当前位置:文档之家› 基于马尔可夫排队论的电梯交通模型及应用

基于马尔可夫排队论的电梯交通模型及应用

基于马尔可夫排队论的电梯交通模型及应用
基于马尔可夫排队论的电梯交通模型及应用

中南大学

硕士学位论文

基于马尔可夫排队论的电梯交通模型及应用

姓名:杨家兴

申请学位级别:硕士

专业:概率论与数理统计

指导教师:侯振挺

20061101

大楼内人群的生活和工作存在着周期性。例如,在每天上班时,办公楼或商用楼中的员工几乎在同一时间段内到达工作地点并开始一天的工作,此时交通流主要是从门厅上行到楼内各个楼层,呈上行高峰交通模式。在每天下班时,大多数员工总是在同一时间段内离开工作地点,此时建筑物内交通流主要是从各楼层下行到底层门厅离开办公大楼,呈下行高峰交通模式。在工作时间内,交通流的产生与各楼层的用途、人员分布有关,可能呈随机层问交通模式。这些层间交通模式基本上是平衡的,这是因为它包括上行和下行,而且乘客在楼内活动结束后最终总是回到他们原先所在的楼层,也就是说,在层间交通模式下,没有哪一层是主要的到达层或目的层。电梯交通具有随机性是因为不同工作日的每一相同时间段内交通量是随机的,即每层要求服务的乘客数、乘客的起始楼层和目的楼层是随机的,而且不同时间段内的交通量之间存在一定的内在联系。电梯交通的随机性大大增加了进行电梯交通分析的难度,而电梯交通的规律性使得进行电梯交通分析又成为可能。总之,电梯系统应该能够适应不同的客流交通模式,以满足乘客的使用要求,图1-1和图1-2表示办公大楼内的客流交通要求。

攒l—1.}行巍麟办公大楼襞骞群电褥匏需求警

鬻I.2F住魏蜷绺公天楼莱客群吃撵豹需求率

基于排队理论的仿真模型

关键词:动态模拟蒙特卡洛模拟排队论 内容摘要:论文根据超市顾客到达的随机性和服务时间的随机性,用蒙特卡洛方法模拟不同的顾客到达和服务水平,在MA TLAB/Simulink上对超市单队列多收银台的服务系统进行了动态模拟仿真,得到不同顾客到达率和不同服务水平下,顾客的排队等待时间,服务器的空闲率等要素。 在超市收银排队系统中,顾客希望排队等待的时间越短越好,这就需要服务机构设置较多的收银台,这样可以减少排队等待时间,但会增加商场的运营成本。而收银台过少,会使服务质量降低,甚至造成顾客流失。如何科学合理地设置收银台的数量,以降低成本和提高效益,是商场管理人员需要解决的一个重要问题。 蒙特卡洛方法简介 蒙特卡洛方法又称随机模拟方法,它以随机模拟和统计试验为手段,从符合某种概率分布的随机变量中,通过随机选择数字的方法,产生一组符合该随机变量概率分布特性的随机数值序列,作为输入变量序列进行特定的模拟试验、求解(杜比,2007)。在应用该方法时,要求产生的随机数序列应符合该随机变量特定的概率分布。应用该方法的基本步骤如下: 步骤1:建立概率模型,即将所研究的问题变为概率问题,构造一个符合其特点的概率模型;步骤2:产生一组符合该随机变量概率分布特性的随机数值序列;步骤3:以随机数值序列作为系统的抽样输入进行大量的数字模拟试验,以得到模拟试验值;步骤4:对模拟试验结果进行统计处理(如计算频率、均值等),进而对研究问题做出解释。 基于排队理论的仿真模型建立 (一)超市服务排队模型(M/M/C) 超市收款台服务是一个随机服务系统(唐应辉,2006),该系统具有如下特征:服务的对象是已经选购好商品的顾客,顾客源是无限的,顾客之间相互独立,顾客相继到达的时间间隔是随机的。系统有多个服务员且对每个顾客的服务时间是相互独立的。服务规则遵从先到后服务(FCFS)的原则。每个收款台前都有排队队列,顾客选择较短的队列排队等候,这样形成单队列多服务员(M/M/C)的排队系统。超市收银台顾客排队系统结构见图1。 (二)产生随机数值序列 由于顾客到达间隔时间和顾客服务的时间服从负指数颁布的随机数。令这个负指数分布的随机数为x,负指数分布密度函数为:,其分布函数为:,F(x)的反函数为。设u为[0,1]区间上的独立、均匀分布的随机变量,则所求随机数为,进而简化得,这样得到负指数分布的随机数(吴飞,2006)。 针对商场顾客到达和服务水平的统计数据,据此可产生两个随机数列:顾客到达时间间隔a (i)和顾客服务时间st(i),以此数值序列进行动态输入仿真。 (三)模型变量设置 at(i):表示第i 个顾客到达时刻; a(i):表示第i个顾客到达的时间间隔;st(i):第i个顾客的服务时间;sst(i): 第i个顾客的开始服务时间;lea(i):第i个顾客离开时间;ls(j):第j个队列中最后一个顾客的离开时间;ls(m):每个队列中最后一个顾客离开时间的最早值;freet(j):第j个

