当前位置:文档之家› 基于labview的语音信号采集系统

基于labview的语音信号采集系统

基于labview的语音信号采集系统
基于labview的语音信号采集系统

电气与自动化工程学院《LabVIEW编程实训》评分表课程名称:LabVIEW编程实训

题目:基于labview的语音信号采集系统设计

班级:1601131自动化学号:160113113姓名:刘德旺

指导老师:

年月日

常熟理工学院电气与自动化工程学院《LabVIEW编程实训》技术报告题目:基于LabVIEW的语音信号采集系统设计

姓名:刘德旺

学号:160113113

班级:自动化131

指导教师:陈飞

起止日期:2016年6月20日-7月8日

LabVIEW编程实训答辩记录

自动化专业 1601131班级答辩人刘德旺

题目基于LabVIEW的语音信号采集系统设计

说明:主要记录答辩时所提的问题及答辩人对所提问题的回答

目录

1.任务书 (1)

2.基于LABVIEW的数据采集系统概述 (3)

2.1虚拟仪器概念与传统仪器概念主要区别 (3)

2.1.1LabVIEW虚拟仪器简介 (3)

2.1.2LabVIEW虚拟仪器特点 (3)

2.2 LabVIEW图形化程序的组成与特点 (4)

2.2.1前面版 (4)

2.2.2程序框图 (4)

2.2.3图标和连接器 (5)

3.语音信号采集总体设计方案与硬件配置 (6)

3.1语音信号采集系统的功能分析 (6)

3.2语音信号采集系统的总体构成 (6)

3.3语音信号采集系统的硬件配置 (6)

4.语音信号采集系统的软件设计与功能实现 (11)

4.1语音信号采集系统的软件前面板设计 (11)

4.1.1语音信号采样信息界面 (11)

4.1.2语音采集控制按钮界面 (11)

4.1.3时域波形和频域波形显示界面 (11)

4.2语音信号采集系统的软件程序框图设计 (12)

5.语音信号采集系统的运行与分析 (18)

6.收获与体会 (21)

参考文献 (23)

1.任务书

题目: 基于LabVIEW的语音信号采集系统设计

https://www.doczj.com/doc/2519054622.html,bVIEW编程实训任务

本课题所要求设计的基于虚拟仪器技术的语音采集系统硬件由MIC、喇叭和放大电路组成,其工作原理为MIC采集音乐信号,经过放大电路的放大,送入数据采集平台的模拟输入通道,然后利用虚拟仪器软件开发平台LabVIEW来开发系统软件,以实现对语音信号的采集、分析、处理与报表生成等。语音信号由计算机进行分析和处理,在程序中通过设置采样点和采样率,对数据进行时域和频域的分析、处理,可以观察音频的分布和语音信号的特点。具体指标与要求如下:

(1)、理解语音信号的特点,认识语音信号处理的一些基本方法。要求对语音采集信号调理电路进行设计,说明其工作原理。

(2)、要求采用状态机的软件设计结构来设计语音采集系统软件。系统软件具有“系统初始化”、“系统等待”、“数据采集”、“报表生成”“打开报表”、“退出”等功能。

2、LabVIEW编程实训目的

通过本次编程实训使学生具备:1)了解现代仪器科学与技术的发展前沿;2)学习和掌握虚拟仪器系统组成和工作原理;3)掌握虚拟仪器LabVIEW图形化软件设计方法与调试技巧;4)培养学生查阅资料的能力和运用知识的能力;5)针对自动化工程测试问题,能够给出或形成设计方案;提高学生的沟通合作能力和技术报告撰写;6)培养学生正确的设计思想、严谨的科学作风;7)培养学生的创新能力和运用知识的能力。

3、LabVIEW编程实训要求

3.1、了解和掌握整个虚拟仪器平台的系统组成、工作原理、各单元功能和应用背景;

3.2、根据设计任务进行文献资料的检索,根据各种独立测量仪器的功能和工作原理,确定语音采集系统的功能,制定设计方案和设计虚拟仪器面板;

3.3、利用虚拟仪器LabVIEW软件,编写与调试虚拟仪器的图形化程序;

3.4、撰写完整的编程实训报告。

4、LabVIEW编程实训内容

1、语音采集系统前面板设计;

2、语音采集系统框图程序设计。

5、LabVIEW编程实训报告要求

报告中提供如下内容:

5.1、目录

5.2、正文

(1)LabVIEW编程实训任务书;

(2)总体设计方案(包括虚拟仪器概念与传统仪器概念主要区别,虚拟仪器LabVIEW图形化程序的组成和特点,虚拟计算器的设计思路及总体结构图等);

(3)硬件选型、硬件I/O分配或信号设计电路设计;简述所设计的电路工作原理及所实现的功能,针对前面板要有操作使用说明,以便他人能够正确使用所设计的计算器;(4)程序流程图、框图程序的设计及功能实现方法等;

(5)调试、运行及其结果;要求有源程序和运行结果等。

5.3、收获、体会

5.4、参考文献

6、LabVIEW编程实训进度安排

本课程设计共需2周时间,其具体安排见下表:

7、LabVIEW编程实训考核办法

编程实训满分为100分,由平时表现、能力水平、报告撰写三部分组成。平时表现20%,能力水平50%,报告撰写30%。平时表现由学习态度和团队合作两项组成占20%,能力水平由查阅文献、设计方案、设计水平与实际能力、陈述交流能力四块组成,其中查阅文献、设计方案占20%和设计水平与实际能力、陈述交流能力占30%,技术报告占30% 。

2.基于LABVIEW的数据采集系统概述

2.1虚拟仪器概念与传统仪器概念主要区别

2.1.1LabVIEW虚拟仪器简介

LabVIEW是由美国NI公司开发的、优秀的图形化编程开发平台,是Laboratory Virtual Instrument Engineering Workbench的简称,即实验室虚拟仪器工程平台,是目前应用范围最广、功能最为强大的虚拟仪器开发平台。

LabVIEW集成了与满足GPIB、VXI、RS-232和RS-485协议的硬件及数据采集卡通讯的全部功能。利用它可以方便地建立自己的虚拟仪器,其图形化的界面使得编程及使用过程都生动有趣。图形化的程序语言,又称为“G”语言。使用这种语言编程时,基本上不写程序代码,取而代之的是流程图或框图。它尽可能利用了技术人员、科学家、工程师所熟悉的术语、图标和概念。

因此,LabVIEW是一个面向最终用户的工具。它可以增强你构建自己的科学和工程系统的能力,提供了实现仪器编程和数据采集系统的便捷途径。使用它进行原理研究、设计、测试并实现仪器系统时,可以大大提高工作效率

2.1.2LabVIEW虚拟仪器特点

与传统仪器相比,虚拟仪器具有高效、开放、易用灵活、功能强大、性价比高、可操作性好等明显优点,具体表现为:

(1)智能化程度高,处理能力强虚拟仪器的处理能力和智能化程度主要取决于仪器软件水平。用户完全可以根据实际应用需求,将先进的信号处理算法、人工智能技术和专家系统应用于仪器设计与集成,从而将智能仪器水平提高到一个新的层次。

(2)复用性强,系统费用低应用虚拟仪器思想,用相同的基本硬件可构造多种不同功能的测试分析仪器,如同一个高速数字采样器,可设计出数字示波器、逻辑分析仪、计数器等多种仪器。这样形成的测试仪器系统功能更灵活、更高效、更开放、系统费用更低。通过与计算机网络连接,还可实现虚拟仪器的分布式共享,更好地发挥仪器的使用价值。

(3)可操作性强,易用灵活虚拟仪器面板可由用户定义,针对不同应用可以设计不同的操作显示界面。使用计算机的多媒体处理能力可以使仪器操作变得更加直观、简便、易于理解,测量结果可以直接进入数据库系统或通过网络发送。测量完后还可打印、显示所需的报表或曲线,这些都使得仪器的可操作性大大提高而且易用、灵活。虚拟仪器较

