋势。 关键词:光纤光栅,传感解调,干涉,XPM

目录 第一章光纤光栅基本原理 1.1 前言 (1) 1.2 光纤光栅定义及分类 (1) 1.2.1光纤光栅的分类 (2) 1.3光纤光栅制作方法 (6) 1.3.1光敏光纤的制备 (6) 1.3.2成栅的紫外光源 (7) 1.3.3成栅方法 (7) 第二章光纤光栅技术应用 (10) 2.1 光纤光栅传感器的工作原理 (10) 2.1.1啁啾光纤光栅传感器的工作原理 (11) 2.1.2长周期光纤光栅(LPG)传感器的工作原理 (11) 2.2.4在电力工业中的应用 (12) 2.3 光纤光栅在光通信领域的应用 (12) 2.3.1.光纤光栅滤波器中的应用 (12) 2.3.2光纤光栅在光纤通信系统中的应用 (14) 第三章光纤光栅的应用前景 (20) 3.1 光栅技术及拉曼光纤放大器发展应用 (20) 3.2 波分复用/解复用器 (20) 3.3 光纤滤波器 (21) 第四章光纤光栅结论 (21) 致谢 (22) 参考文献 (23)

第一章光纤光栅基本原理 1.1 前言 1978年,加拿大通信研究中心的K.O.Hill及其合作者首次从光纤中观察到了光子诱导光栅。Hill的早期光纤是用488nm 可见光波长的氩离子激光器,通过增加或延长注入光纤芯中的光辐照时间而在纤芯中形成了光栅。后来梅尔茨等人利用高强度紫外光源所形成的干涉条纹对光纤进行侧面横向曝光在该光纤芯中产生折射率调制或相位光栅。1989年,第一支布拉格诺波长位于通信波段的光纤光栅研制成功。1993年hill等人提出了位相掩模技术,它主要是利用紫外光透过相位掩模板后的士1级衍射光形成的干涉光对光纤曝光,使纤芯折射率产生周期性变化写入光栅,此技术使光纤光栅的制作更加简单、灵活,便于批量生产。1993年Alkins等人采用了低温高压氢扩散工艺提高光纤的光敏特性。这一技术使大批量、高质量光纤光栅的制作成为现实。这种光纤增敏工艺打破了光纤光栅制作对光纤中锗含量的依赖,使得可选择的光纤种类扩展到了普通光纤,它还大大提高了光致折变量(由10-5最大提高到了10-2),这样可以在普通光纤上制作出高质量的光纤光栅。 1.2 光纤光栅定义及分类 光纤光栅是利用光纤材料的光敏性,在纤芯内形成空间相位光栅,其作用的实质是在纤芯内形成(利用空间相位光栅的布拉格散射的波长特性)一个窄带的(投射或反射)滤光器或反射镜。光纤光栅是利用光纤中的光敏性制成的。所谓光纤中的光敏性是指激光通过掺杂光纤时,光纤的折射率将随光强的空间分布发生

光纤光栅原理及应用

光纤光栅传感器原理及应用 (武汉理工大学) 1光纤光栅传感原理 光纤光栅就是利用紫外光曝光技术,在光纤中产生折射率的周期分布,这种光纤内部折射率分布的周期性结构就是光纤光栅。光纤布喇格光栅(Fiber Bragg grating ,FBG )在目前的应用和研究中最为广泛。光纤布喇格光栅,周期0.1微米数量级。FBG 是通过改变光纤芯区折射率,周期的折射率扰动仅会对很窄的一小段光谱产生影响,因此,如果宽带光波在光栅中传输时,入射光将在相应的波长上被反射回来,其余的透射光则不受影响,这样光纤光栅就起到了波长选择的作用,如图1。 图1 FBG 结构及其波长选择原理图 在外力作用下,光弹效应导致折射率变化,形变则使光栅常数发生变化;温度变化时,热光效应导致折射率变化,而热膨胀系数则使光栅常数发生变化。 (1)光纤光栅应变传感原理 光纤光栅反射光中心波长的变化反映了外界被测信号的变化情况,在外力作用下,光弹效应导致光纤光栅折射率变化,形变则使光栅栅格发生变化,同时弹光效应还使得介质折射率发生改变,光纤光栅波长为1300nm ,则每个με将导致1.01pm 的波长改变量。 (2)光纤光栅温度传感原理 光温度变化时,热光效应导致光纤光栅折射率变化,而热膨胀系数则使光栅栅格发生变化。光纤光栅中心波长为1300nm ,当温度变化1摄氏度时,波长改变量为9.1pm 。 反射光谱 入射光谱 投射光谱 入射光 反射光 投射光 包层 纤芯 光栅 光栅周期

2光纤光栅传感器特点 利用光敏元件或材料,将被测参量转换为相应光信号的新一代传感技术,最大特点就是一根光纤上能够刻多个光纤光栅,如图2所示。 光纤光栅传感器可测物理量: 温度、应力/应变、压力、流量、位移等。 图2 光纤光栅传感器分布式测量原理 光纤光栅的特点: ● 本质安全,抗电磁干扰 ● 一纤多点(20-30个点),动态多场:分布式、组网测量、远程监测 ● 尺寸小、重量轻; ● 寿命长: 寿命 20 年以上 3目前我校已经开展的工作(部分) 3.1 基于光纤光栅传感的旋转传动机械动态实时在线监测技术与系统 利用光纤光栅传感技术的特性,实现转子运行状态的非接触直接测量。 被测参量 宽带光源 光纤F-P 腔 测点1 测点2 测点3 测点n 波长 光 强 λ1 测点1 λ2 测点2 λ3 测点3 λn 测点n 光源波长

