当前位置:文档之家› 立体几何100题

立体几何100题

立体几何100题
立体几何100题

立体几何100题

1.如图,三角形中,

是边长为l 的正方形,平面

底面

分别是

的中点.

(1)求证:底面;

(2)求几何体

的体积.

2.在三棱锥P ABC -中, PAC ?和PBC ? 2AB =, ,O D

分别是,AB PB 的中点.

(1)求证: //OD 平面PAC ; (2)求证: OP ⊥平面ABC ; (3)求三棱锥D ABC -的体积.

3.如图,在直三棱柱111ABC A B C -中, 0

90BAC ∠=,

2AB AC ==,点,M N 分别

为111,AC AB 的中点.

(1)证明: //MN 平面11BB C C ;

(2)若CM MN ⊥,求三棱锥M NAC -的体积.. 4.如图,在三棱柱中, 平面,点是与

的交点,点在线段上,平面

.

(1)求证:

(2)若,求点到平面的距离.

5.如图,四棱锥P A B C -中,底面ABCD 是直角梯形,

1

,//,2

AB BC AD BC AB BC AD ⊥==

, PAD ?是正三角形, E 是PD 的中点. (1)求证: AD PC ⊥;

(2)判定CE 是否平行于平面PAB ,请说明理由.

6.如图,在四棱锥S ABCD -中,侧面SAD ⊥底面ABCD , SA SD =, //AD BC , 22AD BC CD ==, M , N 分别为AD , SD 的中点.

(1)求证: //SB 平面CMN ;(2)求证: BD ⊥平面SCM .

7.如图,在矩形中,

平面

分别为

的中点,点

上一个动点.

(1) 当是

中点时,求证:平面

平面

(2) 当时,求的值.

8.如图,在正三棱柱111A B C ABC -中,点,D E 分别是1,AC AB 的中点. 求证: ED ∥平面11BB C C

若1AB =

求证:A 1B ⊥平面B 1CE.

9.如图,在长方体1111ABCD A BC D -中, 12,1

,1AB AD A A ===.

(1)证明直线1BC 平行于平面1D AC ; (2)求直线1BC 到平面1D AC 的距离.

10.如图所示,菱形ABCD 与正三角形BCE 所在平面互相垂直, FD ⊥平面ABCD ,且

2AB =, FD

(1)求证: //EF 平面ABCD ; (2)若3

CBA π

∠=

,求几何体EFABCD 的体积.

11.在直三棱柱ABC -A 1B 1C 1中,AB =AC ,E 是BC 的中点,求证: (Ⅰ)平面AB 1E ⊥平面B 1BCC 1; (Ⅱ)A 1C //平面AB 1E .

12.如图,在三棱柱中,

平面

,点为

中点. (1)证明:平面

; (2)求三棱锥

的体积.

13.如图,在多面体中,四边形是正方形,在等腰梯形中,,

,,为中点,平面平面.

(1)证明:;(2)求三棱锥的体积.

14.已知三棱锥,,,为的中点,平面,,,

是中点,与所成的角为,且.

(1)求证:;(2)求三棱锥的体积.

15.在四棱锥中,平面平面,,是等边三角形,已知,

,.

(1)设是上一点,求证:平面平面.(2)求四棱锥的体积.

-中,PA⊥底面A B C D,底面A B C D为菱形,16.如图,在四棱锥P ABCD

60

∠= ,1,

ABC

==为PC的中点

PA PB E

.

(1)求证: //PA 平面BDE ;(2)求三棱锥P BDE -的体积.

17.如图,在直三棱柱(侧棱与底面垂直的棱柱)111ABC A B C -中,点

G 是AC 的中点.

(1)求证: 1//B C 平面1A BG ;(2)若A B B C =, 1AC ,求证: 11AC A B ⊥. 18.如图所示,四棱锥S ABCD -中,平面SAD ⊥平面ABCD , SA AD ⊥, //AD BC ,

4

3

SA BC AB ==

24AD ==.

(1)证明:在线段SC 上存在一点E ,使得//ED 平面SAB ;

(2)若AB AC =,在(1)的条件下,求三棱锥S AED -的体积. 19.(本小题共12分)

如图,边长为3的正方形ABCD 所在平面与等腰直角三角形ABE 所在平面互相垂直,

AE AB ⊥,且2EM MD =

, 3AB AN = .

(Ⅰ)求证: //MN 平面BEC ;(Ⅱ)求三棱锥E BMC -的体积.

20.如图,在四棱锥中,底面

是边长为2的正方形,

分别为

的中点,

平面

底面

.

(1)求证:

平面

;(2)若

,求三棱锥

的体积.

21.在直三棱柱ABC -A 1B 1C 1中,AB =AC ,E 是BC 的中点,求证:

(Ⅰ)平面AB 1E ⊥平面B 1BCC 1; (Ⅱ)A 1C //平面AB 1E .

22.如图1,四边形ABCD 为等腰梯形, 2,1AB AD DC CB ====,将ADC ?沿AC 折起,使得平面ADC ⊥平面ABC , E 为AB 的中点,连接,DE DB .

(1)求证: BC AD ⊥; (2)求E 到平面BCD 的距离. 23.如图,四棱锥

中,底面

为菱形,

平面

,为

的中点.

(Ⅰ)证明:

平面

; (Ⅱ)设,求三棱锥

的体积.

24.如图,在多面体

中,四边形是正方形,在等腰梯形

中,

,为

中点,平面

平面

.

(1)证明:

;(2)求三棱锥

的体积.

25.如图1,在矩形中,,

,是的中点,将沿

折起,得到如图2

所示的四棱锥

,其中平面

平面

.

(1)证明:

平面

(2)设为的中点,在线段上是否存在一点,使得平面,若存在,求出

的值;若不存在,请说明理由.

26.如图,在四棱锥P ABCD -中, 90ABC ACD ∠=∠= , BAC ∠ 60CAD =∠=

PA ⊥平面ABCD , 2,1PA AB ==.设,M N 分别为,PD AD 的中点.

(1)求证:平面CMN ∥平面PAB ;(2)求三棱锥P ABM -的体积.

27.如图所示,在长方体1111ABCD A BC D -中,底面ABCD 是边长为1的正方形, 12AA =,

P 为棱1BB 上的一个动点.

(1)求三棱锥1C PAA -的体积;

(2)当1A P PC +取得最小值时,求证: 1PD ⊥平面

PAC . 28.在三棱柱111ABC A B C -中,已知侧棱1CC ⊥底面,ABC

M 为BC 的中点,

13,2,AC AB BC CC ===

(1)证明: 1B C ⊥平面1AMC ;(2)求点1A 到平面1AMC 的距离.

29.五边形11ANB C C 是由一个梯形1ANB B 与一个矩形11BB C C 组成的,如图甲所示,B 为AC 的中点, 128AC CC AN ===. 先沿着虚线1BB 将五边形11ANB C C 折成直二面角

1A BB C --,如图乙所示.

(Ⅰ)求证:平面BNC ⊥平面11C B N ;(Ⅱ)求图乙中的多面体的体积.

30.如图1, 1AFA ?中, 11,82FA FA AA CF ===,,点,,B C D 为线段1AA 的四等分点,线段,,BE CF DG 互相平行,现沿,,BE CF DG 折叠得到图2所示的几何体,此几何体的底面ABCD 为正方形.

(1)证明: ,,,A E F G 四点共面;(2)求四棱锥B AEFG -的体积.

31.如图,三棱锥P ABC -中, PC ⊥平面ABC , ,,F G H 分别是,,PC AC BC 的中点,

I 是线段FG 上的任意一点, 22PC AB BC ===,过点F 作平行于底面ABC 的平面DEF 交AP 于点D ,交BP 于点E . (1)求证: //HI 平面ABD ;

(2)若AC BC ⊥,求点E 到平面FGH 的距离.

32.如图,已知正方体

的棱长为3,

分别是棱

上的点,且

.

(1)证明:

四点共面;

(2)求几何体的体积.