之于传统仪器,有显而易见的优势。

2.2 LabVIEW图形化程序的组成与特点

2.2.1前面版

前面版是NI LabVIEW提供给VI(图形化程序)特有的组成部分之一。在VI中,前面版的作用是实现人机对话操作和交互式用户界面操作。应该讲,它的引入是完全出于虚拟仪器的需要,因为虚拟仪器需要在计算机显示屏上模拟出真实仪器的操作面板。

在前面版上,程序的设计者可以根据程序的实际需要可以放置诸如开关、滑动条等用户可操作控件,也可以放置诸如仪表盘、图形显示器、图表显示器、LED显示器等指示控件,所有这些控件都可以在NI LabVIEW所提供的控件选项板上找到。

前面版,它是每个VI(虚拟仪器)所必须包含的部件之一,也是将来用户唯一可见的部分。在基于文本代码的编程语言中,比如C、Java等,仅一个前面版就要撰写很多行程序代码。而在这里,NI LabVIEW已经替我们做完了这项工作。其余的工作就是如何发挥你的想像力做一个实用、美观的用户界面。如下图所示,为一空的前面板。

2.2.2程序框图

程序框图也是NI LabVIEW提供给VI(图形化程序)特有的组成部分之一。程序框图用来放置LabVIEW图形化程序源代码。与基于文本的程序代码不同,图形化程序代码是以图形(图标)的方式展现在设计者面前。在程序框图中,不仅可以放置图形化代码,并且还可以通过上面的工具拦进行程序调试和即时编译。程序框图只是用来为程序设计者编程时所使用,最终的用户是无法看到的。

程序框图类似于文本编辑器,它不仅可以放置图形化代码同时也可以进行程序注释的标注,只不过是标注的形式不相同。如下图所示,为一空的程序框图。

2.2.3图标和连接器

图标和连接器也是NI LabVIEW提供给VI(图形化程序)特有的组成部分之一。在每个VI的前面版和程序框图的右上角,都有一个属于这个VI 的图标。图标以图形化的方式被用来与其它VI相区别。程序的设计者可以在前面版或程序框图中设计、修改这个图标。

在前面版中,用鼠标右键单击图标,可以看到如图所示的内容。通过这个菜单既可以设定VI的属性又可以编辑图标和显示连接器。而在程序框图中作同样的操作,只可以设定VI的属性和编辑图标。

每个VI都有自己的图标和连接器。图标构成区别不同VI的图形符号,而连接器定义了VI的输入和输出(当然也可以不进行定义)。在前面板上可以设置或相互切换显示图标或连接器。

3.语音信号采集总体设计方案与硬件配置

3.1语音信号采集系统的功能分析

对语音信号的采集、分析、处理与报表生成等。语音信号由计算机进行分析和处理,在程序中通过设置采样点和采样率,对数据进行时域和频域的分析、处理。系统软件具有滤波选择,分为低通,高通,带通滤波。同时也具有开始采集,停止采集,报表生成,停止等功能。

3.2语音信号采集系统的总体构成

由外界的语音采集板卡与计算机相连,语音采集板卡采集到的信号经过放大电路输送

到计算机进行分析运算。

外部待测的物理信号:声音

声音传感器

信号调理:将传感器送来的信号转换为仪器设备可以接受的范围

信号采集:使用仪器设备采集相关的电信号,并传入计算机

软件处理:在计算机中处理所接收的信号

3.3语音信号采集系统的硬件配置

3.3.1数据采集电路

图3.3 NI-ELVIS II型数据采集板的语音采集模块

驻极话筒MIC由R0303串联分压供电。如图3.3所示,当有语音输入时,MIC将产生一个大小与语音强弱成正比的交变电压,该电压经过电阻R0302耦合至放大器OP07中,信号经过放大之后,由模拟通道AI/O2送入计算机内进行分析处理。

3.3.2传感器选型

传感器实际上是一种换能器,它可以把声音信号携带的机械能转变为电能,电信号的强度与声强在一定范围内满足线性关系。

3.3.3 传感器分类

传感器可以按照不同的能量转换机理分为动圈式、电容式、压电式和半导体式等,其中动圈式和电容式应用最为广泛;也可以按照其可录制声场的范围分有指向性和无指向性两种,其中无指向性也叫做全指向性,有指向性又可按照其指向性范围分为心形指向性、超心形指向性、双指向性和单一指向性几种;按其在最佳工作状态下与声源的有效距离分为远场传感器和近场传感器;也可按照用途分为人声传感器、乐器传感器和测量传感器等。l)动圈式传感器

动圈传感器由于其价格低廉、坚固耐用、可承受较大声压而广泛应用于各种场合。

动圈传感器主要由振膜、音圈、永磁体和阻抗匹配变压器组成。当声音震动通过空气传到传感器时,会引起振膜的振动,振膜带动音圈在永磁体的磁场中运动切割磁力线产生电流。由于音圈阻抗相对较低,通过阻抗匹配变压器可以提高传感器的输出阻抗,更容易与后续放大器的阻抗进行匹配。

动圈传感器因其结构和原理相对简单、稳定性高、可以承受较大声压、抗外界噪音能力较强,广泛应用于扩音、录音等各种场合。但其缺点是灵敏度较低、瞬态响应性能不佳、频响曲线不够平直。

2)电容式传感器

电容传感器是利用电容器容量随极板间距而变化的原理工作的,电容传感器主要由振膜、刚性极板以及辅助部件组成。其内部的导体振膜和刚性极板组成一个电容器,电容传感器在工作是需要外部电源供电。当声音通过空气传导到传感器时,振膜随着空气振动而前后运动,其与刚性极板的间距随即发生变化,从而因其电容的变化。在外部电源的作用下,极板两端电压便会发生改变,从而将机械能转换为电能。

电容传感器灵敏度高、频响范围宽、瞬态响应好、失真较小,但其结构精密、成本较高、且难以承受瞬间大声压的冲击,因此仅用于音频环境较好的录音棚、消声室,作为录音传感器或测量传感器使用。

3)驻极体式传感器

驻极体式传感器是一种利用驻极体材料做成的电容传感器。主要结构形式有两种:一种是用驻极体高分子薄膜材料作振膜;另一种是用驻极体材料做后极板。因为驻极体本身带电,所以这种传感器无须外部笨重的极化电源,简化了电容传感器的结构。

该传感器是由一片驻极体薄膜和一片金属电极(背电极)构成的电容。当声波引起驻极体薄膜产生振动而发生位移时,电容极板间的距离就会发生变化,从而引发了电容器两端电压的变化,完成声电转换。

3.3.4 传感器性能指标

灵敏度和指向性是传感器的两个重要性能,由此而关联的传感器性能指标主要有以下几条:

l)灵敏度

灵敏度是表征传感器在一定声压作用下能产生多大的电输出的一个物理量,表示传感器的声电转换效率。一般说来它是传感器的输出电压同该传感器所受声压的复数比。一般来说,传感器的灵敏度越高,失真度就越小,其所接受的声音信号的质量就越好,输出信号的音质越接近于真实声音。

2)频率响应

传感器的频率响应是指在某一确定的声场中,声波以一指定的方向入射,并保持声压恒定时,传感器的开路输出电压随频率的变化的曲线。传感器的频率响应是传感器的主要指标之一,为了得到良好的音质,一般要求传感器的频响曲线在较宽的频率范围之内平直。

3)指向性

传感器的灵敏度随声波入射方向而变化的特性就是传感器的指向性。传感器的指向性对音质有较大影响。根据不同的使用目的,不同的声源以及不同的声场条件,选用具有不同指向性的传感器,对提高音质是很重要的。

