当前位置:文档之家› 巨线粒体DNAND6基因克隆及多态性分析

巨线粒体DNAND6基因克隆及多态性分析

巨线粒体DNAND6基因克隆及多态性分析
巨线粒体DNAND6基因克隆及多态性分析

巨线粒体DNAND6基因克隆及多态性分析

摘要:利用GenBank数据库中科鱼线粒体ND6基因序列保守区设计引物,采用PCR技术克隆并测序,共得到12尾巨ND6基因全序列。用DNAMAN 5.0软件比对序列,MEGA 5.0软件分析科不同鱼类的进化关系,结果表明:巨ND6基因序列全长为516 bp,碱基含量分别为14.20%、34.50%、40.20%、11.00%,其中“A+T”含量(54.40%)高于“G+C”含量(45.50%),存在4个单倍型,发生3次颠换;12个个体4个单倍型间的平均相对遗传距离为0.003;将巨与其他14种鱼类的ND6基因用Neighbore-Joining(NJ)法构建系统发育树,发现巨单独聚为1支。研究将为今后鱼类线粒体基因组的研究提供科学依据。

关键词:巨;线粒体;ND6基因;多态性;系统进化

中图分类号:S917.4

文献标志码: A

文章编号:1002-1302(2016)04-0062-04

巨(Bagarius yarrelli Sykes)是云南省特有鱼类,主要分布于元江、澜沧江、怒江流域,属于鲇形目(Siluriforme)科(Sisoridae)属(Bagarius)。巨个体很大,体质量约50 kg,全身无鳞,皮肤表面布满细密的微小颗粒物,使其皮肤极为

粗糙,此外其体表无黏液,身体背面颜色为灰黄色,腹面为白色,肌肉为黄色,所以又称“黄鱼”[1]。巨为底栖肉食性鱼类,具有口宽、上下颌都有齿带、牙齿呈锥形且排列紧密、鳃耙粗短、胃大、肠短等特点,主要食物为鱼类、虾、泥鳅、水生昆虫[2]。田树魁等通过比较巨、叉尾鲇、斑点叉尾3种鱼肌肉中常规营养成分和氨基酸含量,发现巨肌肉中蛋白质、粗脂肪和必需氨基酸的含量比常规鱼类高,是一种具有较高营养价值的有待驯养开发的野生鱼类[3]。杜民等研究表明,野生巨具有较高的遗传多样性[4]。但是由于地理环境的改变和人为因素的影响,野生可利用的巨资源越来越少。为了保护该鱼类,薛晨江等开展了巨的人工驯养,并取得初步成功[5]。

鱼类线粒体DNA(mitochondrial DNA,mtDNA)是细胞

核外(细胞质中)具有转录、自主复制和翻译能力的共价闭合环状双链DNA[6]。鱼类的mtDNA主要包括37个基因(22个tRNA编码基因、13个疏水蛋白基因、2个rRNA基因);

其中13个疏水蛋白基因编码的多肽中包含了7个氢化辅酶

Ⅰ(nicotinamide adenine diuncleotide hydrogen,NADH)脱氢酶的亚单位(ND1、ND2、ND3、ND4、ND4L、ND5、ND6)。ND6蛋白编码基因位于L链上,处于细胞色素b与ND4之间的连续区域,是线粒体内膜呼吸链的重要组成成分[7]。在氢化辅酶中,由于ND6基因序列不易发生变异,进化速度一般,

且基因片段不长,因此常用来研究物种的遗传多样性、种群之间的亲缘关系以及系统进化关系[8]。方月琴等用复合扩增体系,选择线粒体ND6基因进行种属鉴定,结果表明,该方法可以将13种不同的动物区分开来[9]。也有研究表明,ND6基因与人类疾病帕金森氏症等发生有关[10],ND6基因还被用于研究鸟类的亲缘关系[11],但是大多应用于鱼类群体和亚种间的遗传变异研究[12-13]。对巨的线粒体ND6基因全序列进行检测分析,进而分析巨遗传结构、变异及与其他物种之间的同源差异,可为今后巨鱼种研究提供一定的试验数据与理论依据。

1 材料与方法

1.1 试验材料

本研究采用的12尾巨采自云南省河口县。剪取肌肉组织放于1.5 mL EP管中,贴上对应标签,再加入无水乙醇,于4 ℃保存备用。

1.2 试验方法

1.2.1 基因组DNA的提取及多态性引物筛选DNA的提取参考Sambrook等的酚/氯仿抽提法[14]。用凝胶成像系统观察、照相记录后,将提取的DNA贮存在-20 ℃冰箱中备用。

根据GenBank数据库中已公布的科巨鱼线粒体基因组ND6基因序列(登录号:NC_021606,JQ026260),用Primer Premier 5软件设计简并引物:上游引物:5′

-GCACCTCAGAAKGATATTTGWCCYC-3′;下游引物:3′

-TYTAAACAGCCCGAAGCGC MC-5′,在PCR扩增仪上进行扩增,反应体系见表1。

PCR反应条件:94 ℃ 4 min;94 ℃30 s,54 ℃50 s,72 ℃90 s,30个循环;72 ℃延伸6 min;4 ℃保存。PCR

产物用1%琼脂糖凝胶在120 V电压下电泳35 min,最后通过凝胶成像系统得到PCR产物条带并照相。

检测后的PCR产物用1.5%琼脂糖凝胶电泳,在紫外分析仪下切下目的片段,用DNA凝胶回收试剂盒(天根生物科技有限公司)进行回收纯化,具体步骤参照回收试剂盒说明书进行。

1.2.2 目的DNA片段的连接与转化用pMD18-T载体与

目的DNA进行连接、转化,具体步骤参照载体连接试剂盒说明书进行,用LB培养基进行扩大养后用M13进行阳性克隆

筛选,送交南京金斯瑞科技生物公司测序。

1.3 数据分析

利用DNAMAN 5.0软件将测得的巨线粒体ND6基因部分序列与参照物种ND6基因部分序列进行比对。利用MEGA 5.0软件中的Kimura2-parameter方法计算遗传距离,采用邻接

法(Neighbore-Joining,NJ)中的Maximum Composite Likelihood法构建系统发育树,通过自举检验(Bootstrap)获得系统分支的置信度(重复1 000次)。

2 结果与分析

2.1 DNA提取

从巨鱼鳍条或肌肉提取DNA,结果见图1。可以看出,DNA条带清晰。 2.2 引物退火温度的优化

用设计的Bayam18引物退火温度的±10 ℃范围进行梯度PCR(图2),所用marker为BM2000,Bayam18引物的退火温度梯度见表2。由图2可知,Bayam18号引物能扩增出条带的温度为55、55.6、56.4、57.5、59.2、60.7、61.9 ℃,根据条带明亮度,初步确定Bayam18引物最适的退火温度。