光栅衍射特性研究

光栅衍射特性研究 陈锦(安庆师范学院物理与电气工程学院 安徽 安庆 246011) 指导教师:张杰 摘 要:本文根据惠更斯-菲涅耳原理计算推导了夫琅禾费衍射场下光栅衍射的光强分布公式,详细分 析了平面光栅衍射的特性,利用MA TLAB 软件进行了衍射图样的仿真,绘制了相应的衍射光强分布图,并结合理论公式讨论了光强随波长λ、缝宽b 、缝数N 以及光栅常数d 的变化情况。推导了光栅方程,并从光栅方程出发,对光栅衍射中的缺级现象、光栅的分辨率等问题进行了讨论。文章最后简单介绍了光栅在生产实际中的应用。 关键字:光栅,光栅衍射,光强分布,强度 1引言 衍射光栅作为一种优良的分光元件,在近代光谱仪中有广泛的应用,比如利用光栅衍射可以作为光谱 分析,测量光波的波长等[1-4]。光栅是一种具有高分辨本领的精密光学元件,它是由大量等宽等间距的平行狭缝构成的光学器件。一般常用的光栅是在玻璃片上刻出大量平行刻痕制成,刻痕为不透光部分,两刻痕之间的光滑部分可以透光,相当于一狭缝。精致的光栅,在1cm 宽度内刻有几千条乃至上万条刻痕。这种利用透射光衍射的光栅称为透射光栅,还有利用两刻痕间的反射光衍射的光栅,如在镀有金属层的表面上刻出许多平行刻痕,两刻痕间的光滑金属面可以反射光,这种光栅称为反射光栅。本文着重对平面光栅衍射特性做一些探究。 MATLAB 是一个集数值计算、图形处理、符号计算、数学建模、实时控制、动态仿真等诸多功能于一 身的数学应用软件[6],在光学中得到广泛应用[7]。本文应用MATLAB 的数值计算和绘图功能,根据夫琅禾费衍射场的理论公式,计算得出光强分布矩阵并绘制出光强分布曲线及其衍射图样。 2 光的衍射理论 惠更斯原理[8]内容是:传播中的波面上任何一点都可以认为是一个新的次波源,由这些次波源发出的 次波是球面波,这些次波的公共包络面就是下一时刻的波面。法国物理学家菲涅耳根据叠加原理将惠更斯原理进一步具体化,并给出其数学表达式,即惠更斯—菲涅耳原理的数学表达式: dS r e Q U f C P U ikr S ??=)()()(θ (1) 此后,德国物理学家基尔霍夫从定态的亥姆霍兹方程出发,利用矢量场论中的格林公式,在kr>>1, 即r>>λ的条件下,导出了无源空间边值定解表达式: dS r e Q U i P U ikr S ??+-=)()cos (cos 21)(0θθλ (2) 他还提出了关于边界条件的假设,并进一步将衍射积分公式简化为[6]: dS r e Q U f i P U ikr S ??-=0)(),()(0θθλ (3) 此时衍射面积分只限于光孔面0s 。据此在傍轴条件下衍射积分公式为: dS e Q U r i P U S ikr ??- =0)()(0λ (4) 这便是光衍射场强的计算公式。

光纤光栅

光纤光栅制作方法 XXX (XX大学XX学院,武汉湖北430000) 摘要:光纤光栅是一种新型的光无源器件,在光纤通信、光纤传感及光纤光学等光纤技术领域中有着广泛的应用前景,近年来成为了一个全球性的研究热点,获得了较大的发展与进步,因此了解光纤光栅制作知识和寻求光纤光栅的最佳制作方法具有重要的意义。 关键词:光无源器件;制作方法;意义;通信 中图分类号:TU375.1 文献标识码:A 文章编号: Fiber Optic Fiber Fabrication Method XXXXXXX (College of mechanical and electric engineering, XXX University, Wuhan 430000, China) Abstract: Fiber Bragg grating is a new kind of optical passive components, such as optical fiber communication, optical fiber sensing and optical fiber optical fiber technology has a broad application prospect in the field of, in recent years has become a global research hot spot, obtained greater development and progress, so fiber grating production knowledge and seeking the best method of making fiber grating of has the vital significance Key words:Optical passive components. Production method; Meaning; communication 1 全光通信的研究还处于起步阶段,许多技术难点需要克服。虽然光纤光栅不能解决全光通信中所有的技术难点,但是对光纤光栅技术和器件的研究可以解决全光通信系统中许多关键技术。因此对光纤光栅的研究可以促进全光通信网的早日实现。 作为一名光电信息工程的学生,我认为在光纤光栅这个器件上还有更多的东西值得挖掘,光纤光栅主要分为:均匀光纤光栅,均匀长周期光纤光栅,切趾光纤光栅,相移光纤光栅,取样光纤光栅。 光纤光栅是将来很长一段时间内光纤通信系统中最具实用价值的无源光器件之一,利用它可组成多种新型光电子器件,由于这些器件的优良性能使人们更加充分地利用光纤通信系统的带宽资源。但是我国在这个方面的水平与国际先进水平还有一段距离,不过只有后辈努力才能使中国在这个方向上赶上国际先进水平。更好的造福人类。 收稿日期:2015-06-xx 作者简介:XXX(19XX-), 男, 学士 XXXX000@https://www.doczj.com/doc/37216326.html,;1光纤光栅制作前期处理办法 光纤光栅是利用光纤的光敏性制作,所谓光敏性是指光纤受激后产生永久性的折射率变化的特性。光栅的制作即是利用紫外光照射光敏光纤,在纤芯形成一种周期性的折射率改变,普通商用光纤光敏特性很差,饱和折射率变化一般不超过3哈10-5,因此如果不对光纤作前期的增敏处理,很难制作出高质量的光纤光栅,目前常用下面几种方案增加光纤的光敏性。 1.1高锗掺杂 提高光纤中锗的含量可以使光纤中的锗相关缺陷浓度更高从而有效地提高光纤的光敏特性,在含锗11mo%l的光纤上可获得高达1.8哈10-3的折射率变化量[3]。但高锗含量光纤不仅需要特殊制备,而且数值孔径较大,与常规光纤熔接时会因模场匹配不好而造成额外损耗。 1.2掺硼 光纤中掺硼也可以有效提高锗硅光纤的光敏特性。Dong[4]在实验中发现掺硼后的相同锗含量光纤折变幅度比不掺杂硼时增加了4倍。同时,掺硼可以减小光纤数值孔径,允许增大锗含量。