33.如图,在四棱柱1111ABCD A BC D -中,已知平面11AAC C ⊥平面

A B C D ,且

AB BC == 1AD CD ==.

(1)求证: 1BD AA ⊥;

(2)若E 为棱BC 的中点,求证: //AE 平面11DCC D . 34.如图,在三棱柱111ABC A B C -中,底面

ABC ?是等边三角形,且1AA ⊥平面ABC , D 为AB 的中点,

(Ⅰ) 求证:直线1//BC 平面1

ACD ; (Ⅱ) 若12,AB BB E ==是1BB 的中点,求三棱锥1A CDE -的体积;

35.如图,将菱形沿对角线折叠,分别过,作所在平面的垂线

,垂足分

别为,,四边形为菱形,且.

(1)求证:

平面

; (2)若

,求该几何体的体积.

36.如图,在四棱锥P ABCD -中, 1

22

PC AD CD AB ===

=, //AB DC , AD CD ⊥, PC ⊥平面ABCD .

(1)求证: BC ⊥平面PAC ;

(2)若M 为线段PA 的中点,且过,,C D M 三点的平面与线段PB 交于点N ,确定点N 的位置,说明理由;并求三棱锥A CMN -的高.

37.如图,在四棱锥O ABCD -中,底面ABCD 是边长为2的正方形,侧棱OB ⊥底面

ABCD ,且侧棱OB 的长是2,点,,E F G 分别是,,AB OD BC 的中点.

(Ⅰ)证明: OD ⊥平面EFG ;(Ⅱ)求三棱锥O EFG -的体积.

38.如图,多面体ABCDEF 中, //,AD BC AB AD ⊥, FA ⊥平面,//ABCD FA DE ,且222AB AD AF BC DE =====.

(Ⅰ)M 为线段EF 中点,求证: //CM 平面ABF ; (Ⅱ)求多面体ABCDEF 的体积.

39.在如图所示的几何体中,四边形11BB C C 是矩形, 1BB ⊥平面ABC ,

1111//,2,A B AB AB A B E =是AC 的中点.

(1)求证: 1//A E 平面11BB C C ;

(2)若AC BC =, 12AB BB =,求证平面1BEA ⊥平面11AAC .

40.如图,四边形ABCD 为梯形, AB CD , PD ⊥平面A B C D ,

90BAD ADC ∠∠==?, 22DC AB a ==, DA =, E 为BC 中点.

(1)求证:平面PBC ⊥平面PDE ;

(2)线段PC 上是否存在一点F ,使PA 平面BDF ?若有,请找出具体位置,并进行证明:若无,请分析说明理由.

41.已知四棱锥S ABCD -中,底面ABCD 是边长为2的菱形, 60BAD ∠=?,

SA SD SB =E 是棱AD 的中点,点F 在棱SC 上,且

SF

SC

λ=, SA //平面BEF .

(Ⅰ)求实数λ的值;(Ⅱ)求三棱锥F EBC -的体积.

42.在三棱柱ABC-A 1B 1C 1中,AB=BC=CA=AA 1=2,侧棱AA 1⊥平面ABC ,且D ,E 分别是棱A 1B 1,AA 1的中点,点F 在棱AB 上,且AF=

1

4

AB 。 (1)求证:EF∥平面BDC 1;(2)求三棱锥D-BEC 1的体积。

43.如图2,四边形为矩形,

⊥平面

,作如图3折叠,折痕

,其中点

分别在线段上,沿折叠后点叠在线段

上的点记为,并且

⊥.

(1)证明:⊥平面; (2)求三棱锥

的体积.

44.由四棱柱ABCD -A 1B 1C 1D 1截去三棱锥C 1- B 1CD 1后得到的几何体如图所示,四边形ABCD 为正方形,O 为AC 与BD 的交点,E 为AD 的中点,A 1E ⊥平面ABCD (1)证明: 1AO ∥平面B 1CD 1;

(2)设M 是OD 的中点,证明:平面A 1EM ⊥平面B 1CD 1.

45.如图,四棱锥P ABCD -中,底面ABCD 为菱形, ,60,PD AD DAB PD =∠=⊥

底面ABCD .

(1)求证: AC PB ⊥ (2)求PA 与平面PBC 所成角的正弦值.

46.如图,三棱柱ABC ﹣A 1B 1C 1中,各棱长均为2,D ,E ,F 分别为棱AB ,BC ,A 1C 1的中点.

(Ⅰ)证明EF∥平面A 1CD ;

(Ⅱ)若三棱柱ABC ﹣A 1B 1C 1为直棱柱, 求三棱锥

的体积.

47.如图所示,四棱锥A BCDE -,已知平面BCDE ⊥平面ABC ,

,,26,30BE EC DE BC BC DE AB ABC ⊥===∠= .

(I )求证: AC BE ⊥;(II )若45BCE ∠= ,求三棱锥A CDE -的体积.

48.在四棱锥P ABCD -中, PAD ?为正三角形,平面PAD ⊥平面ABCD , //AB CD , AB AD ⊥, 224CD AB AD ===.

(Ⅰ)求证:平面PCD ⊥平面PAD ; (Ⅱ)求三棱锥P ABC -的体积;

(Ⅲ)在棱PC 上是否存在点E ,使得//BE 平面PAD ?若存在,请确定点E 的位置并证明;若不存在,说明理由. 49.如图,已知多面体

的底面是边长为2的正方形,底面,,

且.

(Ⅰ)求多面体的体积;(Ⅱ)求直线与平面所成角的正弦值;

(Ⅲ)记线段的中点为,在平面内过点作一条直线与平面

平行,要求保

留作图痕迹,但不要求证明.

50.如图,三棱柱111ABC A B C -的侧面11ABB A 为正方形,侧面11BB

C C 为菱形, 160CBB ∠= , 1AB B C ⊥.

(Ⅰ)求证:平面11ABB A

⊥ 11BB C C ; (Ⅱ)若2AB =,求三棱柱111ABC A B C -的体积.

51.在三棱柱111ABC A B C -中,

2AC BC ==, 120ACB ∠=?, D 为11A B 的中点.

(1)证明: 1//AC 平面1BC D ;

(2)若11A A AC =,点1A 在平面ABC 的射影在AC 上,且侧面11A ABB 的面积为求三棱锥11A BC D -的体积.

52.如图: ABCD 是平行四边行, AP ⊥平面ABCD , BE // AP , 2AB AP ==,

1BE BC ==, 60CBA ∠= 。

(1)求证: EC //平面PAD ;(2)求证:平面PAC ⊥平面EBC ;

53.如图,四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,底面ABCD 为梯形,

//AB CD , 2AB DC ==,且PAD ?与ABD ?均为正三角形, E 为AD 的中点, G 为PAD ?重心.

(1)求证: //GF 平面PDC ;(2)求三棱锥G PCD -的体积.

54.如图,边长为2的正方形ABFC 和高为2的直角梯形ADEF 所在的平面互相垂直,

AF BC O ?=, DE =, //ED AF 且90DAF ∠= .

(1)求证: DE ⊥平面BCE ;

(2)过O 作OH ⊥平面BEF ,垂足为H ,求三棱锥A BCH -的体积.

55.如图,在直三棱柱ABC —A 1B 1C 1中,AB=BC=BB 1, 11AB A B E ?=,D 为AC 上的点,B 1C ∥平面A 1BD ;

(1)求证:BD ⊥平面11A ACC ;

(2)若1,AB =且1AC AD ?=,求三棱锥A-BCB 1的体积.

56.如图,四边形ABCD 为菱形, G 为AC 与BD 的交点, BE ⊥平面ABCD .

(1)证明:平面AEC ⊥平面BED ;

(2)若0120,ABC AE EC ∠=⊥,三棱锥E ACD -的体积为3

,求该三棱锥的侧面积(平面ACD 为底面).

57.已知球内接正四棱锥P ABCD -的高为3,,AC BD 相交于O ,球的表面积为

169π

9

,若E 为PC 中点.

