当前位置:文档之家› 预灌封注射器组合件硅油量测定方法改进

预灌封注射器组合件硅油量测定方法改进

预灌封注射器组合件硅油量测定方法改进
预灌封注射器组合件硅油量测定方法改进

预灌封注射器组合件硅油量测定方法改进

摘要预灌封注射器组合件硅油量用氢氟代醚溶出法进行控制。本文改用醋酸乙酯替代氢氟代醚,对预灌封注射器组合件中的硅油量进行检测。

关键词预灌封注射器组合件;醋酸乙酯;硅油量;测定方法;改进

ABSTRACTAssemblages for refilled syringes silicon oil limit dose to hydrofluoric ether dissolved method and detect. this paper to used acetic ether substituted for hydrofluoric ether,to detected Assemblages for refilled syringes silicon oil limit dose to detect.

KEY WORDS Assemblages for refilled syringes;acetic ether;silicon oil limit dose;detected method;to improve

预灌封注射器组合件[1]是近几年来临床使用的新型一次性使用药品包装与注射用器材,由玻璃针管、橡胶活塞、不锈钢注射针、针头护帽和推杆组成,用于病毒灭活疫苗等产品的包装及注射。为保证组合件推杆上橡胶活塞能在玻璃针管内腔中滑动自如,在预灌封注射器组合件的生产过程中,要对针管的内腔及橡胶活塞进行硅化处理,硅油用量太少,影响推杆橡胶活塞在玻璃针管内腔中的滑动性能,硅油用量过多,针管内腔与橡胶活塞所残留的硅油量影响组合件所包装的药品质量[2]。

预灌封注射器组合件质量标准采用氢氟代醚[3]先将组合件内的硅油量溶出后挥干溶剂的方法进行检测,氢氟代醚为实验不常使用的有机溶剂,含有氟[4]元素不利于环保。本文通过实验改用安全环保并易得的醋酸乙酯[5]替代氢氟代醚进行硅油量的检测,得到稳定的实验结果。

1试验用预灌封注射器组合件批号、规格及仪器设备、试剂、容器

1.1预灌封注射器组合件:

均为山东威高集团医用高分子制品股份有限公司生产,产品批号、规格如下:

《柴油机硅油减振器检验指南》2008.

1适用范围 1.1本指南适用于船用柴油机硅油减振器(以下简称减振器)的型式(设计)认可和产品检验,也可供柴油机和减振器制造厂参考使用。 2认可和检验的依据 2.1本社《钢质海船入级规范》。 2.2本社《钢质内河船舶建造规范》。 2.3本社《材料与焊接规范》。 3术语和定义 3.1本指南所涉及产品检验的术语和定义见本社《钢质海船入级规范》。 3.2本指南所涉及扭转振动的术语和定义参见本社《船上振动控制指南》和本社有关规范相关内容。 4图纸和技术文件 4.1应将减振器的下列图纸资料提交本社批准: (1) 减振器的纵中剖面图(包括结构尺寸、材质等); (2) 减振器设计计算书,计算书应包括如下内容: ①减振器与所配机型柴油机轴系的自由振动和强迫振动的扭振计算; ②减振器惯性环和壳体转动惯量的计算; ③减振器阻尼系数的计算; ④减振器的硅油名义粘度的计算; ⑤减振器的散热面积计算; ⑥减振器的功率损失计算; (3)减振器型式试验大纲。 4.2应将下列文件和资料提交本社备查: (1)有关工厂概况(包括工厂历史及现状)、产品生产历史的说明,如产品经过专门的验证或鉴定,可附上有关报告及证书。 (2)质量控制计划——制造者应建立认可范围产品的质量控制计划并提交本社审批。质量控制计划应按产品技术要求或标准,描述产品制造过程中的质量保证和控制的方法,应反映本社规范要求的检验和试验要求。

5产品的设计和技术要求 5.1一般要求 5.1.1减振器的设计通常只考虑所配柴油机曲轴轴系的性能和扭振参数。 5.1.2减振器的设计可采用双质量系统法或多质量系统法。 5.1.3 应通过扭振计算确定图5.1.3中的结构尺寸。 图5.1.3 硅油减振器结构图 1 环形壳体 2 摩擦环 3 惯性环 4 密封垫圈 5 储油槽 R o—减振器惯性环外径,mm;R i—减振器惯性环内径,mm; δ—减振器惯性环与壳体之间的间隙,mm;L—减振器惯性环厚度,mm;h—壳体厚度,mm。 5.1.4 减振器的壳体、惯性环可用铸铁、铸钢或锻钢制造,壳体亦可以用钢板制造。所用材料的理化性能应符合本社《材料与焊接规范》的有关规定,且其抗拉强度R m应符合表5.1.4的规定。 表5.1.4 5.1.5 焊接的壳体应进行消除内应力的热处理。

土壤微生物生物量的测定方法

土壤微生物生物量的测定方法1土壤微生物碳的测定方法(熏蒸提取----仪器分析法) 基本原理 新鲜土样经氯仿熏蒸后(24h),土壤微生物死亡细胞发生裂解,释放出微生 物生物量碳,用一定体积的LK 2SO 4 溶液提取土壤,借用有机碳自动分析仪测定微 生物生物量碳含量。根据熏蒸土壤与未熏蒸土壤测定有机碳的差值及转换系数(K EC),从而计算土壤微生物生物量碳。 实验仪器 自动总有机碳(TOC)分析仪(Shimadzu Model TOC—500,JANPAN)、真空干燥器、烧杯、三角瓶、聚乙烯熟料管、离心管、滤纸、漏斗等。 实验试剂 1)无乙醇氯仿(CHCL 3 ); 2)L硫酸钾溶液:称取87g K 2SO 4 溶于1L蒸馏水中 3)工作曲线的配制:用L硫酸钾溶液配制10ugC/L、30ugC/L、50ugC/L、 70ugC/L、100ugC/L系列标准碳溶液。(其实一般情况下, 仪器会自带的标曲,一般不用自己做的) 操作步骤 土壤的前处理(过筛和水分调节略) 熏蒸 称取新鲜(相当于干土,这个可以根据自己土样的情况而定)3份分别放入25ml小烧杯中。将烧杯放入真空干燥器中,并放置盛有无乙醇氯仿(约2/3)的15ml烧杯2或3只,烧杯内放入少量防暴沸玻璃珠,同时放入一盛有NaOH溶液的小烧杯,以吸收熏蒸过程中释放出来的CO 2 ,干燥器底部加入少量水以保持容器湿度。盖上真空干燥器盖子,用真空泵抽真空,使氯仿沸腾5分钟。关闭真空干燥器阀门,于25℃黑暗条件下培养24小时。 抽真空处理 熏蒸结束后,打开真空干燥器阀门(应听到空气进入的声音,否则熏蒸不完