2.3 扩增产物与DNA回收

利用凝胶回收试剂盒对PCR产物(图3)进行回收,回收产物(图4)于-20 ℃保存。

2.4 菌液退火温度优化

通过梯度PCR优化M13通用引物的退火温度(图5)。M13通用引物序列见表3,退火温度梯度见表4。由图5可知,M13通用引物在每个泳道都扩增出了明亮条带。

2.5 巨鱼ND6基因序列的碱基含量

本试验中,利用下载序列通过DNAMAN 5.0软件对比排位,得到ND6基因片段长度516 bp,12条序列中发现4个单倍型,其中6号、7号、11号个体序列相同,为1#单倍型;1号、3号、4号、5号、8号、9号、12号个体序列相同,为2#单倍型;10号个体为3#单倍型;2号个体为4#单倍型。

采用MEGA 5.0软件计算它们的碱基组成(表5),可以得出T、C、A、G 4种碱基含量分别为14.10%、34.80%、40.10%、11.00%,其中“A+T”含量(54.20%)高于“G+C”含量(45.80%)。

2.6 巨鱼ND6基因12个个体的相对遗传距离

用MEGA 5.0软件中的双参数法,通过转换加颠换、转换比颠换分别计算12个个体之间的相对遗传距离[15],详见表6。由表6可知,12个个体的4个单倍型之间的差异(转换加颠换)为0.002~0.004。

2.7 基于ND6基因构建系统发育树

将巨鱼ND6基因与其他14物种(表7)进行比对,用MEGA5.0软件构建系统发育树[16-17],从图6可以看出,系统发育树分为两大支,巨单独聚为1支。

3 讨论与分析

本试验通过从GenBank数据库中查询已公布的科巨线粒体基因组中ND6基因序列保守区设计引物,采用PCR反应扩增、克隆及测序巨ND6基因,共得到12条ND6基因全序列。对巨线粒体ND6基因序列进行研究,得到ND6基因全序列长516 bp。

利用MEGA 5.0软件分析对巨鱼线粒体ND6基因12个个体进行分析,得到T、C、A、G这4种碱基含量分别为14.10%、34.80%、40.10%、11.00%,其中“A+T”含量(54.20%)高于“G+C”含量(45.80%),说明ND6基因序列中富含碱基A、

T。共发现4个单倍型,3个变异位点,都为单突变位点,表明ND6基因序列多态性贫乏,序列之间差异不大,这与赖瑞芳等比较鲂属鱼类线粒体基因组,研究鲂属鱼类系统发育的结果[18]是一致的。ND6基因序列共发生3次颠换,表明本

研究的4个单倍型的ND6基因核苷酸变异类型以

颠换为主。12个个体的4个单倍型之间平均相对遗传距离为0.003,转换和颠换的比值为0.667,表明这12个个体

之间亲缘性近,ND6基因序列变异并不显著,这与于美玲等对科鱼类系统发育关系的研究结果[19]一致。

此外,由系统发育树可知,系统发育树分为两大支,其中巨单独聚成1支,置信值为100%,表明与其他14种科鱼亲缘性远。另一支又分为2支,分别是细尾、长丝黑先聚为

1支,黄石爬、黑斑原先聚为1支后,这4个种类进而聚为

一个大的分支后与本研究的4个巨聚在一起。大鳍异齿和中华先聚为1支,二者与三线纹胸聚在一起后与中华纹胸聚为

1支,再与藏聚在一起,然后与黄斑褶聚为较大的分支。巨

单独聚成1支,这与形态学分类结果与基于细胞色素b (Cytochrome b)、rpS7基因研究的遗传进化是一致的[20-21]。本研究通过研究巨鱼ND6基因序列多态性,可为以后研究巨与其他鱼类的亲缘性、系统进化等研究提供科学依据。

参考文献:

[1]田树魁,薛晨江,冷云,等. 巨的生物学特性初步研

究[J]. 水生态学杂志,2009,30(3):115-117.

[2]冷云,田树魁,刘跃天,等. 巨食性初步研究[J]. 现代农业科技,2011,37(19):329-330.

[3]田树魁,易勇,薛晨江,等. 野生巨肌肉营养成分测定和分析[J]. 淡水渔业,2009,39(3):73-76.

[4]杜民,牛宝珍,罗彩艳,等. 巨野生群体遗传多样性的RAPD分析[J]. 淡水渔业,2015,45(1):15-19,24.

[5]薛晨江,张正雄,马建颜,等. 巨人工繁殖初报与胚胎发育观察[J]. 水生态学杂志,2012,33(5):54-56.

[6]吕国庆,李思发. 鱼类线粒体DNA 多态研究和应用

进展[J]. 中国水产科学,1998,5(3):95-104.

[7]陈四海,区又君,李加儿. 鱼类线粒体DNA及其研究进展[J]. 生物技术通报,2011,27(3):13-20.

[8]海汀,柴志欣,张成福,等. 西藏牦牛mtDNA ND6

遗传多样性及系统进化分析[J]. 家畜生态学报,2014,35(11):11-17.

[9]方月琴,顾准,侯一平. 线粒体基因种属鉴定复合扩增体系[J]. 盐城工学院学报:自然科学版,2012,25(1):19-24.

[10]Piccoli C,Ripoli M,Quarato G,et al. Coexistence of mutations in PINK1 and mitochondrial DNA in early onset Parkinsonism[J]. Journal of Medical Genetics,2008,45(9):

596-602. [11]陈晓芳,王翔,袁晓东,等. ?a形目15种鸟类线粒体ND6基因序列差异及其系统进化关系[J]. 动物学报,2003,49(1):61-66.

[12]袁娟,张其中,罗芬. 鱼类线粒体DNA及其在分子群体遗传研究中的应用[J]. 生态科学,2008,27(4):272-276.

[13]郭新红,刘少军,刘巧. 鱼类线粒体DNA研究新进展[J]. 遗传学报,2004,31(9):983-1000.

[14]Sambroo J,Fitch E,Maniatis T. Molecular cloning:a laboratory manual[M]. 2nd ed. New York:Cold Spring Harbor Laboratory Press,1989:1024-1031.

[15]Tamura K,Nei M,Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method[J]. Proceedings of the National Academy of Sciences of the United States of America,2004,101(30):11030-11035.

[16]Saitou N,Nei M. The neighbor-joining method:a new method for reconstructing phylogenetic trees[J]. Molecular Biology and Evolution,1987,4(4):406-425.

[17]Dopazo J. Estimating errors and confidence intervals for branch lengths in phylogenetic trees by a bootstrap approach[J]. Journal of Molecular Evolution,1994,38(3):300-304.

[18]赖瑞芳,张秀杰,李艳和,等. 鲂属鱼类线粒体基因组的比较及其系统发育分析[J]. 水产学报,2014,38(1):1-14.

[19]于美玲,何舜平.科鱼类系统发育关系分析及其分歧时间估算[J]. 中国科学:生命科学,2012,42(4):277-285.

[20]周伟,李旭,杨颖.中国科群系统发育与地理分布格局研究进展[J]. 动物学研究,2005,26(6):673-679.

[21]李旭. 中国鲇形目科群鱼类的系统发育及生物地理学分析[D]. 昆明:西南林业大学,2006.徐佳杰,姜波,朱建一,等. 红毛菜28S rDNA和IGS序列分析及系统发育[J]. 江苏农业科学,2016,44(4):66-69.