排队论模型

排队论模型 排队论也称随机服务系统理论。它涉及的是建立一些数学模型,藉以对随机发生的需求提供服务的系统预测其行为。现实世界中排队的现象比比皆是,如到商店购货、轮船进港、病人就诊、机器等待修理等等。排队的内容虽然不同,但有如下共同特征: 有请求服务的人或物,如候诊的病人、请求着陆的飞机等,我们将此称为“顾客”。 有为顾客提供服务的人或物,如医生、飞机跑道等,我们称此为“服务员”。 由顾客和服务员就组成服务系统。 顾客随机地一个一个(或者一批一批)来到服务系统,每位顾客需要服务的时间不一定是确定的,服务过程的这种随机性造成某个阶段顾客排长队,而某些时候服务员又空闲无事。 排队论主要是对服务系统建立数学模型,研究诸如单位时间内服务系统能够服务的顾客的平均数、顾客平均的排队时间、排队顾客的平均数等数量规律。 一、排队论的一些基本概念 为了叙述一个给定的排队系统,必须规定系统的下列组成部分: 输入过程 即顾客来到服务台的概率分布。排队问题首先要根据原始资料,由顾客到达的规律、作出经验分布,然后按照统计学的方法(如卡方检验法)确定服从哪种理论分布,并估计它的参数值。我们主要讨论顾客来到服务台的概率分布服从泊松分布,且顾客的达到是相互独立的、平稳的输入过程。所谓“平稳”是指分布的期望值和方差参数都不受时间的影响。 排队规则 即顾客排队和等待的规则,排队规则一般有即时制和等待制两种。所谓即时制就是服务台被占用时顾客便随即离去;等待制就是服务台被占用时,顾客便排队等候服务。等待制服务的次序规则有先到先服务、随机服务、有优先权的先服务等,我们主要讨论先到先服务的系统。 服务机构 服务机构可以是没有服务员的,也可以是一个或多个服务员的;可以对单独顾客进行服务,也可以对成批顾客进行服务。和输入过程一样,多数的服务时间都是随机的,且我们总是假定服务时间的分布是平稳的。若以ξ 表示服务员为 n },n=1,2,…第n个顾客提供服务所需的时间,则服务时间所构成的序列{ξ n 所服从的概率分布表达了排队系统的服务机制,一般假定,相继的服务时间ξ , 1ξ2,……是独立同分布的,并且任意两个顾客到来的时间间隔序列{T n}也是独立的。 如果按服务系统的以上三个特征的各种可能情形来对服务系统进行分类,那么分类就太多了。因此,现在已被广泛采用的是按顾客相继到达时间间隔的分布、服务时间的分布和服务台的个数进行分类。 研究排队问题的目的,是研究排队系统的运行效率,估计服务质量,确定系统参数的最优值,以决定系统的结构是否合理,设计改进措施等。所以,必须确

隐马尔可夫模型及其应用

小论文写作: 隐马尔可夫模型及其应用 学院:数学与统计学院专业:信息与计算科学学生:卢富毓学号:20101910072 内容摘要:隐马尔可夫模型是序列数据处理和统计学习的重要概率模型,已经成功被应用到多工程任务中。本小论文首先从隐马尔可夫模型基本理论和模型的表达式出发,进一步阐述了隐马尔可夫模型的应用。 HMM 隐马尔可夫模型(Hidden Markov Model,HMM)作为一种统计分析模型,创立于20世纪70年代。80 年代得到了传播和发展,成为信号处理的一个重要方向,现已成功地用于语音识别,行为识别,文字识别以及故障诊断等领域。 隐马尔可夫模型状态变迁图(例子如下) x—隐含状态 y—可观察的输出 a—转换概率(transition probabilities) b—输出概率(output probabilities) 隐马尔可夫模型它用来描述一个含有隐含未知参数的马尔可夫过程。其难点是从可观察的参数中确定该过程的隐含参数。然后利用这些参数来作进一步的分析,例如模式识别。 在正常的马尔可夫模型中,状态对于观察者来说是直接可见的。这样状态的转换概率便是全部的参数。而在隐马尔可夫模型中,状态并不是直接可见的,但受状态影响的某些变量则是可见的。每一个状态在可能输出的符号上都有一概率分布。因此输出符号的序列能够透露出状态序列的一些信息。 HMM的基本理论 隐马尔可夫模型是马尔可夫链的一种,它的状态不能直接观察到,但能通过观测向量序列观察到,每个观测向量都是通过某些概率密度分布表现为各种状态,每一个观测向量是由一个具有相应概率密度分布的状态序列产生。所以,隐马尔可夫模型是一个双重随机过程----具有一定状态数的隐马尔可夫链和显示随机函数集。自20世纪80年代以来,HMM被应用于语音识别,取得重大成功。到了

M M C ∞排队系统模型及其应用实例分析

M M C ∞排队系统模型及其应用实例分析 摘要:文章阐述了M/M/C/∞排队系统的理论基础,包括排队论的概念,排队系统的基本组成部分以及排队系统的模型。在理论分析的基础上,文章以建行某储蓄所M/M/C/∞排队系统为例,对该系统进行分析并提出了最优解决方案。 关键词:排队论;银行储蓄所;M/M/C/∞模型;最优解 1M/M/C/∞排队系统 1.1排队论的概念及排队系统的组成 上世纪20年代,丹麦数学家、电气工程师爱尔朗(A. K. Erlang)在用概率论方法研究电话通话问题时,开创了这门应用数学学科。排队论主要研究各种系统的排队队长,排队的等待时间及所提供的服务等各种参数,以便求得更好的服务。研究排队问题实质上就是研究如何平衡等待时间与服务台空闲时间。目前,排队论已经广泛应用于通信工程、交通运输、生产与库存管理、计算机系统设计、计算机通信网络、军事作战、柔性制造系统和系统可靠性等众多领域。 任意一个排队系统都是由三个基本部分构成,即输入过程、排队规则和服务机构。①输入过程是描述顾客来源以及顾客按什么规律达到排队系统。②排队规则描述的顾客到达服务系统时顾客是否愿意排队,以及在排队等待情形下的服务顺序。③服务机构描述服务台数目及服务规律。服务机构可分为单服务台和多服务台;接受服务的顾客是成批还是单个的;服务时间服从何种分布。 1.2M/M/C/∞排队模型 ①排队系统模型的表示。目前排队模型的分类采用1953年由D. G. Kendall 提出的分类方法。他用3个字母组成的符号A/B/C表示排队系统。为了表示其它特征有时也用4~5个字母来表示如A/B/C/D/E。其中:A 顾客到达间隔时间的概率分布;B 服务时间的概率分布;C 服务台数目;D 系统容量限制(默认为∞);E 顾客源数目(默认为∞);概率分布的符号表示:M:泊松分布或负指数分布,D:定长分布,Ek:k阶爱尔朗分布,C:一般随机分布。 ②排队系统的衡量指标。—所有服务设施空闲的概率;—系统中的顾客总数;—队列中的顾客总数;—顾客在系统中的停留时间;—顾客在队列中的等待时间。 ③M/M/C/∞排队模型。排队系统模型大体上可以分为简单排队系统,特殊排队系统,休假排队系统及可修排队系统。纵观所有排队系统的模型,无非是系统的三个组成部分分别为不同情况时,进行的排列组合,并由此导致排队系统的数量指标的计算公式不一致。无论是何种排队系统,其研究实质都是如何平衡等待时间

