当前位置:文档之家› 1-光的干涉

1-光的干涉

1-光的干涉
1-光的干涉

(一)知识目标

1、知道光的干涉现象,了解相干条件,知道光的双缝干涉现象是如何产生的以及产生明暗条纹间距与波长的关系;

2、知道薄膜干涉是如何产生的,了解薄膜干涉的现象及技术上的应用。

(二)能力目标

通过观察实验现象,与以前学过的机械波的干涉进行类比,培养学生的自主学习的能力以及对问题的分析、推理能力。

教学建议

光的干涉是本章的重点之一.讲解前先引导学生回忆机械波的有关内容.

在光的干涉的教学中,一个值得注意的问题是相干条件的讲述(有关内容可以参见扩展资料).相对于机械波--比较容易的获得连续振动的波源、满足相干波的条件,两个独立光源发出的光,即使是"频率相同的单色光"(实际上严格的单色光并不存在),也不能保持恒定的相差.考虑到学生的知识基础和接受水平,讲解中可以不提出相干光的概念,只强调利用"单孔双缝"使得一束光"成了两个振动情况总是相同的波源",这同机械波中提到的振源的"振动步调相同"的要求是一致的.

做好演示实验.让学生通过观察白光的双缝干涉和单色光的双缝干涉加深知识的理解.双缝干涉的教学虽不要求定量讨论,但是在讲条纹间距与波长的关系时,要让学生知道公式中每一项的意义,配合彩图让学生将白光、单色光的干涉图样的特点记住.并要知道不同色光具有不同的频率,光的频率只由光源决定而与介质无关.在狭缝间的距离和狭缝与屏间的距离不变的条件下,单色光产生的干涉条纹间距跟光的波长成正比,这个关系是应该让学生知道的.知道了这一点,学生才能理解不同色光具有不同的频率和波长.

薄膜干涉的教学,可以结合实验、演示来进行,只要求学生初步认识这种现象,不必做进一步的分析.除了肥皂膜的干涉外,两片玻璃之间的空气膜的干涉、浮在水面上的油膜的干涉,都可以让学生观察.如果有牛顿环的实验装置,也可以让学生观察.

关于光的干涉在技术上的应用,教材中举了用干涉法检查平面和增透膜的例子.对此只要求学生初步了解其原理,可不再补充.

关于演示实验的教学建议

(1)演示实验可以用激光光学演示仪、实验时使激光束的行进方向正对学生的观察方向,用毛玻璃屏接收干涉条纹.让光屏到双缝的距离保持一定(L不变),让光束通过不同间距(d)的双缝,可观察到屏上的条纹间距不同,d大的条纹间距窄,保持d不变,使双缝到屏的距离增大,则条纹间距变宽.

(2)学生实验用双缝干涉仪测光的波长.实验时可以用灯丝为线状的灯泡作光源,在双缝前加一滤光片(红、绿均可),让双缝对准光源且双缝平行于灯丝,这样通过双缝的为单色光.然后调节双缝的卡脚,即可在筒内带有刻波的光屏上得到单色光的干涉条纹,再从观察到的条纹中

选若干条清晰的条纹,从屏上的刻度读出他们的间距之和,求出相邻两条纹的间距:,

可以求出

d在双缝上已标出,L从仪器上可得到,为测量到的值,即可求出,本实验除了测波长,还可以让学生用其观察白光的干涉条纹(不加滤光片,直接观察灯丝发出的光),在屏上可看到彩色条纹

(3)薄膜干涉可采用随堂实验.用生物实验用的盖玻片、酒精灯、食盐.将少许食盐撒在酒精灯的灯芯上点燃,然后将盖玻片置于火焰后方,用眼睛从前面着盖玻片即可看到明、暗相间的条纹

(4)用激光演示仪加牛顿圈配件可以在屏上得到牛顿环

典型例题

典型例题1——关于相干光的条件

两只相同的灯泡发出的光束相遇( )发生干涉现象?(填“能”或“不能”)

分析与解答:只有两列相干光相遇,才会产生干涉现象一般光源发出的光.是大量原子跃迁时产生的,由不连续的波列组成,即使频率相同,各波列振动的情况也是无规则地变化的,因此两个独立光源发出的光不是相干光,不会发生干涉现象

典型例题2——关于白光的双缝干涉实验

在双缝干涉实验中,以白光为光源,在屏上观察到彩色干涉条纹,若在双缝中的一缝前放一红色滤光用只能透过红光),另一缝前放一绿色滤光片(只能透过绿光),这时:

A、只有红色和绿色的干涉条纹,其它颜色的双缝干涉条纹消失;

B、红色和绿色的干涉条纹消失,其它颜色的干涉条纹仍然存在;

C、任何颜色的干涉条纹都不存在,但屏上仍有亮光;

D、屏上无任何亮光.

分析解答:在双缝干涉实验中,白光通过单缝成为线光源,从单缝时出的光通过双缝分成两束光,它们在光屏上形成彩色的干涉条纹,现在两个缝前分别放上红色和绿色滤光片,红光和绿光的频率不同,不是相干光,所以屏上没有干涉条纹,只有亮光,选择项C正确

典型例题3——关于单色光的干涉条纹

用单色光做双缝干涉实验时,屏上出现明暗相间的干涉条纹,屏上某处到两狭键的距离之差满足时,该处出现亮条纹;屏上某处到两缝的距离之差满足时,该处出现暗条纹.

分析与解当距离之差等于单色光半被长的偶数倍时,该处出现亮条纹;当距离之差等于单色光的半波长奇数倍时,该处出现暗条纹.

典型例题4--关于白光的干涉条纹

用白光做双缝干涉实验时,得到彩色的干涉条纹,下列正确的说法是:

A、干涉图样的中央亮纹是白色的;

B、在靠近中央亮纹两侧最先出现的是红色条纹;

C、在靠近中央亮纹两侧最先出现的是紫色条纹;

D、在靠近中央亮纹两侧最先出现的彩色条纹的颜色与双缝间距离有关

分析与解答:白光是各种不同色光组成的复色光,光屏中央到两狭缝距离相等,各色光经双缝到达光屏中央的路程差为零,在光屏中央均出现亮纹,各色光复合成白光,所以中央亮纹为白

色由可知.不同色光的干涉条纹间距随波长的增大而增大,紫光的波长最短所以靠近中央亮纹两侧最先出现的是紫色条纹,选择项AC是正确的

习题精选

1、如图所示是用干涉法检查某块厚玻璃板的上表面是否平整的装置,所用单色光是用普通光源加滤色片后获得的,检查中所观察到的干涉条纹是下列哪两个表面反射的光线叠加而成的:()

A、A的上表面和B的下表面;

B、A的上表面和B的上表面;

C、A的下表面和B的上表面;

D、A的下表面和B的下表面.

2、在用薄膜干涉来检查工件表面时,形成的干涉图样如图所示,一条明纹在A处向劈形空气膜的劈尖方向发生弯曲,由此可知工件表面A处(填“凸起”或“凹陷”).

3、如果把杨氏双缝干涉实验,从空气中移动到某种透明的液体中做实验,则条纹的间距:()

A、增大

B、减小

C、不变

D、缺少条件,无法判断

4、用红光做双缝干涉实验,在屏幕上观察到干涉条纹,在其它条件不变的情况下,改用紫光做实验,则干涉条纹间距将变,如果改用白光做实验,在屏幕上将出

现色条纹.