植物基因克隆技术的研究进展

植物基因克隆技术的研究进展 随着科学技术的不断发展,人类基因组计划的不断实施,世界生命科技工作者对于植物基因克隆技术的研究不断进步,近年来,我国在基因克隆技术领域也有了长足的进步,在玉米,小麦,大豆,水稻,拟南芥等植物中,已经克隆了许许多多与植物的产量、品质、抗性及农艺性状等相关的基因。文章主要从基因芯片技术,功能克隆、定位克隆、同源序列克隆、PCR擴增技术分别介绍基因克隆技术的现状以及研究进展。 标签:植物;基因克隆技术;研究 植物基因克隆技术在生命科学技术中扮演着越来越重要的角色,而植物基因克隆技术从传统意义上来讲可分为两种不同的方式。正向以及反向的遗传学方式,正向遗传学途径是一种很早的经典的克隆方法,通过研究突变表型性状进行克隆,包括了功能以及表型克隆等较为基本的克隆的方式;反向遗传学途径和正向遗传学途径截然不同,它是通过一些特殊的方法,获得遗传基因片段,然后经过一系列的定位,将之后所研究的基因逆向研究。如定位克隆,同源序列克隆等。除了这两种克隆技术外,随着社会发展,也有一些新的克隆技术产生。 1 基因芯片技术 基因芯片技术是电子克隆技术的典型代表,基因芯片又称DNA芯片、DNA 微阵列,是以预先设计的方式将大量的基因探针固定在玻片、硅片等固相载体上组成的密集分子阵列。基因芯片技术类似于计算机的电子芯片技术,其具有高通量、微型化、连续化、自动化、快速和准确等特点。是一种随着人类基因组计划的进行而发展出的产物,这一发展使得人类对越来越多的微生物和动植物基因组取得了更长远的认识,对其的研究,是全人类对于基因组认识做出的不断地努力的成果,其中不乏许多典型的实例,用cDNA芯片技术对草莓、矮牵牛其基因是如何进行表达的进行研究,进而实现对转基因植物进行形状的观察及控制,可以更好的获悉分子对于基因表达是如何作用以及影响的也有利于获得更为优异更为良好的作物[1]。 基因芯片技术是一种新型的克隆技术,是科技创新和生命科学的很好的结合,代表着人类在基因的克隆方面进展和成就,解决了很多传统克隆不能解决的问题,也讲基因克隆技术引向一种新的思维模式。 2 功能克隆 功能克隆是人类采用最早的基因克隆策略,功能克隆技术从已知蛋白质的功能着手进行研究,其方法原理是先测知基因的编码蛋白质,利用它的信使RNA 进行反转录成cRNA,再利用cDNA做探针,从基因组中获取基因本身,进而完成克隆。

【高中生物】功能基因的克隆及生物信息学分析

(生物科技行业)功能基因的克隆及生物信息学分析

功能基因的克隆及其生物信息学分析 摘要:随着多种生物全基因组序列的获得,基因组研究正从结构基因组学(structuralgenomics)转向功能基因组学(functionalgenomics)的整体研究。功能基因组学利用结构基因组学研究获得的大量数据与信息评价基因功能(包括生化功能、细胞功能、发育功能、适应功能等),其主要手段结合了高通量的大规模的实验方法、统计和计算机分析技术[1],它代表了基因分析的新阶段,已成为21世纪国际生命科学研究的前沿。功能基因组学是利用基因组测序获得的信息和产物,发展和应用新的实验手段,通过在基因组或系统水平上全面分析基因的功能,使生物学研究从对单一基因或蛋白的研究转向多个基因或蛋白同时进行系统的研究,是在基因组静态的组成序列基础上转入对基因组动态的生物学功能学研究[2]。如何研究功能基因,也成为我们面临的一个课题,本文就克隆和生物信息学分析在研究功能基因方面的应用做一个简要的阐述。 关键词:功能基因、克隆、生物信息学分析。 1.功能基因的克隆 1.1图位克隆方法 图位克隆又称定位克隆,它是根据目标基因在染色体上确切位置,寻找与其紧密连锁的分子标记,筛选BCA克隆,通过染色体步移法逐步逼近目的基因区域,根据测序结果或用BAC、YAC克隆筛选cDNA表达文库寻找候选基因,得到候选基因后再确定目标基因。优点是无需掌握基因产物的任何信息,从突变体开始,逐步找到基因,最后证实该基因就是造成突变的原因。通过图位克隆许多

控制质量性状的单基因得以克隆,最近也有报道某些控制数量性状的主效基因(控制蕃茄果实大小的基因克隆[3]、控制水稻成熟后稻谷脱落基因克隆[4]以及小麦VRN2基因克隆[5]等)也通过图位克隆法获得。 1.2同源序列克隆目的基因 首先根据已知的基因序列设计PCR引物,在已知材料中扩增到该片段,并经克隆测序验证,利用放射性同位素标记或其他非同位素标记该PCR片段作为探针,与待研究材料的cDNA文库杂交,就可以获得该基因cDNA克隆,利用克隆进一步筛选基因组文库,挑选阳性克隆,亚克隆并测序,从中就可以筛选到该基因的完整序列。 1.3结合连锁和连锁不平衡的分析方法 结合连锁和连锁不平衡的分析方法是未知基因克隆研究领域发展的新方向[6]。(Linkagedisequilibrium,LD)。与连锁分析不同,连锁不平衡分析可以利用自然群体中历史发生的重组事件。历史上发生的重组使连锁的标记渐渐分布到不同的同源染色体上,这样就只有相隔很近的标记才能不被重组掉,从而形成大小不同的单倍型片段(Haplotypeblock)。这样经过很多世代的重组,只有相隔很近的基因,才能仍处在相同的原始单倍型片段上,基因间的连锁不平衡才能依然存在。所以基于连锁不平衡分析,可以实现目的基因的精细定位。林木大多为自由授粉的异交物种,所以连锁不平衡程度很低,林木基因组中的LD可能会仅局限于非常小的区域,这就为目的基因的精细定位提供了可能,结合SNP检测技术,科学家甚至可以将效应位点直接与单个的核苷酸突变关联起来,进行数量性状寡核苷酸

