当前位置:文档之家› 近红外光谱技术的介绍

近红外光谱技术的介绍

近红外光谱技术的介绍

民营科技

17

MYKJ

科技论坛

近红外光谱技术的介绍

毛晶

(哈尔滨石化公司质检部,黑龙江哈尔滨150056)

1概述

当前我国已经提出从资源消耗和能源消耗型社会向环保和节约型转变的重大发展战略,即生产与产品质量管理从粗放管理模式向优化与精确控制模式转变,而实现该目标应首先解决质量快速测定技术的问题,因此,发展高效分析检测技术也就成为值得我国相关政府部门,科学研究人员和企业必须

考虑的重要课题之一。其中,

近红外光谱分析技术就是一种非常典型的高效分析技术。为此,以下将高效近红外光谱分析技术及其发展对策进行介绍和讨论。

高效近红外光谱分析技术是在近十几年内发展最快的分析新“巨人”,它具有分析速度快(秒级)和分析效率高的优点。近红外光谱分析仪在几秒或毫秒时间内可同时测量被分析物的十几种质量参数,不仅具有快速高通量分析

的优点,而且使用1台可替代多种其它质量分析仪器,

显著降低了分析设备的投资与维护费用。近红外光谱采用光纤测量技术,实现了对处于危险和苛

刻环境的对象的遥测,广泛用于过程分析。

所以,近红外光谱分析技术对快速分析或实时检测是非常理想的技术手段,是大型石油化工,农业,制药,食品加工等工业生产优化所必须依靠的重要分析技术之一。

为了降低能耗,缩短调和周期,降低劳动强度,提高工作效率,我公司于2009年年末开始了柴油在线调和的实验,目前正处于建立模型、积累数据阶

段。由于近红外光谱包含了C-H ,

O-H ,N-H 以及其他化学键的振动信息,近红外光谱测量方式包括透射、漫反射,可以测量液态和固态样品。所以,近红

外应用的领域范围极其广泛,而在我公司,主要用于油品的辛烷值、

十六烷值、芳烃、含氧化合物、馏程、蒸气压、凝点、闪点、冰点、倾点、粘度、密度、PIO -NA 等的测定。

现将近红外技术简单介绍一下。2近红外光谱技术

2.1近红外光谱技术分析原理。样品的性质如浓度以及各种物化性质均取决于样品的组成。当组成发生变化时,样品的性质如汽油辛烷值发生相应的变化,同时样品的近红外光谱也发生相应的变化。近红外光谱分析通过对样品的性质变化和其对应的近红外光谱变化直接关联,从而建立两者之间的定量或定性关系,由于描述这些关系需要很多参量,因此,又称这种关系为模

型。

使用建立的模型和未知样品光谱可以预测样品的性质。对一种样品可使用同样的建模方法建立多种性质的校正模型。在未知样品分析应用中,可在几秒时间内测量一张近红外光谱,使用已有模型同时预测多种(如十几种)性质。方法具有快速和高效的优点。

2.2近红外光谱分析技术构成。由近红外光谱仪器,化学计量学软件和各种校正模型等组成。近红外光谱仪器作用为提供被测样品的近红外光谱,作为分析的信息载体。化学计量学软件是用于关联光谱和性质的软件工具。而模型则是已经建立的定量或定性的工作曲线,反映样品光谱与性质之间的对应关系。

2.3近红外光谱分析特点。根据经典力学理论和量子力学理论,化合物的近红外光谱产生取决于化学键振动的非谐性。由于含氢基团的非谐性常数最大,它们在近红外光谱中占主导地位。由于大多数有机化合物都含有含氢基

团,近红外光谱分析非常适用分析有机样品。

由于光谱仪器,特别是测量附件技术的发展,近红外光谱仪已经能够非常方便和快速地测量固体样品,液体样品,均匀的和非均匀的样品,低温或高温下的样品,强酸和强碱等样品的光谱。因此,近红外光谱分析技术被广泛用于石油,化工,农业,医药,食品,烟草,水果等工业领域中。一般,化合物近红外光谱谱带很宽,不同含氢基团的

谱带之间重叠严重。

由于不同信息之间的严重重叠现象使得传统光谱分析依靠的单元变量回归方法已经不再适用。因此,近红外光谱分析必须依靠现代化学计量学中多元校正的复杂技术。化合物在近红外光谱中的信息相对中红外光谱是微弱的,各种干扰信息包括共存组分或仪器,环境等因素产生的干扰,都会对近红外光谱分析结果产生干扰,因此,近红外光谱分析包括了复杂

的信息处理和提取技术的应用。

这些技术也必须在计算机上完成。可以说,近红外光谱分析技术是一种先进的信息测量和信息处理技术。另外,近红外光谱分析具有无损测量,无需样品前处理,操作方便的优点。正是上述特点赋予了近红外光谱分析技术光彩夺目的魅力,越来越引起世界各国对此技术发展

和应用的高度重视。

3国内外技术现状与分析

国际上发达国家十分重视该技术研制与开发及其应用,开发出很多种产

品,并广泛用于各个领域,取得了可观的经济和社会效益。国际上,

自上世纪90年代初,在线近红外光谱在炼油和化工过程中的应用发展得很快,广泛用

于油品调合、

原油蒸馏、催化裂化、催化重整、润滑油、乙烯裂解、加氢裂化和石油化工等主要工艺。根据近红外光谱实时提供的原料、各馏出口产物及中

间产物性质,即时调整和优化操作条件,实现对于生产装置的控制和优化。

在农业上广泛用于农产品的质量检验和种植管理;在畜牧领域广泛用于饲料和动物喂养管理;在临床中广泛用于血液和人体代谢的分析与疾病诊断等。总之,该技术已经进入成熟发展期。

国际上许多著名光谱仪器厂家都生产近红外光谱仪器,还有些仪器厂家和专业软件公司提供化学计量学专用软件产品。目前光谱仪器,按照分光原

理分为固定波长滤光片型、

光栅扫描型、傅立叶变换型,固体阵列检测型和声光过滤型。根据用途又分为便携式、

实验室台式、和在线分析仪。在硬件技术方面,国内在阵列固定光路仪器制造技术上具有一定的技术基础和实践经验,在仪器性能,可加工性,材料来源和价格控制等方面,发展阵列型光谱仪比其他类型仪器具有较多的优势。而样品前处理在

在线分析系统中价格所占比重很高,高达50%以上,

国内在加工和总集成成本方面具有明显的优势。但是,我国在阵列检测器,分束器材料,光谱用光纤以及某些精密光学调制技术还不能自给,某些器件如长波阵列检测器在某些应用仍然受技术输出国的技术限制条款以及价格方面的约束,其他类型技术产品很少。

在软件技术方面,我国在化学计量学研究领域居于前沿水平,编制符合

我国用户习惯的专用化学计量学软件是国内的发展趋势。

特别注重了阵列型仪器的模型传递技术的开发,石油化工科学研究院在这方面积累了丰富的经验。

我国在阵列型近红外光谱仪的研发方面已具备了一定的理论和实践基础,在设计加工和组织生产方面积累了丰富经验,培养一批技术研发人才。目前近红外光谱分析技术作用和发展前景在我国各个行业中已经得到了基本认可,为今后的发展创造了良好的条件。4展望与建议