马尔可夫过程的发展和应用

H a r b i n I n s t i t u t e o f T e c h n o l o g y 课程设计(论文) 课程名称:应用随机过程 设计题目:马尔可夫过程的发展与应用 院系:电子信息与工程学院 班级:通信一班 设计者: 学号: 指导教师:田波平 设计时间: 2009/12/17 马尔可夫链(过程)的发展与应用

1. 随机过程发展简述 在当代科学与社会的广阔天地里,人们都可以看到一种叫作随机过程的数学模型:从银河亮度的起伏到星系空间的物质分布、从分子的布朗运动到原子的蜕变过程,从化学反应动力学到电话通讯理论、从谣言的传播到传染病的流行、从市场预测到密码破译,随机过程理论及其应用几乎无所不在。 一些特殊的随机过程早已引起注意,例如1907年前后,Α.Α.马尔可夫研究过一列有特定相依性的随机变量,后人称之为马尔可夫链(见马尔可夫过程);又如1923年N.维纳给出了布朗运动的数学定义(后人也称数学上的布朗运动为维纳过程),这种过程至今仍是重要的研究对象。虽然如此,随机过程一般理论的研究通常认为开始于30年代。1931年,Α.Η.柯尔莫哥洛夫发表了《概率论的解析方法》;三年后,Α.Я.辛钦发表了《平稳过程的相关理论》。这两篇重要论文为马尔可夫过程与平稳过程奠定了理论基础。稍后,P.莱维出版了关于布朗运动与可加过程的两本书,其中蕴含着丰富的概率思想。1953年,J.L.杜布的名著《随机过程论》问世,它系统且严格地叙述了随机过程的基本理论。1951年伊藤清建立了关于布朗运动的随机微分方程的理论(见随机积分),为研究马尔可夫过程开辟了新的道路;近年来由于鞅论的进展,人们讨论了关于半鞅的随机微分方程;而流形上的随机微分方程的理论,正方兴未艾。60年代,法国学派基于马尔可夫过程和位势理论中的一些思想与结果,在相当大的程度上发展了随机过程的一般理论,包括截口定理与过程的投影理论等,中国学者在平稳过程、马尔可夫过程、鞅论、极限定理、随机微分方程等方面也做出了较好的工作。 2. 马尔可夫过程发展 2.1 马尔可夫过程简介 马尔科夫过程(MarKov Process)是一个典型的随机过程。设X(t)是一随机过程,当过程在时刻t0所处的状态为已知时,时刻t(t>t0)所处的状态与过程在t0时刻之前的状态无关,这个特性成为无后效性。无后效的随机过程称为马尔科夫过程。马尔科夫过程中的时同和状态既可以是连续的,又可以是离散的。我们称时间离散、状态离散的马尔科夫过程为马尔科夫链。马尔科夫链中,各个时刻的状态的转变由一个状态转移的概率矩阵控制。 2.2 马尔可夫过程的发展 20世纪50年代以前,研究马尔可夫过程的主要工具是微分方程和半群理论(即分析方法);1936年前后就开始探讨马尔可夫过程的轨道性质,直到把微分方程和半群理论的分析方法同研究轨道性质的概率方法结合运用,才使这方面的研究工作进一步深化,并形成了对轨道分析必不可少的强马尔可夫性概念。1942年,伊藤清用他创立的随机积分和随机微分方程理论来研究一类特殊而重要的马尔可夫过程──扩散过程,开辟了研究马尔可夫过程的又一重要途径。

基于排队论模型的收费站优化设计

龙源期刊网 https://www.doczj.com/doc/2919166057.html, 基于排队论模型的收费站优化设计 作者:刘昕岳丁韩旭杨佳琪 来源:《科学家》2017年第15期 摘要本文从形状、尺寸、组合等因素入手,以减少等待时间与不必要的费用为目的,设计了一个新型高速公路收费站。首先,在系统稳态的基础上,运用排队论模型建立收费站车辆行为模型的基本模型。其次,利用元胞自动机算法模拟了四种不同轮廓下的交通流,并分析了它们对拥塞的抵抗能力。最后,进行了遗传算法优化分析,最大限度地提高了吞吐量,降低了成本,提出一种新型的具有双重停车和互惠共享车道的高速公路收费站方案。 关键词排队论模型;元胞自动机算法;遗传算法;高速公路收费站 中图分类号 TP2 文献标识码 A 文章编号 2095-6363(2017)15-0010-01 随着经济不断发展,人们的日常生活节奏不断加快,需要避免把时间浪费在不必要的事情上,比如等待排队,应该花更多的时间去创造更多的价值。基于这样的社会背景,有必要系统地评估高速公路收费站设计。众所周知,高速公路收费站总是浪费时间。除了司机在等待收费亭的时间浪费,如果车辆迅速增加,更容易造成交通堵塞(瓶颈)。如何合理的设计收费站是一个急需解决的问题。 1 排队论模型建立 排队论模型中,车到达一个单次和连续到达的时间间隔服从负指数分布的参数λ。系统中有s服务站。每个服务站的服务时间是相互独立的,服从参数m的负指数分布。当顾客到达时,如果有免费服务台,第一辆车将立即接受服务,否则汽车将排队等候。且等待的时间是无限的。 下面讨论了这个排队系统的平滑分布。本文认为,在系统达到稳定状态后,队列长度n的概率分布等于(n=1,2,…)。设收费站数目为B。 通过公式推导表明,繁忙收费站平均数目并不取决于收费站数目B。 λn=λ,n=0,1,2,… 相关文献给出了在平衡条件下系统中车辆数为n的概率。当收费广场的车辆数目超过或等于收费站的数目,返回的车辆必须等候。 继续推导得到平均队列长度: LB=平均队列长度+被送达车辆的平均数=Lq+p