光纤布拉格光栅(FBG)的光学传感技术

光纤布拉格光栅(FBG)的光学传感技术 电子传感器数十年来一直作为测量物理与机械现象的标准机制。尽管具有普遍性,却因为种种限制,在许多应用中显得缺乏安全、不切实际或无法使用。基于光纤布拉格光栅(FBG)的光学传感技术,利用“光”作为介质取代“电”,使用标准光纤替代铜线,从而克服种种的挑战:由于光纤不导电且电气无源的良好特性,可以消除由电磁干扰(EMI)引起的噪声影响,并且能在少量损耗乃至不损耗信号完整性的前提下远距离传输数据。此外,多个FBG传感器可沿一根光纤通过菊花链(daisy chain)方式连接,极大减少了测量系统的尺寸、重量和复杂性。 1.FBG 光学传感器基础 1.1概述 近几十年以来,电气传感器一直作为测量物理与机械现象的标准设备发挥着它的作用。尽管它们在测试测量中无处不在,但作为电气化的设备,他们有着与生俱来的缺陷,例如信号传输过程中的损耗,容易受电磁噪声的干扰等等。这些缺陷会造成在一些特殊的应用场合中,电气传感器的使用变得相当具有挑战性,甚至完全不适用。光纤光学传感器就是针对这些应用挑战极好的解决方法,使用光束代替电流,而使用标准光纤代替铜线作为传输介质。 在过去的二十年中,光电子学的发展以及光纤通信行业中大量的革新极大地降低了光学器件的价格,提高了质量。通过调整光学器件行业的经济规模,光纤传感器和光纤仪器已经从实验室试验研究阶段扩展到了现场实际应用场合,比如建筑结构健康监测应用等。 1.2光纤传感器简介 从基本原理来看,光纤传感器会根据所测试的外部环境参数的变化来改变其传播的光波的一个或几个属性,比如强度、相位、偏振状态以及频率等。非固有型 (混合型) 光纤传感器仅仅将光纤作为光波在设备与传感元件之间的传输介质,而固有型光纤传感器则将光纤本身作为传感元件使用。 光纤传感技术的核心是光纤–一条纤细的玻璃线,光波能够在其中心进行传播。光纤主要由三个部分组成:纤芯(core),包层(cladding)和保护层(buffer coating)。其中包层能够将纤芯发出的杂散光波反射回纤芯中,以保证光波在纤芯中具有最低的传输损耗。这个功能的实现原理是纤芯的光折射率比包层的折射率高,这样光波从纤芯传播到包层的时候会发生全内反射。最外面的保护层提供保护作用,避免外界环境或外力对光纤造成损坏。而且可以根据需要要强度和保护程序的不同,使用多层保护层。

(完整版)均匀光纤光栅光谱仿真研究毕业设计

摘要 全光通信是光纤通信的发展方向,自从1978年Hill等人制作出第一条光纤光栅之后,作为重要的全光网络器件之一,光纤光栅的研究和应用就一直受到人们的重视。光纤光栅这种新型的光纤器件由于其独特的光学特性和灵活的设计特点,在光通信系统中有着广泛的应用,包括滤波器、全光复用/ 解复用器、色散补偿器和激光器谐振腔等等。所谓光纤光栅即指光纤轴向上存在的折射率周期性变化。其制作原理是基于石英光纤的光敏效应。光纤中的光致折射率改变现象最初仅是一个科学问题,用来满足人们科学探索的好奇心,而正是因为光纤光栅在光通信与光传感领域的扮演的重要角色也使其成为光纤领域的一项基本技术。在光纤通信的应用中根据应用场合的不同,针对对光纤光栅的光谱方面和色散方面特性会提出相应的专门要求,为了给光纤光栅制作过程中的方法选择及参量控制提供理论性指导,对光纤光栅的理论与应用研究有重要的实际意义。在实际的光栅设计过程中,我们总是希望由所期望的光学特性来确定光栅的各个参数的值,因而对光纤光栅特性方面的数值模拟就具有非常重要意义。本论文以光纤通信发展为主线介绍了光纤光栅的历史及其在光通信领域的应用,概述了光纤光栅的光敏效应,以光波导为背景介绍了分析光纤光栅常用的耦合模理论以及传输矩阵理论。基于耦合模理论和传输矩阵理论对重要的两类光纤光栅:均匀光纤光栅和线性啁啾光纤光栅进行了分析推导。并对两类光纤光栅的光谱方面特性进行了仿真研究,绘制出了两类光纤光栅在不同参数下的反射光谱特性曲线,讨论了不同参数对光纤光栅频率选择特性和色散特性的影响, 所得结果可作为这类光纤光栅结构参数设计的参考依据,给光纤光栅制作过程中的方法选择及参量控制提供理论指导,为