4.1我国近红外光谱分析发展前景光明。随着我国工业生产水平和生活水准的不断提高,最终近红外技术的应用也象发达国家的一样。正因为如此,目前国外各大近红外光谱分析仪器厂家都看好中国市场,纷纷投入了大量人力和物力,争夺中国的巨大市场。就炼厂而言,常、减压蒸馏、催化裂化、各种产品调和工艺,还有加氢和重整等工艺都非常需要在线NIR ,每套装置至少需要一套在线近红外过程分析仪,按此预计我国石化需要几千套。同样,化工工业也有类似情况。

虽然目前国产近红外产品品种不多,但是,无论实验室型分析仪还是在线分析仪都在工业上的得到较为广泛的应用,特别在石化工业的重整,汽油调和,乙烯工业等大型炼油和化工装置上获得了应用。从仪器生产,技术应用,到售后技术服务初步形成了一套合理的发展模式,为近红外分析技术可持续发展创造了良好的氛围。在我国已经形成了近红外分析技术产业的雏形,具有良好的发展趋势。4.2发展建议。综上所述,近红外光谱分析技术应当首先列入我国今后重点开发的分析技术计划之中。国家和相关行业应当对技术开发给予足够的资金和政策进行必要的支持。支持的重点包括两个方面:

1)技术平台开发:即光谱仪的核心技术如阵列检测技术,傅立叶分光技术,声光调制技术,光纤耦合技术,样品前处理技术,测样附件技术,电子控制技术,化学计量学软件技术,模型库应用网络技术等。

2)模型库建立:与其他分析技术不同,近红外光谱分析技术的成套性很强,即硬件,软件和应用模型三部分必须有机结合,缺一不可。近红外光谱分析技术开发属于涉及多学科(光谱学,化学,数学,计算机和精密仪器等)和跨多行业(精密仪器制造,软件,分析研究和应用单位)的大型科学研究开发工程。所以近红外光谱分析技术发展应考虑其技术自身的特点。

摘要:柴油在线调和实验在我公司开始运行,对在线调和装置的核心仪器———近红外分析仪进行简单的介绍。

关键词:近红外光谱技术;现状;发展

近红外光谱分析及其应用简介

近红外光谱分析及其应用简介 1、近红外光谱分析及其在国际、国内分析领域的定位 近红外光谱分析是将近红外谱区(800-2500nm)的光谱测量技术、化学计量学技术、计算机技术与基础测试技术交叉结合的现代分析技术,主要用于复杂样品的直接快速分析。近红外分析复杂样品时,通常首先需要将样品的近红外光谱与样品的结构、组成或性质等测量参数(用标准或认可的参比方法测得的),采用化学计量学技术加以关联,建立待测量的校正模型;然后通过对未知样品光谱的测定并应用已经建立的校正模型,来快速预测样品待测量。 近红外光谱分析技术自上世纪60年代开始首先在农业领域应用,随着化学计量学与计算机技术的发展,80年代以来逐步受到光谱分析学家的重视,该项技术逐渐成熟,90年代国际匹茨堡会议与我国的BCEIA等重要分析专业会议均先后把近红外光谱分析与紫外、红外光谱分析等技术并列,作为一种独立的分析方法;2000年PITTCON 会议上近红外光谱方法是所有光谱法中最受重视的一类方法,这种分析方法已经成为ICC(International Association for Cereal Science and Technology国际谷物科技协会)、AOAC(American Association of Official Analytical Chemists美国公职化学家协会)、AACC (American Association of Cereal Chemists美国谷物化学家协会)等行业协会的标准;各发达国家药典如USP(United States Pharmacopoeia美国药典)均收入了近红外光谱方法;我国2005年版的药典也将该方法收入。在应用方面近红外光谱分析技术已扩展到石油化工、医药、生物化学、烟草、纺织品等领域。发达国家已经将近红外方法做为质量控制、品质分析和在线分析等快速、无损分析的主要手段。 我国对近红外光谱技术的研究及应用起步较晚,上世纪70年代开始,进行了近红外光谱分析的基础与应用研究,到了90年代,石化、农业、烟草等领域开始大量应用近红外光谱分析技术,但主要是依靠国外大型分析仪器生产商的进口仪器。目前国内能够提供完整近红外光

红外光谱分析概述

红外光谱分析概述(上) 1.红外光谱 红外光谱是反映红外辐射强度或其他与之相关性质随波长(波数)变化的谱图。目前,它是一种被广泛应用于研究表征物质的化学组成,在分子层次上的结构及分子间相互作用的有力手段。红外射线发现于1800年,在用普通温度计测量可见光谱的温度效应时,在红光一端的外侧观察到有较强的热效应。后来,实验证实了这是由一种肉眼看不见、波长比红光更长的电磁辐射所造成的,这种电磁辐射被称为红外光。通常将红外辐射的波长范围定为0.8~1000微米,并可粗略地分为三个波段:(1)近红外的波段为0.8~2.5微米,波数为12500~4000厘米-1;(2)中红外的波段为2.5~25微米,波数为4000~400厘米-1;(3)远红外的波段为25~1000微米,波数为400~10厘米,目前,实验上已能测定到2500微米,波数为4厘米-1。相应地有近红外光谱、中红外光谱和远红外光谱。 红外光谱的形式虽然多种多样,从本质上可分为发射光谱和吸收光谱两大类。物体的红外发射光谱是指样品在通过受激或自发辐射的条件下,所发射的红外光的强度随波长(波数)变化的光谱图,红外发射光谱主要决定于物体的温度和化学组成。吸收光谱是指样品对红外辐射的吸收能力随波长(波数)变化的光谱图,在实验上,使红外光与样品发生相互作用,测定红外光与物质相互作用前后光强的变化与波长(波数)之间的关系, 称红外吸收光谱。 2.分子的振动和转动光谱 对于分子体系而言,其振动和转动是量子化的,其能级差所对应的光子的波长落在红外光范围,因此是红外光谱(拉曼光谱)的主要研究对象。研究指出,红外光谱的研究范围不仅仅局限于分子的振动、转动跃迁,某些特殊体系的电子能级跃迁亦可能落在红外光谱波段范围内,例如,超大规模共轭体系的电子跃迁、某些稀土离子的f-f能级跃迁等等。不过目前绝大多数的红外光谱研究工作仍集中于分子的振动能级跃迁上,以最简单的双原子为例,其振动吸收Eν可近似地表示为: 式中h为普朗克常数;ν为振动量子数(取正整数);n0为简谐振动频率。当ν=0时,分子的能量最低,称为基态。处于基态的分子受到频率为n0的红外射线照射时,分子吸收了能量为n0的光量子,跃迁到第一激发态,得到频率为n0的红外吸收带, 它称为分子振动的基频。反之,处于该激发态的分子也可发射频率为n0的红外射线而恢复到基态。n0的数值决定于分子的约化质量μ和力常数κ: κ决定于原子的核间距离、原子的特性和化学键及键级等。 在多原子分子体系中,各原子在平衡位置附近作相对运动。这些振动方式可以被分解为各种简正振动的线性组合,所谓简正振动就是指分子中各原子以同一频率、同一相位在平衡位置附近作简揩振动。含N个原子的非线分子有3N-6个简正振动方式;线性分子有3N-5种简正振动方式。 对于分子的转动而言,往往可以假定分子为刚性转子,则其转动能量Er为: 红外光谱分析概述(中)