4)输出阻抗

输出阻抗也称源阻抗是指传感器的两根输出线之间在1kHz信号输入时的阻抗。源阻抗在150-600欧之间的传感器是低阻抗型的;在1-5千欧之间是中阻抗型的;在25-150千欧之间是高阻抗型的。应注意的是,所有的电动式传感器都是低阻抗器件,那些有高阻抗输出的电动式传感器使用一个内置阻抗升高变换器。高阻抗传感器的缺点是它们的高阻抗电缆线容易拾取到静电噪声,诸如发动机和荧光灯等引起的噪声,这就是要求使用带屏蔽的电缆。另外,围绕屏蔽的导体会形成一个电容器,它实际上是跨接在传感器的输出上。当电缆的长度增加时,电容量就变大,直到6至8米长时,电容量开始短路掉由传感器拾取的许多高频信号。因此,使用高阻抗传感器应避免用长电缆来连接,这种限制有时会给录音带来不便。

5)最大声压级

指的是在传感器在不产生非线性失真时所能承受的最大声压。

6)等效噪声级

用来衡量声音传感器本身的固有噪声大小,固有噪声主要由膜片的热扰动或有源器件的电噪声引入。通常用等效噪声的声压级来衡量传感器固有噪声的大小。

7)动态范围

指的是传感器所能接收信号声压变化范围的上下限,上限受到最大声压级的限制,下限受到等效噪声级的限制。专业级传感器的动态范围一般在110dB左右。

8)失真度

指的是声信号经传感器拾音以后声音发生畸变的程度。失真主要是因为传感器的振动波形与声源不符或传感器接收声音的声压超过其能接收的最大声压级造成的。

3.3.5 传感器的选择

我们在选择传感器的时候,要在了解不同的目标声场特性的基础上,结合传感器的技术特性来选择。一般考虑两个方面的需求:一方面要满足环境特性的需求,包括对温度、湿度、压力和风的适应性等;另一方面要满足技术特性的需求,包括对灵敏度、频率响应、动态范围和指向性等的需求。

本系统所测的目的是语音采集,因此我们要选用灵敏度高、频响宽而平直的传感器。最终选定了一种测量电容式驻极体传声器。

驻极体电容传声器是一种声电转换器件,类属于电容传声器。但是,与早期的电容传声器相比,其内部振膜或背极采用的是可储存电荷的驻极体材料,因此无需外加极化电源。同时,由于驻极体电容传声器内置了场效应管,输出灵敏度得到大幅度提升。而且驻极体电容传声器采用了超小型的零部件,使得产品体积可以做的很小。由于拥有诸多优良性能,驻极体电容传声器广泛应用于手机、电话机、MP3/MP4、数码相机、摄像机、语音识别系统、电脑等产品上。

4.语音信号采集系统的软件设计与功能实现

4.1语音信号采集系统程序流程图

如图4.1所示,打开程序,先设置系统的采集参数,然后点击开始采集按钮。之后系统采集的语音信号经过数字信号处理,根据设置的滤波参数,生成时域和频域波形。然后点击停止采集按钮,系统停止采集。然后选择你要保存的位置,然后打开报表,生成HTML 报表。

图4.1系统程序设计流程图

4.2语音信号采集系统的软件前面板设计

本系统是基于虚拟仪器的语音采集系统。前面板设计如图4-2所示:

图4.2基于虚拟仪器的语音采集系统前面板

系统主要包括语音信号采样信息界面、语音采集控制按钮界面、语音采集状态显示界面以及时域波形和频域波形显示界面四个部分。

4.2.1语音信号采样信息界面

语音信号采样信息界面中包括物理通道、采样点数、采样速率、截止频率、上下限截止频率及频域波形类型选择框。其中频域波形类型选择框包括低通,高通及带通下的波形。如图4.2.1所示。

图4.2.1语音信号采样信息

4.2.2语音采集控制按钮界面

系统开始运行,点击采集按钮,系统开始对语音信号的采集,之后按停止采集按钮时,系统停止对语音信号的采集。当按报表按钮时,系统会自动生成报表。党按下急停开关时,系统会立刻停止。如图4.2.2所示。

图4.2.2语音采集控制界面

4.2.3时域波形和频域波形显示界面

系统开始采集数据时,信号的时域波形和频域波形分别在时域波形和频域波形显示界面中显示。

图4.2.3时域波形图

图4.2.3为采集后的音频信号经过滤波后在时域上的波形,滤波的形式可在前面板上选择,共有三种方式:低通滤波,带通滤波,高通滤波。其中低通可用于检测我们生活中的噪音,带通滤波主要用于检测我们人类说话的声音。高通滤波,用于检测频率较高的管弦乐乐器。

图4.2.3频域波形图

时域信号转化为频域波形,如图4.2.3所示。根据我们所要采集声音的频率不同,我们可以设置X轴的坐标。然后通过频域上波形的分布,对采集的声音进行具体的分析。

4.3语音信号采集系统的软件程序框图设计

图4.3.1软件总体程序框图

如图4.3.1所示,总体的程序框图有DAQ函数,while循环,事件结构,条件结构,报表生成等几部分组成。

程序的主体为:

采集声音任务:数据通道——采样时钟——采集波形——对波形的处理——结束任务——清除数据

图4.3.2声音信号处理

如图4.3.2所示,采样的模拟波形通道为1通道多采样通过设定采样速率和采样点数

来确定波形的质量,速率越快,采样点数越多,采样波形越相近于实际波形。由于采集到的信号太小,不利于观测,因此经过放大器放大后来观看。信号经过放大器后进入滤波环节,共有三种滤波可供选择,低通、带通和高通。分别对应不同的情况。同时将滤波后的波形在时域上表现出来,可将时域波形的数据精处理为动态数据输入频谱测量,在示波器上显示出频域波形。

图4.3.3 HTML报表生成

根据图4.3.3所示,报表生成的一系列步骤。报表生成任务:新建报表——修改报表,具体为添加页眉页脚,注释说明以及程序的波形图片——保存报表,路径可选择——打开报表。

我选择的是HTML报表。优点是,它可以在报表内添加超文本链接,图片,影像,声音以及注释说明。

5.语音信号采集系统的运行与分析

图5.1时域波形

图5.2频域波形

图5.1与5.2采集到的是手机闹铃的震动声音。可以看出,该声音信号在频域上主要分布在低频段,且幅值较高。

音频信号分析与处理

实验三音频信号的分析与处理1 一、实验目的 1.掌握音频信号的采集以及运用Matlab软件实现音频回放的方 法; 2.掌握运用Matlab实现对音频信号的时域、频谱分析方法; 3.掌握运用Matlab设计RC滤波系统的方法; 4.掌握运用Matlab实现对加干扰后的音频信号的进行滤波处理 的方法; 5.锻炼学生运用所学知识独立分析问题解决问题的能力,培养学 生创新能力。 二、实验性质 设计性实验 三、实验任务 1.音频信号的采集 音频信号的采集可以通过Windows自带的录音机也可以用专用的录制软件录制一段音频信号(尽量保证无噪音、干扰小),也可以直接复制一段音频信号,但必须保证音频信号保存为.wav的文件。 2.音频信号的时域、频域分析 运用Matlab软件实现对音频信号的打开操作、时域分析和频域分析,并画出相应的图形(要求图形有标题),并打印在实验报告中(注意:把打印好的图形剪裁下来,粘贴到实验报告纸上)。 3.引入干扰信号 在原有的音频信号上,叠加一个频率为100KHz的正弦波干扰信号(幅度自定,可根据音频信号的情况而定)。 4.滤波系统的设计 运用Matlab实现RC滤波系统,要求加入干扰的音频信号经过RC滤波系统后,能够滤除100KHz的干扰信号,同时保留原有的音频信号,要求绘制出RC滤波系统的冲激响应波形,并分析其频谱。