透射光栅特性研究(精)

透射光栅特性研究 【学习重点】 1.了解分光仪的结构原理和调节方法 2.了解光栅的分光特性 3.测量光栅常数和利用光栅测量波长 【仪器用具】 分光仪、平面透射光栅、平面反射镜、低压汞灯 【预习重点】 1.分光仪的结构原理及其调节方法和要求 2.光栅的特性及其如何调节光栅 3.测量光栅常数及利用光栅测量波长 【背景知识】 1. 分光仪是一种测量光束偏转角的精密仪器,它可以精确地测量平行光的偏转角,是光学实验中的一种常用的仪器。分光计主要由三部分:望远镜,平行光管和主体(底座、度盘和载物台)组成。附件有小灯泡、小灯泡的低压电源以及看度盘的放大镜。望远镜的目镜叫做阿贝目镜,如图1所示,可以将小灯泡的光引入分划板,当分划板的位置刚好在望远镜的焦平面上时,从载物台上放置的平面镜上反射回来的光正好落在分划板上形成一个清晰的十字象。利用这个原理可以将望远镜调好(出射平行光以及使望远镜的主轴与仪器主轴垂直),当望远镜调好后就可以利用望远镜调节平行光管,此时就可以进行光线的角度的测量了。 2.光栅是一组紧密均匀排列的狭缝。用刻线机在透明玻璃片上刻出痕宽为b(不透光部分)、 缝宽为a(透光部分)的N条平行狭缝,就构成了一个透射光栅。而d=a+b即为光栅常数,如图2(a)所示。当一束单色平行光垂直射到光栅平面上时,将发生衍射(如图2(b))。衍射光的主极大位置由光栅公式dsinφ=kλ(k=0,±1,±2,…)决定。其中:d为光栅常数;φ为衍射角;k为衍射级次;λ为入射光的波长。

图2 光栅衍射 (a)光栅常数d(b)垂直入射时的光栅衍射光栅有以下特性参数。 (1)光栅常数d。d=a+b,a为光栅狭缝宽度,b为相邻狭缝间不透明部分宽度。 (2)光栅的角色散率D。D=dφ/dλ,定义为单位波长间隔两单色谱线之间的角距离。根据光栅公式dsinφ=kλ,有D=dφ/dλ=kdcosφ。 (3)光栅的分辨本领R。由于谱线有一定的宽度,当两条谱线靠得近,到一定程度时将不能被分辨。通常把波长λ与该波长附近刚能分辨的最小波长差Δλ之比作为光栅的分辨本领,即R=λ/Δλ。可以证明,光栅的分辨本领R的理论值R=kN=kL/d,L为光栅的有效宽度,N为参与光栅衍射的总光束数。 3. 对光栅的调整要求 (1)光栅面必须垂直准直管,使平行光正入射于光栅上。光栅放置如图3所示.(注为什么如此放置光栅?) (2)光栅刻痕应平行于仪器转轴。(否则会有什么现象产生?) 根据汞光谱中绿线的波长,利用光栅公式求其光栅常数,测定汞光谱中两条黄线的波长及其汞黄线处的波长.注意:本实验过程中,有一个因数没有考虑在内,就是光栅.为了消除光栅本身产生的误差,我们将怎么读衍射角,如何解决这一问题?

光纤光栅研究

布拉格光栅的研究 1 概述 光纤光栅是一种通过一定方法使光纤纤芯的折射率发生轴向周期性调制而形成的衍射光栅,是一种无源滤波器件。由于光纤光栅具有高灵敏度、低损耗、易制作、性能稳定可靠、易与系统及其它光纤器件连接等优点,因而在光通信、光纤传感等领域得到了广泛应用[1]。 在光纤通信领域,利用光纤光栅可以制成光纤激光器、光纤色散补偿器、光插、分复用器、光纤放大器的增益均衡器等[2],这些器件都是光纤通信系统中不可缺少的重要器件,可见光纤光栅对光纤通信的重要性,因此光纤光栅也被认为是掺铒光纤放大器之后出现的又一关键器件。 在光纤传感领域,光纤光栅也起到了及其重要的作用。光纤光栅的传感机制包括温度引起的形变和热光效应、应变引起的形变和弹光效应、磁场引起的法拉第效应及折射率引起的有效折射率变化等。当光纤光栅所处的温度、应力、磁场、溶液浓度等外界环境的发生变化时,光栅周期或者光纤的有效折射率等参数也随之改变,通过测量由此带来的光纤光栅的共振波长变化或者共振波长处的透射功率变化可以获取所需的传感信息[3],由此可见,光纤光栅是波长型检测器件,所以其不光具有普通光纤的优良特性,而且测量信号不易受光强波动及系统损耗的影响,抗干扰能力更强,还可利用波分复用技术,实现对信号的分布式测量。 由于光纤光栅的应用范围较为广泛,故本文只针对光纤光栅传感的应变检测机制进行一定的研究。光纤光栅可分为布拉格光栅和长周期光栅,在应变检测中,一般采用的布拉格光栅,下文中出现的光纤光栅指的是布拉格光栅。本文主要的工作主要是分析光纤光栅应变检测的原理,对光纤光栅应变检测进行一定的综述,以及对应变检测中很重要的增敏技术进行研究,并总结。 2 应变检测原理 根据光纤光栅的耦合模理论,光纤光栅的中心波长λB 与有效折射率n eff 和光 栅周期Λ满足如下的关系[4] Λ=eff B n 2λ (2-1) 光纤光栅的反射波长取决于光栅周期Λ和有效折射率n eff ,当光栅外部产生应变变化时,会导致光栅周期Λ和有效折射率n eff 的变化,从而引起反射光波长的偏移,通过对波长偏移量的检测可以获得应力的变化情况。由于课上已经讲过,故不多做赘述,只是简要的回顾一下。接下来主要讨论应变对光纤光栅作用的模