全,重做),取出盛有氯仿(可重复利用)和稀NaOH溶液的小烧杯,清洁干燥器,反复抽真空(5或6次,每次3min,每次抽真空后最好完全打开干燥器盖子),直到土壤无氯仿味道为止。同时,另称等量的3份土壤,置于另一干燥器中为不熏蒸对照处理。(注意:熏蒸后不可久放,应该快速浸提)※ 浸提过滤 从干燥器中取出熏蒸和未熏蒸土样,将土样完全转移到80ml聚乙烯离心管中,加入40ml L硫酸钾溶液(土水比为1:4,考虑到土样的原因,此部分熏蒸和不熏蒸土均为4g,即,4g土:16ml的硫酸钾溶液,当然这个加入量要根据TOC仪器的进入量决定)300r/min振荡30min,用中速定量滤纸过滤。同时作3个无土壤基质空白。土壤提取液最好立即分析,或—20℃冷冻保存(但使用前需解冻摇匀)(注意这部分很重要,有研究结果表明:提取液如果不立即分析,请保存在—20℃,否则将影响浸提液的效果,其次,过滤时不要用普通的定性或定量滤纸,以免长久杂质会堵塞仪器的管路,建议使用那种一次性塑料注射器,配一个的滤头,一个才1元)。 TOC仪器测定 吸取上述土壤提取液10ul(这个要根据仪器自己的性能决定,但是一般情况下,在测定土壤滤液时候,要对其进行稀释,如果不稀释,一方面超过原来仪器的标曲,另一方面可能堵塞仪器。)注入自动总有机碳(TOC)分析仪上,测定提取液有机碳含量。由于总有机碳分析仪型号较多,不同的型号则操作程序存在较大差异,这里以本实验室使用的有机碳分析仪(Shimadzu Model TOC---500,JAPAN)为例。 计算 SMBC=(E C CHCL3—E C CK)*TOC仪器的稀释倍数*原来的水土比/ 2 土壤微生物生物量氮(茚三酮比色法) 土壤微生物生物氮一般占土壤全氮的2%—7%,是土壤中有机—无机态氮转化的一个重要环节,关于土壤微生物氮的测定常见的熏蒸浸提法有两种,一是全氮测定法,另一个是茚三酮比色法,如下 基本原理(茚三酮比色法)

硅油性能对比

1.氨基改性为什么柔性更好,请具体阐述原因 氨基硅油所具有的优异柔软性来源于其基本的分子构型。与甲基硅油结构类似,氨基硅油分子主链十分柔顺,是一种易扰曲的螺旋形直链结构,由硅原子和氧原子交替组成,甲基围绕Si-O 键旋转的自由能几乎为零,可以360°旋转,从而获得优异的柔顺性,使氨基硅油成为最优良的织物柔软整理剂。在聚二甲基硅氧烷的每一个硅原子上有两个甲基,这两个甲基垂直于两个相近的氧原子连接线的平面上。硅原子上的每个甲基可以绕Si-O 键轴旋转、振动,而每个甲基的三个氢原子就像向外撑开的雨伞。这些氢原子由于甲基的旋转要占据较大的空间,从而增加了相邻分子间的距离,使硅油分子间的作用力比碳氢化合物弱得多,因此硅油比同分子量的碳氢化合物粘度低、表面张力小、成膜性强。氨基硅油因氨基的极性强,能与纤维表面的羟基、羧基等相互作用,与纤维表面形成牢固的定向吸附和很好的取向度,并形成非常牢固的膜,从而降低了纤维之间的摩擦系数,用很小的力就能使纤维之间产生滑动,使织物表现出很好的柔滑性。 2.氨值的合理范围,以及限定要求 氨值是氨基含量的表征,即中和1g 氨基硅油所消耗浓度为1mol/L 的盐酸的物质的量,单位为mmol/g。因此,氨值直接与硅油中氨基含量的摩尔百分数成正比。氨基硅油对纤维所产生的柔软、平滑效果,很大程度上与分子中氨基含量的多少有关,氨基含量越高,氨值就越大,被整理织物的手感就越柔软和光滑。但织物性质不完全取决于氨值大小,氨基分布均匀与否、氨基硅油的分子量都会影响织物的性质。用做织物整理剂的氨基硅油的氨值一般在0.2~0.6 之间。一为氨值越大,氨基硅油分子的极性越大,反应性越好,更利于硅油分子与织物的结合和本身的成膜性,赋予织物优异的柔软手感和耐水洗性;二为硅油中氨基含量越多,整理后的织物的黄变越剧烈,影响织物的美观和服用性。 3.氨基硅油的粘度合理范围和限制要求,粘度指原浆粘度还是调和液粘度,请说明 氨基硅油的黏度直接与分子质量成正比,黏度越大,其分子质量相应也越大。由于织物烘干定型时氨基硅油分子间会发生交联,所以氨基硅油的起始分子量与最终在织物上成膜的分子量会有所不同,一般来说,分子质量越大,氨基硅油在织物表面的成膜性越好,手感越柔软,弹性也好。黏度太高难以制成微乳液,而黏度太低则导致处理后的织物光滑度和柔软度较差。另外,选择合适的交联剂及调整最佳的烘干定型工艺也是使织物获得优良柔软手感的一种途径。黏度测定时常用的有NDJ-1 型旋转粘度计,测得的单位为mPa·s,此外还有乌式粘度计等。用作织物整理剂的氨基硅油原浆的黏度(25℃)一般在1000mPa·s左右,也有的高达10000mPa·s 以上, 4.氨基硅油反应性如何评价 反应性是指在织物整理条件下,硅油可和基质发生化学反应的这种性质,是就氨基硅油分子的端基和取代基而言的。这些基团可以是甲基也可以是具有反应性的甲氧基或羟基。具有反应性端基的氨基硅油在处理织物时,可在纤维表面交联,或与纤维上的羟基等基团发生化学反应,因此若选择合适的交联剂,可使织物更柔软、平滑和富有弹性。 5.氨基硅油分子量的合理范围,分子量和粘度,以及成膜性/柔性的关系 氨基硅油分子量的大小反映其聚合度,聚合度不同,其分子结构,如Si-O 主链的长短、侧链氨基数的多少也不同,其分子量的大小与粘度成正比,分子量越大,粘度也越大。一般情况下,分子量也越大,其织物表面成膜性越好,手感越柔软;分子量小的,被处理的织物则不能获得足够的光滑度。但如果粘度过高,则很难制成微乳液,因此选择合适分子量的氨基硅油,也是制备氨基硅油微乳液的一个关键因素 6.分子量过大过小不合适,请具体阐述不合适的原因 分子量和粘度的影响一致。 7对比表中-C00H硅油导致硬化以及柔性差的原因具体阐述