% 音频信号分析与处理 %% 打开和读取音频文件 clear all; % 清除工作区缓存 [y, Fs] = audioread('jyly.wav'); % 读取音频文件 VoiceWav = y(300000 : 400000, 1); % 截取音频中的一段波形 clear y; % 清除缓存 hAudio = audioplayer(VoiceWav, Fs); % 将音频文件载入audioplayer SampleRate = get(hAudio, 'SampleRate'); % 获取音频文件的采样率KHz T = 1/SampleRate; % 计算每个点的时间,即采样周期SampLen = size(VoiceWav,1); % 单声道采样长度 %% 绘制时域分析图 hFig1 = figure('Units', 'normalized', 'Position', [0 0.05 0.49 0.85]); t = T: T: (SampLen* T); subplot(2, 1, 1); % 绘制音频波形 plot(t, VoiceWav); % 绘制波形 title('音频时域波形图'); axis([0, 2.3, -0.5, 0.5]); xlabel('时间(s)'); ylabel('幅值(V)'); % 显示标题 %% 傅里叶变换 subplot(2, 1, 2); % 绘制波形 myfft(VoiceWav, SampleRate, 'plot'); % 傅里叶变换 title('单声道频谱振幅'); % 显示标题 xlabel('Frequency (Hz)'); ylabel('|Y(f)|'); play(hAudio); % 播放添加噪声前的声音 pause(3); %% 引入100KHz的噪声干扰 t = (0: SampLen-1)* T; noise = sin(2 * pi * 10000 * t); % 噪声频率100Khz,幅值-1V到+1V hFig2 = figure('Units', 'normalized', 'Position', [0.5 0.05 0.5 0.85]); subplot(2, 1, 1); % 绘制波形 plot(t(1: 1000), noise(1: 1000)); title('100KHz噪声信号'); % 显示标题 noiseVoice = VoiceWav+ noise'; % 将噪声加到声音里面 hAudio = audioplayer(noiseVoice, Fs); % 将音频文件载入audioplayer subplot(2, 1, 2); % 绘制波形 [fftNoiseVoice, f] = myfft(noiseVoice, SampleRate, 'plot'); title('音乐和噪声频谱'); % 显示标题 play(hAudio); % 播放添加噪声后的声音 pause(3);

基于labview的语音信号采集系统

电气与自动化工程学院《LabVIEW编程实训》评分表课程名称:LabVIEW编程实训 题目:基于labview的语音信号采集系统设计 班级:1601131自动化学号:160113113姓名:刘德旺 指导老师: 年月日

常熟理工学院电气与自动化工程学院《LabVIEW编程实训》技术报告题目:基于LabVIEW的语音信号采集系统设计 姓名:刘德旺 学号:160113113 班级:自动化131 指导教师:陈飞 起止日期:2016年6月20日-7月8日

LabVIEW编程实训答辩记录 自动化专业 1601131班级答辩人刘德旺 题目基于LabVIEW的语音信号采集系统设计 说明:主要记录答辩时所提的问题及答辩人对所提问题的回答

目录 1.任务书 (1) 2.基于LABVIEW的数据采集系统概述 (3) 2.1虚拟仪器概念与传统仪器概念主要区别 (3) 2.1.1LabVIEW虚拟仪器简介 (3) 2.1.2LabVIEW虚拟仪器特点 (3) 2.2 LabVIEW图形化程序的组成与特点 (4) 2.2.1前面版 (4) 2.2.2程序框图 (4) 2.2.3图标和连接器 (5) 3.语音信号采集总体设计方案与硬件配置 (6) 3.1语音信号采集系统的功能分析 (6) 3.2语音信号采集系统的总体构成 (6) 3.3语音信号采集系统的硬件配置 (6) 4.语音信号采集系统的软件设计与功能实现 (11) 4.1语音信号采集系统的软件前面板设计 (11) 4.1.1语音信号采样信息界面 (11) 4.1.2语音采集控制按钮界面 (11) 4.1.3时域波形和频域波形显示界面 (11) 4.2语音信号采集系统的软件程序框图设计 (12) 5.语音信号采集系统的运行与分析 (18) 6.收获与体会 (21) 参考文献 (23)

基于MATLAB的语音信号采集与处理

工程设计论文 题目:基于MATLAB的语音信号采集与处理 姓名: 班级: 学号: 指导老师:

一.选题背景 1、实践意义: 语音信号是一种非平稳的时变信号,它携带着各种信息。在语音编码、语音合成、语音识别和语音增强等语音处理中无一例外需要提取语音中包含的各种信息。语音信号分析的目的就在于方便有效地提取并表示语音信号所携带的信息。所以理解并掌握语音信号的时域和频域特性是非常重要的。 通过语音相互传递信息是人类最重要的基本功能之一.语言是人类特有的功能.声音是人类常用工具,是相互传递信息的最重要的手段.虽然,人可以通过多种手段获得外界信息,但最重要,最精细的信息源只有语言,图像和文字三种.与用声音传递信息相比,显然用视觉和文字相互传递信息,其效果要差得多.这是因为语音中除包含实际发音容的话言信息外,还包括发音者是谁及喜怒哀乐等各种信息.所以,语音是人类最重要,最有效,最常用和最方便的交换信息的形式.另一方面,语言和语音与人的智力活动密切相关,与文化和社会的进步紧密相连,它具有最大的信息容量和最高的智能水平。 语音信号处理是研究用数字信号处理技术对语音信号进行处理的一门学科,处理的目的是用于得到某些参数以便高效传输或存储;或者是用于某种应用,如人工合成出语音,辨识出讲话者,识别出讲话容,进行语音增强等. 语音信号处理是一门新兴的学科,同时又是综合性的多学科领域,

是一门涉及面很广的交叉学科.虽然从事达一领域研究的人员主要来自信息处理及计算机等学科.但是它与语音学,语言学,声学,认知科学,生理学,心理学及数理统计等许多学科也有非常密切的联系. 语音信号处理是许多信息领域应用的核心技术之一,是目前发展最为迅速的信息科学研究领域中的一个.语音处理是目前极为活跃和热门的研究领域,其研究涉及一系列前沿科研课题,巳处于迅速发展之中;其研究成果具有重要的学术及应用价值. 数字信号处理是利用计算机或专用处理设备,以数值计算的方法对信号进行采集、抽样、变换、综合、估值与识别等加工处理,借以达到提取信息和便于应用的目的。它在语音、雷达、图像、系统控制、通信、航空航天、生物医学等众多领域都获得了极其广泛的应用。具有灵活、精确、抗干扰强、度快等优点。 数字滤波器, 是数字信号处理中及其重要的一部分。随着信息时代和数字技术的发展,受到人们越来越多的重视。数字滤波器可以通过数值运算实现滤波,所以数字滤波器处理精度高、稳定、体积小、重量轻、灵活不存在阻抗匹配问题,可以实现模拟滤波器无法实现的特殊功能。数字滤波器种类很多,根据其实现的网络结构或者其冲激响应函数的时域特性,可分为两种,即有限冲激响应( FIR,Finite Impulse Response)滤波器和无限冲激响应( IIR,Infinite Impulse Response)滤波器。 FIR滤波器结构上主要是非递归结构,没有输出到输入的反馈,系统函数H (z)在处收敛,极点全部在z = 0处(因果系统),因而只能