答案:

1、C

2、A处向下凹陷

3、B

4、小;彩色

扩展资料

白色与无色

在日常生活中,我们发现,有些人常把白色和无色自觉不自觉地混淆起来,例如,把纯净水滴说成白色水滴,无色透明的玻璃烧瓶说成是白色透明的玻璃烧瓶等等。似乎在这些人眼里,白色就等于无色,无色与白色是一回事。其实不然,白色与无色是两个迥然不同的概念!为了能澄清进而区别这两个概念,还得让我们从颜色理论讲起。

光是电磁波,具有波动性,不同波长(频率)的光在我们眼睛的视网膜上能产生不同的效应,正是这些效应给我们以颜色的感觉。但是,并不是所有光波都能引起视觉,引起视觉的光波,其频率大约为每秒四百万亿次到八百万亿次(波长大约在3800~7800埃),即可见光范围。在可见光范围内,能量按频率或波长的不同分布引起不同颜色视觉。例如,适当的、均匀分布的色光引起白色的视觉;能量分布集中于高频率的色光会引起蓝色的视觉;能量分布集中于低频率的色光会引起红色的视觉。颜色的视觉感是由于能量分布的不同而引起的,然而,有时能量分布虽然不同,但是,引起的颜色视觉却完全一样。事实上,同一种色光存在着无数种不同的能量分布。如真正的黄光(即单色光)和由红绿适当混合而成的黄光,看起来完全一样。由此看出,人眼的分析能力比较差。自然界中的光,有各种各样的颜色,其实,这些光一般都不是单色光,而是多种单色光的混合。但是,人眼对某一种颜色却只有一个笼统的总感觉,尽管这种颜色是由千万种单色光组成的。

早在三百多年前(1666年)牛顿就用棱镜将白光分析成为红、橙、黄、绿、青、蓝、紫的彩带,第一次发现白光(日光)的光谱组成。然而,人眼是决不能分析出白光的光谱组成的。其实,适当选择两种不同波长的单色光及它们的亮度,再把它们混合起来也能得到白光。这种白光可以和上述由红、橙、黄、绿、青、蓝、紫等一系列单色光混合出来的白光D一样白,一样亮。这些能配合成白光的两种单色光称为互补对或互补色。牛顿曾制造出一个颜色

盘,也叫牛顿色盘,如图所示。它的特点是将各个互补色大致绘在圆盘的对径上。

例如,红光的互补色是青绿之间的颜色,适当份量的红光和青绿光同时到达人眼,

就可以产生白光的印象。再如,橙和青蓝或黄和紫蓝也都是互补色,假如将它们

一对一对各自按适当的比例配合起来,都能产生白光的视觉。更为有趣的是,不

仅两种单色光可以配合成为白光,三种、四种甚至千万种单色光的连续光谱也可以混合起来配成白光。这些白光,在人眼看起来都是一样白,一样亮,但它们都是由完全不同的光谱所组成。

太阳光是白光,白炽灯的光也是白光,在各种不同情况下的日光,如直射日光,被云遮着的日光,天空散射的日光等,都可以称为白光。这些白光不仅在光谱分析上不同,即使在视觉上也有些不同。例如,天空散射的日光和被云遮着的日光,看起来带些蓝,而白炽灯的光似乎带点红或黄。但是,由于人眼有很大的适应性,使得在晚上看电灯光时又确实很“白”,这种适应性加上其他心理成分,使白光的定义就更为复杂化。事实上,人眼产生的颜色感应是一个物理、生理和心理的综合效果。但是,白光又是一个常用的概念,应有一个标准定义。

色度学常用CIE(国际照明委员会的缩写)1931年建议的等能量光谱作为白光的定义。等能量光的意义是:以辐射能作为纵坐标,波长作横坐标,则它的光谱曲线是一根平行于横轴的直线。考虑到频率比波长更基本些,所以,后又用频率为横坐标的等能量光作白色的定义。但是,这样的等能量光谱和CIE的等能量光谱完全不同。

以上我们从光的频率及其能量分布与视觉器官的相互作用论述了光的颜色本质,特别是对“白光”概念作了较为详尽的说明。光的颜色本质明了后,自然界中各种物体能呈现各种各样颜色的原因也就不难找到。

颜色不是物体自身的性质,而是由它对照射到它上面的各种颜色的光的反射和吸收决定的。一般的有色透明体就是在可见光范围内表现选择吸收的结果。例如,对红色光及橙色光吸收得很少,而对绿色、蓝色及紫色光吸收很多的玻璃是红色的。当以白光通过这种玻璃时,只有红色光才能通过而引起红色的感觉,其他波长较短的光都被吸收。假如用绿色光或蓝色光照射这种玻璃,则玻璃呈现出“黑色”,因为它吸收了这些光、呈现非透明现象。由于选择吸收而使物体呈现的

颜色称为体色,呈现体色物体的透射光和反射光的颜色是一样的。

不透明物体的颜色一般都是选择反射的结果。例如,植物的叶子,由于含有胡萝卜素族的叶绿素,吸收红、紫两端光波段,而对绿光反射特别强,所以呈绿色;动物的红血球吸收绿色以下的短波段,所以呈红色;白色物体对可见光的吸收程度很小,而反射程度很大。由于选择反射而使物体呈现的颜色称为表面色。

至此,我们已对颜色的简单理论全部讨论完毕,所以完全有能力来澄清“白色”和“无色”这两个概念了。

根据以上分析和讨论可知,物体被日光或与日光相似的光照射,各种频率的光都被反射时呈现出的颜色叫“白色”,或者是物体被某复色光照射,仅反射或透射某一对互补色光时呈现出的颜色称为“白色”。如棉花、冬雪、牛奶、硫酸钡等物体的颜色都是白色。

在一个波长范围内,若某种物体对于通过它的各种波长的光波都作等量(指能量)吸收,且吸收量很小,则称这种物体具有一般吸收性。光通过呈现一般吸收性的物体时,各种波长的光几乎都能从该物体透射,因此,又可以说该物体对这一波长范围的光是透明的。如果所论的波长范围就是可见光的波长范围,则对应的这种透明物体给我们的一种特有视觉感就称为“无色”或直接称该物体是无色的。可见,无色乃是透明物体所呈现的一种特殊现象。例如,纯净的空气、光学玻璃、水晶、蒸馏水等物体对白光都呈现一般性吸收,故都是无色的,而决不是白色的。但要注意,无色的物体一定是透明的,而透明的物体却不一定是无色的,例如各种透明的有色玻璃。

扩展资料

波程差与光程差

波程差和光程差是光学中既有区别又有联系的两个概念,切实掌握好这两个概念,不仅是研究光的干涉而且是研究整个波动光学问题的关键,特别是光程差概念。为此,让我们从两个频率相同、振动方向相同的单色简谐波的叠加说起。

如图所示,和为真空中两个单色点光源,向外发射频率相同、振动方向相同的单色

光波,P点是两光波叠加区域内的任意一点(所谓的场点),和分别为和到P点的

距离。设和光振动的初相位分别为和,振幅为、,则根据波动议程知识不难求得P点的光振动为:

(1)

式中为两光波源的振动角频率,c为两光波在真空中的传播速度。于是,两光波在相遇

点P处任何时刻振动的相位差为:,若令,两光波在真空中

的波长为,并考虑到,则:

(2)

从(2)式可见,两光波在相遇点P处,任一时刻的振动相位差仅与

差值“”有关。因和分别为两波源到达观察点P的距离,故差值“”为两光

波到达观察点P所经过的路程之差,波动光学中常称之为波程差,以表示,即。于是,(2)式可改写为:

(3)

由此关系式及合成光强度公式:

可知,对于任一观察点P,当或时,合成光强I为极大

值;当或时,合成光强I为极小值。

以上结论在讨论光波的干涉和衍射时是非常重要的,用文字叙述就是:当两列相干光波(同频率、同振动方向、恒定相位差)在真空中相遇时,波程差为半波长的偶数倍的各点,其合成光强度有极大值;波程差为半波长的奇数倍的各点,其合成光强度有极小值;其他各点合成结果介于以上两者之间。

按理,同频率、同振动方向的两列单色简谐光波的叠加问题讨论到上述结果就可告一段落,但遗憾的是见得更多的却是光波在不同媒质中的传播,而同一频率的光在不同媒质中的波长是不相同的,这就多少给我们处理问题带来麻烦。