土壤微生物量碳测定方法

土壤微生物量碳测定方法及应用 土壤微生物量碳(Soil microbial biomass)不仅对土壤有机质和养分的循环起着主要作用,同时是一个重要活性养分库,直接调控着土壤养分(如氮、磷和硫等)的保持和释放及其植物有效性。近40年来,土壤微生物生物量的研究已成为土壤学研究热点之一。由于土壤微生物的碳含量通常是恒定的,因此采用土壤微生物碳(Microbial biomass carbon, Bc)来表示土壤微生物生物量的大小。测定土壤微生物碳的主要方法为熏蒸培养法(Fumigation-incubation, FI)和熏蒸提取法(Fumigation-extraction, FE)。 熏蒸提取法(FE法) 由于熏蒸培养法测定土壤微生物量碳不仅需要较长的时间而且不适合于强酸性土壤、加 入新鲜有机底物的土壤以及水田土壤。Voroney (1983)发现熏蒸土壤用·L-1K 2SO 4 提取液提取 的碳量与生物微生物量有很好的相关性。Vance等(1987)建立了熏蒸提取法测定土壤微生物 碳的基本方法:该方法用·L-1K 2SO 4 提取剂(水土比1:4)直接提取熏蒸和不熏蒸土壤,提取 液中有机碳含量用重铬酸钾氧化法测定;以熏蒸与不熏蒸土壤提取的有机碳增加量除以转换 系数K EC (取值来计算土壤微生物碳。 Wu等(1990)通过采用熏蒸培养法和熏蒸提取法比较研究,建立了熏蒸提取——碳自动一起法测定土壤微生物碳。该方法大幅度提高提取液中有机碳的测定速度和测定结果的准确度。 林启美等(1999)对熏蒸提取-重铬酸钾氧化法中提取液的水土比以及氧化剂进行了改进,以提高该方法的测定结果的重复性和准确性。 对于熏蒸提取法测定土壤微生物生物碳的转换系数K EC 的取值,有很多研究进行了大量的 研究。测定K EC 值的实验方法有:直接法(加入培养微生物、用14C底物标记土壤微生物)和间接法(与熏蒸培养法、显微镜观测法、ATP法及底物诱导呼吸法比较)。提取液中有机碳的 测定方法不同(如氧化法和仪器法),那么转换系数K EC 取值也不同,如采用氧化法和一起法 K EC 值分别为(Vance等,1987)和(Wu等,1990)。不同类型土壤(表层)的K EC 值有较大不 同,其值变化为(Sparling等,1988,1990;Bremer等,1990)。Dictor等(1998)研究表 明同一土壤剖面中不同浓度土层土壤的转换系数K EC 有较大的差异,从表层0-20cm土壤的K EC 为,逐步降低到180-220cm土壤的K EC 为。 一、基本原理 熏蒸提取法测定微生物碳的基本原理是:氯仿熏蒸土壤时由于微生物的细胞膜被氯仿破 坏而杀死,微生物中部分组分成分特别是细胞质在酶的作用下自溶和转化为K 2SO 4 溶液可提取 成分(Joergensen,1996)。采用重铬酸钾氧化法或碳-自动分析仪器法测定提取液中的碳含量,以熏蒸与不熏蒸土壤中提取碳增量除以转换系数K EC 来估计土壤微生物碳。 二、试剂配制 (1)硫酸钾提取剂(·L-1):取分析纯硫酸钾溶解于蒸馏水中,定溶至10L。由于硫酸钾较难溶解,配制时可用20L塑料桶密闭后置于苗床上(60-100rev·min-1)12小时即可完全溶解。 (2) mol·L-1(1/6K 2Cr 2 O 7 )标准溶液:称取130℃烘2-3小时的K 2 Cr 2 O 7 (分析纯)9.806g 于1L大烧杯中,加去离子水使其溶解,定溶至1L。K 2Cr 2 O 7 较难溶解,可加热加快其溶 解。 (3) mol·L-1(1/6K 2Cr 2 O 7 )标准溶液:取经130℃烘2-3小时的分析纯重铬酸钾4.903g, 用蒸馏水溶解并定溶至1L。

硅油种类用途

硅油种类及用途 1 硅油概况 硅油是一种不同聚合度链状结构的聚有机硅氧烷。它是由二甲基二氯硅烷加水水解制得初缩聚环体,环体经裂解、精馏制得低环体,然后把环体、封头剂、催化剂放在一起调聚就可得到各种不同聚合度的混合物,经减压蒸馏除去低沸物就可制得硅油。最常用的硅油,有机基团全部为甲基,称甲基硅油。有机基团也可以采用其它有机基团代替部分甲基基团,以改进硅油的某种性能和适用各种不同的用途。常见的其它基团有氢、乙基、苯基、氯苯基、三氟丙基等。近年来,有机改性硅油得到迅速发展,出现了许多具有特种性能的有机改性硅油。硅油一般是无色(或淡黄色),无味、无毒、不易挥发的液体。硅油不溶于水、甲醇、二醇和- 乙氧基乙醇,可与苯、二甲醚、甲基乙基酮、四氯化碳或煤油互溶,稍溶于丙酮、二恶烷、乙醇和了醇。它具有很小的蒸汽压、较高的闪点和燃点、较低的凝固点。随着链段数n的不同,分子量增大,粘度也增高,固此硅油可有各种不同的粘度,从0.65厘沲直到上百万厘沲。如果要制得低粘度的硅油,可用酸性白土作为催化剂,并在180℃温度下进行调聚,或用硫酸作为催化剂,在低温度下进行调聚,生产高粘度硅油或粘稠物可用碱性催化剂。硅油按化学结构来分有甲基硅油、乙基硅油、苯基硅油、甲基含氢硅油、甲基苯基硅油、甲基氯苯基硅油、甲基乙氧基硅油、甲基三氟丙基硅油、甲基乙烯基硅油、甲基羟基硅油、乙基含氢硅油、羟基含氢硅油、含氰硅油等;从用途来分,则有阻尼硅油、扩散泵硅油、液压油、绝缘油、热传递油、刹车油等。硅油具有卓越的耐热性、电绝缘性、耐候性、疏水性、生理惰性和较小的表面力,此外还具有