实验九 音频信号采集及处理

音频信号采集及处理程序代码及实验结果图: [voice,fs]=audioread('notify.wav');%声音读取 sound(voice,fs); %声音回放 n=length(voice);%计算长度 voice1=fft(voice,n); %快速傅里叶变换 figure(1);subplot(2,1,1);plot(voice); %绘出时域波 xlabel('t');ylabel('amp');%坐标名称 title('初始音频信号时域波形');grid on; subplot(2,1,2);plot(abs(fftshift(voice1))); %绘出原始音频信号频谱 title('初始音频信号频域波形'); xlabel('f');ylabel('amp');grid on; t=0:1/fs:(n-1)/fs; noise=0.05*sin(2*pi*100000*t');%100kHz正弦波噪声 s=voice+noise;%加噪后的音频信号 pause;sound(s,fs); %播放加噪的语音 n=length(s); S=fft(s,n);%计算频谱 figure(2);subplot(2,1,1);plot(s);%画出加噪之后的音频信号时域波 形 title('加噪声后的音频信号时域波形'); xlabel('t');ylabel('amp');grid on; subplot(2,1,2);plot(abs(fftshift(S)));%零频移到频谱中心后,绘制加噪 之后的音频信号频谱 xlabel('f');ylabel('amp'); title('加噪声后的音频信号频域波形');grid on; pause; rp=2; rs=80; Ft=8000;Fp=1000;Fs=1300; wp=2*pi*Fp/Ft; ws=2*pi*Fs/Ft; %求出待设计的模拟滤波器的边界频率 [n,wn]=buttord(wp,ws,rp,rs,'s'); %低通滤波器的阶数和截止频率 [b,a]=butter(n,wn,'s'); %S域频率响应的参数即:滤波器的传输函数 [bz,az]=bilinear(b,a,0.5); %利用双线性变换实现频率响应S域到Z域的变换 [h,w]=freqz(bz,az); figure(3);plot(w*fs/(2*pi),abs(h));%绘制IIR低通滤波器特性曲线 title('IIR低通滤波器特性曲线');grid on; z=filter(bz,az,s); %滤波 pause;sound(z,fs); %回放滤波后的信号 Z=fft(z); %滤波后的信号频谱 figure(4);subplot(2,2,2);plot(z);%绘制低通滤波后的音频信号时域

基于LabVIEW的数据采集与信号处理系统的设计_杜娟

基于L a b V I E W 的数据采集与信号处理系统的设计 杜 娟1,邱晓晖1,赵 阳2,颜 伟2,缪 飞1 (1.南京邮电大学通信与信息工程学院,江苏南京210003;2.南京师范大学电气与自动化工程学院,江苏南京210042) [摘要] 介绍了虚拟仪器领域中最具代表性的图形化编程开发平台L a b V I E W,并对基于L a b V I E W 编程环境实现数据采集进 行了研究,设计实现了一种基于L a b V I E W 8.5环境,以E M I 噪声分析仪为下位机的数据采集与信号处理系统的设计方法.该设 计方法主要实现了以R S 232为代表的串口通讯,数组转换及频谱分析等功能,结果表明应用该设计方法设计出的系统具有简 洁友好的人机界面,可直接在前面板上完成各种操作与观测.该设计方案较之目前大多数的设计方法相比有效地降低了程序的 运算量,节省了运算时间,成功实现了实时无差错的采集到由下位机发来的完整数据. [关键词] L a b V I E W,串口通讯,数组转换 [中图分类号]T M 461;T N 713+.7 [文献标识码]A [文章编号]1672-1292(2010)03-0007-04 D a t a A c q u i s i t i o n a n dS i g n a l P r o c e s s i n g S y s t e m B a s e do nL a b V I E W D u J u a n 1,Q i u X i a o h u i 1,Z h a o Y a n g 2,Y a n We i 2,Mi a o F e i 1 (1.C o l l e g e o f C o m m u n i c a t i o na n dI n f o r m a t i o nE n g i n e e r i n g ,N a n j i n g U n i v e r s i t y o f P o s t a n dC o m m u n i c a t i o n s ,N a n j i n g 210003,C h i n a ; 2.S c h o o l o f E l e c t r i c a l a n dA u t o m a t i o nE n g i n e e r i n g ,N a n j i n g N o r m a l U n i v e r s i t y ,N a n j i n g 210042,C h i n a )A b s t r a c t :L a b V I E W i s i n t r o d u c e di n t h i s p a p e r a s a k i n d o f m o s t r e p r e s e n t a t i v e g r a p h i c a l p r o g r a m m i n g p l a t f o r m s i n V i r - t u a l i n s t r u m e n t f i e l d ,a n dr e a l i z i n g d a t a a c q u i s i t i o n b a s e do n L a b V I E W p r o g r a m m i n g e n v i r o n m e n t i s s t u d i e d ,t h e n a d e - s i r e m e t h o d o f D a t a a c q u i s i t i o n a n dS i g n a l p r o c e s s i n g s y s t e m u s e dE M I n o i s e a n a l y z e r a s t h en e x t b i t m a c h i n e b a s e d o n l a b v i e w 8.5i s i n t r o d u c e d .T h es y s t e m r e a l i z e dR S 232s e r i a l c o m m u n i c a t i o n ,a r r a yc o n v e r s i o na n ds p e c t r a l a n a l y s i s f u n c t i o n s .T h e r e s u l t s h o w s t h a t t h e s y s t e m d e s i g n e d b y t h i s m e t h o d h a s a s i m p l e a n df r i e n d l y i n t e r f a c e ,a n d t h a t u s e r s c a n d o e v e r y o p e r a t i o na n do b s e r v a t i o n i n t h e f r o n t p a n e l d i r e c t l y .T h i s s c h e m e r e d u c e s t h e c a l c u l a t i o n p r o c e d u r e e f f e c - t i v e l y a n d s a v e t i m e ,a c h i e v e s t h e r e a l -t i m e a n d e r r o r -f r e e c o l l e c t e d t h e d a t a i n t e g r i t i l y . K e yw o r d s :l a b v i e w ,s e r i a l c o m m u n i c a t i o n ,a r r a y c o n v e r s i o n  收稿日期:2010-06-02. 基金项目:中国博士后基金(20080431126)、毫米波国家重点实验室开放基金(K 200903)、江苏省博士后基金(0702033B )、江苏省自然科 学基金(B K 2008429). 通讯联系人:邱晓晖,博士,副教授,研究方向:现代信号处理.E -m a i l :q i u x h @n j u p t .e d u .c n L a b V I E W (L a b o r a t o r y V i r t u a l I n s t r u m e n t E n g i n e e r i n g W o r k b e n c h )是基于图形编译G (G r a p h i c s )语言的虚拟仪器软件开发平台,具有数据采集、数据分析、信号发生、信号处理、输入输出控制等功能,是公认的标准数据采集和仪器控制软件.在L a b v i e w 环境下开发的应用程序称为V I (V i r t u a l I n s t r u m e n t ).一个完整的L a b V I E W 程序主要由前面板、程序框图和图标/连接端口3部分组成[1],前面板是交互式图形化用户界面,用于设置输入数值和观察输出量;程序框图是定义V I 功能的图形化源代码,包括前面板上没有但编程必须有的对象,如函数、结构和连线等,利用图形语言对前面板的控制量和指示量进行控制;图标/连接端口是用于把程序定义成一个子程序,以便在其他程序中加以调用.L a b V I E W 中自带450多个内置函数,专门用于从采集到的数据中挖掘有用的信息,用于分析测量数据及处理信号. 1 系统硬件结构部分 传导电磁干扰综合测量与分析系统可以对被测设备进行噪声诊断与抑制,包括硬件部分和软件部分[2,3].硬件部分的原理图如图1所示.系统硬件又分为模拟部分和数字部分,模拟部分由中心控制模块、第10卷第3期2010年9月 南京师范大学学报(工程技术版)J O U R N A LO FN A N J I N GN O R M A LU N I V E R S I T Y (E N G I N E E R I N GA N DT E C H N O L O G YE D I T I O N ) V o l .10N o .3S e p t ,2010