马尔可夫链模型

马尔可夫链模型 马尔可夫链模型(Markov Chain Model) 目录 [隐藏] ? 1 马尔可夫链模型概述 ? 2 马尔可夫链模型的性质 ? 3 离散状态空间中的马尔可夫链 模型 ? 4 马尔可夫链模型的应用 o 4.1 科学中的应用 o 4.2 人力资源中的应用 ? 5 马尔可夫模型案例分析[1] o 5.1 马尔可夫模型的建 立 o 5.2 马尔可夫模型的应 用 ? 6 参考文献 [编辑] 马尔可夫链模型概述 马尔可夫链因安德烈·马尔可夫(Andrey Markov,1856-1922)得名,是数学中具有马尔可夫性质的离散时间随机过程。该过程中,在给定当前知识或信息的情况下,过去(即当期以前的历史状态)对于预测将来(即当期以后的未来状态)是无关的。 时间和状态都是离散的马尔可夫过程称为马尔可夫链, 简记为。 马尔可夫链是随机变量的一个数列。这些变量的范围,即他们所有可能 取值的集合,被称为“状态空间”,而Xn的值则是在时间n的状态。如果Xn + 1对于过去状态的条件概率分布仅是Xn的一个函数,则 这里x为过程中的某个状态。上面这个恒等式可以被看作是马尔可夫性质。

马尔可夫在1906年首先做出了这类过程。而将此一般化到可数无限状态空间是由柯尔莫果洛夫在1936年给出的。 马尔可夫链与布朗运动以及遍历假说这两个二十世纪初期物理学重要课题是相联系的,但马尔可夫寻求的似乎不仅于数学动机,名义上是对于纵属事件大数法则的扩张。 马尔可夫链是满足下面两个假设的一种随机过程: 1、t+l时刻系统状态的概率分布只与t时刻的状态有关,与t时刻以前的状态无关; 2、从t时刻到t+l时刻的状态转移与t的值无关。一个马尔可夫链模型可表示为=(S,P,Q),其中各元的含义如下: 1)S是系统所有可能的状态所组成的非空的状态集,有时也称之为系统的状态空间,它可以是有限的、可列的集合或任意非空集。本文中假定S是可数集(即有限或可列)。用小写字母i,j(或S i,S j)等来表示状态。 2)是系统的状态转移概率矩阵,其中P ij表示系统在时刻t处于状态i,在下一时刻t+l处于状态i的概率,N是系统所有可能的状态的个数。对于任意i∈s,有 。 3)是系统的初始概率分布,q i是系统在初始时刻处于状态i的概率, 满足。 [编辑] 马尔可夫链模型的性质 马尔可夫链是由一个条件分布来表示的 P(X n + 1 | X n) 这被称为是随机过程中的“转移概率”。这有时也被称作是“一步转移概率”。二、三,以及更多步的转移概率可以导自一步转移概率和马尔可夫性质:

数学建模港口问题_排队论

排队模型之港口系统 本文通过排队论和蒙特卡洛方法解决了生产系统的效率问题,通过对工具到达时间和服务时间的计算机拟合,将基本模型确定在//1 M M排队模型,通过对此基本模型的分析和改进,在概率论相关理论的基础之上使用计算机模拟仿真(蒙特卡洛法)对生产系统的整个运行过程进行模拟,得出最后的结论。好。关键词:问题提出: 一个带有船只卸货设备的小港口,任何时间仅能为一艘船只卸货。船只进港是为了卸货,响铃两艘船到达的时间间隔在15分钟到145分钟变化。一艘船只卸货的时间有所卸货物的类型决定,在15分钟到90分钟之间变化。 那么,每艘船只在港口的平均时间和最长时间是多少 若一艘船只的等待时间是从到达到开始卸货的时间,每艘船只的平均等待时间和最长等待时间是多少 卸货设备空闲时间的百分比是多少 船只排队最长的长度是多少 问题分析: | 排队论:排队论(Queuing Theory) ,是研究系统随机聚散现象和随机服务系统工作过程的数学理论和方法,又称随机服务系统理论,为运筹学的一个分支。本题研究的是生产系统的效率问题,可以将磨损的工具认为顾客,将打磨机当做服务系统。【1】 M M:较为经典的一种排队论模式,按照前面的Kendall记号定义,前//1 面的M代表顾客(工具)到达时间服从泊松分布,后面的M则表示服务时间服从负指数分布,1为仅有一个打磨机。 蒙特卡洛方法:蒙特卡洛法蒙特卡洛(Monte Carlo)方法,或称计算机随机模拟方法,是一种基于“随机数”的计算方法。这一方法源于美国在第一次世界大战进研制原子弹的“曼哈顿计划”。该计划的主持人之一、数学家冯·诺伊曼用驰名世界的赌城—摩纳哥的Monte Carlo—来命名这种方法,为它蒙上了一层神