低的粘温系数、较高的抗压缩性)有的品种还具有耐辐射的性能。2 硅油种类 2.1二甲基硅油,甲基硅油,聚二甲基硅氧烷 1)结构式 2)性质 又称甲基硅油。分子主链由硅氧原子组成,与硅相连的侧基为甲基。25℃下 的黏度围为10~200 000mm2/s。相对密度d 4200.93~0.975。折射率n D 201.390~ 1.410。无色透明、无毒无嗅的油状物。具有优异的电绝缘性能和耐热性,闪点高、凝固点低,可在-50~+200℃温度围长期使用。黏温系数小,压缩率大,表面力小,憎水防潮性好,比热容和导热系数小。可由二甲基环硅氧烷在催化剂存在下与六甲基二硅氧烷进行调聚反应来制取。其粘度随分子中硅氧链节数n值的增大而增高,从极易流动的液体,直至稠厚的半固体。具有优异的电绝缘性和耐热性。 3)应用领域 塑料和橡胶的成型加工以及食品生产中用作长效脱模剂。还可用作多种材料间的高低温润滑剂。制造润滑塑料的添加剂。用二甲基硅油处理过的玻璃、瓷、金属、水泥等制品不仅憎水,而且抗蚀、防霉、表面光滑。化学、制药、食品等部门广泛用作热载体和高效消泡剂。精密机械和仪器仪表中用作防震阻尼材料。电器和电子工业用作耐高温介电液体。还广泛用作汽车、家具、地板从皮革的抛光剂,泵、制动器、汽缸等的液压油。

常见的微生物检测方法

常见的微生物检测 方法

摘要:微生物的检测,无论在理论研究还是在生产实践中都具有重要的意义,本文分生长量测定法,微生物计数法,生理指标法和商业化快速微生物检测简要介绍了利用微生物重量,体积,大小,生理代谢物等指标的二十余种常见的检测方法,简要介绍了这些方法的原理,应用范围和优缺点。 概述: 一个微生物细胞在合适的外界条件下,不断的吸收营养物质,并按自己的代谢方式进行新陈代谢。如果同化作用的速度超过了异化作用,则其原生质的总量(重量,体积,大小)就不断增加,于是出现了个体的生长现象。如果这是一种平衡生长,即各细胞组分是按恰当的比例增长时,则达到一定程度后就会发生繁殖,从而引起个体数目的增加,这时,原有的个体已经发展成一个群体。随着群体中各个个体的进一步生长,就引起了这一群体的生长,这可从其体积、重量、密度或浓度作指标来衡量。微生物的生长不同于其它生物的生长,微生物的个体生长在科研上有一定困难,一般情况下也没有实际意义。微生物是以量取胜的,因此,微生物的生长一般指群体的扩增。微生物的生长繁殖是其在内外各种环境因素相互作用下的综合反映。因此生长繁殖情况就可作为研究各种生理生化和遗传等问题的重要指标,同

时,微生物在生产实践上的各种应用或是对致病,霉腐微生物的防治都和她们的生长抑制紧密相关。因此有必要介绍一下微生物生长情况的检测方法。既然生长意味着原生质含量的增加,因此测定的方法也都直接或间接的以次为根据,而测定繁殖则都要建立在计数这一基础上。微生物生长的衡量,能够从其重量,体积,密度,浓度,做指标来进行衡量。 生长量测定法 体积测量法:又称测菌丝浓度法。 经过测定一定体积培养液中所含菌丝的量来反映微生物的生长状况。方法是,取一定量的待测培养液(如10毫升)放在有刻度的离心管中,设定一定的离心时间(如5分钟)和转速(如5000 rpm),离心后,倒出上清夜,测出上清夜体积为v,则菌丝浓度为(10-v)/10。菌丝浓度测定法是大规模工业发酵生产上微生物生长的一个重要监测指标。这种方法比较粗放,简便,快速,但需要设定一致的处理条件,否则偏差很大,由于离心沉淀物中夹杂有一些固体营养物,结果会有一定偏差。 称干重法:

产品标准及试验方法

CPE质量检验 目录 一、原料检验 1. 生产工艺对原料质量要求 2. 原料采购标准 3 .原料标准和试验方法 4. 原料分析所需要仪器和试剂材料 5. 原料的分析 6. 原料的采样 7. 原料标准与青岛海晶分析项目对照 二、中间控制检验 1. CPE中间控制分析检验一览表 2. CPE中间控制分析所需要仪器和试剂材料 3. 液氯中间控制分析检验一览表 4. 中间控制项目的分析 三、产品检验 1. 产品标准和试验方法 2 .产品分析所需要仪器和试剂材料 3. 氯化聚乙烯的分析 4. 产品结果的判定 5. 产品标准与青岛海晶分析项目对照 6. CPE采样 7. CPE用包装袋采购及检验规定 四、分析专用仪器信息、使用操作法及安全注意事项 1. 分析专用仪器 2. 使用操作法及安全注意事项 3. 与分析专用仪器安装相关的公用工程 4. 分析专用仪器目前使用状况

六、需要青岛海晶提供的资料 1. 原料标准及试验方法 2. 产品标准及试验方法 3. 分析专用仪器档案资料(仪器说明书,采购资料,使用状况等) 4. 分析试剂和玻璃仪器采购厂家信息 CPE质量检验 一、原料检验 (一) 生产工艺对原料质量要求 1. 高密度聚乙烯(HDPE) LG公司HDPE 熔融指数MI5(CE6040)=0.45±0.05g/10min 190℃ MI5(CE2030)=1.5~2.0 g/10min 190℃ MI5(CE2080)=1.4±0.2 g/10min 190℃ 颗粒分布≥500μm ≤2% ≤63μm <5%(CE6040)<15%(CE2030) 125—315μm >60%(CE6040)>50%(CE2030/CE2080) 125—250μm >55%(CE6040)>45%(CE2030/CE2080)熔点(DSC)法133℃—139℃(CE6040) 131℃—137℃(CE2030 GE2080) 辽阳石油化纤公司化工三厂HDPE 熔融指数MI5(L0555P)=0.50±0.10g/10min 190℃ MI5(L2053P)=1.6—2.4 g/10min 190℃ 颗粒分布≥500μm <5% 过筛 <125μm ≤5% 熔点(DSC)法136℃—139℃(L0555P ) 131℃—136℃((L2053P) 三星TOTAL株式会社 N220P)=0.60±0.10g/10min 190℃ 熔融指数MI5( ( MI5((N230P)=2.0±0.20 g/10min 190℃