(1)求异面直线BP 和AD 所成角的余弦值;(2)求点E 到平面PAD 的距离. 58.如图,在四棱锥中,

底面

点为棱

的中点.

(1)证明:

;(2)证明

;(3)求三棱锥

的体积.

59.在四棱锥P ABCD -中, 90ABC ACD ∠=∠= ,

60,BAC CAD PA ∠=∠=⊥ 平面,ABCD E 为PD 的中

点, 22PA AB ==.

(1)求四棱锥P ABCD -的体积V ;(2)若F 为PC 的中点,求证PC ⊥面AEF . 60.在三棱柱111ABC A B C -中, 12AB BC CA AA ====,侧棱

1AA ⊥平面ABC ,且D , E 分别是棱11A B , 1AA 的中点,点F 棱

AB 上,且1

4

AF AB =

. (1)求证: //EF 平面1BDC ;(2)求三棱锥1D BEC -的体积.

61.如图,四棱锥P -ABCD 中,AD ⊥平面P AB ,AP ⊥AB .

(1)求证:CD ⊥AP ; (2)若CD ⊥PD ,求证:CD ∥平面P AB ;

62.如图,已知三棱锥P ABC -中, PA AC ⊥, PC BC ⊥, E 为PB 的中点, D 为AB 的中点,且ABE 为正三角形. (Ⅰ)求证: BC ⊥平面PAC ;

(Ⅱ)请作出点B 在平面DEC 上的射影H ,并说明理由.若3BC =, 12

5

BH =,求三棱锥P ABC -的体积.

63.如图,在三棱锥P ABC -中, 2PA PB AB ===, 3BC =, 90ABC ∠=?,平面PAB ⊥平面ABC , D , E 分别为AB , AC 中点.

(1)求证: //DE 平面PBC ;(2)求证: AB PE ⊥; (3)求三棱锥P BEC -的体积.

64.如图,在四棱锥E ABCD -中,AE⊥DE,CD⊥平面ADE ,AB⊥平面ADE ,CD=DA=6,AB=2,DE=3.

(1)求B 到平面CDE 的距离

(2)在线段DE 上是否存在一点F ,使AF BCE 平面?若存在,求出EF

ED

的值;若不存在,说明理由.

65

中,

DE ⊥

平面

,//,//,,60A B C D A F D E A D B C A B C D A B C

=∠=, 244BC AD DE ===. (1)在AC 上求作点P ,使//PE 平面ABF ,请写出作法并说明理由;

(2)求三棱锥A CDE -的高.

66.如图,直角梯形ABCD 中, 1

,2

AB CD AB CD =

, AB BC ⊥,平面ABCD ⊥平面BCE , BCE ?为等边三角形, ,M F 分别是,BE BC 的中点, 1

4

DN DC =.

(1)证明: EF ⊥ AD ;(2)证明: MN 平面ADE ; (3)若1,2AB BC ==,求几何体ABCDE 的体积.

67.如图,正三棱柱中,为

中点,为

上的一点,

.

(1)若平面,求证:

.

(2)平面

将棱柱

分割为两个几何体,记上面一个几何体的体积为,下面一

个几何体的体积为,求

.

68.如图,将边长为的正六边形沿对角线

翻折,连接

、,形成如图所示的多

面体,且

.

高中数学立体几何测试题及答案一)

高中数学必修2立体几何测试题及答案(一)一,选择(共80分,每小题4分) 1,三个平面可将空间分成n个部分,n的取值为() A,4;B,4,6;C,4,6,7 ;D,4,6,7,8。 2,两条不相交的空间直线a、b,必存在平面α,使得() A,a?α、b?α;B,a?α、b∥α;C,a⊥α、b⊥α;D,a?α、b⊥α。 3,若p是两条异面直线a、b外的任意一点,则() A,过点p有且只有一条直线与a、b都平行;B,过点p有且只有一条直线与a、b都垂直;C,过点p有且只有一条直线与a、b都相交;D,过点p有且只有一条直线与a、b都异面。 4,与空间不共面四点距离相等的平面有()个 A,3 ;B,5 ;C,7;D,4。 5,有空间四点共面但不共线,那么这四点中() A,必有三点共线;B,至少有三点共线;C,必有三点不共线;D,不可能有三点共线。 6,过直线外两点,作与该直线平行的平面,这样的平面可有()个 A,0;B,1;C,无数;D,涵盖上三种情况。 7,用一个平面去截一个立方体得到的截面为n边形,则() A,3≤n≤6 ;B,2≤n≤5 ;C,n=4;D,上三种情况都不对。 8,a、b为异面直线,那么() A,必然存在唯一的一个平面同时平行于a、b;B,过直线b 存在唯一的一个平面与a平行;C,必然存在唯一的一个平面同时垂直于a、b;D,过直线b 存在唯一的一个平面与a垂直。 9,a、b为异面直线,p为空间不在a、b上的一点,下列命题正确的个数是() ①过点p总可以作一条直线与a、b都垂直;②过点p总可以作一条直线与a、b都相交;③

过点p 总可以作一条直线与a 、b 都平行;④过点p 总可以作一条直线与一条平行与另一条垂直;⑤过点p 总可以作一个平面与一条平行与另一条垂直。 A ,1; B ,2; C ,3; D ,4。 10,异面直线a 、b 所成的角为80°,p 为空间中的一定点,过点p 作与a 、b 所成角为40° 的直线有( )条 A ,2; B ,3; C ,4; D ,6。 11,P 是△ABC 外的一点,PA 、PB 、PC 两两互相垂直,PA=1、PB=2、PC=3,则△ABC 的 面积为( )平方单位 A ,25; B ,611; C ,27; D ,2 9。 12,空间四个排名两两相交,以其交线的个数为元素构成的集合是( ) A ,{2,3,4}; B ,{1,2,3,}; C ,{1,3,5}; D ,{1,4,6}。 13,空间四边形ABCD 的各边与对角线的长都是1,点P 在AB 上移动 ,点Q 在CD 上移 动,点P 到点Q 的最短距离是( ) A ,21; B ,22; C ,23; D ,4 3。 14,在△ABC 中,AB=AC=5,BC=6,PA ⊥平面ABC ,PA=8,则P 到BC 的距离是( ) A ,45; B ,43; C ,25; D ,23。 15,已知m ,n 是两条直线,α,β是两个平面,下列命题正确的是( ) ①若m 垂直于α内的无数条直线,则m ⊥α;②若m 垂直于梯形的两腰,则m 垂直于梯形所 在的平面;③若n ∥α,m ?α,则n ∥m ;④若α∥β,m ?α,n ⊥β,则n ⊥m 。 A ,①②③; B ,②③④; C ,②④; D ,①③。 16,有一棱长为1的立方体,按任意方向正投影,其投影最大面积为( )

高一数学立体几何练习题及部分答案大全

立 体几何试题 一.选择题(每题4分,共40分) 1.已知AB 0300300150空间,下列命题正确的个数为( ) (1)有两组对边相等的四边形是平行四边形,(2)四边相等的四边形是菱形 (3)平行于同一条直线的两条直线平行 ;(4)有两边及其夹角对应相等的两个三角形全等 A 1 B 2 C 3 D 4 3.如果一条直线与两个平行平面中的一个平行,那么这条直线与另一个平面的位置关系是( ) A 平行 B 相交 C 在平面内 D 平行或在平面内 4.已知直线m αα过平面α外一点,作与α平行的平面,则这样的平面可作( ) A 1个 或2个 B 0个或1个 C 1个 D 0个 6.如图,如果MC ⊥菱形ABCD 所在平面,那么MA 与BD 的位置关系是( ) A 平行 B 垂直相交 C 异面 D 相交但不垂直 7.经过平面α外一点和平面α内一点与平面α垂直的平面有( ) A 0个 B 1个 C 无数个 D 1个或无数个 8.下列条件中,能判断两个平面平行的是( ) A 一个平面内的一条直线平行于另一个平面; B 一个平面内的两条直线平行于另一个平面 C 一个平面内有无数条直线平行于另一个平面 D 一个平面内任何一条直线都平行于另一个平面 9.对于直线m ,n 和平面,αβ,使αβ⊥成立的一个条件是( ) A //,,m n n m βα⊥? B //,,m n n m βα⊥⊥ C ,,m n m n αβα⊥=?I D ,//,//m n m n αβ⊥ 10 .已知四棱锥,则中,直角三角形最多可以有( ) A 1个 B 2个 C 3个 D 4个 二.填空题(每题4分,共16分) 11.已知?ABC 的两边AC,BC 分别交平面α于点M,N ,设直线AB 与平面α交于点O ,则点O 与直线MN 的位置关系为_________ 12.过直线外一点与该直线平行的平面有___________个,过平面外一点与该平面平行的直线有 _____________条 13.一块西瓜切3刀最多能切_________块