不失一般性,我们假定前述同频率、同振动方向的两个单色点光源发出的两束光各自经过折射率为和的不同媒质,如图所示,则现在P点的光振动应为:

(4)

式中、分别是、发出的光在折射率为和的媒质中传播的速度。于是,两光波在相遇点P处任何时刻的相位差应为:

为方便起见,同样令,则有:

(5)

与(3)式相比,(5)式确实变得麻烦了些。但是,通过一定的变换,我们仍可以把(5)式尽量向(3)式形式靠拢。

我们知道,只要光源的频率不变,光在传播过程中频率也不变。设光在真空中的传播速度为

c,波长为;光在媒质中的传播速度为v,波长为,那么就有及,或

。因为(媒质折射率定义)所以:

(6)

应用(6)式关系,(5)式可改写成

(7)

从(7)式可见,两同频、同振动方向的光源发出的光,经过不同的媒质,在相遇点P处任

一时刻的振动相位差唯一地决定于差值。差值中的每一项都是光在媒质中所经历的实际几何路程与该种媒质的折射率的乘积,波动光学中称之为光程,相应的差值

就称为光程差,并仍用符号表示,即:

如果其中任一列光波在途径中经过了不同的媒质,则总光程应为各段光程之和。引入光程概念后,(7)式就能写成与(3)式完全相同的形式,即

(8)

很明显,当光程差中的时,光程差就等于波程差,因此,(3)

式可看作是(8)式的一种特例。又在均匀媒质中,因为,所以,光程也可以认为等于相同时间内光在真空中通过的几何路程。于是,借助于光程这个概念,可将光在媒质中所走的路程折合为光在真空中的路程,相应的光在媒质中的波长也要折合成真空中的波长。这样就便于比较光在不同媒质中所走路程的长短,进而计算相位差。事实上,上面由(5)式到(8)式的整个过程就是体现了这种折合思想。

概括起来讲,只有在真空中,光程差和波程差才没有区别,在媒质中它们是有区别的。下面我们再通过一个简单的例题来巩固和加深对它们的理解。

如图所示,和都在真空中,设。在到P点的联线上插入

一片折射率为的介质片,厚度为,求和到P点的光程差。

解:

按光程、光程差的定义:

扩展资料

关于光波相干条件的讲述

在机械波里可以比较容易地获得连续振动的波源,两个波源只要频率相同,相干性的其他条件,比较容易满足.因此我们没有特别强调和介绍“相差恒定”这一条件,而只是提到振源的“振动步调相同”.

一般光源发出的光,是大量原子跃迁时发出的,由不连续的波列组成,各波列的相位是无规则变化的,这是由原子发光的特点决定的.因此,两个独立光源发出的光,即使是“频率相同的单色光”(实际上严格的单色光并不存在),也不能保持恒定的相差.必须把同一个点光源(或线光源)发出的一束光分成两束,才能得到相干光.考虑到学生的知识基础和接受水平,可以不提出相干光的概念,但在叙述中,强调了从单孔射出的光束到达双孔时,双孔“就成了两个振动情况总是相同的波源”,这同机械波中提到的振源的"振动步调相同",要求是一致的.

光的干涉及其应用

光的干涉及其与应用 (作者:赵迪) 摘要我们通过对光的干涉本质、种类及其各种应用做了一定的查阅与思考,汇总成为该文章。中文中重点介绍的是,光的干涉在日常生活中、普通物理实验中的应用以及在天文学方面的发展和应用,由于文章内容和字数的限制,我们不能对所有提到的应用做出详细的表述,仅取其中的几个例子进行具体的介绍。 关键词光的干涉等倾干涉等厚干涉照相技术天文学 1 绪论 我们知道在光学的发展史上,“光的本质”这个问题进行了将近4个世纪的争论,直到爱因斯坦提出“波粒二象性”才将这个问题的争论暂时告一段落,本文所提到的的光的干涉现象就是这段精彩历史上不可磨灭的一部分。 1801年的英国由托马斯·杨设计的杨氏双缝干涉实验使得“微粒说”近乎土崩瓦解,并强有力的支持了“波动说”。1811年,阿拉格首先研究了偏振光的干涉现象。现代生活中,光的干涉已经广泛的用于精密计量、天文观测、光弹性应力分析、光学精密加工中的自控等许多领域。 虽然“波粒二象性”已经作为主流说法,终结了这个问题的争论,但是对于现代生活来说,光的干涉及其理论所带来的影响却是不可或缺的。我们将在本文中简单介绍一下光的干涉在日常生活中、普通物理实验中的应用以及在天文学方面的发展和应用。 2 光的干涉现象与产生 2.1 现象简介 干涉,指满足一定条件的两列相干波相遇叠加,在叠加区域某些点的振动始终加强,某些点的震动始终减弱,即在干涉区域内振动强度有着稳定的空间分布,而忽略时间的影响。

图2-1 复色光的干涉图样 由于光也具有波动性,因此,光也可以产生干涉现象,称为光的干涉。光的干涉通常表现为光场强度在空间作相当稳定的明暗相间的条纹或圆环的分布;有时则表现为,当干涉装置的某一参量随空间改变时,某一固定点处接收到的光强按一定规律作强弱交替变化。 2.2 产生条件 2.2.1 主要条件 两列波的产生干涉的条件是:两列光波频率一致、相位差恒定、振动方向一致的相干光源才能产生光的干涉。 由于两个普通独立的光源发出的光不可能具有相同的频率,更不可能存在更不可能存在固定的相位差,因此,不可能产生干涉现象。 图2-2 单色光的干涉图样 2.2.2 补充条件 由于干涉图样的效果会受到称比度的影响,因此,两列相干波还须满足三个补充条件:①参与叠加的两束光光强不能相差太大;②参与叠加的两束光振动的夹角越小越好,虽然理论上小于2 即可产生叠加,但是对比度效果不好,即最好接近平行;③光程差不能相差太大。

光的干涉习题答案

学号 班级 姓名 成绩 第十六章 光的干涉(一) 一、选择题 1、波长mm 4 108.4-?=λ的单色平行光垂直照射在相距mm a 4.02=的双缝上,缝后 m D 1=的幕上出现干涉条纹。则幕上相邻明纹间距离是[ B ]。 A .0.6mm ; B .1.2 mm ; C .1.8 mm ; D . 2.4 mm 。 2、在杨氏双缝实验中,若用一片透明云母片将双缝装置中上面一条缝挡住,干涉条纹发生的变化是[ C ]。 A .条纹的间距变大; B .明纹宽度减小; C .整个条纹向上移动; D .整个条纹向下移动。 3、双缝干涉实验中,入射光波长为λ,用玻璃薄片遮住其中一条缝,已知薄片中光程比相同厚度的空气大2.5λ,则屏上原0级明纹处[ B ]。 A .仍为明条纹; B .变为暗条纹; C .形成彩色条纹; D .无法确定。 4、在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是[ B ]。 A .使屏靠近双缝; B .使两缝的间距变小; C .把两个缝的宽度稍微调窄; D .改用波长较小的单色光源。 5、在双缝干涉实验中,单色光源S 到两缝S 1、S 2距离相等,则中央明纹位于图中O 处,现将光源S 向下移动到S ’的位置,则[ B ]。 A .中央明纹向下移动,条纹间距不变; B .中央明纹向上移动,条纹间距不变; C .中央明纹向下移动,条纹间距增大; D .中央明纹向上移动,条纹间距增大。 二、填空题 1、某种波长为λ的单色光在折射率为n 的媒质中由A 点传到B 点,相位改变为π,问光程改变了 2λ , 光从A 点到B 点的几何路程是 2n λ 。 2、从两相干光源s 1和s 2发出的相干光,在与s 1和s 2等距离d 的P 点相遇。若s 2位于真空 中,s 1位于折射率为n 的介质中,P 点位于界面上,计算s 1和s 2到P 点的光程差 d-nd 。 3、光强均为I 0的两束相干光相遇而发生干涉时,在相遇区域内有可能出现的最大光强是 04I ;最小光强是 0 。