现代近红外光谱分析仪工作原理

现代近红外光谱分析仪工作原理 现代近红外光谱分析仪工作原理 2011年02月08日 20世纪90年代初,外国厂商开始在我国销售近红外光谱分析仪器产品,但在很长时间内,进展不大,其原因主要是:首先,近红外光谱分析要求光谱仪器、光谱数据处理软件(主要是化学计量学软件)和应用样品模型结合为一体,缺一不可。但被分析样品会由于样品产地的不同而不同,国内外的样品通常有差异,因此,进口仪器的应用模型一般不适合分析国内样品。如果自己建立模型,就需要操作人员了解和熟悉化学计量学知识和软件,而外商在中国的代理机构缺乏这方面的专业人才,不能有效地根据用户的需要组织培训,因此,用户对这项技术缺乏全面了解,影响到了它的推广使用。其次,进口仪器价格昂贵,售后技术服务费用也往往超出大多数用户的承受能力。 现代近红外光谱分析技工作原理 近红外光谱主要是由于分子振动的非谐振性使分子振动从基态向高能级跃迁时产生的。近红外光谱记录的是分子中单个化学键的基频振动的倍频和合频信息,它常常受含氢基团X-H(X-C、N、O)的倍频和合频的重叠主导,所以在近红外光谱范围内,测量的主要是含氢基团X-H振动的倍频和合频吸收。 由于倍频和合频跃迁几率低,而有机物质在NIR光谱区为倍频与合频吸收,所以消光系数弱,谱带重叠严重。因此从近红外光谱中提取有用信息属于弱信息和多元信息,需要充分利用现有的光机技术、电子技术和计算机技术进行处理。计算机技术主要包括光谱数据处理和数据关联技术。光谱数据处理是消除仪器因素(灯及测量方式等)环境因素(如温度等)和样品物态(如颜色、形态等)等对光谱的影响。常采用的方法有平滑、微分、基线漂移扣减、多元散射校正(MSC)和有限脉冲响应滤波(FIR)等也可以用小波变换来进行部分处理。数据关联技术主要是化学计量学方法。化学计量学的发展使多组分分析中多元信息处理理论和技术日益成熟,解决了近红外光谱区重叠的问题。通过关联技术可以实现近红外光谱的快速分析。在近红外光谱的应用中我们所关心的是被测样品的组成或各种物化性质,因此,如何提取这些有用信息是近红外光谱分析的技术核心。现在的许多研究与应用表明,

高光谱遥感技术的发展与展望

高光谱遥感技术的发展与展望 中科院上海技术物理研究所 引言 高光谱遥感技术,又称成像光谱遥感技术,是20世纪最后20年中遥感领域最重要的发展之一,它将传统遥感的成像技术和物理中的光谱分析技术有机结合起来,利用图像和光谱二合一(图谱和一)的优势,在探测物体空间特征的同时,研究地球表层物质特征,识别其类型,进行物质成分分析。十几年来,高光谱成像技术和理论一直是遥感对地观测领域内一个活跃的研究和发展方向,随着本世纪初多个星载高光谱成像仪器的发射和实用化机载商业系统的出现,高光谱遥感图像数据开始进入主流遥感数据源的行列,越来越多的用户将在资源管理、农林矿业调查、环境监测等方面发现其独特的作用。 高光谱遥感技术属于多学科交叉技术,主要由信息获取系统——“成像光谱仪”或“高光谱成像仪”和高光谱图像数据处理系统两大部分组成。成像光谱仪的突出特点是:光谱分辨力高、空间分辨力高,波段数多,数据量大,因此高光谱图像数据包含的地物信息更加丰富,要充分发挥高光谱数据的潜能,必须深刻全面地了解要测量的地表物质的光谱特性及其与高光谱传感器的真实测量值之间的关系,并开发适合高光谱数据特点的严密、精确的数据处理方法和理论。正是高光谱成像设备性能的不断提高和高光谱遥感图像数据处理技术的进步促进了高光谱遥感技术实用化的进程,这两大支撑技术的进一步发展也是该技术的应用能否走向辉煌的保证。 1.高光谱遥感的原理 任何物质都会反射、吸收、透射和辐射电磁波,且不同的物体对不同波长的电磁波的吸收、反射或辐射特性是不同的,物质的这种对电磁波固有的波长特性叫光谱特性,是由物质本身包含的原子、分子与电磁波的关系决定的,因此分析物质的光谱曲线是识别物质的有效手段。遥感成像光谱学所研究的波长范围包括可见光、近红外、短波红外,以及中-热红外波段,在可见光、近红外和短波红外波段,地表物质以反射太阳光能量为主,固体盐矿物质、水体、植被、冰雪、土壤等物质都有诊断性识别信息的特征谱,而在热红外区,地表物质以热辐射为主,其辐射光谱也可以作为矿物岩石等的物质识别的判据[ ]。本文主要介绍反射光的高光谱图像。 反映物质差别的特征光谱的吸收峰或反射峰的宽度一般在5~50nm左右[ ],且越精细的物质分类需要越高的光谱分辨力,而传统的多光谱遥感数据源的光谱分辨力(几十到几百nm)显然无法满足需要,必须采用高光谱图像数据,例如图1为三条光谱曲线,分别属于健康叶面,病害叶面和松软土地,其中土地和叶面的光谱差别很大,利用多光谱数据就可以区分,而两种状况的叶面光谱差别比较小,只能利用光谱分辨力更高的数据才能区分。目前国际上典型的高光谱成像仪,包括我国上海技术物理研究所研制高光谱成像仪的光谱分辨力都优于5-20nm,基本满足地物分类的要求。 图1 光谱曲线与相应的地物波长 反射率