立体几何大题练习题答案

立体几何大题专练 1、如图,已知PA ⊥矩形ABCD 所在平面,M 、N 分别为AB 、PC 的中点; (1)求证:MN//平面PAD (2)若∠PDA=45°,求证:MN ⊥平面PCD 2(本小题满分12分) 如图,在三棱锥P ABC -中,,E F 分别为,AC BC 的中点. (1)求证://EF 平面PAB ; (2)若平面PAC ⊥平面ABC ,且PA PC =,90ABC ∠=?, 求证:平面PEF ⊥平面PBC . P A C E B F

(1)证明:连结EF , E 、F 分别为AC 、BC 的中点, //EF AB ∴. ……………………2分 又?EF 平面PAB ,?AB 平面PAB , ∴ EF ∥平面P AB . ……………………5分 (2)PA PC = ,E 为AC 的中点, PE AC ∴⊥ ……………………6分 又 平面PAC ⊥平面ABC PE ∴⊥面ABC ……………………8分 PE BC ∴⊥……………………9分 又因为F 为BC 的中点, //EF AB ∴ 090,BC EF ABC ⊥∠=∴ ……………………10分 EF PE E = BC ∴⊥面PEF ……………………11分 又BC ? 面PBC ∴面PBC ⊥面PEF ……………………12分 3. 如图,在直三棱柱ABC —A 1B 1C 1中,AC=BC ,点D 是AB 的中点。 (1)求证:BC 1//平面CA 1D ; (2)求证:平面CA 1D⊥平面AA 1B 1B 。 4.已知矩形ABCD 所在平面外一点P ,PA ⊥平面ABCD ,E 、F 分别是 AB 、PC 的中点. (1) 求证:EF ∥平面PAD ; (2) 求证:EF ⊥CD ; (3) 若∠PDA =45°,求EF 与平面ABCD 所成的角的大小.

立体几何大题专题(基础)

练习1:如图:四棱锥P —ABCD 中,底面ABCD 是平行四边形,E 为侧棱PD 的中点,证明:PB ∥平面EAC 练习2:如图:三棱柱ABC —111C B A 中,M 为AB 的中点,证明:1BC ∥平面CM A 1 练习3:如图:三棱柱ABC —111C B A 中,M 为BC 的中点,证明:C A 1∥平面M AB 1 练习4:如图:四棱锥P —ABCD 中,底面ABCD 是平行四边形,E 、F 分别为PA 、BC 的中点,证明:EF ∥平面PCD 练习5:如图:三棱柱ABC —111C B A 中,M 、N 分别为AC 、11C B 的中点,证明:MN ∥平面

11A ABB 练习6:如图:四棱锥P —ABCD 中,底面ABCD 是平行四边形,M 、N 分别为PC 、AD 的中点,证明:MN ∥平面PAB 练习7:如图:三棱柱ABC —111C B A 中,M 为1CC 的中点,N 为AB 的中点,证明:CN ∥平面M AB 1 练习8:如图:四棱锥P —ABCD 中,PA ⊥平面ABCD ,底面ABCD 是梯形,AD ∥BC , 090=∠BAD ,BC AB AD 22==,AB PA 2=,E 为PC 的中点,证明:AE ⊥DE

练习9:如图:直三棱柱ABC —111C B A 中,0 90=∠ACB ,1112C A AA =,E 、F 分别为1CC 、 1BB 的中点,Q 为E A 1的中点,证明:Q C 1⊥FQ 练习10:如图:四棱锥P —ABCD 中,PA ⊥平面ABCD ,AB ⊥ AD ,BC AB PA ==, 060=∠ABC ,DC ⊥AC ,AF ⊥PD ,E 为PC 的中点,证明:EF ⊥PD 练习11:如图:四棱锥P —ABCD 中,底面ABCD 是矩形,平面PAB ⊥平面ABCD ,证明:平面PBC ⊥平面PAB

立体几何复习测试题及答案

立体几何复习测试题及答案

高一数学立体几何复习题 必修2立体几何知识点 第一章:空间几何体的结构 ⑴常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有:圆柱、圆锥、圆台、球。 ⑵棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相 平行,由这些面所围成的多面体叫做棱柱。 ⑶棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫 做棱台。 2、空间几何体的三视图和直观图 把光由一点向外散射形成的投影叫中心投影,中心投影的投影线交于一点;把在一束平行光线 照射下的投影叫平行投影,平行投影的投影线是平行的。 3、 空间几何体的表面积与体积 ⑴ 圆柱侧面积;l r S ??=π2侧面;圆锥侧面积:l r S ??=π侧面 ⑵ 圆台侧面积:l R l r S ??+??=ππ侧面 (3)体积公式: h S V ?=柱体;h S V ?=31锥体;()h S S S S V 下下上上台体+?+=31 (4)球的表面积和体积:32344R V R S ππ==球球,. 第二章:点、直线、平面之间的位置关系 1、公理1:如果一条直线上两点在一个平面内,那么这条直线在此平面内。 2、公理2:过不在一条直线上的三点,有且只有一个平面。 3、公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直 线。 4、公理4:平行于同一条直线的两条直线平行.

5、定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。 6、线线位置关系:平行、相交、异面。 7、线面位置关系:直线在平面内、直线和平面平行、直线和平面相交。 8、面面位置关系:平行、相交。 9、线面平行: ⑴判定:平面外一条直线与此平面内的一条直线 平行,则该直线与此平面平行。 ⑵性质:一条直线与一个平面平行,则过这条直 线的任一平面与此平面的交线与该直线平行。 10、面面平行: ⑴判定:一个平面内的两条相交直线与另一个平 面平行,则这两个平面平行。 ⑵性质:如果两个平行平面同时和第三个平面相交,那么它们的交线平行。 11、线面垂直: ⑴定义:如果一条直线垂直于一个平面内的任意一条直线,那么就说这条直线和这个平面垂 直。 ⑵判定:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。 ⑶性质:垂直于同一个平面的两条直线平行。 12、面面垂直: ⑴定义:两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直。 ⑶定:一个平面经过另一个平面的一条垂线,则这两个平面垂直。 质:两个平面互相垂直,则一个平面内垂直于交线的直线垂直于另一个平面。 第一部分:空间几何体的结构特征及其三视图和直观图

高考数学压轴专题最新备战高考《空间向量与立体几何》难题汇编含答案解析

数学《空间向量与立体几何》复习知识点 一、选择题 1.某学生到工厂实践,欲将一个底面半径为2,高为3的实心圆锥体工件切割成一个圆柱体,并使圆柱体的一个底面落在圆锥体的底面内.若不考虑损耗,则得到的圆柱体的最大体积是( ) A.16 9 π B. 8 9 π C. 16 27 π D . 8 27 π 【答案】A 【解析】 【分析】 根据条件求出圆柱的体积,利用基本不等式研究函数的最值即可. 【详解】 解:设圆柱的半径为r,高为x,体积为V, 则由题意可得 3 23 r x - =, 3 3 2 x r ∴=-, ∴圆柱的体积为23 ()(3)(02) 2 V r r r r π =-<<, 则3 333 3 163331616 442 ()(3)() 9442939 r r r V r r r r ππ π ++- =-= g g g g …. 当且仅当 33 3 42 r r =-,即 4 3 r=时等号成立. ∴圆柱的最大体积为 16 9 π , 故选:A. 【点睛】 本题考查圆柱的体积和基本不等式的实际应用,利用条件建立体积函数是解决本题的关键,是中档题. 2.在三棱锥P ABC -中,PA⊥平面ABC,且ABC ?为等边三角形,2 AP AB ==,则三棱锥P ABC -的外接球的表面积为()