光的干涉知识点总结

第二章 光的干涉 知识点总结 2.1.1光的干涉现象 两束(或多束)光在相遇的区域产生相干叠加,各点的光强不同于各光波单独作用所产生的光强之和,形成稳定的明暗交替或彩色条纹的现象,称为光的干涉现象。 2.1.2干涉原理 注:波的叠加原理和独立性原理成立于线性介质中,本书主要讨论的就是线性介质中的情况. (1)光波的独立传播原理 当两列波或多列波在同一波场中传播时,每一列波的传播方式都不因其他波的存在而受到影响,每列波仍然保持原有的特性(频率、波长、振动方向、传播方向等) (2)光波的叠加原理 在两列或多列波的交叠区域,波场中某点的振动等于各个波单独存在时在该点所产生振动之和。 波叠加例子用到的数学技巧: (1) (2) 注: 叠加结果为光波复振幅的矢量和,而非强度和。 分为相干叠加(叠加场的光强不等于参与叠加的波的强度和)和非相干叠加(叠加场的光强等于参与叠加的波的强度和). 2.1.3波叠加的相干条件 干涉项: 相干条件: (干涉项不为零) (为了获得稳定的叠加分布) (为了使干涉场强不随时间变化) 2.1.4 干涉场的衬比度 1.两束平行光的干涉场(学会推导) (1)两束平行光的干涉场 干涉场强分布: 21 ωω=10200 ?≠E E 2010??-=常数()() 212121212()()()2=+?+=++?I r E E E E I r I r E E 12102012201021212010212{cos()()()cos()()()} ?=?+?++-++-?+---E E E E k k r t k k r t ??ωω??ωω() ()() * 12121212 ,(,)(,)(,)(,)2cos =++=++?I x y U x y U x y U x y U x y I I I I ?

第一章光的干涉习题与答案解析

λd r y 0 = ?第一章 光的干涉 ●1.波长为nm 500的绿光投射在间距d 为cm 022.0的双缝上,在距离cm 180处的光屏上形成干涉条纹,求两个亮条纹之间的距离.若改用波长为nm 700的红光投射到此双缝上,两个亮条纹之间的距离又为多少?算出这两种光第2级亮纹位置的距离. 解:由条纹间距公式 λ d r y y y j j 0 1= -=?+ 得: cm 328.0818.0146.1cm 146.1573.02cm 818.0409.02cm 573.010700022.0180cm 409.010500022.018021222202221022172027101=-=-=?=?===?===??==?=??== ?--y y y d r j y d r j y d r y d r y j λλλλ ●2.在杨氏实验装置中,光源波长为nm 640,两狭缝间距为mm 4.0,光屏离狭缝的距离为 cm 50.试求:(1)光屏上第1亮条纹和中央亮条纹之间的距离;(2)若p 点离中央亮条纹 为mm 1.0,问两束光在p 点的相位差是多少?(3)求p 点的光强度和中央点的强度之比. 式: 解:(1)由公 得 λd r y 0= ? =cm 100.8104.64.05025--?=?? (2)由课本第20页图1-2的几何关系可知 52100.01 sin tan 0.040.810cm 50 y r r d d d r θθ--≈≈===?

5 21522()0.8106.4104 r r π ππ?λ --?= -= ??= ? (3) 由公式 22 22 121212cos 4cos 2I A A A A A ? ??=++?= 得 8536.04 2224cos 18cos 0cos 421cos 2 cos 42cos 42220 2212 212020=+=+= =??=??= =π ππ??A A A A I I p p ●3. 把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所 在的位置为中央亮条纹,试求插入的玻璃片的厚度.已知光波长为6×10-7 m. 解:未加玻璃片时,1S 、2S 到P 点的光程差,由公式 2r ?πλ??=可知为 Δr =215252r r λ πλπ-= ??= 现在 1 S 发出的光束途中插入玻璃片时,P 点的光程差为 ()210022r r h nh λλ ?ππ'--+= ?=?=???? 所以玻璃片的厚度为 421510610cm 10.5r r h n λ λ--= ===?- 4. 波长为500nm 的单色平行光射在间距为0.2mm 的双狭缝上.通过其中一个缝的能量为另一个的2倍,在离狭缝50cm 的光屏上形成干涉图样.求干涉条纹间距和条纹的可见度. 解: 6050050010 1.250.2r y d λ-?= =??=mm 122I I = 22 122A A = 1 2A A =

光的干涉习题答案.doc

第十六章光的干涉《一〉 一、选择题 1、波长A = 4.8x10^/777/7的单色平行光垂直照射在相距2。= 0.4〃仰的双缝上,缝后 D = lm的幕上出现干涉条纹。则幕上相邻明纹间距离是[B ]。 A.0.6mm; B. 1.2 mm; C. 1.8 mm; D. 24 mm。 2、在杨氏双缝实验中,若用一片透明云母片将双缝装置中上面一条缝挡住,干涉条纹发生的变化是[C ]。 A.条纹的间距变大; B.明纹宽度减小; C.整个条纹向上移动; D.整个条纹向下移动。 3、双缝干涉实验中,入射光波长为人,用玻璃薄片遮住其中一条缝,已知薄片中光程比 相同厚度的空气大2.5/1,则屏上原()级明纹处[B ]o A.仍为明条纹; B.变为暗条纹; C.形成彩色条纹; D.无法确定。 4、在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是[B ]。 A.使屏靠近双缝; B.使两缝的间距变小; C.把两个缝的宽度稍微调窄; D.改用波长较小的单色光源。 5、在双缝干涉实验中,单色光源S到两缝&、S?距离相等,则中央明纹位于图中O处,现将光源S向下移动到S,的位置,则[B ]。 A.中央明纹向下移动,条纹间距不变; B.中央明纹向上移动,条纹间距不变; C.中央明纹向下移动,条纹间距增大; D.中央明纹向上移动,条纹间距增大。 二、填空题 1、某种波长为人的单色光在折射率为〃的媒质中由A点传到B点,相位改变为兀,问光 程改变了_仝_,光从A点到B点的几何路程是—仝 2 2/? 2、从两相干光源&和S2发出的相干光,在与S|和S2等距离d的P点相遇。若S2位于真空中,Si位于折射率为〃的介质中,P点位于界面上,计算S!和s2到P点的光程差d-nd ° 3、光强均为I。的两束相干光相遇而发生干涉时,在相遇区域内有可能出现的最大光强是一 _;最小光强是0 。 47

1 第1节 光的干涉

第1节光的干涉 1.认识光的干涉现象及光发生干涉的条件.(重点) 2.理解光的干涉条纹的形成原因及干涉现象的本质,认识干涉条纹的特征.(重点+难点) 3.了解光的干涉条纹的特点,理解用双缝干涉测光波波长的原理.(重点) 4.知道薄膜干涉是如何获得相干光源的,了解薄膜干涉产生的原因,知道薄膜干涉在技术上的应用.(难点) 一、光的干涉及其产生条件 1.干涉现象:若两束光波在空间传播时相遇,将在相遇区域发生叠加,如果在某些区域光被加强,而在另一些区域光被减弱,且加强区域和减弱区域相互间隔,这种现象称为光的干涉. 2.由干涉现象得出的结论:光具有波的特性,光是一种波. 3.相干条件:要使两列光波相遇时产生干涉现象,两光源必须具有相同的频率和振动方向,还要满足相位差恒定. (1)频率不相同的两束光不能发生干涉.() (2)两个相同的灯泡发出光能够发生干涉.() (3)杨氏实验中,通过两狭缝的光是相干光.() 提示:(1)√(2)×(3)√ 二、科学探究——测定光的波长 1.在双缝干涉实验中,相邻两条亮(或暗)纹之间的距离:Δy=l d λ,其中,l表示两缝到光屏的距离,d表示两缝间的距离,λ表示光波的波长. 2.测量光屏上亮(暗)条纹的宽度,为了减小误差,测出n个条纹间的距离a,然后取平均值 求出Δy,则Δy=a n-1 .