遥感技术综述

遥感技术综述 遥感是指非接触的,远距离的探测技术。一般指运用传感器/遥感器对物体的电磁波的辐射、反射特性的探测,并根据其特性对物体的性质、特征和状态进行分析的理论、方法和应用的科学技术。遥感技术是从人造卫星、飞机或其他飞行器上收集地物目标的电磁辐射信息,判认地球环境和资源的技术。它是60年代在航空摄影和判读的基础上随航天技术和电子计算机技术的发展而逐渐形成的综合性感测技术。任何物体都有不同的电磁波反射或辐射特征。 一、遥感技术的基本内容 遥感可按数据获取、处理、分析和应用的整个过程中的主要内容分类。遥感技术包括五个方面的内容: 传感器研制、数据获取、数据处理、信息提取和遥感应用。从这几方面的内容可见,遥感是一个多学科交叉的产物。 二、遥感技术的应用 遥感技术已广泛应用于农业、林业、地质、海洋、气象、水文、军事、环保等领域。在未来的十年中,预计遥感技术将步入一个能快速,及时提供多种对地观测数据的新阶段。遥感图像的空间分辨率,光谱分辨率和时间分辨率都会有极大的提高。其应用领域随着空间技术发展,尤其是地理信息系统和全球定位系统技术的发展及相互渗透,将会越来越广泛。 1、在地质找矿中的应用 遥感地质找矿是遥感信息获取含矿信息提取以及含矿信息成矿分析与应用的过程。(1) 遥感岩石矿物识别 遥感岩矿识别技术非常适宜于植被稀少基岩裸露区的区域性地质。 (2) 矿化蚀变信息提取 矿化蚀变信息提取技术对于地质工作程度低的西部地区在一定程度上相当于区域化探扫面的功效,具体运用时应注意多种矿化蚀变信息提取方法的结合。 (3) 地质构造信息提取 (4) 植被波谱特征的找矿应用 高植被覆盖区遥感地质找矿可以结合植物波谱信息和植物地球化学方法来进行实践证明,对寻找隐伏矿床卓有成效但目前仍主要处于研究阶段。 2、在土地荒漠化监测中的应用 20世纪70年代,国外开始使用遥感技术进行土地荒漠化的监测。如阿根廷完全基于遥感手段对土地荒漠化的状态进行了评估;Tripathy等利用MSS和印度资源卫星(IRS)数据对印度古尔伯加的土地荒漠化进行了评价;Michael等应用遥感技术结合土地荒漠化的理论,通过对荒漠化动态变化规律的监测编制土地退化野外调查手册。我国从20世纪70年代开始利用国外卫星数据进行资源调查和灾害环境的监测80年代初期开始运用遥感技术进行有关土地荒漠化的资源调查 三、遥感科学技术的发展趋势 随着科学技术的进步,光谱信息成像化,雷达成像多极化,光学探测多向化,地学分析智能化,环境研究动态化以及资源研究定量化,大大提高了遥感技术的实时性和运行性,使其向多尺度、多频率、全天候、高精度和高效快速的目标发展。

近红外光谱分析原理

近红外光(Near Infrared,NIR)是介于可见光(VIS)和中红外光(M IR)之间的电磁波,按ASTM(美国试验和材料检测协会)定义是指波长在780~2526nm范围内的电磁波,习惯上又将近红外区划分为近红外短波(780~1100nm)和近红外长波(1100~2526nm)两个区域。 近红外光谱属于分子振动光谱的倍频和主频吸收光谱,主要是由于分子振动的非谐振性使分子振动从基态向高能级跃迁时产生的,具有较强的穿透能力。近红外光主要是对含氢基团X-H(X=C、N、O)振动的倍频和合频吸收,其中包含了大多数类型有机化合物的组成和分子结构的信息。由于不同的有机物含有不同的基团,不同的基团有不同的能级,不同的基团和同一基团在不同物理化学环境中对近红外光的吸收波长都有明显差别,且吸收系数小,发热少,因此近红外光谱可作为获取信息的一种有效的载体。近红外光照射时,频率相同的光线和基团将发生共振现象,光的能量通过分子偶极矩的变化传递给分子;而近红外光的频率和样品的振动频率不相同,该频率的红外光就不会被吸收。因此,选用连续改变频率的近红外光照射某样品时,由于试样对不同频率近红外光的选择性吸收,通过试样后的近红外光线在某些波长范围内会变弱,透射出来的红外光线就携带有机物组分和结构的信息。通过检测器分析透射或反射光线的光密度,就可以确定该组分的含量。

近红外光谱分析技术包括定性分析和定量分析,定性分析的目的是确定物质的组成与结构,而定量分析则是为了确定物质中某些组分的含量或是物质的品质属性的值。与常用的化学分析方法不同,近红外光谱分析法是一种间接分析技术,是用统计的方法在样品待测属性值与近红外光谱数据之间建立一个关联模型(或称校正模型,Calibration Mode l)。因此在对未知样品进行分析之前需要搜集一批用于建立关联模型的训练样品(或称校正样品,Calibration Samples),获得用近红外光谱仪器测得的样品光谱数据和用化学分析方法(或称参考方法,Reference method)测得的真实数据。 其工作原理是,如果样品的组成相同,则其光谱也相同,反之亦然。如果我们建立了光谱与待测参数之间的对应关系(称为分析模型),那么,只要测得样品的光谱,通过光谱和上述对应关系,就能很快得到所需要的质量参数数据。分析方法包括校正和预测两个过程: (1)在校正过程中,收集一定量有代表性的样品(一般需要80个样品以上),在测量其光谱图的同时,根据需要使用有关标准分析方法进行测量,得到样品的各种质量参数,称之为参考数据。通过化学计量学对光谱进行处理,并将其与参考数据关联,这样在光谱图和其参考数据之间建立起一一对应映射关系,通常称之为模型。虽然建立模型所使

近红外光谱技术在药物分析中的应用

近红外光谱技术在药物分析中的应用 1·前言 近红外光谱分析技术是分析化学领域迅猛发展的高新分析技术,越来越引起国内外分析专家的注目,在分析化学领域被誉为分析“巨人”,它的出现可以说带来了又一次分析技术的革命。 近红外(NIR)谱区是人类认识最早的非可见光谱区,波长范围在0.75—2.5 m之间,用波数表示时则在13330—4000cm-1之间。由于近红外的吸收谱带复杂,谱峰重叠,信号弱,在分析上难以应用,长期以来没有受到人们的重视。近十多年来,随着近红外仪器的改良,新的光谱理论和光度分析方法的建立,特别是计算机技术和化学计量学的广泛应用和迅速发展,使近红外光谱技术成为目前发展最快、最引人注目的分析技术,并以其简单快速、实时在线、无损伤无污染分析等特点,在复杂物质的分析上得到广泛应用。在包括制糖和制药的许多与化学分析和品质管理有关的行业中的应用前景极其广阔。 关于近红外光谱技术在制药行业中应用的文献报道越来越多,显示了近红外光谱技术在制药领域中越来越受到人们的重视。近红外光谱分析具有的快速实时、操作简单、无损伤测定、不受样品状态影响的特点很符合药物分析的要求。因此,在制药业中原料药的分析、药物制剂中水分、有效成分的分析、药物生产品质的过程控制等方面近红外光谱技术得到了十分广泛的应用。 2·光谱介绍 近红外光是介于可见光和中红外光之间的电磁波,根据ASTM(美国试验和材料检测协会)定义是指波长在780~2526nm范围内的电