A . 272 π B . 283 π C . 263 π D . 252 π 【答案】B 【解析】 【分析】 计算出ABC ?的外接圆半径r ,利用公式R =可得出外接球的半径,进而可 得出三棱锥P ABC -的外接球的表面积. 【详解】 ABC ? 的外接圆半径为 2sin 3 AB r π = = PA ⊥Q 底面ABC ,所以,三棱锥P ABC - 的外接球半径为 3R ===, 因此,三棱锥P ABC - 的外接球的表面积为2 2 284433R πππ?=?= ?? . 故选:B. 【点睛】 本题考查三棱锥外接球表面积的计算,解题时要分析几何体的结构,选择合适的公式计算外接球的半径,考查计算能力,属于中等题. 3.已知圆锥SC 的高是底面半径的3倍,且圆锥SC 的底面直径、体积分别与圆柱OM 的底面半径、体积相等,则圆锥SC 与圆柱OM 的侧面积之比为( ). A B .3:1 C .2:1 D 2 【答案】A 【解析】 【分析】 设圆锥SC 的底面半径为r ,可求得圆锥的母线长,根据圆锥侧面积公式求得侧面积;由圆锥体积与圆柱体积相等可构造方程求得圆柱的高,进而根据圆柱侧面积公式求得圆柱侧面积,从而求得比值. 【详解】 设圆锥SC 的底面半径为r ,则高为3r ,∴圆锥SC 的母线长l ==, ∴圆锥SC 的侧面积为2rl r π=; 圆柱OM 的底面半径为2r ,高为h ,

立体几何专题训练

专题一 立体几何 班级: _____ 姓名: _____ 学号: _____ 一、选择题(4分×10=40分) 1.直线12,l l 和α,12//l l ,a 与1l 平行,则a 与2l 的关系是 A .平行 B .相交 C .垂直 D .以上都可能 2.若线段AB 的长等于它在平面内射影长的3倍,则这条斜线与平面所成角的余弦值为 A .1 3 B . 3 C .2 D .23 3.在正方体ABCD-A 1B 1C 1D 1中,B 1C 与平面DD 1B 1B 所成的角的大小为 A .15o B .30o C .45o D .60o 4.有下列命题:①空间四点共面,则其中必有三点共线;②空间四点不共面,则其中任何三点不共线;③空间四点中有三点共线,则此四点共面;④空间四点中任何三点不共线,则此四点不共面.其中正确的命题是 A .②③ B .①②③ C .①③ D .②③④ 5.有一山坡,倾斜度为300,若在斜坡平面上沿着一条与斜坡底线成450角的直线前进1公里,则升高了 A .米 B . 米 C .米 D . 500米 6.已知三条直线,,a b l 及平面,αβ,则下列命题中正确的是 A .,//,//b a b a αα?若则 B .若,a b αα⊥⊥,则//a b C . 若,a b ααβ?=I ,则//a b D .若,,,,a b l a l b αα??⊥⊥则l α⊥ 7.已知P 是△EFG 所在平面外一点,且PE=PG ,则点P 在平面EFG 内的射影一定在△EFG 的 A .∠FEG 的平分线上 B .边EG 的垂直平分线上 C .边EG 的中线上 D .边EG 的高上 8 .若一正四面体的体积是3,则该四面体的棱长是 A . 6cm B . C .12cm D .9.P 是△ABC 所在平面α外一点,PA ,PB ,PC 与α所成的角都相等,且PA ⊥BC ,则 △ABC 是 A .等边三角形 B .直角三角形 C .等腰三角形 D .等腰直角三角形 10.如图,在多面体ABCDEF 中,已知ABCD 是边长为3的正方形,EF//AB ,EF= 32 ,C D E F

必修 立体几何单元测试题及答案

M D' D C B A 立体几何单元测验题 一、选择题:把每小题的正确答案填在第二页的答题卡中,每小题4分,共60分 1.一个圆锥的底面圆半径为3,高为4,则这个圆锥的侧面积为 A . 152 π B .10π C .15π D .20π 2.C B A ,,表示不同的点,l a ,表示不同的直线,βα,表示不同的平面,下列推理错误的是 A .ααα??∈∈∈∈l B l B A l A ,,, B .,,,AB l l AB l αβαβαβ=⊥?⊥?⊥I C .,l A l A αα?∈?? D .βαβα与不共线,,且?∈∈C B A C B A C B A ,,,,,,重合 3.直线c b a ,,相交于一点,经过这3条直线的平面有 A .0个 B .1个 C .3个 D .0个或1个 4.下列说法正确的是 A .平面α和平面β只有一个公共点 B .两两相交的三条直线共面 C .不共面的四点中,任何三点不共线 D .有三个公共点的两平面必重合 5. 直线b a 与是一对异面直线,a B A 是直线,上的两点,b D C 是直线,上的两点,N M ,分别是BD AC 和的中点,则a MN 和的位置关系为 A .异面直线 B .平行直线 C .相交直线 D .平行直线或异面直线 6.已知正方形ABCD ,沿对角线ABC AC ?将折起,设AD 与平面ABC 所成的角为α,当α最大时,二面角D AC B --等于( ) A .090 B .060 C .045 D .030 7.已知异面直线b a ,分别在平面βα,内,且βαI c =,直线c A .同时与b a ,相交 B .至少与b a ,中的一条相交 C .至多与b a ,中的一条相交 D .只能与b a ,中的一条相交 8.一个平面多边形的斜二侧图形的面积是S ,则这个多边形的面积是 A 2S B .2S C .22S D .4S 9.直线l 在平面α外,则 A .α//l B .α与l 相交 C .α与l 至少有一个公共点 D .α与l 至多有一个公共点 10.如图,BD AB BD M AC M AB BD AC AB ,,平面,平面,⊥⊥?===1与平面M 成030角,则 D C 、间的距离为( ) A .1 B .2 C .2 D .3 11.如果在两个平面内分别有一条直线,这两条直线互相平行,那么这两个平面的位置关系

空间几何体测试题及答案.doc

第一章《空间几何体》单元测试题 (时间:60分钟,满分:100分)班别座号姓名成绩 一、选择题(本大题共10小题,每小题5分,共50分) 1、图(1)是由哪个平面图形旋转得到的() A B C D 2、过圆锥的高的三等分点作平行于底面的截面,它们把圆锥侧面分成的三部分 的面积之比为() A.1:2:3 B.1:3:5 C.1:2:4 D1:3:9 3、棱长都是1的三棱锥的表面积为() A. 3 B. 23 C. 33 D. 43 4、已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为V1和V2,则V1:V2= A. 1:3 B. 1:1 C. 2:1 D. 3:1 5、如果两个球的体积之比为8:27,那么两个球的表面积之比为( ) A.8:27 B. 2:3 C.4:9 D. 2:9 6 A.24πcm2,12πcm3 B.15πcm2,12πcm3 C.24πcm2,36πcm3 D.以上都不正确 7、一个球的外切正方体的全面积等于6 cm2,则此球的体积为() A.3 3 4 cm π B. 3 8 6 cm π C. 3 6 1 cm π D. 3 6 6 cm π 8、一个体积为3 8cm的正方体的顶点都在球面上,则球的表面积是 A.2 8cm π B.2 12cm π C.2 16cm π D.2 20cm π 9、一个正方体的顶点都在球面上,此球与正方体的表面积之比是() A. 3 π B. 4 π C. 2 π D. π 10、如右图为一个几何体的 三视图,其中府视图为 正三角形,A1B1=2, AA1=4,则该几何体的表面积为 (A)6+3 (B)24+3 (C)24+23 (D)32 A B 1 C 正视图侧视图府视图