对语音信号进行分析及处理资料

一、设计目的 1.进一步巩固数字信号处理的基本概念、理论、分析方法和实现方法;使自身对信号的采集、处理、传输、显示和存储等有一个系统的掌握和理解; 2.增强应用Matlab语言编写数字信号处理的应用程序及分析、解决实际问题的能力; 3.培养自我学习的能力和对相关课程的兴趣; 二、设计过程 1、语音信号的采集 采样频率,也称为采样速度或者采样率,定义了每秒从连续信号中提取并组成离散信号的采样个数,它用赫兹(Hz)来表示。 采样位数可以理解为声卡处理声音的解析度。这个数值越大,解析度就越高,录制和回放的声音就越真实 采样定理又称奈奎斯特定理,在进行模拟/数字信号的转换过程中,当采样频率fs不小于信号中最高频率fm的2倍时,采样之后的数字信号完整地保留了原始信号中的信息,一般实际应用中保证采样频率为信号最高频率的5~10倍。 利用Windows下的录音机,录制了一段发出的声音,内容是“数字信号”,时间在3 s内。接着在D盘保存为WAV格式,然后在Matlab软件平台下.利用函数wavread对语音信号进行采样,并记录下了采样频率和采样点数,在这里我们还通过函数sound引入听到采样后自己所录的一段声音。 [x1,fs,bits]=wavread('E:\数字信号.wav'); %读取语音信号的数据,赋给变量x1,返回频率fs 44100Hz,比特率为16 。 2 、语音信号的频谱分析 (1)首先画出语音信号的时域波形; 程序段: x=x1(60001:1:120000); %截取原始信号60000个采样点

plot(x) %做截取原始信号的时域图形 title('原始语音采样后时域信号'); xlabel('时间轴 n'); ylabel('幅值 A'); (2)然后用函数fft 对语音号进行快速傅里叶变换,得到信号的频谱特性; y1=fft(x,6000); %对信号做N=6000点FFT 变换 figure(2) subplot(2,1,1),plot(k,abs(y1)); title('|X(k)|'); ylabel('幅度谱'); subplot(2,1,2),plot(k,angle(y1)); title('arg|X(k)|'); ylabel('相位谱'); (3)产生高斯白噪声,并且对噪声进行一定的衰减,然后把噪声加到信号中,再次对信号进行频谱特性分析,从而加深对频谱特性的理解; d=randn(1,60000); %产生高斯白噪声 d=d/100; %对噪声进行衰减 x2=x+d; %加入高斯白噪声 3、设计数字滤波器 (1)IIR 低通滤波器性能指标通带截止频Hz f c 1000=,阻带截止频率 Hz f st 1200=,通带最大衰减dB 11=δ,阻带最小衰减dB 1002=δ。 (2)FIR 低通滤波器性能指标通带截止频率Hz f c 1000=,阻带截止频率 Hz f st 1200=, 通带衰减1δ≤1dB ,阻带衰减 2δ≥ 100dB 。 (3)IIR 高通滤波器的设计指标,Hz f z 1000=,Hz f p 2000=,阻带最小衰减dB A s 30=,通带最大衰减dB A P 1=。 (4)(4)FIR 高通滤波器的设计指标,Hz f z 1000=,Hz f p 2000=,阻带最小衰减dB A s 50=,通带最大衰减dB A P 1=。 (5)用自己设计的各滤波器分别对采集的信号进行滤波,在Matlab 中,FIR 滤波器利用函数fftfilt 对信号进行滤波,IIR 滤波器利用函数filter 对信号进行滤波。比较滤波前后语音信号的波形及频谱,在一个窗口同时画出滤波前后

数字信处理实验内容音频信分析与处理

数字信处理实验内容音频信分析与处理 Document number【SA80SAB-SAA9SYT-SAATC-SA6UT-SA18】

数字信号处理实验内容—— 音频信号采集、分析及处理 一、实验目的 1.以音频信号为例,熟悉模拟信号数字处理过程,进一步理解数字信 号处理概念。 2.掌握运用Matlab实现对音频信号的时频分析方法; 3.初步掌握数字音频信号合成的方法。 4.掌握运用Matlab设计IIR和FIR滤波系统的方法; 5.掌握运用Matlab实现对加噪的音频信号进行去噪滤波的方法。锻 炼学生运用所学知识独立分析问题解决问题的能力,培养学生创新能力。 二、实验性质 综合分析、设计性实验 三、实验任务 实验内容一:windows系统中的“ding”音频信号的采集、分析、合成

1.音频信号的采集 编写Matlab程序,采集windows系统中的“ding”声,得到*.wav 音频文件,而后实现音频信号回放。 2.音频信号的频谱分析 运用Matlab软件实现对音频信号的时域分析和频域分析,并打印相应的图形,完成在实验报告中。 注意:此音频信号的频谱包含两条主要谱线,在进行频谱分析时,注意频谱的完整性,利用MATLAB实现对两条主要谱线的定位并计算谱线所对应的模拟频率。 3.音频信号的分解和合成 运用Matlab软件实现音频信号的分解与合成,将音频信号的频谱中两部分频谱成分进行分解,分别绘制出分解后的两个信号的频谱图;然后将分解后的两个信号再合成为一个新的信号,将合成后的新信号的时域、频域图与原来的信号时域、频域图相比较,绘制出对比效果图。4.音频信号的回放 运用Matlab软件实现音频信号的回放,将合成后的新信号和原音频信号分别进行回放,对比两个信号的声音效果。

基于LabVIEW的信号与系统实验平台的设计

2012年第05期 吉林省教育学院学报 No.05,2012 第28卷JOURNAL OF EDUCATIONAL INSTITUTE OF JILIN PROVINCE Vol .28(总305期) Total No .305 收稿日期:2012—03—01 作者简介:满江红(1971—),男,吉林长春人。中国网通集团有限公司长春分公司网络建设部,技术主管,研究方向:综合通信技术。 基于LabVIEW 的信号与系统实验平台的设计 满江红 (中国网通集团有限公司长春分公司,吉林长春130000) 摘要:近年来,随着电子、计算机和网络技术的发展及其在测量仪器上的应用,产生了一种新的测试理论和方法———虚拟仪器(VirtualInstrument ,VI )。所谓虚拟仪器,就是指用户通过计算机平台,根据自己的需求设计仪器的测试功能。虚拟仪器的出现打破了人们对仪器的传统观念,在测试系统和仪器设计中用户可以尽量用软件代替硬件,而无需购买大量的、昂贵的实验仪器设备。 关键词:LabVIEW ;信号与系统实验平台;设计中图分类号:TN911.6 文献标识码:A 文章编号:1671—1580(2012)05—0153—02 基于Lab VIEW 构建虚拟实验室正逐渐被越来越多的高校所采用, 本课题能避开硬件系统的不足,巧妙地运用软件来仿真硬件才能实现的实验结果, 大大降低了实验设备要求,节约了人力和财力,而且有很多的库函数可以在实验时直接调用,避免了用硬件做实验的局限性,可以更方便地做信号系统实验。 一、 LabVIEW 简介LabVIEW 是一种用图标代替文本行创建应用程序的图形化编程语言,采用数据流编程方式,程序框图中节点之间的数据流向决定了程序的执行顺序。LabVIEW 提供很多外观与传统仪器(如示波器、信号发生器等)类似的控件,可以方便地创建用户界面。通过使用图标和连线编程对前面板上的对象进行控制,这就是图形化源代码,又称“G 代码”或 “程序框图代码”。LabVIEW 的核心是VI 。VI 有一个人机对话的用户界面— ——前面板(FrontPanel )和相当于源代码功能的框图程序(Diagram ),前面板接受来自框图程序的指令。LabVIEW 还包含了大量的工具与函数用于数据采集、分析、显示与存储等 二、整体设计该信号与系统实验台的整体设计方案是:根据LabVIEW 自上而下的设计思想,构建出整个实验平台的系统结构框图,先设计系统的主界面,再设计各 个实验子界面和实验模块,最后通过调用子VI 程序 来实现链接。主界面包括运行按钮, 停止按钮和三个实验模块选项栏,实验模块包括初级实验、中级实 验和高级实验。 (一 ) 平台系统结构图平台系统结构图如下所示: 图1平台系统结构图 (二)人机界面 点击运行按钮就出现操作界面,界面上包括初级实验、中级实验、高级实验等三部分,当点击相应实验就会出现各个实验题目,然后点击进入就可以进行相应实验了,实验完成点击停止按钮就可以结束本次实验。人机界面如下图所示: 3 51

labview信号处理完美版

第一章系统开发平台 1.1硬件平台 硬件平台是虚拟仪器的物理基础,所以为了完成虚拟仪器的设计,首先必须要选择合适的硬件平台。本文设计的系统,硬件平台主要由两部分组成:数据采集卡(DAQ)、PC机。硬件平台的结构如图1-1所示。 图1-1 硬件结构平台 1.1.1数据采集卡的选取 由于计算机所能识别的信号是数字信号,振动、温度、湿度等信号经过传感器和放大器可以输出为模拟电信号,必须经过离散化和数字化才能被计算机所识别,数据采集卡就是实现这一转换功能,为整个后续对信号处理中起到了乘前启后的关键作用。一般常用的数据采集卡(DAQ)的结构如图1-2 所示。 图1-2(a)共用一个A/D