均匀光纤光栅光谱仿真研究

均匀光纤光栅光谱仿真研究

摘要 全光通信是光纤通信的发展方向,自从1978年Hill等人制作出第一条光纤光栅之后,作为重要的全光网络器件之一,光纤光栅的研究和应用就一直受到人们的重视。光纤光栅这种新型的光纤器件由于其独特的光学特性和灵活的设计特点,在光通信系统中有着广泛的应用,包括滤波器、全光复用/ 解复用器、色散补偿器和激光器谐振腔等等。所谓光纤光栅即指光纤轴向上存在的折射率周期性变化。其制作原理是基于石英光纤的光敏效应。光纤中的光致折射率改变现象最初仅是一个科学问题,用来满足人们科学探索的好奇心,而正是因为光纤光栅在光通信与光传感领域的扮演的重要角色也使其成为光纤领域的一项基本技术。在光纤通信的应用中根据应用场合的不同,针对对光纤光栅的光谱方面和色散方面特性会提出相应的专门要求,为了给光纤光栅制作过程中的方法选择及参量控制提供理论性指导,对光纤光栅的理论与应用研究有重要的实际意义。在实际的光栅设计过程中,我们总是希望由所期望的光学特性来确定光栅的各个参数的值,因而对光纤光栅特性方面的数值模拟就具有非常重要意义。本论文以光纤通信发展为主线介绍了光纤光栅的历史及其在光通信领域的应用,概述了光纤光栅的光敏效应,以光波导为背景介绍了分析光纤光栅常用的耦合模理论以及传输矩阵理论。基于耦合模理论和传输矩阵理论对重要的两类光纤光栅:均匀光纤光栅和线性啁啾光纤光栅进行了分析推导。并对两类光纤光栅的光谱方面特性进行了仿真研究,绘制出了两类光纤光栅在不同参数下的反射光谱特性曲线,讨论了不同参数对光纤光栅频率选择特性和色散特性的影响, 所得结果可作为这类光纤光栅结构参数设计的参考依据,给光纤光栅制作过程中的方法选择及参量控制提供理论指导,为光纤光栅这一重要器件的仿真软件的构建进行初步的探索。 关键词:光纤光栅耦合模理论传输矩阵法光通信器件数值仿真 第一章绪论 光纤通信技术是以光波为载波,以光导纤维为传输信道的一种现代有线通信 技术。人类已进入信息化时代,人类对通信的需求呈现加速增长的趋势,而光纤通信技术是构建信息高速公路的主要支柱。现代光纤通信技术涉及光纤光缆技术、传输技术、光有源器件、光无源器件以及光网络技术等。 1.1光纤通信历史及发展: 1880年,贝尔利用太阳光作为光源,以大气为传输信道,用硒晶体作为光接收器,进行了光电话的实验,实现了真正现代意义下的光通信,使通话距离最远达到了二百多米,但空间光传输易受到气候和周围环境等条件的影响,损耗也比较大。 1966年,英籍华人高锟博士和他的同事G. A. Hockham,在研究了光在石英玻璃纤维中传输的特性极

光栅特性的研究

实验八 光栅特性的研究 衍射光栅是利用光的衍射原理使光波发生色散的光学元件.它由大量相互平行、等宽、等距的狭缝(或刻痕)组成.以衍射光栅为色散元件组成摄谱仪或单色仪是物质光谱分析的基本仪器之一,在研究谱线结构,特征谱线的波长和强度;特别是在研究物质结构和对元素作定性与定量的分析中有极其广泛的应用. 【实验目的】 1.进一步熟悉光学测角仪的调整和使用; 2.测量光栅的特性参数; 3.从测定钠灯和汞灯光谱在可见光范围内几条谱线的波长过程中,观测和研究光栅的衍射现象. 【实验原理】 1.光栅衍射 有大量等宽间隔的平行狭缝构成的光学元 件成为光栅.设光栅的总缝数为N ,缝宽为a , 缝间不透光部分为b ,则缝距d = a + b ,称为光 栅常数.按夫琅和费光栅衍射理论,当一束平 行光垂直入射到光栅平面上时,通过不同的缝, 光要发生干涉,但同时,每条缝又都要发生衍 射,且N 条缝的N 套衍射条纹通过透镜后将完 全重合.如图1所示,当衍射角θ 满足光栅方程d sin θ = k λ(k = 0、±1、± 2、 …)时,任 两缝所发出的两束光都干涉相长,形成细而亮 的主极大明条纹. 2.光栅光谱 单色光经过光栅衍射后形成各级主极大的细亮线称为这种单色光的光栅衍射谱.如果用复色光照射,由光栅方程可知不同波长的同一级谱线(零级除外)的角位置是不同的,并按波长由短到长的次序自中央向外侧依次分开排列,每一干涉级次都有这样的一组谱线.在较高级次时,各级谱线可能相互重叠.光栅衍射产生的这种按波长排列的谱线称为光栅光谱. 评定光栅好坏的标志是角色散率和光栅的分辨本领. (1)λ ?ψd d =称为光栅的角色散率,由d sin ? = k λ 可知 k p d k d d cos ==λ?ψ (1) (2)根据瑞利判据,光栅能分辨出相邻两条谱线的能力是受限制的,波长相差Δλ的两条相邻的谱线,若其中一条谱线的最亮处恰好落在另一条谱线的最暗处,则称这两条谱线能 - 44 -