空间立体几何练习题(含答案)

第一章 空间几何体 [基础训练A 组] 一、选择题 1.有一个几何体的三视图如下图所示,这个几何体应是一个( ) A.棱台 B.棱锥 C.棱柱 D.都不对 2.棱长都是1的三棱锥的表面积为( ) 3.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在 同一球面上,则这个球的表面积是( ) A .25π B .50π C .125π D .都不对 4.正方体的内切球和外接球的半径之比为( ) A B 2 C . 5.在△ABC 中,02, 1.5,120AB BC ABC ==∠=,若使绕直线BC 旋转一周, 则所形成的几何体的体积是( ) A. 92π B. 72π C. 52π D. 32 π 6.底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长 分别是9和15,则这个棱柱的侧面积是( ) A .130 B .140 C .150 D .160 二、填空题 1.一个棱柱至少有 _____个面,面数最少的一个棱锥有 ________个顶点, 顶点最少的一个棱台有 ________条侧棱。 2.若三个球的表面积之比是1:2:3,则它们的体积之比是_____________。 3.正方体1111ABCD A BC D - 中,O 是上底面ABCD 中心,若正方体的棱长为a , 则三棱锥11O AB D -的体积为_____________。 4.如图,,E F 分别为正方体的面11A ADD 、面11B BCC 的中心,则四边形 E BFD 1在该正方体的面上的射影可能是____________。 5.已知一个长方体共一顶点的三个面的面积分别是2、3、6,这个 长 方体的对角线长是___________;若长方体的共顶点的三个侧面面积分别为3,5,15,则它的体积为___________. 三、解答题 1.养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用) ,已建的仓库的 主视图 左视图 俯视图

(完整word版)高考数学常见难题大盘点:立体几何

转化转化 2013高考数学常见难题大盘点:立体几何 1.如图, 在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AA1=4,点D是AB的中点,(I)求证:AC⊥BC1;(II)求证:AC 1//平面CDB1; 解析:(1)证明线线垂直方法有两类:一是通过三垂线定理或逆定理证明,二是通过线 面垂直来证明线线垂直;(2)证明线面平行也有两类:一是通过线线平行得到线面平行,二 是通过面面平行得到线面平行. 答案:解法一:(I)直三棱柱ABC-A1B1C1,底面三边长AC=3,BC=4AB=5, ∴AC⊥BC,且BC1在平面ABC内的射影为BC,∴AC⊥BC1; (II)设CB1与C1B的交点为E,连结DE,∵ D是AB的中点,E是BC1的中点, ∴ DE//AC1,∵ DE?平面C D B1,AC1?平面C D B1, ∴AC1//平面C D B1; 解法二:∵直三棱柱ABC-A1B1C1底面三边长AC=3, BC=4,AB=5,∴AC、BC、C1C两两垂直,如图,以C 为坐标原点,直线CA、CB、C1C分别为x轴、y轴、z轴, 建立空间直角坐标系,则C(0,0,0),A(3,0,0),C1 (0,0,4),B(0,4,0),B1(0,4,4),D( 2 3 ,2,0) (1)∵AC=(-3,0,0), 1 BC=(0,-4,0), ∴AC? 1 BC=0,∴AC⊥BC1. (2)设CB1与C1B的交战为E,则E(0,2,2).∵DE=(- 2 3 ,0,2), 1 AC=(-3,0, 4),∴ 1 2 1 AC DE=,∴DE∥AC1. 点评:2.平行问题的转化: 面面平行线面平行线线平行; 主要依据是有关的定义及判定定理和性质定理. 2.如图所示,四棱锥P—ABCD中,AB⊥AD,CD⊥AD,PA⊥底面ABCD,PA=AD=CD=2AB=2,M 为PC的中点。 (1)求证:BM∥平面PAD; A B C A B C E x y z

专题一立体几何经典练习题

2 专题一 立体几何 班级: _____ 姓名: _____ 学号: _____ 一、选择题(4 分×10=40 分) 1.直线 l , l 和 α , l // l , a 与 l 平行,则 a 与 l 的关系是 1 2 1 2 1 2 A .平行 B .相交 C .垂直 D .以上都可能 2.若线段 AB 的长等于它在平面内射影长的 3 倍,则这条斜线与平面所成角的余弦值为 A . 1 3 B . 2 2 2 2 C . D . 3 3 3.在正方体 ABCD-A 1B 1C 1D 1 中,B 1C 与平面 DD 1B 1B 所成的角的大小为 A .15 B . 30 C . 45 D . 60 4.有下列命题:①空间四点共面,则其中必有三点共线;②空间四点不共面,则其中 任何三点不共线;③空间四点中有三点共线,则此四点共面;④空间四点中任何三点 不共线,则此四点不共面.其中正确的命题是 A .②③ B .①②③ C .①③ D .②③④ 5.有一山坡,倾斜度为 300,若在斜坡平面上沿着一条与斜坡底线成 450 角的直线前进 1 公里,则升高了 A . 250 2 米 B . 250 3 米 C . 250 6 米 D . 500 米 6.已知三条直线 a , b , l 及平面 α , β ,则下列命题中正确的是 A . 若b ? α , a // b , 则a // α B .若 a ⊥ α , b ⊥ α ,则 a // b C . 若 a ? α ,α β = b ,则 a // b D .若 a ? α , b ? α , l ⊥ a , l ⊥ b , 则 l ⊥ α 7.已知 P 是△EFG 所在平面外一点,且 PE=PG ,则点 P 在平面 EFG 内的射影一定在△EFG 的 A .∠FEG 的平分线上 B .边 EG 的垂直平分线上 C .边 EG 的中线上 D .边 EG 的高上 8.若一正四面体的体积是18 2 cm 3,则该四面体的棱长是 A . 6cm B . 6 3 cm C .12cm D . 3 3 cm 9.P 是△ABC 所在平面α 外一点,PA ,PB ,PC 与α 所成的角都相等,且 PA ⊥BC ,则 △ABC 是 A .等边三角形 B .直角三角形 C .等腰三角形 D .等腰直角三角形 3 10.如图,在多面体 ABCDEF 中,已知 ABCD 是边长为 3 的正方形,EF//AB ,EF= ,EF 2 与面 AC 的距离为 2,则该多面体的体积为 E F A .2 B .4 C . 2 2 D . 4 2 D C 二、填空题(4 分×4=16 分) A B 11.空间四边形 ABCD 中,AB=6,CD=8,E 、F 、G 分别是 BD ,AC ,BC 的中点,若异面直

立体几何大题训练及答案

1、如图,正方形所在平面与平面四边形所在平面互相垂直,△是等腰直角三角形, (1)线段的中点为,线段的中点为, 求证:; (2)求直线与平面所成角的正切值. 解:(1)取AB 的中点为N ,连MN ,PN ,则//MN EB ,//PN BC ∴ PMN EBC ∴//PM BCE 平面FE ⊥EBC FCE ∴∠ ⊥//AB DE (1)求证:AO ⊥平面CDE ; (2)求直线BD 与平面CBE 所成角的正弦值 3、如图,在△ABC 中,?=∠90C ,a BC AC 3==,点P 在AB 上,BC PE //交AC 于 E ,AC P F //交BC 于F .沿PE 将△APE 翻折成△PE A ',使平面⊥PE A '平面 ABC ;沿PF 将△BPF 翻折成△PF B ',使平面⊥PF B '平面ABC . (1)求证://'C B 平面PE A '; (2)若PB AP 2=,求二面角E PC A --'的平面角的正切值. 解:(1)因为PE FC //,?FC 平面PE A ',所以//FC 平面PE A '. 因为平面⊥PE A '平面PEC ,且PE E A ⊥',所以⊥E A '平面ABC . …2分 同理,⊥F B '平面ABC ,所以E A F B '//',从而//'F B 平面PE A '. …4分 所以平面//'CF B 平面PE A ',从而//'C B 平面PE A '. …6分 (2)因为a BC AC 3==,BP AP 2=, 所以a CE =,a A E 2=',a PE 2=,a PC 5=. …8分 A B C D E F M . . C B F P A F C ' B ' A E