1.实验中为什么不直接测量相邻亮纹间的距离,而是测n条亮纹间的距离? 提示:测n条亮纹间的距离,然后取平均值可减小实验误差. 三、薄膜干涉及其应用 1.薄膜干涉中相干光的获得:光照射到薄膜上,在薄膜的前后两个面反射的光波相遇而产生的干涉现象. 2.薄膜干涉的原理:光照在厚度不同的薄膜上时,在薄膜的不同位置,前后两个面的反射光的路程差不同,在某些位置两列波叠加后相互加强,于是出现亮条纹;在另一些位置,两列波相遇后被相互削弱,于是出现暗条纹. 3.薄膜干涉的应用 (1)劈尖干涉是一种劈形空气薄膜干涉,可用于检查平面的平整程度; (2)在照相机、望远镜等高质量的光学仪器中,在其镜头的表面镀上透明的增透膜,用来增加透射光的能量. 2.在演示竖直放置的薄膜干涉实验时,应从哪个角度观察干涉条纹? 提示:由于薄膜干涉是两列反射光叠加而成的,因此观察干涉条纹时,眼睛应和光源在薄膜的同一侧. 对光的双缝干涉的理解 1.双缝干涉的装置示意图 实验装置如图所示,有光源、单缝、双缝和光屏. 2.单缝屏的作用:获得一个线光源,使光源有唯一的频率和振动情况,如果用激光直接照射双缝,可省去单缝屏.杨氏那时没有激光,因此他用强光照亮一条狭缝,通过这条狭缝的光再通过双缝产生相干光. 3.双缝屏的作用:平行光照射到单缝S上,又照到双缝S1、S2上,这样一束光被分成两束频率相同和振动情况完全一致的相干光.

第一章--光的干涉--习题及答案

第一章--光的干涉--习题及答案

λ d r y 0 =?第一章 光的干涉 ●1.波长为nm 500的绿光投射在间距d 为cm 022.0的双缝上,在距离cm 180处的光屏上形成干涉条纹,求两个亮条纹之间的距离.若改用波长为nm 700的红光投射到此双缝上,两个亮条纹之间的距离又为多少?算出这两种光第2级亮纹位置的距离. 解:由条纹间距公式 λ d r y y y j j 0 1= -=?+ 得: cm 328.0818.0146.1cm 146.1573.02cm 818.0409.02cm 573.010700022.0180cm 409.010500022.018021222202221022172027101=-=-=?=?===?===??==?=??== ?--y y y d r j y d r j y d r y d r y j λλλλ ●2.在杨氏实验装置中,光源波长为nm 640,两狭缝间距为mm 4.0,光屏离狭缝的距离为cm 50.试求:(1)光屏上第1亮条纹和中央亮条纹之间的距离;(2)若p 点离中央亮条纹为mm 1.0,问两束光在p 点的相位差是多少?(3)求p 点的光强度和中央点的强度之比. 解:(1)由公式: 得

λd r y 0 = ? = cm 100.8104.64 .050 25--?=?? (2)由课本第20页图1-2的几何关系可 知 52100.01sin tan 0.040.810cm 50 y r r d d d r θθ--≈≈===? 5 21522()0.8106.4104 r r π ππ?λ --?= -= ??= ? (3) 由公式 22 22 121212cos 4cos 2 I A A A A A ? ??=++?= 得 8536.04 2224cos 18cos 0cos 421cos 2 cos 42cos 42220 2212 212020=+=+= =??=??= =π ππ??A A A A I I p p ●3. 把折射率为1.5的玻璃片插入杨氏实验 的一束光路中,光屏上原来第5级亮条纹所在的位置为中央亮条纹,试求插入的玻璃片的厚度.已知光波长为6×10-7m . 解:未加玻璃片时,1 S 、2 S 到P 点的光程差,由 公式 2r ?πλ ??=可知为 Δr = 215252r r λ πλπ-= ??=

第16 章 光的干涉

第2章 光的干涉 【例题 2-1】 图2-6所示为一种利用干涉方法测量气体折射率的装置。图中T 1、T 2为一对完全相同的玻璃管,长为l = 20cm 。 开始时,两管中均为真空,此时在P 0处出 现零级明纹。然后在T 2管中缓慢注入待测气体,在这过程中,P 0处干涉光强发生明暗交替变化。通过测量P 0处明暗变化次数就可推知气体的折射率。设测量所用的钠 光波长λ = 589.3,明暗变化了200次。试求该气体的折射率n 。 解:首先要注意,屏幕E 上的干涉图样只有一个干涉斑点,该斑点处在S 点的几何光学的像点位置。 当两管为真空时,在P 0处出现零级明纹,即光程差为零。T 2管中慢慢注入待测气体,相应的光程增加。如果明暗变化了k 次,P 0处将出现k 级明纹,两光在该处的光程差为k λ,即 λδk =-=l n )1( 所以,待测气体的折射率为 00059.11103.58920019 =+??=+=-l n λk §1-2 分波面干涉 【例题 2-2】用单色光照射相距0.4mm 的双缝,缝屏间距为1m 。试求:(1)若从第1级明纹到同侧第5级明纹的距离为6mm ,单色光的波长为多大? (2)若入射的单色光波长为400nm 的紫光,两相邻明纹的距离为多大? (3)上述两种波长的光同时照射时,两种波长的明条纹第一次重合在屏幕上的什么位置? 解 (1) 由双缝干涉明纹条件λd D x k =,可得 λλλd D d D d D x x 4)15()(1515=-=-=-k k 因此, 600(m m )(m )100.64 1106104473415=?=????=-=---x x D d λ (2) 当λ = 400 nm 时,两相邻明纹间距为 m 100.110 41041347 ---?=???==?λd D x (3) 设两种波长的光干涉图样中,明纹重合处离中央明纹的距离为x ,则有 2211λλd D d D x k k == 其中k 1和k 2分别为600nm 和400nm 两光对应的明纹级次,解方程可得 图2-6 例题2-1图

1.光的干涉1

大学物理Ⅱ 教案 基础部 任课教师岳平 教学单位基础部 授课班级1011、1012、1021 课程总学时32 基本教材大学物理(下册) 二零一一年九月

北京电子科技学院教案

附件1:教学内容 § 1 相干光 一、机械波相干(回顾上学期内容,采取提问,启发的形式) 1.相干波源:频率相同、振动方向相同、位相差恒定 干涉现象:两列相干波相遇时,某些地方始终振动加强,另一些地方始终振动减弱的现象。 2.P 点的振动是两个同方向同频率简谐振动的叠加 由简谐振动的矢量表示法可知,合振动的振幅与两个分振动的位相差有关 π?k 2±=?),2,1,0( =k 时,A 最大 干涉相长 π?)12(+±=?k ),2,1,0( =k 时,A 最小 干涉相消 由波函数 ) 2cos(])(cos[?λπ ω?ω+-=+-=r t A u r t A y 可得,P 点的 两分振动的相位差为: ) (21212r r -- -=?λ π ??? 如果两相干波源的初相位相等21??=,相干条件简化为: 波程差12r r r -=? λk r ±=?),2,1,0( =k 相长 2) 12(λ +±=?k r ),2,1,0( =k 相消 二、光是一种电磁波 1. 电磁波是横波,E 、H 都与传播方向垂直 1 S 2S P 1r 2 r

