当前位置:文档之家› 年产三万吨啤酒厂啤酒发酵工艺的设计

年产三万吨啤酒厂啤酒发酵工艺的设计

年产三万吨啤酒厂啤酒发酵工艺的设计
年产三万吨啤酒厂啤酒发酵工艺的设计

一、啤酒生产相关知识简介

1.1 啤酒酿造工艺流程

图1 啤酒酿造图

1:原料贮仓2:麦芽筛选机3:提升机4:麦芽粉碎机5:糖化锅

6:大米筛选机7:大米粉碎机8:糊化锅9:过滤槽10:麦糟输送

11:麦糟贮罐12:煮沸/回旋槽13:外加热器14:酒花添加罐15:麦汁冷却器16:空气过滤器17:酵母培养及添加罐18:发酵罐19:啤酒稳定剂添加罐20:缓冲罐

21:硅藻土添加罐22:硅藻土过滤机23:啤酒清滤机24:清酒罐25:洗瓶机

26:罐装机27:啤酒杀菌机28:贴标机29:装箱机

1.2酿造啤酒的原料

酿造啤酒的主要原料是大麦,水,酵母,酒花。

1.3 麦汁的制备

其主要过程有原辅料粉碎,糖化,醪液过滤,麦汁煮沸,麦汁后处理等几个过程。啤酒是发酵后直接饮用的饮料酒,因此,麦汁的颜色,芬香味、麦汁组成有一些会影响啤酒的风味、有一些影响发酵、最终也影响啤酒的风味。麦汁组成中影响发酵的主要因子是:原麦汁浓度、溶氧水平、pH值、麦汁可发酵性糖含量、α-氨基酸、麦汁中不饱和脂肪酸含量等。

1.4 啤酒的发酵

冷却后的麦汁添加酵母以后,便是发酵的开始,整个发酵过程可以分为:酵母恢复活力阶段,有氧呼吸阶段,无氧呼吸阶段。酵母接种后,开始在麦汁充氧的条件下,恢复其生理活性,以麦汁中的氨基酸为主要的氮源,可发酵糖为主要的碳源,进行呼吸作用,并从中获取能量而发生繁殖,同时产生一系列的代谢副产物,此后便在无氧的条件下进行酒精发酵。

二、 30000t/a啤酒厂糖化车间的物料衡算

啤酒厂糖化车间的物料平衡计算主要项目为原料(麦芽、大米)和酒花用量,热麦汁和冷麦汁量,废渣量(糖化槽和酒花槽)等。

2.1糖化车间工艺流程示意图

根据我国啤酒生产现况,有关生产原料配比、工艺指标及生产过程的损失等数据如表1所示。

图2 啤酒厂糖化车间工程流程示意图

2.2工艺技术指标及基础数据

根据表1的基础数据,首先进行100kg原料生产10°淡色啤酒的物料计算,然后进行100L 10°淡色啤酒的物料衡算,最后进行30000t/a啤酒厂糖化车间的物料平衡计算。

表1 啤酒生产基础数据

2.3 100kg原料(70%麦芽,30%大米)生产10°淡色啤酒的物料衡算

(1)热麦计算根据表1可得到原料收率分别为:

麦芽收率为: 78%×(100-6) %=73.32%

大米收率为: 90%×(100-12) %=79.2%

混合原料收得率为:(0.70×73.32%+0.30×79.2%)98%=73.58%

由上述可得100kg混合料原料可制得的10°热麦汁量为:(73.58%×100)÷

10%=735.8(kg)

又知10°麦汁在20℃时的相对密度为1.084,而100℃热麦汁比20℃时的麦汁体积增加1.04倍,故热麦汁(100℃)体积为:735.8÷(1.084×1000)×1000×1.04=705.93(L)

(2)冷麦汁量为:705.93×(1-0.07)=656.52(L)

(3)发酵液量为:656.52×(1-0.02)=643.39(L)

(4)过滤酒量为:643.39×(1-0.01)=636.95(L)

(5)成品啤酒量为:636.95×(1-0.02)=624.22(L)

2.4生产100L10°淡色啤酒的物料衡算

根据上述衡算结果知,100kg混合原料可生产10°淡色成品啤酒624.22L,故可得以下结果:

(1)生产100L10°淡色啤酒需耗混合原料量为:

(100/624.22)×100=16.02 (kg)

(2)麦芽耗用量为:16.02×70%=11.21(kg)

(3)大米耗用量为:16.02-11.21=4.81(kg)

(4)酒花耗用量:对浅色啤酒,热麦汁中加入的酒花量为0.2%,故为:

(100/624.22) ×735.8×0.2%=0.24(kg)

(5)热麦汁量为:(16.02/100)×705.93=113.09(L)

(6)冷麦汁量为:(16.02/100)×656.52=105.18(L)

(7)湿糖化糟量设热电厂出的湿麦芽糟水分含量为80%,则湿麦芽糟量为:

[(1-0.06)(100-78)/(100-80)]×11.21=11.59(kg)

而湿大米糟量为:

[(1-0.12)(100-90)/(100-80)]×4.81=2.12(kg)