隐马尔可夫模型_HMM_及其应用

42 第30卷 第4期 湖南科技学院学报 V ol.30 No.4 2009年4月 Journal of Hunan University of Science and Engineering Apr.2009 隐马尔可夫模型(HMM)及其应用 王志堂1 蔡淋波2 (1.湖南科技学院 教育科学系, 湖南 永州 425100;2. 五邑大学 信息学院,广东 江门 529020) 摘 要:隐马尔可夫模型(HMM)是序列数据处理和统计学习的一种重要概率模型,具有建模简单、数据计算量小、运行速度快、识别率高等特点,近几年来已经被成功应用到许多工程任务中。文章介绍了隐马尔可夫模型,并对HMM 及其改进的HMM 在语音处理技术、人脸识别和人脸表情识别中的应用进行了叙述。 关键词:隐马尔可夫模型; 语音处理; 人脸识别; 人脸表情识别 中图分类号:TP391.4 文献标识码:A 文章编号:1673-2219(2009)04-0042-03 0 引 言 隐马尔可夫模型(HMM )最早于1957年被提出[1],在20世纪80年代被成功应用于声学信号建模。近年来,也有文献把HMM 应用于金融市场的波动性分析、经济预算、神经生理学与生物遗传等方面。在理论方面Leroox 与Bickel and Ratov 分别给出了隐马尔可夫模型在大数定律与中心极限定理方面的一些性质[2,3]。目前HMM 主要应用在工程领域,如图像处理、语音人工合成、地震勘探、生物信号处理等,并取得了具有科学意义和应用价值的重要成果。因此,结合实际应用,进一步研究各种新型隐马尔可夫模型及其性质,具有十分重要的意义[4] 。本文介绍了隐马尔可夫模型,概括了HMM 及其改进的HMM 在语音处理技术、人脸识别和人脸表情识别中的应用。 1 HMM 的基本理论 HMM 是一个双内嵌式随机过程,即HMM 是由两个随机过程组成,一个是隐含的状态转移序列,它对应一个单纯的Markov 过程;另一个是与隐状态有关的观测序列。并且在这两个随机过程中,有一个随机过程(状态转移序列)是不可观测的,只能通过另一个随机过程的输出观测序列进行推断,所以称之为隐马尔可夫模型,其基本要素包括: (1) 模型的状态数N 。如果S 是状态集合,则 {}N S S S S ,,,21"=。模型在时间t 的状态记为,S q t ∈,1 收稿日期:2008-12-18 修改日期:2009-01-20 基金项目:广东省自然科学基金项目(07010869);北京大学视觉与听觉信息处理国家重点实验室开放课题基金项目 (0505);浙江大学CAD &CG 国家重点实验室开放课题(A0703)。 作者简介:王志堂(1984-),男,助教,主要研究方向为电子技术应用。蔡淋波(1982-),女,硕士研究生,主要研究方向为图像处理、信号处理。 ≤t ≤T ,T 是观察序列的长度。模型经历的状态序列记为 {}t q q q Q ,,,21"=。 (2) 观察符号数M 。设V 是所有观察符号的集合,则 {}M v v v V ,,,21"=。 (3) 状态转移的概率分布A 。状态转移的概率分布可表 示为{}ij a A =,其中=ij a {} i t j t S q S q P ==+|1, N j i ≤≤,1,且满足∑==≥N j ij ij a a 1 1, 0, 表示时刻t 从状态t S 转移到时刻t +1状态j S 的转移概率。 (4) 状态i S 条件下输出的观测变量概率分布B 。假设观测变量的样本空间为V ,在状态i S 时输出观测变量的概率分布可表示为:=B (){}V v N i v b i ∈≤≤,1,,其中 ()=v b i {}i t t S q v Q f ==|,t Q 为时刻t 的观测随机变量,可 以是一个数值或向量,观测序列记为{}t O O O O ,,,21"=。值得注意的是,此处观测变量的样本空间和概率分布可以为离散型,也可为连续型。 (5) 系统初始状态概率分布π。 系统初始状态概率分布可表示为{}N i i ≤≤=1,ππ,其中=i π {}i S q P =1。 综上可知,要描述一个完整的HMM ,需要模型参数 {}π,,,,B A M N 。为了简化,常用下面的形式来表示,即 {}πλ,,B A =。此外,对于一个标准HMM 模型,需要解决 模型训练、隐状态估计和似然计算三个基本问题。 2 HMM 及其扩展在模式识别中的应用 2.1 HMM 在语音处理中的应用 HMM 是序列数据处理和统计学习的一种重要概率模型,近几年来已经被成功应用到许多语音处理的任务中。 文献[5]中给出了一种基于隐马尔可夫模型的中文科研论文头部信息抽取过程以及模型结构的学习和参数的训练等关键问题的解决方法。对中文论文头部信息的抽取固定在标题、作者、单位、地址、邮编、摘要、关键词、中图分类号、文献标识码、文章编号、栏目和电子邮箱12个抽取域。

排队论模型

排队论模型 研究系统随机聚散现象和随机服务系统工作过程的数学理论和方 法,又称随机服务系统理论,为运筹学的一个分支。 日常生活中存在大量有形和无形的排队或拥挤现象,如旅客购票排队,市内电话占线等现象。排队论的基本思想是1910年丹麦电话工程师A.K.埃尔朗在解决自动电话设计问题时开始形成的,当时称为话务理论。他在热力学统计平衡理论的启发下,成功地建立了电话统计平衡模型,并由此得到一组递推状态方程,从而导出著名的埃尔朗电话损失率公式。自20世纪初以来,电话系统的设计一直在应用这个公式。30年代苏联数学家А.Я.欣钦把处于统计平衡的电话呼叫流称为最简单流。瑞典数学家巴尔姆又引入有限后效流等概念和定义。他们用数学方法深入地分析了电话呼叫的本征特性,促进了排队论的研究。50年代初, 美国数学家关于生灭过程的研究、英国数学家D.G.肯德尔提出嵌入马尔可夫链理论,以及对排队队型的分类方法,为排队论奠定了理论 基础。在这以后,L.塔卡奇等人又将组合方法引进排队论,使它更能适应各种类型的排队问题。70年代以来,人们开始研究排队网络和复杂排队问题的渐近解等,成为研究现代排队论的新趋势。 排队系统模型的基本组成部分 排队系统又称服务系统。服务系统由服务机构和服务对象(顾客)构成。服务对象到来的时刻和对他服务的时间(即占用服务系统的时间)

都是随机的。图1为一最简单的排队系统模型。排队系统包括三个组成部分:输入过程、排队规则和服务机构。 输入过程 输入过程考察的是顾客到达服务系统的规律。它可以用一定时间内顾客到达数或前后两个顾客相继到达的间隔时间来描述,一般分为确定型和随机型两种。例如,在生产线上加工的零件按规定的间隔时间依次到达加工地点,定期运行的班车、班机等都属于确定型输入。随机型的输入是指在时间t内顾客到达数n(t)服从一定的随机分布。如服从泊松分布,则在时间t内到达n个顾客的概率为 排队规则 排队规则分为等待制、损失制和混合制三种。当顾客到达时,所有服务机构都被占用,则顾客排队等候,即为等待制。在等待制中,