对人眼、感光仪器起作用的是E 矢量,因此E 矢量称为光矢量,E 矢量 的振动称为光振动。 2.可见光波长:390~760nm (紫~红) 单色光:只含单一波长的光 复色光:含多种波长的光 准单色光:在某个中心波长附近有一定波长范围的光 三、相干光 1.光源的发光机理 光源(light source)的最基本发光单元是分子、原子。原子通过由高能级跃迁到低能级而以光子的形式辐射出能量,由于能量损失、周围原子的作用,发光的持续时间很短。因此,一个原子一次发光只能发出一段长度有限、频率一定、振动方向一定的波列。 普通光源的原子辐射是自发辐射,其发光具有间隙性和随机性。即同一原子在不同时刻发出两个波列,这两个波列的频率、振动方向、相位等一般都不相同,可以说两次辐射发光是互不相关的;而不同原子在同一时刻发出的波列同样互不相关,频率、振动方向、相位等一般都不相同。 因此,普通光源发出的光是由很多原子所发出的、许多相互独立的波列。这些波列不满足相干条件,普通光源发出的光不能产生干涉现象。 讨论: 1)光源的发光过程实际上是其中大量分子、原子在微观上的自发辐射过程: 波列 秒 810-<τ 1)/h E 1 E 2 能级跃迁辐射

第三单元 光的干涉答案)

。一、选择题 1-5 DC(AB)CC 6-10 ADA(AA)B 11-15 CCBDC 16-20 BAAAD 21-25 CDDCB 二、填空题 1.1.5 2.4 109-? 3. D ld 3 4. 600nm, 0.244mm 5. 1.4 6.1mm 7. 相等 减小 增加 8.油膜前后两个表面反射的光 10.变小 11. n n 2, 4λ λ 12:(1)4000条;(2)0.5mm ;(3)5510m -?。 13.上凸 14. nd D λ 三、计算题 1、杨氏双缝的间距为mm 2.0,距离屏幕为m 1,求:(1)若第一级明纹距离为2.5mm ,求入射光波长。(2)若入射光的波长为6000A o ,求相邻两明纹的间距。 解:(1)由L x k d λ=,有: xd k L λ=,将0.2mm d =,1m L =,1 2.5mm x =,1k =代入,有:3372.5100.210 5.0101m λ---???==?;即波长为:500nm λ=; (2)若入射光的波长为οA 6000,相邻两明纹的间距:7 3 161030.210D x mm d λ--???===?。 2、 用白光照射杨氏双缝,已知d =1.0mm ,D=1.0 m ,设屏无限大。求: (1)λ=500 nm 的光的第四级明纹位置及明纹间距;(2) λ=600 nm 的光理论上在屏上可呈现的最大级数;(3) λ1=500 nm 和λ2=600nm 的光在屏上什么位置开始发生重叠? 解:(1) 明条纹中心位置 D x k d λ=± (0,1,2,k =L ),相邻明条纹的间距为λ?d D x =, 将k =4,λ=500 nm ,d =1.0mm ,D=1.0 m 代入,得mm x 2±=,mm x 5.0=?. (2)从两缝发出的光到达屏幕上某点的形成干涉明纹的光程差应满足λθk d =sin ,

第12章(1) 光的干涉答案

P 1.52 1.75 1.52 图中数字为各处的折射率 图16-23 λ 1.62 1.62 第十六章 光的干涉 一、选择题 【C 】1.(基础训练2)如图16-15所示,平行单色光垂直照射到薄膜上,经上下两表面反射的两束光发生干涉,若薄膜的厚度为e ,并且 n 1 < n 2 > n 3,则两束反射光在相遇点的相位差为 (A ) 2πn 2e /(n 1λ1) (B )[4πn 1e / ( n 2λ1)] + π (C ) [4πn 2e / ( n 1λ1)] + π (D )4πn 2e /( n 1λ1) 解答:[C] 根据折射率的大小关系n 1 < n 2 > n 3,判断,存在半波损失,因此光程 差2/2λδ+=e n 2,相位差πλ πδλ π ??+= = e n 422。 其中λ为光在真空中的波长,换算成介质1n 中的波长即为11λλn =,所以答案选【C 】。 【B 】2.(基础训练6)一束波长为 λ 的单色光由空气垂直入射到折射率为n 的透明薄膜上,透明薄膜放在空气中,要使反射光得到干涉加强,则薄膜的最小厚度为 (A ) λ/4 (B ) λ/(4n) (C ) λ/2 (D ) λ/(2n) 解答:[B] 干涉加强对应于明纹,又因存在半波损失,所以 光程差()()()2/221/4()/4nd k d k n Min d n λλλλ?=+=?=-?= 【B 】3.(基础训练8)用单色光垂直照射在观察牛顿环的装置上。当平凸透镜垂直向上缓慢平移而远离平面玻璃时,可以观察到这些环状干涉条纹 (A ) 向右平移 (B ) 向中心收缩 (C ) 向外扩张 (D ) 静止不动 (E ) 向左平移 解答:[B] 中央条纹级次最低,随着平凸镜缓慢上移,中央条纹的级次增大即条纹向中心收缩。 【A 】4.(基础训练9)两块平玻璃构成空气劈形膜,左边为棱边,用单色平行光垂直入射。若上面的平玻璃以棱边为轴,沿逆时针方向作微小转动,则干涉条纹的()。 (A )间隔变小,并向棱边方向平移; (B )间隔变大,并向远离棱边方向平移; (C )间隔不变,向棱边方向平移; (D )间隔变小,并向远离棱边方向平移。 解答: [A] 当逆时针方向作微小转动,则劈尖角θ增大,由条纹的间距公式θ λ ?sin 2L = 可知间距变小; 又因为劈棱处干涉级次最低,而随着膜厚增加,干涉级次越来越大,所以波板转逆向转动时,条纹向棱边移动。 【D 】5.(自测提高5)在如图16-23所示的由三种透明材料构成的牛顿环装置中,用单色光垂直照射,在反射光中看到干涉条纹,则在接触点P 处形成的圆斑为() (A )全暗 (B )全明 (C )右半部明,左半部暗 (D )右半部暗,左半部明 解答:[D] 对左半边而言,介质折射率1.52<1.62<1.75,没有半波损失,因此,出现明 纹;对右半边而言,介质折射率1.52<1.62>1.52,产生半波损失, 因此, 出现暗纹。 图16-22 e n 1 n 2 n 3 λ1

光的干涉总结汇总

1. 光的干涉现象:在两束光相叠加的区域内,光的强度有一个 相干光。 2.单色光:频率(或波长)一定的光。 3. 相干光的必要条件:同频率、同振向、同相位或位相差恒定。 充分条件:(1)两光源距离相干点的位相差不能太大; (2)两光矢量的振幅相差不能太大。 4. 获取相干光的两种方法: (1)分波阵面法:杨氏双缝干涉实验。 (2)分振幅法:等倾干涉;等厚干涉。 5.光程=nr。 6. 位相差 2π φδ λ ?=, 其中:δ=光程差;λ=真空中的波长。 7. 光疏介质:折射率n小者; 光密介质:折射率n大者。 8. 半波损失:当光由光疏介质垂直入射到光密介质时,反射波相对于入射波有半波损失。 9.杨氏双缝干涉实验: (1)光程差

21d r r x D δ=-=(介质:21()d n r r nx D δ=-=) 其中:1r 与2r 为两缝到干涉点的几何距离;D 为双缝到 屏幕的距离;d 为两缝间的距离;x 为干涉点到中央明纹中心线的距离。 (2)明纹距离中央明纹中心线的距离 (:),(0,1,2,..........)D D x k k k d nd λλ==±±介质 (3)暗纹距离中央明纹中心线的距离 (21)(:(21)),(0,1,2,..........)22 D D x k k k d nd λλ=++=±±介质 (4)相邻明纹或暗纹之间的距离为 1(:)k k D D x x x d nd λλ+?=-=介质 (5)于白光入射,第k 级光谱的宽度(由紫到红彩色条带的 宽度)为 ()[:()]k k k D D x x x k k d nd λλλλ?=-=--紫紫紫介红红红质 10. 薄膜干涉(分振幅干涉法):等倾干涉+等厚干涉 等厚干涉:劈尖干涉+牛顿环干涉 11. 等倾干涉: ,1,2,3,......()22(21),0,1,2,.....()2k k k k λλ δλ=??=+=?+=??干涉加干涉弱强减 干涉条纹为一系列同心环,内疏外密,且