基因多态性

基因多态性 多态性(polymorphism)是指在一个生物群体中,同时和经常存在两种或多种不连续的变异型或基因型(genotype)或等位基因(allele),亦称遗传多态性(genetic polymorphism)或基因多态性。从本质上来讲,多态性的产生在于基因水平上的变异,一般发生在基因序列中不编码蛋白的区域和没有重要调节功能的区域。对于一个体而言,基因多态性碱基顺序终生不变,并按孟德尔规律世代相传。 基因多态性分类生物群体基因多态性现象十分普遍,其中,人类基因的结构、表达和功能,研究比较深入。人类基因多态性既来源于基因组中重复序列拷贝数的不同,也来源于单拷贝序列的变异,以及双等位基因的转换或替换。按引起关注和研究的先后,通常分为3大类:DNA片段长度多态性、DNA重复序列多态性、单核苷酸多态性。 DNA片段长度多态性DNA片段长度多态性(FLP),即由于单个碱基的缺失、重复和插入所引起限制性内切酶位点的变化,而导致DNA片段长度的变化。又称限制性片段长度多态性,这是一类比较普遍的多态性。 DNA重复序列多态性DNA重复序列的多态性(RSP),特别是短串联重复序列,如小卫星DNA和微卫星DNA,主要表现于重复序列拷贝数的变异。小卫星(minisatellite)DNA由15~65bp的基本单位串联而成,总长通常不超过20kb,重复次数在人群中是高度变异的。这种可变数目串联重复序列(VNTR)决定了小卫星DNA长度的多态性。微卫星(microsatellite)DNA 的基本序列只有1~8bp,而且通常只重复10~60次。 单核苷酸多态性单核苷酸多态性(SNP),即散在的单个碱基的不同,包括单个碱基的缺失和插入,但更多的是单个碱基的置换,在CG序列上频繁出现。这是目前倍受关注的一类多态性。 SNP通常是一种双等位基因的(biallelic),或二态的变异。SNP大多数为转换,作为一种碱基的替换,在基因组中数量巨大,分布频密,而且其检测易于自动化和批量化,因而被认为是新一代的遗传标记。 遗传背景知识遗传和变异各种生物都能通过生殖产生子代,子代和亲代之间,不论在形态构造或生理功能的特点上都很相似,这种现象称为遗传(heredity)。但是,亲代和子代之间,子代的各个体之间不会完全相同,总会有所差异,这种现象叫变异(variation)。遗传和变异是生命的特征。遗传和变异的现象是多样而复杂的,正因为如此,才导致生物界的多种多样性。

红豆杉中MYB家族基因克隆及表达分析 开题报告 于凯

毕业设计/论文 开题报告 课题名称红豆杉中MYB家族基因克隆及表达分析类别毕业论文 系别城市建设学院 专业班生物工程0701班 姓名于凯 评分 指导教师 华中科技大学武昌分校

华中科技大学武昌分校学生毕业论文开题报告

癌活性,对于治疗卵巢癌、乳腺癌等疗效突出。但是由于含量少、提取困难等诸多因素,高纯度紫杉醇价格昂贵,每公斤200万元人民币左右。因此,近年来国内外许研究人员、实验室和公司一直试图通过生物合成、化学合成、微生物提取、组织和细胞培养、寻找类似物等途径来解决紫杉醇的药源短缺问题。 研究紫杉醇的生物合成,尤其一些限速反应步骤机理的阐明对于人为定向的提高合成效率,克隆重组形成关键酶基因从而提高紫杉醇的产量意义重大。从理论上来说这是一个好方法,但是紫杉醇的合成途径非常复杂,涉及到多种酶以及很多分支途径,单纯依靠转化一、两种限速酶基因,只能保证转入的限速酶表达量提高,使之不再是限速因素,但其它阶段对于最终产量的限制依然存在,而且同时转入多种基因的可行性非常低,这种方法的缺陷很明显。 若采用化学合成,如从红豆杉植物中分离得到的巴卡亭Ⅲ经过四步化学过程可合成紫杉醇,为合成紫杉醇提供了新途径[5]。但化学合成从实质意义上说还没有取得彻底的突破,目前还不具备应用价值。 如果从共生真菌中直接提取紫杉醇,能够利用真菌生长速度快的优势,但目前分离的菌株无论从种类还是数量上都远不够工业化的要求,而且还存在很多不确定因素[1]。生产紫杉醇的微生物大多是与红豆杉共生的真菌,其紫杉醇含量极微,并且这些真菌的培养和大规模发酵困难,菌株衰退也是一个难题。 另外,红豆杉愈伤组织和细胞培养生产紫杉醇是研究的热点之一,是工厂化大规模生产紫杉醇的重要手段之一。但运用植物组织、细胞培养技术生产紫杉醇仍处在实验室阶段,如何获得高含量、产紫杉醇稳定的愈伤组织一直都是组织培养、细胞培养生产紫杉醇的关键。 1.1.3关于MYB基因 ①MYB基因 目前,在几乎所有的真核生物中都发现了与禽类逆转录病毒癌基因和细胞原癌基因c-MYB相似的基因,它们的编码产物在结构和功能上具有高度保守的DNA结合域,是一类转录因子[6]。在植物中首先从玉米中克隆了含有MYB结构域的转录因子C1基因,之后在植物中发现的MYB相关基因的数量迅速增加[7]。

植物基因克隆实验指导

植物基因克隆实验规则 一、植物基因克隆实验课的目标 根据基因克隆实验操作的整体性和连贯性特点, 将该实验设计为综合性实验课程,实验内容设计上完全抛弃了原来分散的、孤立的单纯学习某一实验技术的缺陷, 将单个实验综合为系统的、连贯的系列型大实验,注重科研成果在教学中的应用,我们从以往的科研项目中选取了部分研究内容用于学生的综合性实验教学,这是基于教学实验与实际科学研究实验之间的新的实验教学模式。 整套实验围绕洋甘菊倍半萜生物合成途径中关键酶基因HMGR的克隆这一研究课题进 行操作, 设计的实验内容具有极强的连续性和综合性,让学生在独立实践操作中学习基因克隆的基本研究方法和体会科学研究的严密逻辑和培养科研理念。 我们将实验内容设置为8个部分, 实验内容前后衔接紧密, 环环相扣, 不可分割, 前一个实验的结果是下一个实验的材料。该课程使学生获得了整个类似科研实践过程的训练和体验, 学习了从事科研工作的基本功, 对完成自己的毕业论文及将来从事生命科学研究奠定了科 研基础。 二、实验的进行程序和要求 1、预习学生在课前应认真预习实验指导以及教材有关章节,必须对该次实验的目的要求、实验内容、基本原理和操作方法有一定的了解。 2、讲解教师对该实验内容的安排及注意事项进行讲解,让学生有充分的时间按实验指导的要求进行独立操作与观察。 3、独立操作与观察除个别实验分组进行外,一般由学生个人独立进行操作和观察。在实验中要按实验指导认真操作,仔细观察,作好记录。有关基本技能的训练,要按操作程序反复练习,以达到一定的熟练程度。

4、演示每次的实验都备有演示内容,其目的是帮助学生了解某些实验中的难点,扩大在实验课有限时间内获得更多感性知识的机会。 5、作业实验报告参照硕士毕业论文的格式写,必须强调科学性,实事求是地记录、分析、综合。在实验结束时呈交。 6、小结每次实验结束后,由师生共同小结本次实验的主要收获及今后应注意的问题。 三、实验规则和注意事项 1、每次上课前,必须认真阅读实验指导,明确本次实验的目的要求、实验原理和注意事项,熟悉实验内容、方法和步骤。 2、上实验课时必须携带实验指导、记录本及文具等。进入实验室要按规定座位入座。 3、实验时要遵守纪律,听从教师指导,保持肃静。有问题时举手提问,严禁彼此谈笑喧或随意走动,也不得私自进行其他活动。 4、实验时要遵守实验操作规程,严格按照教师的安排和实验指导的要求进行。操作观察要认真仔细,边做、边看、边想,认真做好实验记录。 5、要爱护仪器和器材设备,注意节约实验材料、药品和水电。如有损坏器材应立即报告并主动登记、说明情况。 6、实验结束后,应清理实验台面,认真清理好仪器、药品及其他用品,放回原处,放好凳子,方可离开实验室。值日生要负责清扫地面,收拾实验用品,处理垃圾,关好水、电、门窗后再离开。