磁波,习惯上又将近红外区划分为近红外短波(780~1100nm)和近红外长波(1100~2526nm)两个区域。 近红外光谱属于分子振动光谱的倍频和主频吸收光谱,主要是由于分子振动的非谐振性使分子振动从基态向高能级跃迁时产生的,具有较强的穿透能力。近红外光主要是对含氢基团X-H(X=C、N、O)振动的倍频和合频吸收,其中包含了大多数类型有机化合物的组成和分子结构的信息。由于不同的有机物含有不同的基团,不同的基团有不同的能级,不同的基团和同一基团在不同物理化学环境中对近红外光的吸收波长都有明显差别,且吸收系数小,发热少,因此近红外光谱可作为获取信息的一种有效的载体。近红外光照射时,频率相同的光线和基团将发生共振现象,光的能量通过分子偶极矩的变化传递给分子;而近红外光的频率和样品的振动频率不相同,该频率的红外光就不会被吸收。因此,选用连续改变频率的近红外光照射某样品时,由于试样对不同频率近红外光的选择性吸收,通过试样后的近红外光线在某些波长范围内会变弱,透射出来的红外光线就携带有机物组分和结构的信息。通过检测器分析透射或反射光线的光密度,就可以确定该组分的含量。 3·近红外光谱技术在制药业中的应用 3·1 原料和活性组分的测定 药物加工过程中第一步就是原料的鉴定,其质量的好坏直接决定后续加工过程的成败于否,而同一类型的原料中多变因素主要是湿度和颗粒大小,近红外光谱在湿度测定中的灵敏度及其适于固体表面的表征的特性,使他能够很快地得到样品的湿度和颗粒大小的信息,然

高光谱遥感技术及发展

遥感技术与系统概论 结课作业 高光谱遥感技术及发展

高光谱遥感技术及发展 摘要:经过几十年的发展,无论在遥感平台、遥感传感器、还是遥感信息处理、遥感应用等方面,都获得了飞速的 发展,目前遥感正进入一个以高光谱遥感技术、微波遥感技 术为主的时代。本文系统地阐述了高光谱遥感技术在分析技 术及应用方面的发展概况,并简要介绍了高光谱遥感技术主 要航空/卫星数据的参数及特点。 关键词:高光谱,遥感,现状,进展,应用 一、高光谱遥感的概念及特点 遥感是20 世纪60 年代发展起来的对地观测综合性技术,是指应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术[1]。所谓高光谱遥感,即高光谱分辨率遥感,指利用很多很窄的电磁波波段(通常<10nm)从感兴趣的物体获取有关数据;与之相对的则是传统的宽光谱遥感,通 常>100nm,且波段并不连续。高光谱图像是由成像光谱仪获取的,成像光谱仪为每个像元提供数十至数百个窄波段光谱信息,产生一条完整而连续的光谱曲线。它使本来在宽波段遥感中不可

探测的物质,在高光谱中能被探测。 同其它传统遥感相比,高光谱遥感具有以下特点: ⑴波段多。成像光谱仪在可见光和近红外光谱区内有数十甚至数百个波段。 ⑵光谱分辨率高。成像谱仪采样的间隔小,一般为10nm 左右。精细的光谱分辨率反映了地物光谱的细微特征。 ⑶数据量大。随着波段数的增加,数据量呈指数增加[2]。 ⑷信息冗余增加。由于相邻波段的相关性高,信息冗余度增加。 ⑸可提供空间域信息和光谱域信息,即“图谱合一”,并且由成像光谱仪得到的光谱曲线可以与地面实测的同类地物光谱曲线相类比。近二十年来,高光谱遥感技术迅速发展,它集探测器技术、精密光学机械、微弱信号检测、计算机技术、信息处理技术于一体,已成为当前遥感领域的前沿技术。 二、发展过程 自80 年代以来,美国已经研制了三代高光谱成像光谱仪。1983 年,第一幅由航空成像光谱仪

近红外光谱

近红外光谱在果蔬品质无损检测中的应用研究进展 摘要 本论文介绍了近红外光谱无损检测机理,近红外光谱在果实品质的定量分析和定性分析的研究概况,并对近红外光谱对果实品质无损检测存在问题及前景做了简单的分析。 关键词 无损检测;近红外光谱;内部品质;果蔬 1 引言 1.1 果蔬无损检测研究概况 果蔬品质主要是指果蔬形态、颜色、密度、硬度以及含糖量、水分、酸度、病变等。果蔬品质检测技术作为保障果蔬质量、提升产品市场竞争力的一种手段,可以分为有损检测和无损检测两种。有损检测一般需要借助传统的化学分析测定方法或是现代仪器分析方法( 如高效液相色谱分析、气相色谱分析、质谱分析等) ,测定过程比较烦琐、人力物力耗费大、检测成本非常高。无损检测又称为非破坏性检测,是利用果蔬的物理性质,如力学性质、热学性质、电学性质、光学性质和声学性质等,在获取样品信息的同时保证了样品的完整性,检测速度较传统的化学方法迅速,且能有效地判断出从外观无法获得的样品内部品质信息。目前,果蔬品质与安全的无损检测技术主要包括: 光谱分析技术、光谱成像技术、机器视觉技术、介电特性检测技术、声学特性及超声波检测技术、力学检测技术、核磁共振检测技术、生物传感器技术、电子鼻与电子舌技术等等。针对不同的检测对象和检测指标,这些无损检测技术各具优势。 1.2 近红外光谱无损检测研究概况 近红外光谱分析( Near Infrared Spectroscopy,NIR) 技术是近十年来发展最为迅速的高新分析技术之一,以其快速、简便、高效等优势已被人们认识和接受,并且其应用范围也由谷物、饲料扩展到食品和果蔬等领域。水果是重要的农产品,消费者在选购水果时对于内部品质如口感、糖度和酸度等极为看重。而近红外光谱分析技术将其用于水果内部品质检测具有快速、非破坏性、无需前处

高光谱遥感技术的介绍及应用

高光谱遥感技术的介绍及应用在20世纪,人类的一大进步是实现了太空对地观测,即可以从空中和太空对人类赖以生存的地球通过非接触传感器的遥感进行观测。最近几十年,随着空间技术、计算机技术、传感器技术等与遥感密切相关学科技术的飞速发展,遥感正在进入一个以高光谱遥感技术、微波遥感技术为主要标志的时代。本文简要介绍了高光谱遥感技术的特点、发展状况及其在一些领域的应用。 1 高光谱遥感简介 1.1高光谱遥感概念 所谓高光谱遥感,即高光谱分辨率遥感,指利用很多很窄的电磁波波段(通常<10nm)从感兴趣的物体获取有关数据;与之相对的则是传统的宽光谱遥感,通常>100nm,且波段并不连续。高光谱图像是由成像光谱仪获取的,成像光谱仪为每个像元提供数十至数百个窄波段光谱信息,产生一条完整而连续的光谱曲线。它使本来在宽波段遥感中不可探测的物质,在高光谱中能被探测。 高光谱遥感技术是近些年来迅速发展起来的一种全新遥感技术,它是集探测器技术、精密光学机械、微弱信号检测、计算机技术、信息处理技术于一体的综合性技术。在成像过程中,它利用成像光谱仪以纳米级的光谱分辨率,以几十或几百个波段同时对地表地物像,能够获得地物的连续光谱信息,实现了地物空间信息、辐射信息、光谱信息的同步获取,因而在相关领域具有巨大的应用价值和广阔的发展前景。 1.2高光谱遥感数据的特点 同其他常用的遥感手段相比,成像光谱仪获得的数据具有以下特点: 1)、多波段、波段宽度窄、光谱分辨率高。波段宽度< 10 nm ,波段数较多光谱遥感(由几个离散的波段组成)大大增多,在可见光和近红外波段可达几十到几百个。如A VIRIS在0. 4~214 波段范围内提供了224 个波段。研究表明许多地物的吸收特征在吸收峰深度一半处的宽度为20~40 nm。这是传统的多光谱等