光纤光栅制作方法

光纤光栅制作方法<2> 3)chirp光纤光栅的制作a)两次曝光法这种方法可采用较简单的制作均匀光纤光栅的曝光光路。第一次曝光在光纤上并不形成光栅,而是仅形成一个渐变的折射率梯度,第二次曝光过程则是在第一次曝光区域上继续写入周期均匀的光栅,两次效应迭加便构成了一个chirp光栅。这种方法的优点是利用了制作均匀光栅的曝光光路,使得制作方法大大简化。b)光纤弯曲法这是在均匀光栅中引人光纤的机械变形,形成chirp光栅的一种方法,由于光纤的弯曲角度渐变,造成光栅的周期渐变。这种方法引入的chirp量不能过大,否则栅齿倾斜,会引起导模耦合成包层模而造成附加损耗。c)锥形光纤法这是利用锥形光纤形成chirp光栅的一种方法。可以在锥形光纤两端施加应力发生形变,然后写人均匀周期的光栅,应力释放后,由于锥体各部分的伸长形变不同,造成光栅周期的轴向发生均匀变化,形成chirp光栅。也可以先在锥形光纤上写人均匀光栅,然后再施加应力,可以得到相同的效果。d)应力梯度法与锥形光纤法原理相同,只是光纤中应力大小是通过将光纤粘在底座上的胶含量来调节。它的优点是可以分别调节中心波长和光栅的带宽,这对于制作高性能的色散补偿器具有重要的意义。e)复合chirp光栅法将一列不同周期的均匀光栅顺序写在光纤上,它最大限度地应用了制作均匀光纤光栅的工艺简单性,具有很大的灵活性。f)chirp光栅的全总干涉法制作这种制作chirp光栅的基本原理是通过在双光束全息光路系统中加入往面镜,使两束光的干涉角度沿着光纤轴向发生连续变化,从而造成光纤的纤芯折射率发生周期性渐变,形成chirp光纤光栅。4)新的光纤光栅制作方法a)直接写入法直接写入法是指在制作光纤光栅时,无须剥去光纤的涂覆层而直接在纤芯上写人光纤光栅的方法。此法关键是采用对紫外光透明的材料作为光纤的涂覆层。目前报道的光纤涂覆层有采用丙烯酸酯或general electric rtv615硅胶,通过加大紫外光强度、减小涂覆层厚度以及对光纤氢载等方法可以有效提高光纤光栅的写入时间。这种方法解决了以往传统方法中必须采用课光纤的弊端,减少了对光纤光栅制作完后要立即进行涂覆的工艺复杂性,具有很好的应用前景。b)在线成栅法这是最新出现的一种成栅方法。南安普敦大学的ldong等人采用脉冲单点激射的方法,首次实现了光纤拉制过程中写人光纤光栅的实验。它是在光纤拉制过程中在探光纤上直接写入光栅。通过对干涉系统中两束干涉光夹角的调节,可在线自动写入反射波长不同的一系列光纤光栅。使用这种方法,制造工艺简单,能连续大批量地制造光纤光栅,提高了光栅性能的稳定性,它的技术关键是要对所使用的准分子激光光束截面进行改进才能满足实用化的要求。c)光纤刻槽拉伸法用精密切割机对光纤进行周期性机械刻槽,用氢气火焰对v型槽区域的光泽进行拉伸退火,熔融玻璃表面应力的影响,以及v型槽一边的光纤的纤芯不平衡等因素,纤芯产生周期性的畸变,导致纤芯折射率的周期性变化。利用此方法已经成功研制成的长周期光纤光栅,具有很好的宽阻带特性(30nm),可应用于宽阻带滤波器的波分复用系统。这种方法的缺点是机械加工的精度要求较高,目前很少被采用。d)微透镜阵列法这种写入长周期光纤光栅方法的关键技术是采用一种微透镜阵列,将一平行的宽柬难分子激光聚焦成平行等间距的光条纹,投影到单模光纤上,其中相邻微透镜之间无间隙,其中心间距决定了写人光栅的空间周期。这种方法写入一个长周期光纤光栅仅需10s,大大提高了写入效率。通过控制写入时间和写入光栅的总长度,可以用同一块微透镜模板写入不同波长、不同透射率的长周期光栅。这种方法的缺点是做透镜模板制作非常困难,使它的应用受到了限制。e)用聚焦二氧化碳激光器写入lpg 采用10.6μm自由空间二氧化碳激光器对光纤直接曝光,通过计算机控制平移台,实现光纤的准直和固定及曝光间距的控制,可以写入不同周期的长周期光栅。这种方法无须采用紫外光,对光纤可以不用载氢处理,这种方法具有很好的应用前景。f)移动平台法利用一个周期不变的相位掩膜,可以写入调瞅、波长任意的光纤bragg光栅,通过改变光束的聚焦,可以写入阶跃chirp光栅。实验结构的主体包括两个移动平台,相位掩膜与光纤固定在一起,可以移动。改变两个透镜之间的距离就可以改变写入光纤的布拉格波长,控制每个基本光栅的曝光时间可控制切趾光栅剖面,这对于抑制反射谱中旁瓣的影响具有重要的意义。g)用聚焦离子束写入光纤光栅利用聚焦离子束(focused ion beam:fib)可以写入任意的光纤光栅结构,fib既可以采用研磨方式,也可以采用沉积方式。光栅研磨出的槽离纤芯只有几μm,研磨15~20个槽即可获得高的反射率,槽数越多反射越大。研磨方法简单但实现不易,常用的方法是用氟化氢腐蚀掉部分包层后开始研磨,但光纤研磨下来的物质充电沉积在研磨区,将会降低研磨效率,并且由于材料的再沉积,糟的深宽比将被限制在一个较小的值。研磨时间取决于研磨材料和束电流。这种方法的关键是要解决工艺难度,才有可能获得广泛的应用。3结束语对光纤通信而