基因多态性分析

. 人基因多态性分析 一、实验目的 1. 了解基因多态性在阐明人体对疾病、毒物的易感性与耐受性、疾病临床表现的多样性以及对药物治疗的反应性中的重要作用。 2. 了解分析基因多态性的基本原理和研究方法。 二、实验原理 基因多态性(gene polymorphism)是指在一个生物群体中,同时存在两种及以上的变异型或基因型或等位基因,也称为遗传多态性(genetic polymorphism)。人类基因多态性对于阐明人体对疾病的易感性、毒物的耐受性、药物代谢差异及遗传性疾病的分子机制有重大意义;与致病基因连锁的多态性位点可作为遗传病的诊断标记,并为分离克隆致病基因提供依据;病因未知的疾病与候选基因多态性的相关性分析,可用于辅助筛选致病易感基因。 聚合酶链反应-限制性片段长度多态性(polymerase chain reaction—Restriction Fragment Length Polymorphism,PCR-RFLP)分析是一种常用的DNA分子标记。原理是通过PCR扩增获得目的基因。若目的基因存在等位变异(多态性),且变异正好发生在某种限制性内切酶识别位点上,使酶切位点增加或者消失,则酶切结果就会产生大小不同的片段,即片段长度多态性,再利用琼脂糖凝胶电泳分离,可呈现出多态性电泳图谱。若将患者与正常的多态性图谱比较,可确定是否变异。应用PCR-RFLP,可检测某一致病基因已知的点突变,进行直接基因诊断,也可以此为遗传标记进行连锁分析进行间接基因诊断。 三、器材与试剂 1. 器材 ⑴离心机。 ⑵DNA扩增仪。 ⑶电泳仪。 ⑷水平电泳槽。 ⑸紫外检测仪。 ⑹移液器。 2. 试剂 . . ⑴口腔拭子DNA抽提试剂盒。 ⑵琼脂糖。 ⑶1×TAE电泳缓冲液:980ml蒸馏水中加入50×TAE母液20ml。 ⑷50×TAE母液:Tris 121g,0.5M EDTA(pH8.0)50ml,冰醋酸28.55ml,定容至500ml。

4植物基因克隆的策略与方法

4植物基因克隆的策略与方法 基因的克隆确实是利用体外重组技术,将特定的基因和其它DNA顺序插入到载体分子中。基因克隆的要紧目标是识不、分离特异基因并获得基因的完整的全序列,确定染色体定位,阐明基因的生化功能,明确其对特定性状的遗传操纵关系。通过几十年的努力由于植物发育,生理生化,分子遗传等学科的迅速进展,使人们把握了大量有关植物优良性状基因的生物学和遗传学知识,再运用先进的酶学和生物学技术差不多克隆出了与植物抗病、抗虫、抗除草剂、抗逆,育性、高蛋白质及与植物发育有关的许多基因。我们实验室对天麻抗真菌蛋白基因作了功能克隆的研究(舒群芳等,1995;舒群芳等,19 97),为了克隆植物基因也探讨了其它克隆方法,本文论述基因克隆的策略、方法及取得的一些进展。 1功能克隆(functional Cloning) 功能克隆确实是按照性状的差不多生化特性这一功能信息,在鉴定和已知基因的功能后克隆(Collis,1995)。其具体作法是:在纯化相应的编码蛋白后构建cDNA文库或基因组文库,DNA文库中基因的选择按照情形要紧可用二种方法进行,(1)将纯化的蛋白质进行氨基酸测序,据此合成寡核苷酸探针 从cDNA库或基因组文库中选择编码基因,(2)将相应的编码蛋白制成相应抗体探针,从cDNA入载体表达库中选择相应克隆。功能克隆是一种经典的基因克隆策略,专门多基因的分离利用这种策略。 Hain等从葡萄中克隆了两个编码白藜芦醇合成的二苯乙烯合成酶基因(Vst1和Vst2),葡萄中抗菌化合物白藜芦醇的存在,能够提升对灰质葡萄孢(B otrytis cinerce)的抗性,在烟草和其它一些植物中无二苯乙烯合成酶,因此克隆该基因通过转基因后,对有些植物产生对灰质葡萄孢的抗性专门有意义(H ain等,1985)。Kondo等1989年对编码水稻巯基蛋白酶抑制剂的基因组DN A做了克隆和序列分析(Kondo等,1989)。周兆斓等构建了水稻cDNA文库,分离了编码水稻巯基蛋白酶抑制剂的cDNA(周兆斓等,1996)。植物蛋白酶抑制剂是一类天然的抗虫物质,它可抑制摄食害虫对蛋白质的消化,使害虫因 缺乏所需氨基酸而导致非正常发育或死亡。胡天华等人从烟草中分离出流行于我国的黄瓜花叶病毒(Cucumber Mosaic virus)(CMV),并克隆了编码该

如何用PCR法检测基因的多态性

如何用PCR法检测基因的多态性 多态性(polymorphism)是指处于随机婚配的群体中,同一基因位点可存在2种以上的基因型。在人群中,个体间基因的核苷酸序列存在着差异性称为基因(DNA)的多态性(gene polymorphism)。这种多态性可以分为两类,即DNA 位点多态性(site polymorphism)和长度多态性(longth polymorphism)。 基因多态性的主要检测方法简述如下: 1.限制性片段长度多态性(Restriction Fragment Length Polymorphism,RFLP):由DNA 的多态性,致使DNA 分子的限制酶切位点及数目发生改变, 用限制酶切割基因组时, 钠 问 亢兔扛銎 蔚某ざ染筒煌 此 降南拗菩云 纬ざ榷嗵 裕 贾孪拗破 纬ざ确⑸ 谋涞拿盖形坏悖 殖莆 嗵 晕坏恪W钤缡怯肧outhern Blot/RFLP方法检测,后来采用聚合酶链反应(PCR)与限制酶酶切相结合的方法。现在多采用PCR-RFLP法进行研究基因的限制性片段长度多态性。 2.单链构象多态性(SSCP):是一种基于单链DNA构象差别的点突变检测方法。相同长度的单链DNA如果顺序不同,甚至单个碱基不同,就会形成不同的构象。在电泳时泳动的速度不同。将PCR产物经变性后,进行单链DNA凝胶电泳时,靶DNA中若发生单个碱基替换等改变时,就会出现泳动变位(mobility shift),多用于鉴定是否存在突变及诊断未知突变。 3.PCR-ASO探针法(PCR-allele specific oligonucleotide, ASO):即等位基因特异性寡核苷酸探针法。在PCR扩增DNA片段后,直接与相应的寡核苷酸探杂交,即可明确诊断是否有突变及突变是纯合子还是杂合子。其原理是:用PCR扩增后,产物进行斑点杂交或狭缝杂交,针对每种突变分别合成一对寡核苷酸片段作为探针,其中一个具有正常序列,另一个则具有突变碱基。突变碱基及对应的正常碱基匀位于寡核苷酸片段的中央,严格控制杂交及洗脱条件,使只有与探针序列完全互补的等位基因片段才显示杂交信号,而与探针中央碱基不同的等位基因片段不显示杂交信号,如果正常和突变探针都可杂交,说明突变基因是杂合子,如只有突变探针可以杂交,说明突变基因为纯合子,若不能与含有突变序列的寡核苷探针杂交,但能与相应的正常的寡核苷探针杂交,则表示受检者不存在这种突变基因。若与已知的突变基因的寡核苷探针匀不能杂交,提示可能为一种新的突变类型。 4. PCR-SSO法:SSO技术即是顺序特异寡核苷酸法(Sequence Specific Oligonucleotide, SSO)。原理是PCR基因片段扩增后利用序列特异性寡核苷酸探针,通过杂交的方法进行扩增片段的分析鉴定。探针与PCR产物在一定条件下杂交具有高度的特异性,严格遵循碱基互补的原则。探针可用放射性同位素