第二章.光的干涉习题和答案解析

λ d r y 0=?第一章 光的干涉 ●1.波长为nm 500的绿光投射在间距d 为cm 022.0的双缝上,在距离cm 180处的光屏上形成干涉条纹,求两个亮条纹之间的距离.若改用波长为nm 700的红光投射到此双缝上,两个亮条纹之间的距离又为多少?算出这两种光第2级亮纹位置的距离. 解:由条纹间距公式 λ d r y y y j j 0 1= -=?+ 得: cm 328.0818.0146.1cm 146.1573.02cm 818.0409.02cm 573.010700022.0180cm 409.010500022.018021222202221022172027101=-=-=?=?===?===??==?=??== ?--y y y d r j y d r j y d r y d r y j λλλλ ●2.在杨氏实验装置中,光源波长为nm 640,两狭缝间距为mm 4.0,光屏离狭缝的距离为 cm 50.试求:(1)光屏上第1亮条纹和中央亮条纹之间的距离;(2)若p 点离中央亮条纹 为mm 1.0,问两束光在p 点的相位差是多少?(3)求p 点的光强度和中央点的强度之比. 解:(1)由公式: 得 λd r y 0=? =cm 100.8104.64.05025--?=?? (2)由课本第20页图1-2的几何关系可知 52100.01 sin tan 0.040.810cm 50 y r r d d d r θθ--≈≈===?

5 21522()0.8106.4104 r r π ππ?λ --?= -= ??= ? (3) 由公式 22 22 121212cos 4cos 2I A A A A A ? ??=++?= 得 8536.04 2224cos 18cos 0cos 421cos 2 cos 42cos 42220 2212 212020=+=+= =??=??= =π ππ??A A A A I I p p ●3. 把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所 在的位置为中央亮条纹,试求插入的玻璃片的厚度.已知光波长为6×10-7 m. 解:未加玻璃片时,1S 、2S 到P 点的光程差,由公式2r ?π λ??= 可知为 Δr =215252r r λ πλπ-= ??= 现在 1S 发出的光束途中插入玻璃片时,P 点的光程差为 ()210022r r h nh λλ ?ππ'--+= ?=?=???? 所以玻璃片的厚度为 421510610cm 10.5r r h n λ λ--= ===?- 4. 波长为500nm 的单色平行光射在间距为0.2mm 的双狭缝上.通过其中一个缝的能量为另一个的2倍,在离狭缝50cm 的光屏上形成干涉图样.求干涉条纹间距和条纹的可见度. 解: 60500 50010 1.250.2r y d λ-?= =??=mm 122I I = 22 122A A = 1 2A A =

光的干涉基本原理

第三章 光的干涉 § 3.1 两列单色波的干涉花样 一.两个点光源的干涉 球面波,在场点P 相遇,则有 )2cos( )cos(01111011111?ωλ π ?ωψ+-=+-=t r n A t r k A )2cos( )cos(022********?ωλ π ?ωψ+-=+-=t r n A t r k A 可设初位相均为零,则位相差 -= ?22(2r n λ π ?)11r n 光程差 1122r n r n -=δ 在真空中 )(212r r -=?λ π ? 干涉相长: r (2λπ 2)1r -πj 2= 即λδj r r =-=12 干涉相消: 2(2r λπ)1r -π)12(+=j 即=-=12r r δ2 )12(λ+j j=0,±1,±2,±3,±4,……被称做干涉级数。 亮条纹和暗条纹在空间形成一系列双叶旋转双曲面。在平面接收屏上为一组双曲线,明暗交错分布。干涉条纹为非定域的,空间各处均可见到。

对于距离为d 的两个点源的干涉,如果物点和场点都满足近轴条件,则两点发出的光波在屏上的复振幅分别为 )2ex p(]}2)2/([ex p{),(~ 2221x D ikd D y x d D ik D A y x U '-'+'++='' )2ex p(]}2)2/([ex p{),(~ 2222x D ikd D y x d D ik D A y x U ''+'++='' 合成的复振幅为 = ''+''=''),(~ ),(~),(~21y x U y x U y x U )]2ex p()2]}[ex p(2)2/([ex p{222x D ikd x D ikd D y x d D ik D A '-+'-'+'++ )2cos(]}2)2/([ex p{2222x D kd D y x d D ik D A ''+'++= 强度分布为)2(cos 4)2(cos 4)2(cos 220 22 22x D kd I x D kd D A x D kd D A I '='??? ??='??? ??= 20)(D A I =为从一个孔中出射的光波在屏上的强度。 是一系列等间隔的平行直条纹。间距由π='?x D kd 2决定,为λd D x ='?。

光的干涉基本原理

第三章 光的干涉 § 3.1 两列单色波的干涉花样 一.两个点光源的干涉 球面波,在场点P 相遇,则有 )2cos( )cos(01111011111?ωλ π ?ωψ+-=+-=t r n A t r k A )2cos( )cos(022********?ωλ π ?ωψ+-=+-=t r n A t r k A 可设初位相均为零,则位相差 -= ?22(2r n λ π ?)11r n 光程差 1122r n r n -=δ 在真空中 )(212r r -=?λ π ? 干涉相长: r (2λπ 2)1r -πj 2= 即λδj r r =-=12 干涉相消: 2(2r λπ)1r -π)12(+=j 即=-=12r r δ2 )12(λ+j

j=0,±1,±2,±3,±4,……被称做干涉级数。 亮条纹和暗条纹在空间形成一系列双叶旋转双曲面。在平面接收屏上为一组双曲线, 明暗交错分布。干涉条纹为非定域的,空间各处均可见到。 对于距离为d 的两个点源的干涉,如果物点和场点都满足近轴条件,则两点发出的光波在屏上的复振幅分别为 )2ex p(]}2)2/([ex p{),(~ 2221x D ikd D y x d D ik D A y x U '-'+'++='' )2ex p(]}2)2/([ex p{),(~ 2222x D ikd D y x d D ik D A y x U ''+'++='' 合成的复振幅为 = ''+''=''),(~ ),(~),(~21y x U y x U y x U )]2ex p()2]}[ex p(2)2/([ex p{222x D ikd x D ikd D y x d D ik D A '-+'-'+'++ )2cos(]}2)2/([ex p{2222x D kd D y x d D ik D A ''+'++= 强度分布为)2(cos 4)2(cos 4)2( cos 22022 22x D kd I x D kd D A x D kd D A I '='?? ? ??='??? ??=