排队论例题

排队论例题 Document number:PBGCG-0857-BTDO-0089-PTT1998

几种典型的排队模型 (1)M/M/1///FCFS 单服务台排队模型 系统的稳态概率n P 01P ρ=-,/1ρλμ=<为服务强度;(1)n n P ρρ=-。 系统运行指标 a.系统中的平均顾客数(队长期望值) 0.s n i L n P λμλ∞=== -∑; b.系统中排队等待服务的平均顾客数(排队长期望值) 0(1).q n i L n P ρλμλ ∞==-= -∑; c.系统中顾客停留时间的期望值 1[]s W E W μλ == -; d.队列中顾客等待时间的期望值 1q s W W ρμμλ=- =-。 (2) M/M/1/N//FCFS 单服务台排队模型 系统的稳态概率n P 011,11N P ρρρ+-= ≠-; 11,1n n N P n N ρρρ +-=<- 系统运行指标 a .系统中的平均顾客数(队长期望值) b .系统中排队等待服务的平均顾客数(排队长期望值) c .系统中顾客停留时间的期望值 d .队列中顾客等待时间的期望值 。1q s W W μ=- (3) M/M/1//m/FCFS (或M/M/1/m/m/FCFS )单服务台排队模型 系统的稳态概率n P 00 1!()()!m i i P m m i λμ==-∑; 0!(),1()!n n m P P n m m n λμ=≤≤- 系统运行指标 a .系统中的平均顾客数(队长期望值) b .系统中排队等待服务的平均顾客数(排队长期望值) c .系统中顾客停留时间的期望值

Matlab2011b的HMM(隐马尔可夫模型)相关函数介绍

Matlab 2011b Statistics Toolbox HMM 作者:yuheng666 Email:wuyuheng666@https://www.doczj.com/doc/2919166057.html, 关键字:HMM,隐马尔科夫模型,Matlab,Statistics Toolbox 声明:本文主要介绍Matlab2011b中Statistics Toolbox工具箱里与隐马尔科夫模型相关的函数及其用法(请勿与其它HMM工具箱混淆)。本文的主要内容来自Matlab 2011b的帮助文档,为作者自学笔记。水平有限,笔记粗糙,本着“交流探讨,知识分享”的宗旨,希望对HMM感兴趣的同学有些许帮助,欢迎指教,共同进步。 有关马尔科夫模型的基本知识,请参考其他资料。如: https://www.doczj.com/doc/2919166057.html,/~lliao/cis841s06/hmmtutorialpart1.pdf https://www.doczj.com/doc/2919166057.html,/~lliao/cis841s06/hmmtutorialpart2.pdf https://www.doczj.com/doc/2919166057.html,/section/cs229-hmm.pdf http://jedlik.phy.bme.hu/~gerjanos/HMM/node2.html https://www.doczj.com/doc/2919166057.html,/dugad/hmm_tut.html ....... 变量说明: 设有M个状态,N个符号Markov模型。 TRANS:对应状态转移矩阵,大小为M*M,表示各状态相互转换的概率,TRANS(i,j)表示从状态i转换到状态j的概率。 EMIS:对应符号生成矩阵,又叫混淆矩阵,观察符号概率分布。EMIS(i,j)代表在状态i时,产生符号j的概率。 函数介绍: hmmgenerate — Generates a sequence of states and emissions from a Markov model 从一个马尔科夫模型产生状态序列和输出序列,该序列具有模型所表达的随机性特征。 A random sequence seq of emission symbols A random sequence states of states 用法:

5马尔可夫链模型

马尔可夫链模型 在考察随机因素影响的动态系统时,常常碰到这样的情况,系统在每个时期所处的状态是随机的,从这个时期到下个时期的状态按照一定的概率进行转移,并且下个时期的状态只取决于这个时期的状态和转移概率,与以前各时期的状态无关。这种性质称为无后效性或马尔可夫性。通俗的说就是已知现在,将来与历史无关。 具有马氏性的,时间、状态无为离散的随机转移过程通常用马氏链(Markov Chain)模型描述。 马氏链模型在经济、社会、生态、遗传等许多领域中有着广泛的应用。值得提出的是,虽然它是解决随机转移过程的工具,但是一些确定性系统的状态转移问题也能用马氏链模型处理。 马氏链简介: 马氏链及其基本方程:按照系统的发展,时间离散化为 0,1,2,n = ,对每个n ,系统的状态用随机变量n X 表示,设n X 可以 取k 个离散值1,2,,n X k = ,且n X i =的概率记作() i a n ,称为状态概 率,从n X i =到1 n X j +=的概率记作ij p ,称为转移概率。如果1 n X +的 取值只取决于n X 的取值及转移概率,而与1 2,,n n X X -- 的取值无关, 那么这种离散状态按照离散时间的随机转移过程称为马氏链。 由状态转移的无后效性和全概率公式可以写出马氏链的基本方程为 1 (1)()1,2,,k i j ij j a n a n p i k =+= =∑

并且() i a n 和ij p 应满足 1 1 ()10,1,2,;0 ;1 1,2,,k k j ij ij j j a n n p p i k ====≥==∑∑ 引入状态概率向量和转移概率矩阵 12()((),(),,()) {}k ij k a n a n a n a n P p == 则基本方程可以表为1 (1)()(0)n a n a n P a P ++== 例1:某商店每月考察一次经营情况,其结果用经营状况好与孬表示。若本月经营状况好,则下月保持好的概率为0.5,若本月经营状况不好,则下月保持好的概率为0.4,试分析该商店若干时间后的经营状况。 解:商店的经营状况是随机的,每月转变一次。用随机变量n X 表示第n 个月的经营状况,称为经营系统的状态.1,2 n X =分别表示 好与不好,0,1,n = 。用() i a n 表示第n 月处于状态i 的概率(1,2i =) 即()()i n a n P X i ==,ij p 表示本月处于状态i ,下月转为状态j 的概率。 这里1 n X +无后效性,只取决于n X 和ij p 。 112112220.5,0.4,0.5,0.6p p p p ==∴== 根据全概率公式可以得到: 11112212112222 (1)()()0.50.5(1)()(1)()()0.4 0.6a n a n p a n p a n a n P P a n a n p a n p +=+??? ?+==? ?+=+?? ? 假设这个递推公式存在极限w ,有w w P = ,即()0w P E -=。于 是当经营状况好或孬时,经计算可以得到下面的结果