功能基因的克隆及生物信息学分析

功能基因的克隆及其生物信息学分析 摘要:随着多种生物全基因组序列的获得,基因组研究正从结构基因组学(structural genomics)转向功能基因组学(functional genomics)的整体研究。功能基因组学利用结构基因组学研究获得的大量数据与信息评价基因功能(包括生化功能、细胞功能、发育功能、适应功能等),其主要手段结合了高通量的大规模的实验方法、统计和计算机分析技术[1],它代表了基因分析的新阶段,已成为21世纪国际生命科学研究的前沿。功能基因组学是利用基因组测序获得的信息和产物,发展和应用新的实验手段,通过在基因组或系统水平上全面分析基因的功能,使生物学研究从对单一基因或蛋白的研究转向多个基因或蛋白同时进行系统的研究,是在基因组静态的组成序列基础上转入对基因组动态的生物学功能学研究[2]。如何研究功能基因,也成为我们面临的一个课题,本文就克隆和生物信息学分析在研究功能基因方面的应用做一个简要的阐述。 关键词:功能基因、克隆、生物信息学分析。 1.功能基因的克隆 1.1 图位克隆方法 图位克隆又称定位克隆,它是根据目标基因在染色体上确切位置,寻找与其紧密连锁的分子标记,筛选BCA克隆,通过染色体步移法逐步逼近目的基因区域,根据测序结果或用BAC、YAC克隆筛选cDNA表达文库寻找候选基因,得到候选基因后再确定目标基因。优点是无需掌握基因产物的任何信息,从突变体开始,逐步找到基因,最后证实该基因就是造成突变的原因。通过图位克隆许多控制质量性状的单基因得以克隆,最近也有报道某些控制数量性状的主效基因(控制蕃茄果实大小的基因克隆[3]、控制水稻成熟后稻谷脱落基因克隆[4]以及小麦VRN2 基因克隆[5]等)也通过图位克隆法获得。

绿色荧光蛋白基因克隆及表达结果分析

3 结果与分析 3.1质粒提取 用醋酸铵法提取pET-28a 和pEGFP-N3质粒后,进行琼脂糖电泳检测质粒是否提取成功。得到电泳结果,如图一所示,3、4号泳道有明显清晰的条带说明pEGFP-N3提取成功。1、2泳道同样有明显清晰的条带,说明pET-28a 提取成功。 3.2 双酶切 用BamH1和Not1分别对pEGFP-N3和pET-28a 双酶切。1、2号泳道为pEGFP-N3的酶切结果,如图二所示,电泳会得到两条带,说明pEGFP-N3酶切成功。4号泳道为pET-28a 的酶切产物的电泳有明显条带,证明酶切成功。 3.3 抗性筛选 通过氯化钙法制备DH5α感受态细胞,用热激发将pET-28a-GFP 转入DH5α感 图 1 pET-28a 和pEGFP-N3质粒提取电泳图 1、2泳道为pET-28a 电泳结果 3、4号泳道为pEGFP-N3电泳结果 图 2 BamH1、Not1双酶切 pEGFP-N3和pET-28a 1、2号泳道为pEGFP-N3酶切产物 3号泳道为pEGFP-N3原始质粒 4号泳道为pET-28a 酶切产物 5号用泳道为pET-28a 原使质粒

受态细胞。转化重组质粒后涂平板,进行重组质粒的抗性筛选。因为28a中含有 抗卡那基因,所以筛选后可以得到含28a的重组质粒。从图中可以看出1号平板 长出较多菌落,说明DH5α感受态细胞存活。2号平板无菌落生长,说明DH5α中 不含抗卡那基因。3号板生长出较少菌落,证明卡那有活性。4号板无菌落生长。 失败原因其一可能是在倒了第一个平板加入卡那后,由于倒平板速度太慢,导致 培养基凝固,影响了卡那的浓度和活性。其二可能是在转化过程中,离心后,弃 上清的过程中,将沉淀和上清混在了一起,影响了溶液的浓度。 图3重组质粒转化DH5α感受态细胞 1号图为不含卡那的阴性对照 2号图为含卡那的阴性对照 3号图为含卡那的自提pET-28a的阳性对照 4号图为含卡那的连接产物结果 3.4PCR鉴定 经PCR扩增后,进行琼脂糖凝胶电泳检测是否扩增成功,得到电泳结果如图 四所示,结果表明,1、2泳道的条带约为700bp,说明成功扩增出含有GFP的基 因。DNA电泳检验扩增片段,选出能够得到700bp左右片段的阳性克隆。 图4阳性重组菌的PCR鉴定 1、2号泳道为重组质粒转化结果

植物基因的克隆|植物基因克隆的基本步骤

植物基因的克隆 08医用二班姚桂鹏0807508245 简介 克隆(clone)是指一个细胞或一个生物个体无性繁殖所产生的后代群体。通常所说的基因克隆是指基于大肠埃希菌的DNA片段(或基因)的扩增,主要过程包括目标DNA的获取、重组载体的构建、受体细胞的转化以及重组细胞的筛选和繁殖等。本文主要介绍植物基因的特点、基因克隆的载体、基因克隆的工具酶、基因克隆的策略以及植物目的基因的分离克隆方法等内容。 关键词 植物基因基因克隆载体工具酶克隆策略分离克隆方法 Plant gene cloning Introduction Cloning (clone) refers to a cell or an individual organisms asexual reproduction produced offspring. Usually said cloning genes means

based on escherichia coli segment of DNA (or genes), including the main course target DNA, restructuring of the carrier, transformation of receptor cells and reorganization of screening and reproductive cells. This paper mainly introduces the characteristics of plant gene and gene cloning and carrier, gene clone tool enzyme, gene cloning and plant gene strategy of separation cloning method, etc. Keywords Plant gene cloning tool enzyme gene cloning vector method of separation of cloning strategy 一、植物基因的结构和功能 基因(gene)是核酸分子中包含了遗传信息的遗传单位。一般来说,植物基因都可分为转录区和非转录的调控区两部分。 (一)植物基因的启动子 启动子(promoter)是指在位于结构基因上游决定基因转录起始的区域,植物积阴德启动子包括三个较重要的区域,一时转录起始位点,而是转录起始位点上游25~40bp的区域,三是转录起始位点上游-75bp处或更远些的区域。 (二)植物基因的增强子序列