近红外光谱分析技术及发展前景

近红外光谱分析技术及发展前景 陈丽菊 刘 巍 近红外光(near infrared,N IR)是介于可见光(VL S)和中红外光(M IR)之间的电磁波,美国材料检测协会(ASTM)将波长780~2526nm的光谱区定义为近红外光谱区。近红外光谱主要应用两种技术获得:透射光谱技术和反射光谱技术。透射光谱波长一般在780~1l00nm范围内;反射光谱波长在1100~2526nm范围内。近红外光谱区(N IR)是由赫歇尔(Herschel)在1800年发现的。卡尔?诺里斯(Karl Norris)等人首先用近红外光谱区测定谷物中的水分、蛋白质。但是由于分子在该谱区倍频和合频吸收弱,且谱带重叠严重,难以分析和鉴定,以致N IR分析技术的研究曾一度陷入低谷,甚至处于停滞。20世纪80年代,随着计算机技术、仪器硬件的迅速发展,以及化学计量学方法在解决光谱信息提取和消除背景干扰方面取得的良好效果,使得近红外分析技术不仅用于农产品、食品和生物科学,而且还应用到石油化工、烟草、纺织、环保等行业。 近红外光谱分析的原理 近红外光谱是由于分子振动能级的跃迁(同时伴随转动能级跃迁)而产生的。近红外分析技术是依据被检测样品中某一化学成分对近红外光谱区的吸收特性而进行定量检测的一种方法。它记录的是分子中单个化学键的基频振动的倍频和合频信息,它的光谱是在700~2500nm范围内分子的吸收辐射。这个事实与常规的中红外光谱定义一样,吸收辐射导致原子之间的共价键发生膨胀、伸展和振动。中红外吸收光谱中包括有C-H键、C-C键以及分子官能团的吸收带。然而在N IR测量中显示的是综合波带与谐波带,它是R-H分子团(R是O、C、N和S)产生的吸收频率谐波,并常常受含氢基团X-H(C-H、N-H、O-H)的倍频和合频的重叠主导,所以在近红外光谱范围内,测量的主要是含氢基团X-H振动的倍频和合频吸收。使用N IR技术是因为它与样品相互作用时输出的能量效率比中红外光更为实用。N IR的辐射源(仪器上的灯)要比用在中红外的能量高得多,而且它的检测器也具有更高检测效率。这些因素意味着N IR仪器的信噪比值远高于中红外仪器。较高的信噪比意味着样品的观测时间可比中红外仪器短得多。近红外辐射对于样品的穿透性也较高,因此样品的前处理常较中红外简单。近红外光谱根据其检测对象的不同分成近红外透射光谱(N IT)和近红外反射光谱(N IR)两种。N IT是根据透射光与入射光强的比例关系来获得在近红外区的吸收光谱。N IR根据反射光与入射光强的比例获得在近红外光谱区的吸收光谱。近红外分析技术是综合多学科(光谱学、化学计量学和计算机等)知识的现代分析技术,使用包括N IR 分析仪、化学计量学光谱软件和被测物质的各种性质或浓度分析模型成套近红外分析技术等。经过对这种模型的校正,就可以根据被测样品的近红外光谱,快速计算出各种数据。建立被测样品成分的模型时,主要用到的校正方法有多元线性回归法(ML R)、主成分分析法(PCA)、偏最小二乘法(PL S)、人工神经网络法(ANN)。 近红外光谱分析方法的特点 近红外光谱分析方法有下列特点。 可采用光学方法进行。鉴于近红外具有较大的散射效应和较强的穿透性,近红外光谱的分析方法比较独特,可根据样品物态和透光能力的强弱采用透射、漫反射和散射等多种测谱技术进行物质检测。 近红外光子的能量比可见光低,不会对人体造成伤害,而且整个分析过程不会对环境造成任何污染,属于绿色分析技术。 近红外分析技术可在数分钟内完成多项参数的测定,分析速度可提高上百倍,分析成本可降低数十倍。用于传输近红外辐射光的光纤可长达200m, 新结构的固态电子和光电子器件。半导体低维结构已成为推动整个半导体科学技术迅猛发展的主要动力。低维材料不同于自然界中的物质,具有各种量子效应和独特的光、电、声、力、化学和生物性能,在未来的各种功能器件的应用中将发挥重要作用,并随理论和技术的发展得到更加广泛的应用。 (上海市东华大学理学院应用物理系 200051) ? 1 ?现代物理知识

近红外光谱(NIR)分析技术的应用

近红外光谱(NIR)分析技术的应用 近红外光谱分析是近20年来发展最为迅速的高新技术之一,该技术分析样品具有方便、快速、高效、准确和成本较低,不破坏样品,不消耗化学试剂,不污染环境等优点,因此该技术受到越来越多人的青睐。 一、近红外光谱的工作原理 有机物以及部分无机物分子中各种含氢基团在受到近红外线照射时,被激发产生共振,同时吸收一部分光的能量,测量其对光的吸收情况,可以得到极为复杂的红外图谱,这种图谱表示被测物质的特征。不同物质在近红外区域有丰富的吸收光谱,每种成分都有特定的吸收特征。因此,NIR能反映物质的组成和结构信息,从而可以作为获取信息的一种有效载体。 二、近红外光谱仪的应用 NIR分析技术的测量过程分为校正和预测两部分(如图一所示),(1)校正:①选择校正样品集,②对校正样品集分别测得其光谱数据和理化基础数据,③将光谱数据和基础数据,用适当的化学计量方法建立校正模型;(2)预测:采集未知样品的光谱数据,与校正模型相对应,计算出样品的组分。由此可知,建立一个准确的校正模型是近红外光谱分析技术应用中的重中之重。 图一 2.1定标建模