论述马尔可夫模型的降水预测方法

随机过程与随机信号处理课程论文

论述马尔可夫模型的降水预测方法 摘要:预测是人们对未知事物或不确定事物行为与状态作出主观的判断。中长 期降水量的预测是气象科学的一个难点问题, 也是水文学中的一个重要问题。今年来,针对降水预测的随机过程多采用随机过程中的马尔可夫链。本文总结了降水预测的马尔可夫预测的多种方法和模型,对其中的各种方法的马尔可夫链进行了比较和分析,得出了一些有用的结论。 关键字:降水预测,随机过程,马尔可夫链,模拟 前言:大气降水是自然界水循环的一个重要环节。尤其在干旱半干旱地区, 降 水是水资源的主要补给来源, 降水量的大小,决定着该地区水资源的丰富程度。因此, 在水资源预测、水文预报中经常需要对降水量进行预报。然而, 由于气象条件的变异性、多样性和复杂性, 降水过程存在着大量的不确定性与随机性, 因此到目前为止还难以通过物理成因来确定出未来某一时段降水量的准确数值。在实际的降水预测中,有时不必预测出某一年的降水量,仅需预测出某个时段内降水的状况既可满足工作需要。因此,预测的范围相应扩大,精度相应提高。因此对降水的预测可采用随机过程的马尔可夫链来实现。 用随机过程中马尔可夫链进行预测是一种较为广泛的预测方法。它可用来预测未来某时间发生的变化, 如预测运输物资需求量、运输市场等等。马尔可夫链, 就是一种随机时间序列, 它表示若已知系统的现在状态, 则系统未来状态的规律就可确定, 而不管系统如何过渡到现在的状态。我们在现实生活中, 有很多情况具有这种属性, 如生物群体的生长与死亡, 一群体增加一个还是减少一个个体, 它只与当前该生物群体大小有关, 而与过去生物群体大小无关。] 本文针对降水预测过程中采用马尔可夫链进行模拟进行了综述和总结。主要的方法有利用传统的马尔可夫链的方法模拟;有采用加权的马尔可夫链模拟来进行预测;还有基于模糊马尔可夫链状模型预测的方法;还有通过聚类分析建立降水序列的分级标准来采用滑动平均的马尔可夫链模型来预测降水量;从这些方法中我们可以看出,马尔可夫链对降水预测有着重要的理论指导意义。 1.随机过程基本原理 我们知道,随机变量的特点是,每次试验结果都是一个实现不可预知的,但为确定的量。而在实际中遇到的许多物理现象,实验所得到的结果是一个随时间变化的随机变量,且用一个或多个随机变量我们有时无法描述很多这种现象的的全部统计规律,这种情况下把随时间变化的随机变量的总体叫做随机过程。对随机过程的定义如下:

隐马尔可夫模型

隐马尔可夫模型 维基百科,自由的百科全书 跳转到:导航, 搜索 隐马尔可夫模型状态变迁图(例子) x—隐含状态 y—可观察的输出 a—转换概率(transition probabilities) b—输出概率(output probabilities) 隐马尔可夫模型(Hidden Markov Model,HMM)是统计模型,它用来描述一个含有隐含未知参数的马尔可夫过程。其难点是从可观察的参数中确定该过程的隐含参数。然后利用这些参数来作进一步的分析,例如模式识别。 在正常的马尔可夫模型中,状态对于观察者来说是直接可见的。这样状态的转换概率便是全部的参数。而在隐马尔可夫模型中,状态并不

是直接可见的,但受状态影响的某些变量则是可见的。每一个状态在可能输出的符号上都有一概率分布。因此输出符号的序列能够透露出状态序列的一些信息。 目录 [隐藏] ? 1 马尔可夫模型的演化 ? 2 使用隐马尔可夫模型 o 2.1 具体实例 o 2.2 隐马尔可夫模型的应用 ? 3 历史 ? 4 参见 ? 5 注解 ? 6 参考书目 ?7 外部连接 [编辑]马尔可夫模型的演化 上边的图示强调了HMM的状态变迁。有时,明确的表示出模型的演化也是有用的,我们用x(t1)与x(t2)来表达不同时刻t1和t2的状态。 在这个图中,每一个时间块(x(t), y(t))都可以向前或向后延伸。通常,时间的起点被设置为t=0 或t=1.

另外,最近的一些方法使用Junction tree算法来解决这三个问题。[编辑]具体实例 假设你有一个住得很远的朋友,他每天跟你打电话告诉你他那天作了什么.你的朋友仅仅对三种活动感兴趣:公园散步,购物以及清理房间.他选择做什么事情只凭天气.你对于他所住的地方的天气情况并不了解,但是你知道总的趋势.在他告诉你每天所做的事情基础上,你想要猜测他所在地的天气情况. 你认为天气的运行就像一个马尔可夫链.其有两个状态 "雨"和"晴",但是你无法直接观察它们,也就是说,它们对于你是隐藏的.每天,你的朋友有一定的概率进行下列活动:"散步", "购物", 或 "清理".