基因多态性分析

人基因多态性分析 一、实验目的 1. 了解基因多态性在阐明人体对疾病、毒物的易感性与耐受性、疾病临床表现的多样性以及对药物治疗的反应性中的重要作用。 2. 了解分析基因多态性的基本原理和研究方法。 二、实验原理 基因多态性(gene polymorphism)是指在一个生物群体中,同时存在两种及以上的变异型或基因型或等位基因,也称为遗传多态性(genetic polymorphism)。人类基因多态性对于阐明人体对疾病的易感性、毒物的耐受性、药物代谢差异及遗传性疾病的分子机制有重大意义;与致病基因连锁的多态性位点可作为遗传病的诊断标记,并为分离克隆致病基因提供依据;病因未知的疾病与候选基因多态性的相关性分析,可用于辅助筛选致病易感基因。 聚合酶链反应-限制性片段长度多态性(polymerase chain reaction—Restriction Fragment Length Polymorphism,PCR-RFLP)分析是一种常用的DNA分子标记。原理是通过PCR扩增获得目的基因。若目的基因存在等位变异(多态性),且变异正好发生在某种限制性内切酶识别位点上,使酶切位点增加或者消失,则酶切结果就会产生大小不同的片段,即片段长度多态性,再利用琼脂糖凝胶电泳分离,可呈现出多态性电泳图谱。若将患者与正常的多态性图谱比较,可确定是否变异。应用PCR-RFLP,可检测某一致病基因已知的点突变,进行直接基因诊断,也可以此为遗传标记进行连锁分析进行间接基因诊断。 三、器材与试剂 1. 器材 ⑴离心机。 ⑵DNA扩增仪。 ⑶电泳仪。 ⑷水平电泳槽。 ⑸紫外检测仪。 ⑹移液器。 2. 试剂

植物基因克隆

来自dxy 22003luocong 植物基因全长克隆几种方法的比较 基因是遗传物质基本的功能单位,分离和克隆目的基因是研究基因结构、揭示基因功能及表达的基础,因此,克隆某个功能基因是生物工程及分子生物学研究的一个重点。经典克隆未知基因的方法比如通过筛选文库等有个共同的弊病, 即实验操作繁琐, 周期较长、工作量繁重,且不易得到全长序列。又由于在不同植物中目的基因mRNA丰度不同,所以获得目的基因的难易程度又不一样,特别是对于丰度比较低的目的基因即使使用不用的方法也不一定能获得成功。近年来随着PCR技术的快速发展和成熟.已经有多种方法可以获得基因的全长序列, 比如经典的RACE技术,染色体步移法和同源克隆法等,本文主要综述几种重要的克隆方法的原理和运用,并且比较分析这几种方法的优缺点,为你的实验节约时间和成本。 1 RACE技术 1985年由美国PE-Cetus公司的科学家Mulis等[1]发明的PCR技术使生命科学得到了飞跃性的发展。1988年Frohman等[2] 在PCR技术的基础上发明了一项新技术, 即cDNA末端快速扩增技术( rapid amplification of cDNA ends, RACE), 其实质是长距PCR( long distance, PCR)。通过PCR由已知的部分cDNA 序列, 获得5′端和3′端完整的cDNA, 该方法也被称为锚定PCR ( anchored PCR) [3] 和单边PCR( one-sidePCR) [4]。RACE技术又分为3?RACE和5?端RACE。3′RACE 的原理是利用mRNA 的3′端天然的poly(A) 尾巴作为一个引物结合位点进行PCR, 以Oligo( dT) 和一个接头组成的接头引物( adaptor primer, AP)反转录mRNA得到加接头的第一链cDNA。然后用一个正向的基因特异性引物( gene-specific primer, GSP) 和一个含有接头序列的引物分别与已知序列区和poly(A) 尾区退火, 经PCR扩增位于已知序列区域和poly( A) 尾区之间的未知序列,若为了防止非特异性条带的产生, 可采用巢式引物( nested primer) 进行第二轮扩增, 即巢式PCR( nested PCR) [5,6]。5?RACE 跟3?RACE原理基本一样,但是相对于3?RACE来说难度较大。 5'-RACE受到诸多因素的影响而常常不能获取全长,因此研究者都着手改进它。这些措施主要是通过逆转录酶、5'接头引物等的改变来实现的,因此出现了包括基于“模板跳转反转录”的SMART RACE技术( switching mechanism at 5′ end of RNA transcript) [7] , 基于5′脱帽和RNA酶连接技术的RLM-RACE技术(RNA ligase mediated RACE)[8], 利用RNA连接酶为cDNA第一链接上寡聚核苷酸接头的SLC RACE技术(single strand ligation to single-stranded cDNA)[9] , 以及以内部环化的cDNA第一链为模板进行扩增的自连接或环化RACE技术(self-ligation RACE or circular RACE)[10],和通过末端脱氧核苷酸转移酶( TdT)加尾后引入锚定引物的锚定RACE技术( anchored RACE)[11]。 笔者主要介绍两种比较新的RACE技术,基于…模板跳转?的SMART RACE 技术和末端脱氧核苷酸转移酶( TdT)加尾技术。 1.1基于‘模板跳转’的SMART RACE技术[7,12]

基因多态性及其生物学作用和医学意义doc资料

基因多态性及其生物学作用和医学意义

基因多态性及其生物学作用和医学意义 一、基因多态性: 多态性(polymorphism)是指处于随机婚配的群体中,同一基因位点可存在2 种以上的基因型。在人群中,个体间基因的核苷酸序列存在着差异性称为基因(DNA)的多态性(gene polymorphism)。这种多态性可以分为两类,即DNA位点多态性(site polymorphism)和长度多态性 (longth polymorphism)。 1.位点多态性:是由于等位基因之间在特定的位点上DNA序列存在差异,也就是基因组中散在的碱基的不同,包括点突变(转换和颠换),单个碱基的置换、缺失和插入。突变是基因多态性的一种特殊形式,单个碱基的置换又称为单核苷酸多态性(single nucleotide polymorphism, SNP), SNP通常是一种二等位基因(biallelic)或二态的变异。据估计,单碱基变异的频率在1/1000-2/1000。SNP在基因组中数量巨大,分布频密,检测易于自动化和批量化,被认为是新一代的遗传标记。 2. 长度多态性:一类为可变数目***重复序列(variable number of tandem repeats, VNTRS),它是由于相同的重复顺序重复次数不同所致,它决定了小卫星 DNA(minisatellite)长度的多态性。小卫星是由15-65 bp的基本单位***而 成,总长通常不超过20bp,重复次数在人群中是高度变异的。另一类长度多态性是由于基因的某一片段的缺失或插入所致,如微卫星DNA (microsatellite),它们是由重复序列***构成,基本序列只有1-8bp,如(TA)n及