2.1.1 为什么要建立近红外校正模型 2.1.1.1 建立近红外校正模型的最终目标是获得一个长期稳定的和可预测的模型。 2.1.1.2 近红外光谱分析是间接的(第二手)分析方法,所以①需要定标样品集;②利用定标样品集的参比分析数据与近红外光谱建立校正模型;③近红外分析准确度与参比方法数据准确度高度相关;④近红外分析精度一般优于参比方法分析精度。 2.1.2 模型的建立与验证步骤 2.1.2.1 扫描样品近红外光谱 准确扫描校正样品集中各个样品规范的近红外光谱:为了克服近红外光谱测定的不稳定性的困难,必须严格控制包括制样、装样、测试条件、仪器参数等测量参数在内的测量条件。利用该校正校品集建立的数学模型,也只能适用于按这个的测量条件所测量光谱的样品。 2.1.2.2 测定样品成分(定量) 按照标准方法(如饲料中的粗蛋白GB/T6432、水分GB/T6435、粗脂肪GB/T6433)准确测定样品集中每个样品的各种待测成分或性质(称为参考数据)。这些值测定的精确度是近红外光谱运用数学模型进行定量分析精确度的理论极限。 2.1.2.3 建立数据对应关系 通过2.1.2.1所得光谱与2.1.2.2所得不同性质参数的参考数据相关联,使光谱图和其参考数据之间形成一一对应映射的关系,从而建立一个带参考数据的光谱文件。 2.1.2.4 剔除异常值 2.1.2.3建立的光谱文件中,样品参考值与光谱有可能由于各种随机的原因而有较严重的失真,这些样品的测定值称为异常值。为保证所建数学模型的可靠性,在建立模型时应当剔除这些异常值。 2.1.2.5 建立模型 选择算法、确定模型的参数、建立、检验与评价数字模型:常用的算法有逐步回归分析、偏最小二乘法、主成分回归分析等。这些算法的基本思想

尼高力红外光谱仪应用软件Omnic6.0使用指南解读

尼高力红外光谱仪应用软件"Omnic6.0"使用指南 Omnic软件使用指南 1. Omnic与系统 Omnic是Nicolet公司的在PC机使用最广泛的窗口软件平台上运行的红外软件,从开始在Windows3.1上运行的版本的 1.0到目前的 6.1a,现行的的操作系统Windows98/Me/NT/2000/XP都支持。EZ-Omnic是简化的软件,一方面价格比较低,同时更加简明,容易掌握,虽然功能比较简单,仍可以满足先当部分用户的需求。 使用的仪器通讯接口有:LTP(并行口)或PCI卡,部分早一些的仪器使用ISA卡。 2.文件结构 Omnic 6.0以上版本的缺省的文件分别存在于三个目录中:C:\My Documents\Omnic,在其子目录中分门别类地存放数据与参数等文件,如Spectra存光谱,Param中存设置参数,Quant存定量方法;C:\Program Files\Omnic,存有驱动与程序文件等,系统的卸载命令在它的子目录Uninstall中;C:\MyDocument\Omnic\Lib,存放谱库,包括购买和自建的谱库。 软件安装的应用程序除了Omnic外还有Bench Diagnostics,这是一个在系统发生故障时进行判断的重要命令,能够检查从接口卡到仪器的各个重要部件。它们与PDF文件一起置于Thermo Nicolet程序组中, 3.启动Omnic软件 使用下列方法之一启动Omnic 红外软件系统: 1.在Windows98等的桌面上双击(或者) 2.从Srart→Program→Thermo Nicolet→Omnic(或者从Srart→Program→Omnic5.0→) 3.其他,如Win98中的快捷方式启动。 4. Omnic显示面板: 1. Omnic是一种与窗口软件充分兼容的软件,可以显示一个或多个显示窗口,当显示多个窗口时可以选择平铺(Tile)或层叠(Cascade)方式,但其中只有一个是活动窗口(被选中的)。光谱图可以在窗口间拖动、复制与粘贴,而且可以把复制的光谱图直接粘贴到其他应用程序的文本文件中,为发表文章或书写报告带来方便。 2.在每个显示窗口中,可以显示一个到多个光谱图,最后加入的光谱是自动被选中的,缺省颜色是红色。有些对光谱进行进一步处理时需要或可以同时处理多个光谱。需要有多个被选中的光谱时,通过按住Ctrl或Shift键操作鼠标来增减被选中光谱。 3.标题框在光谱窗口的上面,标题内容为人工输入,或根据使用的需要,通过“选项”中所设定的方式中适当选择自动生成。 4.按“信息按钮”或双击“标题框”中的标题,打开“选中”光谱的采集和数据处理记录的窗口,在其中的注释(Comment)等若干框中,可以输入文字信息,这些信息可以随同谱图一起打印,其它的记录为非编辑内容。 5.当显示多个光谱图时,按“标题框”右边的箭头,显示出所有谱图的标题表。用鼠标击标题表(选中)后,用键盘上的箭头键可以改变被选中的光谱,同时可以编辑被选中的光

红外光谱分析

红外光谱分析 序言 二十世纪初叶,Coblentz发表了一百多个有机化合物的红外光谱图,给有机化学家提供了鉴别未知化合物的有力手段。到四十年代红外光谱技术得到了广泛的研究和应用。当今红外光谱仪的分辨率越来越高,检测范围扩展到10000-200cm-1,样品量少至微克级。红外光谱提供的某些信息简捷可靠,检测样品中有无羰基及属于哪一类(酸酐、酯、酮或醛)是其他光谱技术难以替代的。因此,对从事有机化合物为研究对象的化学工作者来说,红外光谱学是必需熟悉和掌握的一门重要光谱知识。 一、基本原理 1、基本知识 光是一种电磁波。可根据电磁波的波长范围分成不同类型的光谱,它们各自反映出物质的不同类型的运动形式。表1列出这些电磁波的波长,其所在区域的光谱名称,以及对应的运动形式。 红外光谱研究的内容涉及的是分子运动,因此称之为分子光谱。通常红外光谱系指2-25μ之间的吸收光谱,常用的为中红外区4000-650cm-1或4000-400cm-1。 这段波长范围反映出分子中原子间的振动和变角振动,分子在振

动运动的同时还存在转动运动。在红外光谱区实际所测得的图谱是分子的振动与转动运动的加合表现,即所谓振转光谱。 每一化合物都有其特有的光谱,因此使我们有可能通过红外光谱对化合物作出鉴别。 红外光谱所用的单位波长μ,波数cm-1。光学中的一个基本公式是λυ= C,式中λ为波长,υ为频率,C为光速(3×1010cm/s)。设υ为波数,其含义是单位长度(1cm)中所含的波的个数,并应具有以下关系:波数(cm-1)=104/波长(μ) 波长和波数都被用于表示红外光谱的吸收位置,即红外光谱图的横坐标。目前倾向于普遍采用波数为单位,而在图谱上方标以对应的波长值。红外光谱图的纵坐标反映的是吸收强度,一般以透过率(T%)表示。 2、红外光谱的几种振动形式 主要的基本可以分为两大类:伸缩振动和弯曲振动。 (1)伸缩振动(υ) 沿着键轴方向伸或缩的振动,存在对称与非对称两种类型。它的吸收频率相对在高波数区。 (2)弯曲振动(δ) 包括面内、面外弯曲振动,变角振动,摇摆振动等。它的吸收频率相对在低波数区。 4000cm-1(高)400cm-1(低) 3、红外光谱吸收峰主要的几种类型 (1)基频峰:伸缩振动,弯曲振动产生的吸收峰均为基频峰。 (2)倍频峰:出现在基频峰波数二倍处。如基频为900cm-1,倍频为 1800cm-1。 4、红外光谱吸收峰的强度