数学竞赛之立体几何专题精讲(例题+练习)

数学竞赛中的立体几何问题 立体几何作为高中数学的重要组成部分之一,当然也是每年的全国联赛的必然考查内容.解法灵活而备受人们的青睐,竞赛数学当中的立几题往往会以中等难度试题的形式出现在一试中,考查的内容常会涉及角、距离、体积等计算.解决这些问题常会用到转化、分割与补形等重要的数学思想方法. 一、求角度 这类题常以多面体或旋转体为依托,考查立体几何中的异面直线所成角、直线与平面所成角或二面角的大小 解决这类题的关键是 ,根据已知条件准确地找出或作出要求的角. 立体几何中的角包括异面直线所成的角、直线与平面所成的角、二面角三种.其中两条异面直线所成的角通过作两条异面直线的平行线找到表示异面直线所成角的相交直线所成的角,再构造一个包含该角的三角形,解三角形即可以完成;直线和平面所成的角则要首先找到直线在平面内的射影,一般来讲也可以通过解直角三角形的办法得到,其角度范围是[]0,90??;二面角在求解的过程当中一般要先找到二面角的平面角,三种方法:①作棱的垂面和两个半平面相交;②过棱上任意一点分别于两个半平面内引棱的垂线;③根据三垂线定理或逆定理.另外还可以根据面积射影定理cos S S θ'=?得到.式中S '表示射影多边形的面积,S 表示原多边形的面积,θ即为所求二面角. 例1 直线OA 和平面α斜交于一点O ,OB 是OA 在α内的射影,OC 是平面α内过O 点的任一直线,设,,.AOC AOB BOC αβγ∠=∠=∠=,求证:cos cos cos αβγ=?. 分析:如图,设射线OA 任意一点A ,过A 作 AB α⊥于点B ,又作BC OC ⊥于点C ,连 接AC .有: cos ,cos ,cos ;OC OB OC OA OA OB αβγ=== 所以,cos cos cos αβγ=?. 评注:①上述结论经常会结合以下课本例题一起使用.过平面内一个角的顶点作平面的一条斜线,如果斜线和角的两边所成的角相等,那么这条斜线在平面内的射影一定会落在这个角的角平分线上.利用全等三角形即可证明结论成立. ②从上述等式的三项可以看出cos α值最小,于是可得结论:平面的一条斜线和平面内经过斜足的所有直线所成的角中,斜线与它的射影所成的角最小. 例、(1997年全国联赛一试)如图,正四面体ABCD 中,E 在棱AB 上, α O C B A E A

立体几何练习题(含答案)

《立体几何 》练习题 一、 选择题 1、一条直线和三角形的两边同时垂直,则这条直线和三角形的第三边的位置关系是( ) A 、垂直 B 、平行 C 、相交不垂直 D 、不确定 2. 在正方体1111ABCD A B C D -中, 与1A C 垂直的是( ) A. BD B. CD C. BC D. 1CC 3、线n m ,和平面βα、,能得出βα⊥的一个条件是( ) A.βα//n ,//m ,n m ⊥ B.m ⊥n ,α∩β=m ,n ?α C.αβ?⊥m n n m ,,// D.βα⊥⊥n m n m ,,// 4、平面α与平面β平行的条件可以是( ) A.α内有无穷多条直线与β平行; B.直线a//α,a//β C.直线a α?,直线b β?,且a//β,b//α D.α内的任何直线都与β平行 5、设m 、n 是两条不同的直线,,,αβγ是三个不同的平面,给出下列四个命题: ①若m ⊥α,n //α,则m n ⊥ ②若αβ//,βγ//,m ⊥α,则m ⊥γ ③若m //α,n //α,则m n // ④若αγ⊥,βγ⊥,则//αβ 其中正确命题的序号是( ) A.①和② B.②和③ C.③和④ D.①和④ 6.点P 为ΔABC 所在平面外一点,PO ⊥平面ABC ,垂足为O,若PA=PB=PC , 则点O 是ΔABC 的( ) A.内心 B.外心 C.重心 D.垂心 7. 若l 、m 、n 是互不相同的空间直线,α、β是不重合的平面, 则下列命题中为真命题的是( ) A .若//,,l n αβαβ??,则//l n B .若,l αβα⊥?,则l β⊥ C. 若,//l l αβ⊥,则αβ⊥ D .若,l n m n ⊥⊥,则//l m 8. 已知两个平面垂直,下列命题中正确的个数是( ) ①一个平面内的已知直线必垂直于另一个平面的任意一条直线; ②一个平面内的已知直线必垂直于另一个平面的无数条直线; ③一个平面内的任一条直线必垂直于另一个平面; ④过一个平面内任意一点作交线的垂线,则垂线必垂直于另一个平面. A.3 B.2 C.1 D.0 9. 设m.n 是两条不同的直线,α.β是两个不同的平面, ( ) A .若m∥α,n∥α,则m∥n B .若m∥α,m∥β,则α∥β C .若m∥n,m⊥α,则n ⊥α D .若m∥α,α⊥β,则m⊥β

2019-2020年高考数学大题专题练习——立体几何

2019-2020年高考数学大题专题练习——立体几何(一) 1.如图所示,四棱锥P ABCD -中,底面ABCD 为正方形,⊥PD 平面ABCD , 2PD AB ==,点,,E F G 分别为,,PC PD BC 的中点. (1)求证:EF PA ⊥; (2)求二面角D FG E --的余弦值. 2.如图所示,该几何体是由一个直角三棱柱ADE BCF -和一个正四棱锥P ABCD -组合而成,AF AD ⊥,2AE AD ==. (1)证明:平面⊥PAD 平面ABFE ; (2)求正四棱锥P ABCD -的高h ,使得二面角C AF P --的余弦值是 22 .

3.四棱锥P ABCD -中,侧面PDC是边长为2的正三角形,且与底面垂直,底面ABCD是 面积为ADC ∠为锐角,M为PB的中点. (Ⅰ)求证:PD∥面ACM. (Ⅱ)求证:PA⊥CD. (Ⅲ)求三棱锥P ABCD -的体积. 4.如图,四棱锥S ABCD -满足SA⊥面ABCD,90 DAB ABC ∠=∠=?.SA AB BC a ===,2 AD a =. (Ⅰ)求证:面SAB⊥面SAD. (Ⅱ)求证:CD⊥面SAC. S B A D M C B A P D

5.在四棱锥P ABCD -中,底面ABCD 为矩形,测棱PD ⊥底面ABCD ,PD DC =,点E 是 BC 的中点,作EF PB ⊥交PB 于F . (Ⅰ)求证:平面PCD ⊥平面PBC . (Ⅱ)求证:PB ⊥平面EFD . 6.在直棱柱111ABC A B C -中,已知AB AC ⊥,设1AB 中点为D ,1A C 中点为E . (Ⅰ)求证:DE ∥平面11BCC B . (Ⅱ)求证:平面11ABB A ⊥平面11ACC A . E D A B C C 1 B 1 A 1 D A B C E F P