实验报告-光栅特性的研究

实验报告 姓名:班级:学号:实验成绩: 同组姓名:实验日期:2008-9-16 指导老师:助教28 批阅日期: 光栅特性的研究 【实验目的】 1.进一步熟悉光学测角仪的调整和使用 2. 测量光栅的特性参数。 3. 掌握RC、RL串联电路的幅频特性和相频特性的测量方法。 4. 从测定钠灯和汞灯光谱在可见光范围内几条谱线的波长过程中,观测和研究光栅的衍射现象。 【实验原理】 1. 光栅衍射 有大量等宽间隔的平行狭缝构成的光学元件 成为光栅.设光栅的总缝数为N,缝宽为a,缝间 不透光部分为b,则缝距d = a + b,称为光栅常 数.按夫琅和费光栅衍射理论,当一束平行光垂 直入射到光栅平面上时,通过不同的缝,光要发 生干涉,但同时,每条缝又都要发生衍射,且N 条缝的N套衍射条纹通过透镜后将完全重合.如 图1所示,当衍射角θ满足光栅方程dsinθ = kλ(k = 0、±1、± 2、…)时,任两缝所发出的两束光都干涉相长,形成细而亮的主极大明条纹.

2.光栅光谱 单色光经过光栅衍射后形成各级主 极大的细亮线称为这种单色光的光栅衍 射谱.如果用复色光照射,由光栅方程 可知不同波长的同一级谱线(零级除外) 的角位置是不同的,并按波长由短到长 的次序自中央向外侧依次分开排列,每 一干涉级次都有这样的一组谱线.在较 高级次时,各级谱线可能相互重叠.光 栅衍射产生的这种按波长排列的谱线称 为光栅光谱. 评定光栅好坏的标志是角色散率和光栅的分辨本领. 若入射光束不是垂直入射至光栅平面(图2),则光栅的衍射光谱的分布规律将有所变化.理论指出:当入射角为i时,光栅方程变为 【实验数据记录、实验结果计算】 1、白色条纹角度:25720’7721’

光栅布拉格光栅及其传感特性研究

光栅布拉格光栅及其传感特性研究2 一光纤光栅概述2 1.1 光纤光栅的耦合模理论2 1.2 光纤光栅的类型3 1.2.1 均匀周期光纤布拉格光栅3 1.2.2 线性啁啾光纤光栅3 1.2.3 切趾光纤光栅3 1.2.4 闪耀光纤光栅4 1.2.5 相移光纤光栅4 1.2.6 超结构光纤光栅4 1.2.7 长周期光纤光栅4 二光纤布拉格光栅传感器5 2.1 光纤布拉格光栅应力传感器5 2.2 光纤布拉格光栅温度传感器6 2.3 光纤布拉格光栅压力传感器6 2.4 基于双折射效应的光纤布拉格光栅传感器7 三光纤光栅传感器的敏化与封装10 3.1 光纤光栅传感器的温度敏化10 3.2 光纤光栅传感器的应力敏化10 3.2 光纤光栅传感器的交叉敏感及其解决方法10 四光纤光栅传感网络与复用技术10 4.1 光纤光栅传感网络常用的波分复用技术11 4.1.1 基于波长扫描法的波分复用技术12 4.1.2 基于波长分离法的波分复用技术13 4.1.3 基于衍射光栅和CCD阵列的复用技术13 4.1.4 基于码分多址(CDMA)和密集波分复用(DWDM)技术14 4.2光纤光栅传感网络常用的空分复用技术14 4.3光纤光栅传感网络常用的时分复用技术16 4.4 光纤光栅传感网络的副载波频分复用技术18 4.4.1 光纤光栅传感副载波频分复用技术18 4.4.2 FBG传感网络的光频域反射复用技术18 4.5 光纤光栅传感网络的相干复用技术18 4.6 混合复用FBG传感网络18 4.6.1 WDM/TDM混合FBG网络18 4.6.2 SDM/WDM混合FBG网络18 4.6.3 SDM/TDM混合FBG网络18 4.6.4 SDM/WDM/TDM混和FBG网络18 4.6.5 光频域反射复用/波分复用混合FBG传感网络18 五光栅光栅传感信号的解调方法18 六激光传感器18