第12章(1)-光的干涉答案

图中数字为各处的折射率 图16-23 一、选择题 【C 】1.(基础训练2)如图16-15 所示,平行单色光垂直照射到薄膜上,经上下两表面反射的两束光发生干涉,若薄膜的厚度为e ,并且 n 1 < n 2 > n 3,则两束反射光在相遇点的相位差为 (A ) 2πn 2e /(n 1λ1) (B )[4πn 1e / ( n 2λ1)] + π (C ) [4πn 2e / ( n 1λ1)] + π (D )4πn 2e /( n 1λ1) 解答:[C] 根据折射率的大小关系n 1 < n 2 > n 3,判断,存在半波损失,因此光程 差2/2λδ+=e n 2,相位差πλ πδλ π ??+= = e n 422。 其中λ为光在真空中的波长,换算成介质1n 中的波长即为11λλn =,所以答案选【C 】。 【B 】2.(基础训练6)一束波长为 λ 的单色光由空气垂直入射到折射率为n 的透明薄膜上,透明薄膜放在空气中,要使反射光得到干涉加强,则薄膜的最小厚度为 (A ) λ/4 (B ) λ/(4n) (C ) λ/2 (D ) λ/(2n) 解答:[B] 干涉加强对应于明纹,又因存在半波损失,所以 光程差()()()2/221/4()/4nd k d k n Min d n λλλλ?=+=?=-?= 【B 】3.(基础训练8)用单色光垂直照射在观察牛顿环的装置上。当平凸透镜垂直向上缓慢平移而远离平面玻璃时,可以观察到这些环状干涉条纹 (A ) 向右平移 (B ) 向中心收缩 (C ) 向外扩张 (D ) 静止不动 (E ) 向左平移 解答:[B] 中央条纹级次最低,随着平凸镜缓慢上移,中央条纹的级次增大即条纹向中心收缩。 【A 】4.(基础训练9)两块平玻璃构成空气劈形膜,左边为棱边,用单色平行光垂直入射。若上面的平玻璃以棱边为轴,沿逆时针方向作微小转动,则干涉条纹的()。 (A )间隔变小,并向棱边方向平移; (B )间隔变大,并向远离棱边方向平移; (C )间隔不变,向棱边方向平移; (D )间隔变小,并向远离棱边方向平移。 解答: [A] 当逆时针方向作微小转动,则劈尖角θ增大,由条纹的间距公式θ λ ?sin 2L = 可知间距变小; 又因为劈棱处干涉级次最低,而随着膜厚增加,干涉级次越来越大,所以波板转逆向转动时,条纹向棱边移动。 【D 】5.(自测提高5)在如图16-23所示的由三种透明材料构成的牛顿环装置中,用单色光垂直照射,在反射光中看到干涉条纹,则在接触点P 处形成的圆斑为() (A )全暗 (B )全明 (C )右半部明,左半部暗 (D )右半部暗,左半部明 解答:[D] 对左半边而言,介质折射率1.52<1.62<1.75,没有半波损失,因此,出现明 纹;对右半边而言,介质折射率1.52<1.62>1.52,产生半波损失, 因此, 出现暗纹。 图16-22 n 3

光的干涉基本原理

第三章 光的干涉 § 3.1 两列单色波的干涉花样 一.两个点光源的干涉 球面波,在场点P 相遇,则有 可设初位相均为零,则位相差 光程差 1122r n r n -=δ 在真空中 )(212r r -= ?λπ? 干涉相长: r (2λ π2)1r -πj 2= 即λδj r r =-=12 干涉相消: 2(2r λπ)1r -π)12(+=j 即=-=12r r δ2 )12(λ+j j=0,±1,±2,±3,±4,……被称做干涉级数。 亮条纹和暗条纹在空间形成一系列双叶旋转双曲面。在平面接收屏上为一组双曲线,明暗交错分布。干涉条纹为非定域的,空间各处均可见到。 对于距离为d 的两个点源的干涉,如果物点和场点都满足近轴条件,则两点发出的光波在屏上的复振幅分别为 合成的复振幅为 强度分布为)2(cos 4)2(cos 4)2(cos 22022 22x D kd I x D kd D A x D kd D A I '='?? ? ??='??? ??= 20)(D A I =为从一个孔中出射的光波在屏上的强度。 是一系列等间隔的平行直条纹。间距由π='?x D kd 2决定,为λd D x ='?。 二.两个线光源的干涉(双缝干涉) 在接收屏上,为相互平行的直条纹,明暗交错。满足近轴条件时, =-12r r θd , θ0r x =d r 0=)(12r r - 则亮条纹在 λd r j x 0=处 暗条纹在 2 )12(0λd r j x +=处

亮(暗)条纹间距 λd r x 0=? 如两列波初位相不为零,则条纹形状不变,整体沿X 向移动。 如光源和接收屏之间充满介质,因为n d D j kd D j x λπ =='2,则条纹间距为n d r x λ0=? , n 为折射率。 干涉条纹为非定域的,接收屏在各处均可看到条纹。 三.干涉条纹的反衬度(可见度) 反衬度的定义:在接收屏上一选定的区域中,取光强最大值和最小值,有 而 221221)(,)(A A I A A I m M -=+= 则有 2221212A A A A +=γ22121 )(12 A A A A +=, 当A 1=A 2时,γ=1;当A 1<>A 2时,即A 1、A 2相差悬殊时,γ=0。 记I 0=I 1+I 2,则条纹亮度可表示为 四.两束平行光的干涉 两列同频率单色光,。振幅分别为A 1,A 2;初位相为10?,20?,方向余弦角为(111,,γβα), (222,,γβα) 在Z=0的波前上的位相为, 位相差)()cos (cos )cos (cos ),(10201211??ββαα?-+-+-=?y k x k y x (x ,y )处的强度为 可得干涉条纹 )()cos (cos )cos (cos ),(10201211??ββαα?-+-+-=?y k x k y x =? ??+ππ)12(2j j 即亮、暗条纹都是等间隔的平行直线,形成平行直线族,斜率为 条纹间隔为

第12章(1) 光的干涉答案

图中数字为各处的折射率 一、选择题 【C 】1.(基础训练2)如图16-15 所示,平行单色光垂直照射到薄膜上,经上下两表面反射的两束光发生干涉,若薄膜的厚度为e ,并且 n 1 < n 2 > n 3,则两束反射光在相遇点的相位差为 (A ) 2πn 2e /(n 1λ1) (B )[4πn 1e / ( n 2λ1)] + π (C ) [4πn 2e / ( n 1λ1)] + π (D )4πn 2e /( n 1λ1) 解答:[C] 根据折射率的大小关系n 1 < n 2 > n 3,判断,存在半波损失,因此光程 差2/2λδ+=e n 2,相位差πλ πδλ π ??+= = e n 422。 其中λ为光在真空中的波长,换算成介质1n 中的波长即为11λλn =,所以答案选【C 】。 【B 】2.(基础训练6)一束波长为 λ 的单色光由空气垂直入射到折射率为n 的透明薄膜上,透明薄膜放在空气中,要使反射光得到干涉加强,则薄膜的最小厚度为 (A ) λ/4 (B ) λ/(4n) (C ) λ/2 (D ) λ/(2n) 解答:[B] 干涉加强对应于明纹,又因存在半波损失,所以 光程差()()()2/221/4()/4nd k d k n Min d n λλλλ?=+=?=-?= 【B 】3.(基础训练8)用单色光垂直照射在观察牛顿环的装置上。当平凸透镜垂直向上缓慢平移而远离平面玻璃时,可以观察到这些环状干涉条纹 (A ) 向右平移 (B ) 向中心收缩 (C ) 向外扩张 (D ) 静止不动 (E ) 向左平移 解答:[B] 中央条纹级次最低,随着平凸镜缓慢上移,中央条纹的级次增大即条纹向中心收缩。 【A 】4.(基础训练9)两块平玻璃构成空气劈形膜,左边为棱边,用单色平行光垂直入射。若上面的平玻璃以棱边为轴,沿逆时针方向作微小转动,则干涉条纹的()。 (A )间隔变小,并向棱边方向平移; (B )间隔变大,并向远离棱边方向平移; (C )间隔不变,向棱边方向平移; (D )间隔变小,并向远离棱边方向平移。 解答: [A] 当逆时针方向作微小转动,则劈尖角θ增大,由条纹的间距公式θ λ ?sin 2L = 可知间距变小; 又因为劈棱处干涉级次最低,而随着膜厚增加,干涉级次越来越大,所以波板转逆向转动时,条纹向棱边移动。 【D 】5.(自测提高5)在如图16-23所示的由三种透明材料构成的牛顿环装置中,用单色光垂直照射,在反射光中看到干涉条纹,则在接触点P 处形成的圆斑为() (A )全暗 (B )全明 (C )右半部明,左半部暗 (D )右半部暗,左半部明 解答:[D] 图16-22 n 3

相关主题
文本预览
相关文档 最新文档