土壤微生物测定方法

土壤微生物测定 土壤微生物活性表示土壤中整个微生物群落或其中的一些特殊种群状态,可以反映自然或农田生态系统的微小变化。土壤微生物活性的表征量有:微生物量、C/N、土壤呼吸强度和纤维呼吸强度、微生物区系、磷酸酶活性、酶活性等。 测定指标: 1、土壤微生物量(MierobialBiomass,MB) 能代表参与调控土壤能量和养分循环以及有机物质转化相对应微生物的数量,一般指土壤中体积小于5Χ103um3的生物总量。它与土壤有机质含量密切相关。 目前,熏蒸法是使用最广泛的一种测定土壤微生物量的方法阎,它是将待测土壤经药剂熏蒸后,土壤中微生物被杀死,被杀死的微生物体被新加人原土样的微生物分解(矿化)而放出CO2,根据释放出的CO2:的量和微生物体矿化率常数Kc可计算出该土样微生物中的碳量。 因此碳量的大小就反映了微生物量的大小。 此外,还有平板计(通过显微镜直接计数)、成份分析法、底物诱导呼吸法、熏蒸培养法(测定油污染土壤中的微生物量—碳。受土壤水分状况影响较大,不适用强酸性土壤及刚施 用过大量有机肥的土壤等)、熏蒸提取法等,均可用来测定土壤微生物量。 熏蒸提取-容量分析法 操作步骤: (1)土壤前处理和熏蒸 (2)提取 -1K2SO 4(图将熏蒸土壤无损地转移到200mL聚乙烯塑料瓶中,加入100mL0.5mol·L 水比为1:4;w:v),振荡30min(300rev·min -1),用中速定量滤纸过滤于125mL塑料瓶中。熏蒸开始的同时,另称取等量的3份土壤于200mL聚乙烯塑料瓶中,直接加入100mlL0.5mol·L -1K2SO4提取;另作3个无土壤空白。提取液应立即分析。 (3)测定 吸取10mL上述土壤提取液于150mL消化管(24mmх295mm)中,准确加入10mL0.018 mol·L -1K2Cr2O7—12mol·L-1H2SO4溶液,加入2~3玻璃珠或瓷片,混匀后置于175±1℃ 磷酸浴中煮沸10min(放入消化管前,磷酸浴温度应调至179℃,放入后温度恰好为175℃)。冷却后无损地转移至150mL三角瓶中,用去离子水洗涤消化管3~5次使溶液体积约为80mL, 加入一滴邻菲罗啉指示剂,用0.05mol·L -1硫酸亚铁标准溶液滴定,溶液颜色由橙黄色 变 为蓝色,再变为红棕色,即为滴定终点。 (4)结果计算

凯氏定氮法:土壤微生物量氮测定

土壤微生物量氮的测定方法 1.试剂配制: (1)混合催化剂:按照硫酸钾:五水硫酸铜:硒粉=100:10:1,称取硫酸钾100g、 五水硫酸铜10g、硒粉1g。均匀混合后研细,贮于瓶中。 (2)密度为1.84浓硫酸。 (3)40%氢氧化钠:称400g氢氧化钠于烧杯中,加蒸馏水600ml,搅拌使之全部溶 解定容至1L。 (4)2%硼酸溶液:称20g硼酸溶于1000ml水中,再加入20ml混合指示剂。(按体 积比100:2加入混合指示剂) (5)混合指示剂:称取溴甲酚绿0.5g和甲基红0.1克,溶解在100ml95%的乙醇中, 用稀氢氧化钠或盐酸调节使之呈淡紫色,此溶液pH应为4.5。 (6)0.01mol的盐酸标准溶液:取比重1.19的浓盐酸0.84ml,用蒸馏水稀释至 1000ml,用基准物质标定之。 (7)0.5M K2SO4溶液:称取K2SO4 87.165g溶解于蒸馏水中,搅拌溶解,(可加 热)定容至1L。 (8)去乙醇氯仿的配制:在通风柜中,量取100毫升氯仿至500毫升的分液漏斗 中,加入200毫升的蒸馏水,加塞,上下振荡10下,打开塞子放气,而后加塞再振荡10下,反复3次,将分液漏斗置于铁架台上,静止溶液分层,打开分液漏斗下端的阀,将下层溶液(氯仿)放入200毫升的烧杯中,将剩余的溶液倒入水槽,用自来水冲洗。再将烧杯中的氯仿倒入分液漏斗中,反复3次。将精制后的氯仿倒入棕色瓶中,加入无水分析纯的CaCl2 10g,置于暗处保存。 2.试验步骤:。 (1)制样:称取新鲜土壤(30.0g)于放置烧杯中,加约等于田间持水量60%水在25℃下培养7~15d。取15.0g土于烧杯,置于真空干燥器中,同时内放一装有用100ml精制氯仿的小烧杯,密封真空干燥器,密封好的真空干燥器连到真空泵上,抽真空至氯仿沸腾5分钟,静置5分钟,再抽滤5分钟,同样操作三次。干燥器放入25℃培养箱中24小时后,抽真空15-30分钟以除尽土壤吸附的氯仿。按照土:0.5M K2SO4=1:4(烘干土算,一般就是湿土:0.5M K2SO4=1:2),加入0.5M K2SO4溶液(空白直接称取15.0g土,加同样比例0.5M K2SO4溶液)震荡30分钟,过滤。 (2)测定:滤液要是不及时测定,需立即在-15℃以下保存,此滤液可用于微生物碳氮的测定。微生物碳测定只吸取2ml,采用重铬酸钾-硫酸亚铁滴定法测定。微生物氮吸取滤液10ml于消化管中,加入2g催化剂,在再加5ml浓硫酸,管口放一弯颈小漏斗,将消化管置于通风橱内远红外消煮炉的加热孔中。打开消煮炉上的所有加热开关进行消化,加热至微沸,关闭高档开关,继续加热。消煮至

硅油类主要技术指标

硅油类主要技术指标 1、201甲基硅油 主要技术指标(HG2-1490-83) 201-10 外观无色透明液体粘度CS 10±2 折光率25°C 1.390-1.400 闪点(开口) 155 比重 25°C 0.930-0.940 凝固点°C-0.5 201-20 外观无色透明液体粘度CS 20±2 折光率25°C 1.395-1.405 闪 点(开口)232 比重 25°C 0.950-0.960 凝固点°C -60 201-50 外观无色透明液体粘度 CS 50±5 折光率25°C 1.400-1.410 闪 点(开口)260 比重 25°C 0.955-0.965 凝固点°C -55 201-100 外观无色透明液体粘度CS 100±8 折光率25°C 1.400-1.410 闪点(开口)288 比重 25°C 0.960-0.970 凝固点°C -55 201-350 外观无色透明液体粘度CS 350±8 折光率25°C 1.400-1.410 闪点(开口) 300 比重 25°C 0.965-0.975 凝固点°C -50 性能及用途: 硅油具有卓越的耐高、低温性、优良的电绝缘性,良好的耐老化性,低的 表面张力,无毒无味,生理惰性、低的粘温系数,较高的压缩性,低的挥发性,较好的润滑性等。可作为绝缘油、润滑油、阻尼油、防震油、消泡剂、脱模剂、矿物油填加剂等。 2、氨基硅油 英文名:Aminoalkyl Silicone Sluid 技术指标: 外观:无色或浅黄色透明液体 粘度(25°C, mm2/s)200-5000 氨基含量(%)0.2-1.0 性能及作用:本品是一种氨基改性的硅油,可用于织物整理和化妆品。 3、含氢硅油 本产品无毒无味,由于分子中含一定数量的比较活泼的Si-H键,在催化剂 作用下,可与其它含双链、羟基等活性基团的化学物质发生反应。 本产品主要用于生产匀泡剂、水溶性硅油等聚醚改性硅油等产品的基本原料,也可用作天然及合成纤维织物,丝绸、皮革等的防水剂和柔软剂等,可以 选择不同含氢量和不同粘度的含氢硅油进行使用。 主要技术指标: 外观:无色透明油状液体 含氢量(%):0.1-1.6