图1-2(b)多个A/D 一般数据采集设备的两个主要指标: 1.采样率 对数据采集设备来说,采样率是A/D芯片转换的速率,不同的设备具有不同 的采样率,进行测试系统设计时应该根据测试信号的类型选择适当的采样率,盲 目提高采样率,会增加测试系统的成本。 2.分辨率 分辨率是数据采集设备的精度指标,用A/D转换的数字位数表示。如果把数 据采集设备的分辨率看作尺子上的刻度,同样长度的尺子上刻度线越多,测量就 越精确。同样的,数据采集设备A/D转换的位数越多,把模拟信号划分得就越细, 可以检测到的信号变化量也就越小。在图1-3所示中用一3位的A/D转换芯片去转换振幅为5V的正弦信号,它将峰—峰为10V的电压分成32=8段,则每次采样的模拟信号转换为其中的一个数字段,用000~111之间的码来表示。而用它得到 正弦波的数字图象是非常粗糙的。若改用16位的A/D转换芯片,则将10V电压2=65536段,经过A/D转换之后的数字图象是相当精细,完全能反映出原分成16 始的模拟信号。 图1-3 A/D芯片的位数对反映原始信号的影响

基于Labview的虚拟信号发生器的设计(毕设)

课题名称基于LabVIEW8.0的虚拟函数信号发生器的设计 指导教师姓名肖俊生 学生姓名刘增辉 专业自动化 学号 0967106205

基于LabVIEW的虚拟函数信号发生器的设计 摘要 本文实现了基于LabVIEW8.5的虚拟正弦波、方波、三角波、锯齿波以及任意信号波形的信号发生。操作人员可以根据需要,改变波形的频率、幅值、相位、偏移量等参数,并可保存波形的分析参数到指定文件。本论文首先简介了虚拟函数信号发生器的开发平台,及虚拟信号发生器的设计思路,并且给出了基于LabVIEW的虚拟信号发生器的前面板和程序设计流程图,讲述了功能模块的设计步骤,提供了虚拟发生器的前面板。本仪器系统操作简便,设计灵活,具有很强的适应性。 【关键词】:虚拟仪器,LabVIEW,信号发生器 第一章虚拟仪器(Virtual Instrument) 1.1 虚拟仪器概念 虚拟仪器的起源可追溯到20世纪70年代。“虚拟”的含义主要是强调了软件在这类仪器中的作用,体现了虚拟仪器与主要通过硬件实现各种功能的传统仪器的不同。由于虚拟仪器结构形式的多样性和适用领域的广泛性,目前对于虚拟仪器的概念还没有统一的定义。美国国家仪器公司(National Instruments Corporation,NI)认为,虚拟仪器是由计算机硬件资源、模块化仪器硬件和用于数据分析、过程通信及图形用户界面的软件组成的测控系统,是一种计算机操纵的模块化仪器系统。 虚拟仪器主要由通用的计算机资源(例如微处理器、内存、消声器)、应用软件和仪器硬件(例如A/D\、D/A、数字I/O、定时器、信号调理等)等构成。使用者利用应用软件将计算机资源和仪器硬件结合起来,通过友好的图形界面来操作计算机,完成对测试信号的采集、分析、判断、显示和数据处理等功能。虚拟仪器中的硬件主要用于解决信号的调理以及输入、输出问题。而软件主要用于实现对数据的提取、分析处理、显示以及对硬件的控制等功能,这些功能在传统电子仪器中往往通过硬件来实现。图1-1给出了一种利用数据采集卡实现的虚拟

labview信号与系统

信号与系统课程设计周期三角波的合成设计与实现

目录 引言 (3) 2虚拟仪器开发软件LabVIEW8.6入门 (4) 2.1LabVIEW8.6介绍 (4) 2.1.1LabVIEW的定义: (4) 2.1.2LabVIEW的用途: (4) 2.1.3LabVIEW的发展历程: (4) 2.2利用LabVIEW8.6编程完成的一些习题设计 (5) 3利用LabVIEW8.6实现周期性三角波信号的叠加的设计 (22) 3.1 周期性三角波信号的叠加的基本原理 (22) 3.2 周期性三角波信号的叠加的编程设计及实现 (23) 结论 (28) 参考文献 (29)

引言 “最初只存在机器语言,计算机的世界里一片黑暗。可是不久,汇编语言问世了,给计算机的世界投下了一缕曙光。后来,Fortran 的出现带来了光明。”LabVIEW 图形化编程语言的出现终于把人们——尤其是工程师和科学家们从繁杂的编程工作中解放出来,使他们能够真正专心于自己所关注的事情。 虚拟仪器系统是由计算机、应用软件和仪器硬件三大要素构成的。计算机与仪器硬件又称为VI 的通用仪器硬件平台。 传统仪器 虚拟仪器 能厂商定义功能 用户定义功能 关键字:虚拟仪器 LabVIEW 图形化 计算机 P R O C E S S O R B U S C o n d i t i o n i n g T i m i n g A / D D /A D I /O T I /O DISPLAY AND CONTROL 488 P O R T 礟 M a t h M E M O R Y 礟R O M

2虚拟仪器开发软件LabVIEW8.6入门 2.1LabVIEW8.6介绍 2.1.1LabVIEW的定义: LabVIEW(Lab oratory V irtual I nstrument E ngineering W orkbench)是一种用图标代替文本行创建应用程序的图形化编程语言。传统文本编程语言根据语句和指令的先后顺序决定程序执行顺序,而LabVIEW则采用数据流编程方式,程序框图中节点之间的数据流向决定了程序的执行顺序。它用图标表示函数,用连线表示数据流向。 LabVIEW程序被称为VI(Virtual Instrument),即虚拟仪器。 LabVIEW的核心概念就是“软件即是仪器”,即虚拟仪器的概念。 LabVIEW还包含了大量的工具与函数用于数据采集、分析、显示与存储等。 2.1.2LabVIEW的用途: LabVIEW在测试、测量和自动化等领域具有最大的优势,因为LabVIEW提供了大量的工具与函数用于数据采集、分析、显示和存储。用户可以在数分钟内完成一套完整的从仪器连接、数据采集到分析、显示和存储的自动化测试测量系统。它被广泛地应用于汽车、通信、航空、半导体、电子设计生产、过程控制和生物医学等各个领域。LabVIEW不仅可以用来快速搭建小型自动化测试测量系统,还可以被用来开发大型的分布式数据采集与控制系统 2.1.3LabVIEW的发展历程:

MATLAB语音信号采集与处理

MATLAB课程设计报告课题:语音信号采集与处理

目录 一、实践目的 (3) 二、实践原理: (3) 三、课题要求: (3) 四、MATLAB仿真 (4) 1、频谱分析: (4) 2、调制与解调: (5) 3、信号变化: (8) 快放: (8) 慢放: (8) 倒放: (8) 回声: (8) 男女变声: (9) 4、信号加噪 (10) 5、用窗函数法设计FIR滤波器 (11) FIR低通滤波器: (12) FIR高通滤波器: (13) FIR带通滤波: (14)