试验35光栅特性的研究

实验三十八 光栅特性的研究 实验内容 1.测出所给衍射光栅的四个主要特性参数;光栅常数d、角色散率φ、分辨本领R和衍射效率η。 2.测量钠光灯的钠双线波长,或汞灯谱线的各个波长,或He-Ne 激光器的激光波长。 教学要求 ?? 1.了解衍射光谱的结构、分类和特性。 ?? 2.学习如何选择实验方法测定光学元件的特性参数。 实验器材 ?? 除给定不同光栅常数的全息光栅外,其余仪器设备请自行拟定后,向实验室申请使用。 光栅通常用于研究复色光谱的组成,进行光谱分析,还可以通过光栅获得特定波长的单色光。所以,光栅是一种重要的分光元件。了解光栅的结构和工作特性,对使用和开发光学器件有着重要的意义。 ?? 光栅按其结构分类,可分为平面光栅,阶梯光栅和凹面光栅;按衍射条件分类,可分为透射光栅和反射光栅。 操作步骤 ?? 1.选择一定的方法和仪器,测出所给衍射光栅的四个主要特性参数:光栅常数d、角色散率φ、分辨本领R和衍射效率η。 ?? 2.利用所给光栅测量钠光谱双线的波长,或汞光各条谱线的波长,或He-Ne 激光谱线的波长。要求测量结果的准确度 λE ≤0.1%。 ?? 3.从理论上算出在给定的光栅和光波长(汞灯)的条件下,能观察到的光栅的最高衍射级数K,并用实验加以验证。 ?? 4.观察分辨本领R与光栅狭缝数目N的关系。挡住光栅的一部分,减小狭缝数目N,观察钠光谱的双线的衍射谱随N的减小而发生的变化。 实验提示 ? 根据夫琅和费衍射理论,当一束平行光垂直入射到光栅平面上时,将发生衍射。衍射光谱中亮条纹的位置由衍射方程dsin φ=k λ (k=0,±1, ±2,……)决定。其中缝间距d称为光栅常数,φ为衍射角,k为衍射光谱线的级数,λ为入射单色光的波长。关于光栅的几个特性参数说明如下: ?? 1.光栅常数d:d=a+b ,a 为光栅任一狭缝的宽度,b 为相邻狭缝间不透光部分的宽度。 ?? 2.角色散率φ:λ φ?d d =,定义为单位波长间隔内两单色谱线之间的角间距。由dsin φ=k λ,可得k d k φ?cos =。 ?? 3.分辨本领R:λ λ?=R ,定义为两条刚可被分辨开的谱线的波长差除以它们的平

光纤光栅传感技术发展综述

Optoelectronics 光电子, 2018, 8(3), 98-105 Published Online September 2018 in Hans. https://www.doczj.com/doc/37216326.html,/journal/oe https://https://www.doczj.com/doc/37216326.html,/10.12677/oe.2018.83014 Development in Fiber Bragg Grating Sensing Technology Shanchao Jiang School of Electrical Engineering, Yancheng Institute of Technology, Yancheng Jiangsu Received: Aug. 21st, 2018; accepted: Sep. 6th, 2018; published: Sep. 13th, 2018 Abstract In order to promote the development of fiber Bragg grating (FBG) sensing technology, this paper introduces the development of fiber Bragg grating in its spectrum analysis, sensor parameters (such as strain, displacement, pressure, flow rate, anchor bolt, inclination, etc.) detection, multip-lexing technology and other aspects in detail. This provides basic support for further diversifica-tion and practicability of FBG sensing technology. Keywords FBG, Spectrum Analysis, Detection Sensor, Multiplexing Technology 光纤光栅传感技术发展综述 蒋善超 盐城工学院电气工程学院,江苏盐城 收稿日期:2018年8月21日;录用日期:2018年9月6日;发布日期:2018年9月13日 摘要 为促进光纤光栅传感技术的发展,本文较为详细的介绍了光纤光栅在其光谱分析、传感器参数(如应变、位移、压力、流速、锚索锚杆、倾斜等)检测、复用技术等方面的发展现状,为推动光纤光栅传感技术进一步的多样化、实用化提供基础支持。 关键词 光纤光栅,光谱分析,检测元件,复用技术

光纤光栅光谱特性研究

SHANDONGUNIVERSITYOFTECHNOLOGY 课程设计题目:光纤光栅光谱特性研究所属课程:应用光学 学院:理学院 专业:光电信息科学与工程 学生姓名:卢远 学号: 指导教师:郭立萍 2015 年 6 月

光纤光栅光谱特性研究 摘要 光纤光栅是一种通过一定方法使光纤纤芯的折射率发生轴向周期性调制而形成的衍射光栅,是一种无源滤波器件。由于光栅光纤具有体积小、熔接损耗小、全兼容于光纤、能埋入智能材料等优点,并且其谐振波长对温度、应变、折射率、浓度等外界环境的变化比较敏感,因此在光纤通信和传感领域得到了广泛的应用。 光纤光栅是利用光纤材料的光敏性,通过紫外光曝光的方法将入射光相干场图样写入纤芯,在纤芯内产生沿纤芯轴向的折射率周期性变化,从而形成永久性空间的相位光栅,其作用实质上是在纤芯内形成一个窄带的(透射或反射)滤波器或反射镜。当一束宽光谱光经过光纤光栅时,满足光纤光栅布拉格条件的波长将产生反射,其余的波长透过光纤光栅继续传输。 随着信息业务量快速增长,语音、数据和图像等业务综合在一起传输,从而对通信带宽容量提出了更高要求。全光通信是解决“电子瓶颈”最根本的途径,全光网通信可以极大地提高节点的吞吐容量,适应未来高速宽带通信的要求。基于光纤的光敏特性制作成的光纤光栅已成为光通信系统和光纤传感器中的关键器件。它有许多突出的优点,优良的性质,这使得它成为目前研究的热点。本文主要论述了光纤光栅的基本原理及其制作的方法,利用耦合理论分析光纤光栅光谱特性。本文中讨论了现在光纤光栅在各个领域的利用,并且探讨了光纤光栅现状的利用和未来的发展方向。本文利用matlab仿真,画出不同光栅的光谱图,观察各种参数的变化对光栅光谱特性的影响,并分析光纤光栅光谱图。 关键词:光纤光栅;耦合模理论;光谱特性

相关主题
文本预览
相关文档 最新文档