基因克隆和表达

Cloning and expression of peroxisomal Ascorbate Peroxidase gene from wheat Yaping Chen,Huazhong Wang,Xiue Wang,Aizhong Cao&Peidu Chen* State Key Laboratory of Crop Genetics and Germplasm Enhancement,Nanjing Agricultural University, Nanjing210095,People’s Republic of China;*Author for correspondence(Phone:+86-25-84396026;E-mail: pdchen@https://www.doczj.com/doc/3496024.html,) Accepted24October2005 Key words:peroxisomal ascorbate peroxidase,powdery mildew,SSH,wheat Abstract A full-length cDNA encoding wheat peroxisomal ascorbate peroxidase(pAPX)was cloned by Suppression Subtractive Hybridization(SSH)and in silico approach.The cDNA was1027bp in length and contained a complete ORF of876bp,which encodes a protein of292amino acid residues.Its deduced amino acids sequence had84%identity with that of pAPX from barley.The gene was designated as Ta-pAPX.The Ta-pAPX homologous genes were mapped on wheat chromosome7A and7D using Chinese Spring nulli-tetrasomic lines analysis.Northern analysis indicated that,after inoculation by Erysiphe graminis Dc.f.sp. tritici,the expression of Ta-pAPX gene in Yangmai5was enhanced,but its expression in wheat-Haynaldia villosa6VS/6AL translocation lines changed a little.The results implied that Ta-pAPX may be related to susceptibility of wheat to powdery mildew.The complete coding sequence of Ta-pAPX was cloned into an expression vector pET32(a+)and a protein with the same deduced molecular weight(MW)was expressed in E.coli BL21(DE3),which showed ascorbate peroxidase activity. Abbreviations:APX–ascorbate peroxidase;ESTs–expressed sequence tags;IPTG–isopropyl-beta-D-thiogalactopyranoside;MW–molecular weight;ORF–open reading frame;pAPX–peroxisomal ascorbate peroxidase;SSH–Suppression Subtractive Hybridization. Introduction Ascorbate peroxidase(APX),found in higher plants,cyanobacteria,and algae[1],is the key enzyme in degradation hydrogen peroxide.So far, at least?ve APX isoforms have been identi?ed in plants:cytosolic isoforms,mitochondria isoforms, peroxisomal/glyoxysomal isoform and two chlo-roplastie isoforms,one in stroma and the other associated with the thylakoid membranes,all of which catalyze the reaction: 2ascorbate peroxidasetH2O2! 2monodehydroascorbatet2H2O APXs activity increased in response to a num-ber of stress conditions,such as drought[2],salt [3],high temperature[4]and pathogen infection [5].Relationship between di?erent stress condi-tions and changes of APX activity were observed. Powdery mildew caused by E.graminis DC.f.sp.tritici is one of the most serious diseases of common wheat in China and many other countries.The Triticum aestivum(‘‘Yangmai5’’)–Haynaldia villosa6VS/6AL translocation line carrying powdery mildew resistance gene Pm:21 confers e?ective resistance to all current powdery mildew races.To investigate the mechanism of Molecular Biology Reports(2006)33:207–213 DOI10.1007/s11033-005-4536-1óSpringer2006

第五章基因克隆技术

第五章基因克隆技术 基因克隆技术是分子生物学的核心技术,其目的是获得某一基因或DNA片段的大量拷贝,用于深入分析基因的结构与功能,并可达到人为改造细胞以及物种遗传性状的目的。基因克隆的一项关键技术是DNA重组技术,它利用酶学方法将不同来源的DNA分子进行体外特异性切割,重新拼接组装成一个新的杂合DNA分子。在此基础上将杂合DNA分子转入一定宿主细胞中进行扩增,形成大量的子代分子,此过程称基因克隆。有目的地通过基因克隆技术,人为操作改造基因,改变生物遗传性状的系列过程总称为基因工程。 基因克隆的一般程序为: 一、获取目的基因 目的基因就是需要研究的特定基因或DNA片段。获取目的基因的主要方法: 1、用限制性内切酶酶解染色体DNA,构建基因组文库,再从基因组文库中筛选目的基因。该法的优点是获得的目的基因的组织结构与天然基因完全相同,在结构基因中也含有内含子序列,但是也正因为这一点构成了该法最大缺点,即含有内含子的基因在原核细胞中不能表达。原因是原核细胞不能识别并剪切插入顺序(内含子),因而也不能表达出正确的基因产物。 2、分离纯化细胞中的mRNA,以mRNA为模板,在反转录酶作用下生成cDNA第一链,再以cDNA第一链为模板在DNA聚合酶作用下生成双链cDNA,构建cDNA文库,从中筛选所需的目的基因。此法仅用于筛选为蛋白质编码的结构基因。因成熟的mRNA分子中已经切除了内含子序列,具有完整的阅读框架,可在原核细胞中正确表达。 3、人工体外合成基因:由于当前人工体外合成DNA的长度有限,此法仅用于制备小分子生物活性多肽基因和小分子量蛋白基因。在基因较大情况下,常需先合成多个DNA片段,然后拼接成完整的基因,此法还要求目的基因的全部碱基顺序已被阐明。 4、PCR法扩增基因:PCR(聚合酶链式反应)技术的出现和发展,为目的基因的寻找提供了有力技术工具。用PCR法可选择性扩增基因组中所要研究的个别基因或DNA片段,或用反向PCR技术,先将特定mRNA反转录为cDNA第一链,然后再进行扩增。用PCR法筛选基因,需要对目的基因的DNA序列至少有部分了解。 二、选择适当的载体 按上述方法制备的目的基因如果没有合适的载体协助,很难进入受体细胞,即使能进入,往往也不能进行复制和表达,因为这些外源性DNA一般不带有复制调控系统。为了保证目的基因或外源DNA片段能在细胞内克隆,必须将它们与适当的载体连接。理想的载体应该是:(1)分子量较小,能在细胞内自主复制的环状或线状DNA分子;(2)具有特异的限制性酶切位点,便于外源DNA片段的插入,且有明显的遗传筛选标志,如抗药性或插入失活等,以利于阳性克隆的筛选;(4)具有生物安全性。常用的克隆载体可分为三类,即质粒、噬菌体及病毒。由于天然载体用于基因克隆存在许多缺点,现用载体实际上是在天然载体基础上进行改造而成。 1、质粒载体质粒是细菌染色体外小型环状DNA复制子,质粒载体是在天然质粒的基础上人工改造拼接而成。质粒载体具有如下特点:分子相对较小(3~10kb);含松弛型复制子因而在

相关主题
文本预览
相关文档 最新文档