一、实践目的 本次课程设计的课题为《基于MATLAB的语音信号采集与处理》,学会运用MATLAB的信号处理功能,采集语音信号,并对语音信号进行滤波及变换处理,观察其时域和频域特性,加深对信号处理理论的理解,并为今后熟练使用MATLAB进行系统的分析仿真和设计奠定基础。 此次实习课程主要是为了进一步熟悉对matlab软件的使用,以及学会利用matlab对声音信号这种实际问题进行处理,将理论应用于实际,加深对它的理解。 二、实践原理: 利用MATLAB对语音信号进行分析和处理,采集语音信号后,利用MATLAB软件平台进行频谱分析;并对所采集的语音信号加入干扰噪声,对加入噪声的信号进行频谱分析,设计合适的滤波器滤除噪声,恢复原信号。语音信号的“短时谱”对于非平稳信号, 它是非周期的, 频谱随时间连续变化, 因此由傅里叶变换得到的频谱无法获知其在各个时刻的频谱特性。如果利用加窗的方法从语音流中取出其中一个短断, 再进行傅里叶变换, 就可以得到该语音的短时谱。 三、课题要求: ○1利用windows 自带的录音机或者其它录音软件,录制几段语音信号(要有几种不同的声音,要有男声、女声)。 ○2对录制的语音信号进行频谱分析,确定该段语音的主要频率范围,由此频率范围判断该段语音信号的特点(低沉or 尖锐)。 ○3利用采样定理,对该段语音信号进行采样,观察不同采样频率(过采样、欠采样、临界采样)对信号的影响。 ○4对采集到的语音信号进行调制与解调,观测调制与解调前后信号的变化。 ○5实现语音信号的快放、慢放、倒放、回声、男女变声。

语音信号采样和频谱分析.docx

语音信号采样和频谱分析 一.实验目的 (1)掌握傅里叶变换的物理意义,深刻理解傅里叶变换的内涵; (2)了解 MATLAB对声音信号的处理指令; (3)了解计算机存储信号的方式及语音信号的特点; ( 4)加深对采样定理的理解; (5)加深学生对信号分析工程应用的理解,拓展学生在信号分析领域的综合应用能力。 二.实验内容 本实验利用 MATLAB指令录制一段语音信号,观察其时域波形并进行傅里叶变换,观察其频域的频谱。根据该信号的频谱构成,选择三种不同的采样频率重新录制该语音信号,并试听回放效果,进行比较,以验证采样定理,并了解MATLAB对声音信号的处理指令,加深对采样定理的理解。 关键词:傅里叶变换信号采样 三、实验原理 语音信号是一种连续变化的模拟信号,而计算机只能处理和记录二进制的数字信号,因此, 由自然音而得的音频信号必须用计算机的声音编辑工具,先进行语音采样,然后利用了计算机上的 A/D 转换器,将模拟的声音信号变成离散的量化了的数字信号量化和编码,变成二进制数据后才能 送到计算机进行再编辑和存储。语音信号输出时,量化了的数字信号又通过 D/A 转换器,把保存起 来的数字数据恢复成原来的模拟的语音信号。 (1)应用 MATLAB进行声音的录制(2)应用 MATLAB进行声音的播放( 3)语音信号的频谱分析。傅里叶变换建立了信号频谱的概念。所谓傅里叶分析即分析信号的频谱(频率构成)、频带宽 度等。对语音信号的分析也不例外,也必须采用傅里叶变换这一工具。对于连续时间信号 f (t ) , 其傅里叶变换 F () 为:F () f (t )e j t dt 四、实验任务 (1)应用 MATLAB进行声音的录制 在 MATLAB命令窗口中键入“ y=wavrecord(8000,8000,1) ”,并按回车键,此时刻以后的(18000/8000 )秒时段内的声音信号将以y 为文件名,以数字声音信号 .wav 格式存储在 MATLAB的工作空间里。纪录长度为 80000,采样频率为 8000Hz,声道数为 1。图为录制的语音:“信号与系统”。 (2)应用 MATLAB进行声音的播放 在 MATLAB命令窗口中键入“ sound(y,Fs) ”, 按下回车键就能听到回放的声音。当 Fs=8000 时,听到的是原来未失真的声音;当 Fs=6000时,听到的声音比较低沉;当 Fs=10000时,听到的声音很 尖锐。 (3)语音信号的频谱分析 在 MATLAB命令窗口中键入“ p=fft(y);plot(abs(p))”按下回车键后出现如图所示图形:从图 中可以看出该音频的上限频率为 4000Hz。 来源于网络

语音信号采集与简单处理

语音信号采集与简单处理 一、 实验目的、要求 (1)掌握语音信号采集的方法 (2)掌握一种语音信号基音周期提取方法 (3)掌握短时过零率计算方法 (4)了解Matlab 的编程方法 二、 实验原理 基本概念: (a )短时过零率: 短时内,信号跨越横轴的情况,对于连续信号,观察语音时域波形通过横轴的情况;对于离散信号,相邻的采样值具有不同的代数符号,也就是样点改变符号的次数。 对于语音信号,是宽带非平稳信号,应考察其短时平均过零率。 其中sgn[.]为符号函数 ?????<=>=0 x(n)-1sgn(x(n))0 x(n)1sgn(x(n)) 短时平均过零的作用 1.区分清/浊音: 浊音平均过零率低,集中在低频端; 清音平均过零率高,集中在高频端。 2.从背景噪声中找出是否有语音,以及语音的起点。 (b )基音周期 基音是发浊音时声带震动所引起的周期性,而基音周期是指声带震动频率的倒数。基音周期是语音信号的重要的参数之一,它描述语音激励源的一个重要特征,基音周期信息在多个领域有着广泛的应用,如语音识别、说话人识别、语音分析与综合以及低码率语音编码,发音系统疾病诊断、听觉残障者的语音指导等。因为汉语是一种有调语言,基音的变化模式称为声调,它携带着非常重要的具有辨意作用的信息,有区别意义的功能,所以,基音的提取和估计对汉语更是一个十分重要的问题。 由于人的声道的易变性及其声道持征的因人而异,而基音周期的范围又很∑--=-=10 )]1(sgn[)](sgn[21N m n n n m x m x Z

宽,而同—个人在不同情态下发音的基音周期也不同,加之基音周期还受到单词发音音调的影响,因而基音周期的精确检测实际上是一件比较困难的事情。基音提取的主要困难反映在:①声门激励信号并不是一个完全周期的序列,在语音的头、尾部并不具有声带振动那样的周期性,有些清音和浊音的过渡帧是很难准确地判断是周期性还是非周期性的。②声道共振峰有时会严重影响激励信号的谐波结构,所以,从语音信号中直接取出仅和声带振动有关的激励信号的信息并不容 易。③语音信号本身是准周期性的(即音调是有变化的),而且其波形的峰值点或过零点受共振峰的结构、噪声等的影响。④基音周期变化范围大,从老年男性的50Hz 到儿童和女性的450Hz ,接近三个倍频程,给基音检测带来了一定的困难。由于这些困难,所以迄今为止尚未找到一个完善的方法可以对于各类人群(包括男、女、儿童及不向语种)、各类应用领域和各种环境条件情况下都能获得满意的检测结果。 尽管基音检测有许多困难,但因为它的重要性,基音的检测提取一直是一个研究的课题,为此提出了各种各样的基音检测算法,如自相关函数(ACF)法、峰值提取算法(PPA)、平均幅度差函数(AMDF)法、并行处理技术、倒谱法、SIFT 、谱图法、小波法等等。 三、使用仪器、材料 微机(带声卡)、耳机,话筒。 四、 实验步骤 (1)语音信号的采集 利用Windows 语音采集工具采集语音信号,将数据保存wav 格式。 采集一组浊音信号和一组清音信号,信号的长度大于3s 。 (2)采用短时相关函数计算语音信号浊音基音周期,考虑窗长度对基音周期计算的影响。采用倒谱法求语音信号基音周期。 (3)计算短时过零率,清音和浊音的短时过零率有何区别。 五、实验过程原始记录(数据,图表,计算) 短时过零率 短时相关函数 P j j n s n s j R N j n n n n ,,1) ()()(1 =-=∑-= ∑--=-=10)]1(sgn[)](sgn[21N m n n n m x m x Z

相关主题
文本预览
相关文档 最新文档