马尔科夫链模型及其在基因遗传分析中的应用研究

马尔科夫链模型及其在基因遗传分析中的应用研究 内容提要 文中简述了马尔科夫链模型的基本原理,介绍了利用马尔科夫链对农作物基因遗传过程进行的分析研究,从而得出了基因类型的分布情况和农作物种植最适宜的换种代数间隔,使得可以更好的种植农作物。 关键词 马尔可夫链模型 基因遗传 换种间隔 一、引言 对基因遗传的分析一直是人们较为关心的话题。在研究出某物种基因的遗传分布后,对人们今后的对该物种进行的各种改良提供了良好的依据,尤其是对农作物基因类型的研究。在研究出农作物的各代之间基因类型的关系和分布情况之后,我们可以据此改善农作物的种植方法,从而提高产量。本文依据马尔科夫链的两种重要类型对农作物的基因遗传进行了分析研究,同时,分析研究马尔科夫链在一对父母的大量后代中,雌雄随机的配对繁殖,一系列后代的基因类型的演变过程中的应用。 二、马尔科夫链 1.马尔可夫链的基本概念 定义 ①.设{(),0,1,2,}n X X w n ==???是定义在概率空间(,,)F P Ω上,取值在非负整数上的随机变量序列,其表示对每个n 系统的状态。当状态1,2,,(1,2,)n X k n =???=???时表示共有k 个状态;n 时刻由状态n X i =,下一个时刻n+1变到状态1n X j +=的概率记作ij p ,则1(|)i j n n p P X j X i +===表示在事件n X i =出现的条件下,事件1n X j +=出现的条件概率,又称它为系统状态X 的一步转移概率。如果对任意的非负整数121,,,,,n i i i i j -???及一切0n ≥有 1(|,,1,2,,1)n n k k P X j X i X i k n +====???-=1(|)()n n ij ij P X j X i p n p +====, 则称X 是马尔科夫链。 ②.矩阵(ij p )称为马尔科夫链X 的一步转移概率矩阵。称10()(|)(|)ij n n m m p n P X j X i P X j X i ++======为马尔科夫链X 的n 步转移概率,而(()ij p n )为X 的n 步转移矩阵。

马尔可夫链模型

马尔可夫链 在自然界与社会现象中,许多随机现象遵循下列演变规律,已知某个系统(或过程)在时刻0t t =所处的状态,与该系统(或过程)在时刻0t t >所处的状态与时刻0t t <所处的状态无关。例如,微分方程的初值问题描述的物理系统属于这类随机性现象。随机现象具有的这种特性称为无后效性(随机过程的无后效性),无后效性的直观含义:已知“现在”,“将来”和“过去”无关。 在贝努利过程(){} ,1X n n ≥中,设()X n 表示第n 次掷一颗骰子时出现的点数,易见,今后出现的点数与过去出现的点数无关。 在维纳过程(){} ,0X t t ≥中,设()X t 表示花粉在水面上作布朗运动时所处的位置,易见,已知花粉目前所处的位置,花粉将来的位置与过去的位置无关。 在泊松过程(){,0}N t t ≥中,设()N t 表示时间段[0,]t 内进入某商店的顾客数。易见,已知时间段0[0,]t 内进入商店的顾客数()0N t ,在时间段()0[0,]t t t >内进入商店的顾客数 ()N t 等于()0N t 加上在时间段0(,]t t 内进入商店的顾客数()()0N t N t -,而与时刻0t 前进 入商店的顾客无关。 一、马尔可夫过程 定义:给定随机过程 (){},X t t T ∈。如果对任意正整数3n ≥,任意的 12,,1, ,n i t t t t T i n <<<∈=,任意的11, ,,n x x S -∈S 是()X t 的状态空间,总有 ()()()1111|,n n n n P X x X t x X t x --≤== ()() 11|,n n n n n P X x X t x x R --=≤=∈ 则称(){} ,X t t T ∈为马尔可夫过程。 在这个定义中,如果把时刻1n t -看作“现在”,时刻n t 是“将来”,时刻12, ,n t t -是“过 去”。马尔可夫过程要求:已知现在的状态()11n n X t x --=,过程将来的状态()n X t 与过程过去的状态()()1122, ,n n X t x X t x --==无关。这就体现了马尔可夫过程具有无后效性。 通常也把无后效性称为马尔可夫性。 从概率论的观点看,马尔可夫过程要求,给定()()1111,,n n X t x X t x --==时,() n X t 的条件分布仅与()11n n X t x --=有关,而与()()12, ,n X t X t -无关。

隐马尔可夫模型(HMM)简介

隐马尔可夫模型(HMM)简介 (一) 阿黄是大家敬爱的警官,他性格开朗,身体强壮,是大家心目中健康的典范。 但是,近一个月来阿黄的身体状况出现异常:情绪失控的状况时有发生。有时候忍不住放声大笑,有时候有时候愁眉不展,有时候老泪纵横,有时候勃然大怒…… 如此变化无常的情绪失控是由什么引起的呢?据警队同事勇男描述,由于复习考试寝室不熄灯与多媒体作业的困扰,阿黄近日出现了失眠等症状;与此同时,阿黄近日登陆一个叫做“xiaonei 网”的网站十分频繁。经医生进一步诊断,由于其他人也遇到同样的考试压力、作息不规律的情况而并未出现情绪失控;并且,其它登陆XIAONEI网的众多同学表现正常,因此可基本排除它们是情绪失控的原因。黄SIR的病情一度陷入僵局…… 最近,阿黄的病情有了新的眉目:据一位对手相学与占卜术十分精通的小巫婆透露,阿黄曾经私下请她对自己的病情进行诊断。经过观察与分析终于有了重大发现:原来阿黄的病情正在被潜伏在他体内的三种侍神控制!他们是:修罗王、阿修罗、罗刹神。 据悉,这三种侍神是情绪积聚激化而形成的自然神灵,他们相克相生,是游离于个体意识之外的精神产物,可以对人的情绪起到支配作用。每一天,都会有一位侍神主宰阿黄的情绪。并且,不同的侍神会导致不同的情绪突然表现。然而,当前的科技水平无法帮助我们诊断,当前哪位侍神是主宰侍神;更糟的是,不同的侍神(3个)与不同的情绪(4种)并不存在显而易见的一一对应关系。 所以,乍看上去,阿黄的病情再次陷入僵局…… 我们怎样才能把握阿黄情绪变化的规律? 我们怎样才能通过阿黄的情绪变化,推测他体内侍神的变化规律? 关键词:两类状态: 情绪状态(观察状态):放声大笑,愁眉不展,老泪纵横,勃然大怒 侍神状态(隐状态):修罗王,阿修罗,罗刹神 (二) 阿黄的病情引来了很多好心人的关心。这与阿黄真诚善良的品格不无关系。 关于侍神的特点,占卜师和很多好心人找来了许多珍贵资料。其中很多人经过一段时间的观察与记录后,在貌似毫无规律的数据背后,发现了侍神与情绪之间的内在规律!!他们在多次观测后,

相关主题
文本预览
相关文档 最新文档