速效氮磷钾测定方法

土壤水解性氮的测定(碱解扩散法) 土壤水解性氮,包括矿质态氮和有机态氮中比较易于分解的部分。其测定结果与作物氮素吸收有较好的相关性。测定土壤中水解性氮的变化动态,能及时了解土壤肥力,指导施肥。测定原理 在密封的扩散皿中,用1.8mol/L氢氧化钠(NaOH)溶液水解土壤样品,在恒温条件下使有效氮碱解转化为氨气状态,并不断地扩散逸出,由硼酸(H3BO3)吸收,再用标准盐酸滴定,计算出土壤水解性氮的含量。旱地土壤硝态氮含量较高,需加硫酸亚铁使之还原成铵态氮。由于硫酸亚铁本身会中和部分氢氧化钠,故需提高碱的浓度(1.8mol/L,使碱保持 1.2mol/L 的浓度)。水稻土壤中硝态氮含量极微,可以省去加硫酸亚铁,直接用1.2mol/L氢氧化钠水解。 操作步骤 1.称取通过18号筛(孔径1mm)风干样品2g(精确到0.001g)和1g硫酸亚铁粉剂,均匀铺在扩散皿外室内,水平地轻轻旋转扩散皿,使样品铺平。(水稻土样品则不必加硫酸亚铁。) 2.用吸管吸取2%硼酸溶液2ml,加入扩散皿内室,并滴加1滴定氮混合指示剂,然后在皿的外室边缘涂上特制胶水,盖上毛玻璃,并旋转数次,以便毛玻璃与皿边完全粘合,再慢慢转开毛玻璃的一边,使扩散皿露出一条狭缝,迅速用移液管加入10ml1.8mol/L氢氧化钠于皿的外室(水稻土样品则加入10ml1.2mol/L氢氧化钠),立即用毛玻璃盖严。 3.水平轻轻旋转扩散皿,使碱溶液与土壤充分混合均匀,用橡皮筋固定,贴上标签,随后放入40℃恒温箱中。24小时后取出,再以0.01mol/LHCl标准溶液用微量滴定管滴定内室所吸收的氮量,溶液由蓝色滴至微红色为终点,记下盐酸用量毫升数V。同时要做空白试验,滴定所用盐酸量为V0。 结果计算 水解性氮(mg/100g土)= N×(V-V0)×14/样品重×100 式中: N—标准盐酸的摩尔浓度; V—滴定样品时所用去的盐酸的毫升数; V0—空白试验所消耗的标准盐酸的毫升数;14—一个氮原子的摩尔质量mg/mol; 100—换算成每百克样品中氮的毫克数。注意事项(1)滴定前首先要检查滴定管的下端是否充有气泡。若有,首先要把气泡排出。 (2)滴定时,标准酸要逐滴加入,在接近终点时,用玻璃棒从滴定管尖端沾取少量标准酸滴入扩散皿内。 (3)特制胶水一定不能沾污到内室,否则测定结果将会偏高。 (4)扩散皿在抹有特制胶水后必须盖严,以防漏气。主要仪器 扩散皿、微量滴定管、1/1000分析天平、恒温箱、玻璃棒毛玻璃、皮筋、吸管(2ml和10ml),腊光纸、角匙、瓷盘。 试剂 (1)1.8mol/L氢氧化钠溶液。称取化学纯氢氧化钠72g,用蒸馏水溶解后冷却定容到1000ml。 (2)1.2mol/L氢氧化钠溶液。称取化学纯氢氧化钠48g,用蒸馏水溶解定容到1000ml。 (3)2%硼酸溶液。称取20g硼酸,用热蒸馏水(约60℃)溶解,冷却后稀释至1000ml,用稀盐酸或稀氢氧化钠调节pH至4.5(定氮混合指示剂显葡萄酒红色)。 (4)0.01mol/L盐酸标准溶液。先配制1.0mol/L盐酸溶液,然后稀释100倍,用标准碱标定。 (5)定氮混合指示剂。与土壤全氮的测定配法相同。 (6)特制胶水。阿拉伯胶(称取10g粉状阿拉伯胶,溶于15ml蒸馏水中)10份、甘油10份,饱和碳酸钾5份混合即成(最好放置在盛有浓硫酸的干燥器中以除去氨)。 (7)硫酸亚铁(粉状)。将分析纯硫酸亚铁磨细保存于阴凉干燥处。

土壤微生物生物量的测定方法氯仿熏蒸

. 土壤微生物生物量的测定方法 1土壤微生物碳的测定方法(熏蒸提取----仪器分析法) 1.1 基本原理 新鲜土样经氯仿熏蒸后(24h),土壤微生物死亡细胞发生裂解,释放出微生物生物量碳,用一定体积的0.5mol/LKSO溶液提取土壤,借用有机碳自动分析42仪测定微生物生物量碳含量。根据熏蒸土壤与未熏蒸土壤测定有机碳的差值及转换 系数(K),从而计算土壤微生物生物量碳。EC1.2 实验仪器 自动总有机碳(TOC)分析仪(Shimadzu Model TOC—500,JANPAN)、真空干 燥器、烧杯、三角瓶、聚乙烯熟料管、离心管、滤纸、漏斗等。1.3 实验试剂1)无乙醇氯仿(CHCL);32)0.5mol/L硫酸钾溶液:称取87g KSO溶于1L蒸馏水中423)工作曲线的配制:用0.5mol/L硫酸钾溶液配制10ugC/L、30ugC/L、50ugC/L、 70ugC/L、100ugC/L系列标准碳溶液。(其实一般情况下, 仪器会自带的标曲,一般不用自己做的) 1.4 操作步骤 1.4.1 土壤的前处理(过筛和水分调节略) 1.4.2 熏蒸 称取新鲜(相当于干土10.0g,这个可以根据自己土样的情况而定)3份分别放入25ml小烧杯中。将烧杯放入真空干燥器中,并放置盛有无乙醇氯仿(约2/3)的15ml烧杯2或3只,烧杯内放入少量防暴沸玻璃珠,同时放入一盛有NaOH溶液的小烧杯,以吸收熏蒸过程中释放出来的CO,干燥器底部加入少量2水以保持容器湿度。盖上真空干燥器盖子,用真空泵抽真空,使氯仿沸腾5分 钟。关闭真空干燥器阀门,于25℃黑暗条件下培养24小时。 1.4.2 抽真空处理 熏蒸结束后,打开真空干燥器阀门(应听到空气进入的声音,否则熏蒸不完1 / 7 . 全,重做),取出盛有氯仿(可重复利用)和稀NaOH溶液的小烧杯,清洁干燥器,反复抽真空(5或6次,每次3min,每次抽真空后最好完全打开干燥器盖子),直到土壤无氯仿味道为止。同时,另称等量的3份土壤,置于另一干燥器中为不※(注意:熏蒸后不可久放,应该快速浸提)熏蒸对照处理。 1.4.4 浸提过滤聚乙烯