近红外光谱仪的性能指标

近红外光谱仪器的主要性能指标 北京英贤仪器有限公司销售工程师王燕岭 在近红外光谱仪器的选型或使用过程中,考虑仪器的哪些指标来满足分析的使用要求,这是分析工作者需要考虑的问题。对一台近红外光谱仪器进行评价时,必须要了解仪器的主要性能指标,下面就简单做一下介绍。 1、仪器的波长范围 对任何一台特定的近红外光谱仪器,都有其有效的光谱范围,光谱范围主要取决于仪器的光路设计、检测器的类型以及光源。近红外光谱仪器的波长范围通常分两段,700~1100nm的短波近红外光谱区域和1100~2500nm的长波近红外光谱区域。 2、光谱的分辨率 光谱的分辨率主要取决于光谱仪器的分光系统,对用多通道检测器的仪器,还与仪器的像素有关。分光系统的光谱带宽越窄,其分辨率越高,对光栅分光仪器而言,分辨率的大小还与狭缝的设计有关。仪器的分辨率能否满足要求,要看仪器的分析对象,即分辨率的大小能否满足样品信息的提取要求。有些化合物的结构特征比较接近,要得到准确的分析结果,就要对仪器的分辨率提出较高的要求,例如二甲苯异构体的分析,一般要求仪器的分辨率好于1nm。[1] 3、波长准确性 光谱仪器波长准确性是指仪器测定标准物质某一谱峰的波长与该谱峰的标定波长之差。波长的准确性对保证近红外光谱仪器间的模型传递非常重要。为了保证仪器间校正模型的有效传递,波长的准确性在短波近红外范围要求好于0.5nm,长波近红外范围好于1.5nm。[1]

4、波长重现性 波长的重现性指对样品进行多次扫描,谱峰位置间的差异,通常用多次测量某一谱峰位置所得波长或波数的标准偏差表示(傅立叶变换的近红外光谱仪器习惯用波数cm-1表示)。波长重现性是体现仪器稳定性的一个重要指标,对校正模型的建立和模型的传递均有较大的影响,同样也会影响最终分析结果的准确性。一般仪器波长的重现性应好于0.1nm。[1] 5、吸光度准确性 吸光度准确性是指仪器对某标准物质进行透射或漫反射测量,测量的吸光度值与该物质标定值之差。对那些直接用吸光度值进行定量的近红外方法,吸光度的准确性直接影响测定结果的准确性。 6、吸光度重现性 吸光度重现性指在同一背景下对同一样品进行多次扫描,各扫描点下不同次测量吸光度之间的差异。通常用多次测量某一谱峰位置所得吸光度的标准偏差表示。吸光度重现性对近红外检测来说是一个很重要的指标,它直接影响模型建立的效果和测量的准确性。一般吸光度重现性应在0.001~0.0004A之间。 7、吸光度噪音 吸光度噪音也称光谱的稳定性,是指在确定的波长范围内对样品进行多次扫描,得到光谱的均方差。吸光度噪音是体现仪器稳定性的重要指标。将样品信号强度与吸光度噪音相比可计算出信噪比。 8、吸光度范围 吸光度范围也称光谱仪的动态范围,是指仪器测定可用的最高吸光度与最低

近红外光谱分析技术发展和应用现状

摘?要?近红外光谱是目前国际公认的最有应用价值的分析技术之一,它在国民经 济中日益发挥着越来越重要的作用。本文主要介绍近5年国内外近红外光谱分析技术的发展及应用现状,并对我国在这一技术方向的研发提出建议。关键词?近红外光谱 化学计量学 在线分析 快速分析 现场分析 Abstract Near infrared spectroscopy (NIR) has been recognized as one of the most valu-able application technologies, which is playing more and more important roles in national economy. In this paper, the research and application status of near infrared spectroscopy analytical technology in the past five years both home and abroad are introduced, and the NIR research and development suggestions for our country are proposed in detail. Key words Near infrared spectroscopy Chemometrics On-line analysis Rapid analysis On-site analysis 近红外光谱分析技术发展和应用现状 The research and application status of near infrared spectroscopy analytical technology 引?言? 从1800年英国科学家赫歇耳(W Herschel )发现近红外光,到1881年英国天文学家阿布尼(W Abney )和E R Festing 用Hilger 光谱仪拍摄下48个有机液体的近红外吸收光谱(700~1100nm ),发现近红外光谱区(NIR )的吸收谱带均与含氢基团有关,到1968年美国农业部的工程师K Norris 博士将近红外光谱用于农产品的快速分析,到1974年瑞典化学家S Wold 和美国华盛顿大学的B R Kowalski 教授创建化学计量学学科(Chemometris ),唤醒现代近红外光谱技术这个沉睡的分析“巨人”,到上世纪80年代末光纤在光谱中的应用,推动在线近红外光谱技术的应用和发展,到本世纪之初微机电系统(MEMS )技术使NIR 仪器越来越小型化,到近些年近红外光谱化学成像(NIR Chemical Imaging )技术的兴起和应用,现代近红外光谱分析技术走过200余年的发展历程,近红外光谱从光谱中的垃圾箱(因其宽且重叠严重的谱带而无法通过传统方法进行分析应用),发展成为当前很多领域不可或缺的一种分析手段[1~7]。 在这200余年尤其是近20年的发展过程中,近红外 光谱仪器得到不断改进和完善,针对不同样品类型的测量附件也逐渐完备、化学计量学算法日趋普及,近红外光谱技术在工业(尤其是大型流程工业)应用中的优势逐渐被人们所认识,迅速被应用到实验室快速分析、现场分析以及在线分析中,为企业带来丰厚的效益。更为重要的是,在一些行业近红外光谱技术成为促进技术进步(例如生产工艺的改革)以及提高科学管理(例如保证产品质量)的重要手段之一,已成为现代优化操作和控制系统中的一个重要组成部分。 国内外已有较多文献对近红外光谱技术(包括仪器、光谱成像、化学计量学算法与软件、应用等)做详尽的综述[8~13],本文主要介绍近5年国内外近红外光谱分析技术的发展及应用现状,并对我国在这一技术方向的研发提出建议。 1?国际NIR 技术和应用现状 1.1?技术现状 近红外光谱分析技术是由光谱仪、化学计量学软件和校正模型3部分构成的,在线分析系统往往还包括取样与预处理、数据通讯等部分。 褚小立1?袁洪福2Chu?Xiaoli 1?Yu?Hongfu 2 (1.石油化工科学研究院?北京?100083;2.北京化工大学?北京?100029) (1.Research Institute of Petroleum Processing, Beijing, 100083; 2.Beijing University of Chemical Technology, Beijing 100083)

相关主题
文本预览
相关文档 最新文档