立体几何测试题带答案解析

____________班级___________学号____________分数______________ 一、选择题 1 .下列说确的是 ( ) A .三点确定一个平面 B .四边形一定是平面图形 C .梯形一定是平面图形 D .平面α和平面β有不同在一条直线上的三 个交点 2 .若α//β,a//α,则a 与β的关系是 ( ) A .a//β B .a β? C .a//β或a β? D .A a =β 3 .三个互不重合的平面能把空间分成n 部分,则n 所有可能值为 ( ) A .4、6、8 B .4、6、7、8 C .4、6、7 D .4、5、7、8 4 .一个体积为123 的正三棱柱的三视图如图所示,则这个三棱柱的左视图的面积为 ( ) A .36 B .8 C .38 D .12 5 .若直线l ∥平面α,直线a α?,则l 与a 的位置关系是 ( ) A .l ∥a B .l 与a 异面 C .l 与a 相交 D .l 与a 没有公共点 6 .已知三个球的体积之比为1:8:27,则它们的表面积之比为 ( ) A .1:2:3 B .1:4:9 C .2:3:4 D .1:8:27 7 .有一个几何体的正视、侧视、俯视图分别如下,则该几何体的表面积为 ( ) A .π12 B .π24 C .π36 D .π48 8 .若a ,b 是异面直线,直线c ∥a ,则c 与b 的位置关系是 ( ) A .相交 B .异面 C .平行 D .异面或相交 6 5 6 5

9 .设正方体的棱长为 23 3,则它的外接球的表面积为 ( ) A .π38 B .2π C .4π D .π3 4 10.已知一个全面积为44的长方体,且它的长、宽、高的比为3: 2:1,则此长方体的外接球的 表面积为 A .π7 B .π14 C .π21 D .π28 11.1l ,2l ,3l 是空间三条不同的直线,则下列命题正确的是 ( ) A .12l l ⊥,23l l ⊥13//l l ? B .12l l ⊥,23//l l ?13l l ⊥ C .233////l l l ? 1l ,2l ,3l 共面 D .1l ,2l ,3l 共点?1l ,2l ,3l 共面 12.如图,正方体1111ABCD A B C D 中,E ,F 分别为棱AB ,1CC 的中点,在平面11ADD A 且与平面1D EF 平行的直线 ( ) A .有无数条 B .有2条 C .有1 条 D .不存在 二、填空题 13.已知一个空间几何体的三视图如图所示,其中正视图、侧视图都是由半圆和矩形组成,根 据图中标出的尺寸,计算这个几何体的表面积是______. 14.如图,在正方体1111ABCD A B C D -中,点P 是上底面1111A B C D A B C D A 1 B 1 C 1 D 1 E F

立体几何、解析几何综合10题(含答案)

城北中学高二上期第八周20班周末双休数学练笔 题目及参考答案 1、已知双曲线与椭圆x 29+y 225=1共焦点,它们的离心率之和为14 5 ,求双曲线方程. 解: 由椭圆方程可得椭圆的焦点为F (0,±4),离心率e =4 5 , 所以双曲线的焦点为F (0,±4),离心率为2, 从而c =4,a =2,b =2 3.所以双曲线方程为y 24-x 2 12 =1. 2、如图4所示,矩形ABCD 中,AD ⊥平面ABE ,AE =EB =BC =2,F 为 CE 上的点,且BF ⊥平面ACE . (1)求证:AE ⊥平面BCE ; (2)求证:AE ∥平面BFD ; (1)证明 ∵AD ⊥平面ABE ,AD ∥BC , ∴BC ⊥平面ABE ,则AE ⊥BC . 又∵BF ⊥平面ACE ,则AE ⊥BF , 又BC ∩BF =B ,∴AE ⊥平面BCE . (2)证明 由题意可得G 是AC 的中点,连结FG , ∵BF ⊥平面ACE ,∴CE ⊥BF . 而BC =BE ,∴F 是EC 的中点, 在△AEC 中,FG ∥AE ,∴AE ∥平面BFD . 3、设椭圆的中心在原点,焦点在x 轴上,离心率e = 3 2 .已知点P ????0,32到这个椭圆上的点的最远距离为7,求这个椭圆的方程. 解: 设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),M (x ,y )为椭圆上的点,由c a =3 2 得a =2b . |PM |2=x 2+????y -322=-3????y +1 22+4b 2+3(-b ≤y ≤b ), 若b <1 2,则当y =-b 时,|PM |2最大,即????b +322=7, 则b =7-32>1 2 ,故舍去. 若b ≥12时,则当y =-1 2时,|PM |2最大,即4b 2+3=7, 解得b 2=1. ∴所求方程为x 24 +y 2 =1. 4、矩形ABCD ,AB =2,AD =3,沿BD 把ΔBCD 折起,使C 点在平面ABD 上的射影E 恰好落在AD 上. (1)求证:CD ⊥AB

立体几何经典难题汇编

1 / 6 立体几何难题汇编1 1. 在正方体的顶点中任意选择4个顶点,对于由这4个顶点构成的各种几何形体的以下判断中,所有正确的结论个数是( ) ①能构成矩形; ②能构成不是矩形的平行四边形; ③能构成每个面都是等边三角形的四面体; ④能构成每个面都是直角三角形的四面体; ⑤能构成三个面为全等的等腰直角三角形,一个面为等边三角形的四面体. A .2 B .3 C .4 D .5 【考点】命题的真假判断与应用. 【专题】证明题. 【分析】画出图形,分类找出所有情况即可. 【解答】解:作出正方体: 在正方体的顶点中任意选择4个顶点,对于由这4个顶点构成的各种几何形体z 只能有以下四种情况: ①任意一个侧面和对角面皆为矩形,所以正确; ③四面体A 1-BC 1D 是每个面都是等边三角形的四面体,所以正确; ④四面体B 1-ABD 的每个面都是直角三角形,所以正确; ⑤四面体A 1-ABD 的三个面都是等腰直角三角形,第四个面A 1BD 是等边三角 形. 由以上可知:不能构成不是矩形的平行四边形,故②不正确. 综上可知:正确的结论个数是4. 故选C . 【点评】全面了解正方体中的任意四个顶点构成的四面体和平面四边形是解题的关键. 2. 一个半径为1的小球在一个棱长为的正四面体容器内可向各个方向自由运动,则该小球永远不可能接触到的容器内壁的面积是____________ . 【考点】棱锥的结构特征. 【专题】计算题;压轴题. 【分析】小球与正四面体的一个面相切时的情况,易知小球在面上最靠近边的切点的轨迹仍为正三角形,正四面体的棱长为 4626 46

2 / 6 ,故小三角形的边长为,做出面积相减,得到结果. 【解答】解:考虑小球与正四面体的一个面相切时的情况,易知小球在面上最靠近边的切点的轨迹仍为正三角形,正四面体的棱长为 故小三角形的边长为 小球与一个面不能接触到的部分的面积为 ,∴几何体中的四个面小球永远不可能接触到的容器内壁的面积是 4×18 =72 故答案为:72 【点评】本题考查棱柱的结构特征,本题解题的关键是看出小球的运动轨迹是什么,看出是一个正三角形,这样题目做起来就方向明确. 3.(2012?上海)如图,AD 与BC 是四面体ABCD 中互相垂直的棱,BC=2,若AD=2c ,且AB+BD=AC+CD=2a ,其中a 、c 为常数,则四面体ABCD 的体积的最大值是 ______________. 【考点】棱柱、棱锥、棱台的体积. 【专题】计算题;压轴题. 【分析】作BE ⊥AD 于E ,连接CE ,说明B 与C 都是在以AD 为焦距的椭球上,且BE 、CE 都垂直于焦距AD ,BE=CE .取BC 中点F ,推出四面体 ABCD 的体积的最大值,当△ABD 是等腰直角三角形时几何体的体积最大,求解即可. 【解答】 解:作BE ⊥AD 于E ,连接CE ,则AD ⊥平面BEC ,所以CE ⊥AD ,由题设,B 与C 都是在以AD 为焦点的椭圆上, 且BE 、CE 都垂直于焦距AD , AB+BD=AC+CD=2a ,显然△ABD ≌△ACD ,所以BE=CE .取BC 中点F ,∴EF ⊥BC ,EF ⊥AD ,要求四面体ABCD 的体积的最大值, 46 26 131346*46**26*26*183,2222-=33 3 22.a c -

相关主题
文本预览
相关文档 最新文档