生物量碳氮测定方法(熏蒸提取法)

一、土壤微生物生物量碳测定方法(熏蒸提取-碳自动仪器法) 1、试剂配制 去乙醇氯仿制备:普通氯仿试剂一般含有少量乙醇作为稳定剂,使用前需除去。将氯仿试剂按1 : 2(v : v)的比例与去离子水或蒸馏水一起放入分液漏斗中,充分摇动1min,慢慢放出底层氯仿于烧杯中,如此洗涤3次。得到的无乙醇氯仿加入无水氯化钙,以除去氯仿中的水分。纯化后的氯仿置于暗色试剂瓶中,在低温(4℃)、黑暗状态下保存(Williamss等,1995)。注意氯仿具有致癌作用,必须在通风橱中进行操作。 硫酸钾提取剂[c(K2SO4)= 0.5mol L-1]:87.12分析纯硫酸钾,溶于1L去离子水。 六偏磷酸钠溶液[ρ( NaPO3)6 = 5g 100ml-1,pH2.0]:50.0g分析纯六偏磷酸钠缓慢加入盛有800ml 去离子水的烧杯中(注意:六偏磷酸钠溶解速度很慢,且易粘于烧杯底部结块,加热易使烧杯破裂),缓慢加热(或置于超声波水浴器中)至完全溶化,用分析纯浓磷酸调节至pH2.0,冷却后定容至1L。 过硫酸钾溶液[ρ(K2S2O8)= 2g 100ml-1]:20.0g分析纯过硫酸钾溶于去离子水,定容至1L,避光存放,使用期最多为7d。 磷酸溶液[ρ(H3PO4)= 21 g 100ml-1]:37ml 85%分析纯浓磷酸(H3PO4,ρ= 1.70g ml-1)与188ml 去离子水混合。 邻苯二甲酸氢钾标准溶液[ρ(C6H4CO2HCO2K)= 1000mg C L-1]:2.1254g分析纯邻苯二甲酸氢钾(称量前105℃烘2~3h),溶于去离子水,定容至1L。 2、仪器设备 土壤筛(孔经2mm)、真空干燥器(直径22cm)、水泵抽真空装置(图6–1)或无油真空泵、pH–自动滴定仪、塑料桶(带螺旋盖可密封,体积50L)、可密封螺纹广口塑料瓶(容积1.1L)、高温真空绝缘酯(MIST–3)、烧杯(25、50、80ml)。碳–自动分析仪(Phoenix 8000)、容量瓶(100ml)、样品瓶(40ml)。 1–真空干燥器,2–装土壤烧杯,3–装氯仿烧杯4–磨口三通活塞5–真空表 6–缓冲瓶7–抽真空管8–增压泵9–控制开关10–进水口11–出水口 (图6–1 土壤熏蒸抽真空装置) 3、操作步骤 (1)土样前处理 新鲜土样应立即进行前处理或保存于4℃冰箱中。测定前先仔细除去土样中可见的植物残体(如根、茎和叶)及土壤动物(如蚯蚓等),过筛(孔径< 2mm)并混匀。如土样过湿,应在室内适当风干至土样含水量约为田间持水量(Water-holding capacity,WHC)的40%(以手感湿润疏松但不

土壤微生物生物量的测定(滴定法)(精)

1. 土壤微生物生物量的测定 (滴定法 一、实验目的和内容 土壤微生物生物量是指土壤中体积小于5~10μm 3活的微生物总量, 是土壤有机质中最活跃的和最易变化的部分。耕地表层土壤中,土壤微生物量碳(Bc 一般占土壤有机碳总量的 3%左右,其变化可直接或间接地反映土壤耕作制度和微生物肥力的变化,并可以反映土壤污染的程度。近 30年来,国外许多学者对土壤微生物生物量的测定方法进行了比较系统的研究,但由于土壤微生物的多样性和复杂性,还没有发现一种简单、快速、准确、适应性广的方法。目前广泛应用的方法包括:氯仿熏蒸培养法(FI 、氯仿熏蒸浸提法(FE 、基质诱导呼吸法(SIR 、精氨酸诱导氨化法和三磷酸腺苷(A TP 法。 氯仿熏蒸浸提法(FE 的原理是:土壤经氯仿熏蒸处理,微生物被杀死,细胞破裂后, 细胞内容物释放到土壤中,导致土壤中的可提取碳、氨基酸、氮、磷和硫等大幅度增加。通过测定浸提液中全碳的含量可以计算土壤微生物生物量碳。 二、实验材料和用具 仪器:培养箱;真空干燥器;真空泵;往复式振荡机(速率 200次每 min ; 1L 广口玻璃瓶;定量滤纸;紫外分光光度计; LNK-872型消煮炉(江苏省宜兴市科教仪器研究所试剂: 1. 无乙醇氯仿:市售的氯仿都含有乙醇(作为稳定剂 ,使用前必须除去乙醇。方法为:量取 500ml 氯仿于 1000ml 分液漏斗中,加入 50ml 硫酸溶液[ρ(H2SO 4=5%], 充分摇匀, 弃除下层硫酸溶液, 如此进行 3次。再加入 50ml 去离子水, 同上摇匀, 弃去上部的水分,如此进行 5次。将下层的氯仿转移存放在棕色瓶中,并加入约 20g 无水 K 2CO 3,在冰箱的冷藏室中保存备用。 2. 硫酸钾溶液 [c(K2SO4=0.5mol·L -1]称取硫酸钾(K 2SO 4,化学纯 87.10g ,先溶于

土壤可溶性有机氮,硝态氮,铵态氮和微生物量氮测定

土壤可溶性有机氮、硝态氮、铵态氮、微生物量氮最方便最简单的测定方法 1.母液制样:称取新鲜土壤(30.0g)于放置烧杯中,加约等于田间持水量60%水在25℃下培养7~15d。取15.0g土于烧杯,置于真空干燥器中,同时内放一装有用100ml精制氯仿的小烧杯,密封真空干燥器,密封好的真空干燥器连到真空泵上,抽真空至氯仿沸腾5分钟,静置5分钟,再抽滤5分钟,同样操作三次。干燥器放入25℃培养箱中24小时后,抽真空15-30分钟以除尽土壤吸附的氯仿。按照土:0.5M K2SO4=1:4(烘干土算,一般就是湿土:0.5M K2SO4=1:2),加入0.5M K2SO4溶液(未熏蒸为空白直接称取15.0g土,加同样比例0.5M K2SO4溶液)震荡30分钟,过滤。其中熏蒸后的土壤过滤液为A母液,未熏蒸的土壤过滤液为B母液。母液要是不及时测定,需立即在-15℃以下保存 2.测定 可溶性有机氮=可溶性全氮-(铵态氮+硝态氮) 要是有流动分析仪器还有TOC的话可以利用A母液测得碳氮减去B母液的碳氮含量根据公式计算得出微生物碳氮,可以用B母液测的铵态氮、硝态氮和可溶性全氮,是很方便的。 以下的是用传统的方法测定以上指标,经过852个土壤样品试验结果还是很好的。

土壤可溶性全氮测定 氧化剂:将6g NaOH 和30g K2S2O8溶于蒸馏水中并定容至1 L(K2S2O8 比较难溶,在低于60℃得瑟水浴中溶解,高于60℃配置的溶液至其氧化性失效,NaOH制成溶液,致其温度达到常温后与K2S2O8 溶液混合定容至1L) 测定:移取A母液10ml至消化试管,加入10ml氧化剂,水浴中加热,温度升高到120℃后保持90min,使用紫外分光光度计测定A220和A275,空白需加入1ml氧化剂并同时作水浴处理。(Tips:农化上母液与氧化剂各取25ml,此处取其比例为1:1。) 标准曲线:0.7218g硝酸钾溶于水中,转入1000ml容量瓶中定容摇匀,制得浓度为100mg/L的氮标准贮存液。稀释10倍即为10mg/L 的氮标准溶液。吸取氮标准溶液(梯度为0ml,1ml,2ml,3ml,4ml,5ml,6ml;对应浓度分别为0 mg/L,0.02 mg/L,0.04 mg/L,0.06 mg/L,0.08 mg/L,0.10 mg/L,0.12mg/L)于50ml容量瓶中,各加入1ml 氧化剂并定容,得氮的标准系列,与样品同样消煮测定A220和A275。以A(A= A220-A275)为纵标,氮浓度为横标绘制标准曲线。 硝态氮测定1 注:硝态氮测定1仅适合于农田土壤,腐殖质含量比较低的土壤,森林土壤和腐殖质含量比较高的土壤不适用,因为森林土壤和腐殖质高的土壤有腐植酸的颜色,干扰比色可采用硝态氮测定2进行测定

土壤微生物生物量的测定方 法(氯仿熏蒸)

土壤微生物生物量的测定方法 1土壤微生物碳的测定方法(熏蒸提取----仪器分析法)1.1 基本原理 新鲜土样经氯仿熏蒸后(24h),土壤微生物死亡细胞发生裂解,释放出微生物生物量碳,用一定体积的0.5mol/LK2SO4溶液提取土壤,借用有机碳自动分析仪测定微生物生物量碳含量。根据熏蒸土壤与未熏蒸土壤测定有机碳的差值及转换系数(K EC),从而计算土壤微生物生物量碳。 1.2 实验仪器 自动总有机碳(TOC)分析仪(Shimadzu Model TOC—500,JANPAN)、真空干燥器、烧杯、三角瓶、聚乙烯熟料管、离心管、滤纸、漏斗等。 1.3 实验试剂 1)无乙醇氯仿(CHCL3); 2)0.5mol/L硫酸钾溶液:称取87g K2SO4溶于1L蒸馏水中 3)工作曲线的配制:用0.5mol/L硫酸钾溶液配制10ugC/L、30ugC/L、50ugC/L、 70ugC/L、100ugC/L系列标准碳溶液。(其实一般情况下,仪器会自带的标曲,一般不用自己做的) 1.4 操作步骤 1.4.1 土壤的前处理(过筛和水分调节略) 1.4.2 熏蒸 称取新鲜(相当于干土10.0g,这个可以根据自己土样的情况而定)3份分别放入25ml小烧杯中。将烧杯放入真空干燥器中,并放置盛有无乙醇氯仿(约2/3)的15ml烧杯2或3只,烧杯内放入少量防暴沸玻璃珠,同时放入一盛有NaOH溶液的小烧杯,以吸收熏蒸过程中释放出来的CO2,干燥器底部加入少量水以保持容器湿度。盖上真空干燥器盖子,

用真空泵抽真空,使氯仿沸腾5分钟。关闭真空干燥器阀门,于25℃黑暗条件下培养24小时。 1.4.2 抽真空处理 熏蒸结束后,打开真空干燥器阀门(应听到空气进入的声音,否则熏蒸不完全,重做),取出盛有氯仿(可重复利用)和稀NaOH溶液的小烧杯,清洁干燥器,反复抽真空(5或6次,每次3min,每次抽真空后最好完全打开干燥器盖子),直到土壤无氯仿味道为止。同时,另称等量的3份土壤,置于另一干燥器中为不熏蒸对照处理。(注意:熏蒸后不 可久放,应该快速浸提)※ 1.4.4 浸提过滤 从干燥器中取出熏蒸和未熏蒸土样,将土样完全转移到80ml聚乙烯离心管中,加入40ml 0.5mol/L硫酸钾溶液(土水比为1:4,考虑到土样的原因,此部分熏蒸和不熏蒸土均为4g,即,4g土:16ml的硫酸钾溶液,当然这个加入量要根据TOC仪器的进入量决定)300r/min振荡 30min,用中速定量滤纸过滤。同时作3个无土壤基质空白。土壤提取液最好立即分析,或—20℃冷冻保存(但使用前需解冻摇匀)(注意这部分很重要,有研究结果表明:提取液如果不立即分析,请保存在—20℃,否则将影响浸提液的效果,其次,过滤时不要用普通的定性或定量滤纸,以免长久杂质会堵塞仪器的管路,建议使用那种一次性塑料注射器,配一个0.2um的滤头,一个才1元)。 1.4.5 TOC仪器测定 吸取上述土壤提取液10ul(这个要根据仪器自己的性能决定,但是一般情况下,在测定土壤滤液时候,要对其进行稀释,如果不稀释,一方面超过原来仪器的标曲,另一方面可能堵塞仪器。)注入自动总有机碳(TOC)分析仪上,测定提取液有机碳含量。由于总有机碳分析仪型号较多,不同的型号则操作程序存在较大差异,这里以本实验室使用的有机碳分析仪(Shimadzu Model TOC---500,JAPAN)为例。 1.5 计算

相关主题
文本预览
相关文档 最新文档