故湿糖化糟量为:11.59+2.12=13.71(kg)

(8)酒花糟量设麦汁煮沸过程干酒花浸出率为40%,且酒花糟水分含量为80%,则酒花糟量为:

[(100-40)/(100-80)]×0.24=0.72(kg)

2.5 30000t/a 10°淡色啤酒酿造车间物料衡算表

设生产旺季每天糖化8次,而淡季则糖化4次,每年总糖化次数为1800次。由此可计算出每次投料量及其他项目的物料平衡。把述的有关啤酒厂酿造车间的三项物料衡算计算结果,整理成物料衡算表,如表2所示。

表2 啤酒厂酿造车间物料衡算表

三、 30000t/a啤酒厂糖化车间的热量衡算

二次煮出糖化法是啤酒常用的糖化工艺,下面就以为基准进行糖化车间的势量衡算。

工程流程示意图如图2所示,其中的投料量为糖化一次的用料量(计算参表2)

3.1 糖化用水耗热量Q1

根据工艺,糊化锅加水量为:

G1=(791.5+158.3)×4.5=4274.1(kg)

式中,791.5kg为糊化一次大米粉量,158.3kg为糊化锅加入的麦芽粉量(为大米量的20%)

图3 啤酒厂糖化工艺流程图

而糖化锅加水量为:G2=1688.54×3.5=5909.89(kg)

式中,1688.54kg为糖化一次糖化锅投入的麦芽粉量,即1846.84-158.3=1688.54(kg)

而1846.84kg为糖化一次麦芽定额量。

故糖化总用水量为:

G W=G1+G2=4274.1+5909.89=10183.99(kg)

(1)

自来水的平均温度取t1=18℃,而糖化配料用水温度t2=50℃,故耗热量为:

Q1=(G1+G2)cw(t1-t2)=10183.99×(50-18)

4.18=1362210.5(KJ) (2) 3.2 第一次米醪煮沸耗热量Q2

由糖化工艺流程图(图3)可知: Q2= Q21+Q22+Q23 (3)

3.2.1 糖化锅内米醪由初温t0加热到100℃的耗热量Q21

Q21=G米醪C米醪(100-t0) (4)

(1) 计算米醪的比热容G米醪根据经验公式G容物=00.1[(100-W)c0+4.18W]进行计算。式中W为含水百分率;c0为绝对谷物比热容,取c0=1.55KJ/(Kg·K).

C麦芽=0.01[(100-6)1.55+4.18×6]=1.71KJ/(Kg·K)

C大米=0.01[(100-12)1.55+4.18×12]=1.87KJ/(Kg·K)

C米醪=(G大米c大米+G麦芽c麦芽+ G1cw)/(G大米+G麦芽+ G1) (5)=(791.5×1.87+158.3×1.71+4274.1×4.18]/( 791.5+158.3+4274.1)

=3.76 KJ/(Kg·K)

(2) 米醪的初温t0设原料的初温为18℃,而热水为50℃,则

t0 =[(G大米c大米+G麦芽c麦芽)×18+ G1cw×50]/( G米醪C米醪) (6)=[(791.5×1.87+158.3×1.71) ×18+4274.1×4.18×50]/(5183.9×3.76)

=47.5℃

其中G米醪=791.5+158.3+4274.1=5183.9(kg)

(3)把上述结果代如1中,得:

Q21=5183.9×3.76(100-47.5)=1023301.86 KJ

3.2.2 煮沸过程蒸汽带出的热量Q22

设煮沸时间为40min,蒸发量为每小时5%,则蒸发水量为:

V1=G米醪×5%×40/60=5183.9×5%×40/60=172.80 Kg (7)

故Q22= V1I=172.80×2257.2=390036.637 KJ (8)

式中,I为煮沸温度(约为100℃)下水的汽化潜热(KJ/Kg)

3.2.3 热损失Q23

米醪升温和第一次煮沸过程的热损失约为前两次的耗热量的15%,即:

Q23=15%(Q21+Q22)(9)

3.2.4 由上述结果得:

Q2=1.15(Q21+Q22)=1.15(1023301.86+390036.637)=1625339.28 KJ (10)3.3 第二次煮沸前混合醪升温至70℃的耗热量Q3

按照糖化工艺,来自糊化锅的煮沸的米醪与糖化锅中的麦醪混合后温度应为63℃,故混合前米醪先从100℃冷却到中间温度t0。

3.3.1 糖化锅中麦醪中的t

已知麦芽初温为18℃,用50℃的热水配料,则麦醪温度为:

G麦醪=G麦芽+G2=1688.54+5909.89=7598.43 kg (11)

c麦醪=(G麦芽C麦芽+G2Cw)/(G麦芽+G2)

=(1688.54×1.71+5909.89×4.18)/(1688.54+5909.89)(12)

=3.63KJ/(kg.K)

t麦醪=(G麦芽C麦芽×18+G2Cw×50)/(G麦醪C麦醪)

=(1688.54×1.71×18+5909.89×4.18×50)/(7598.43×3.63)(13)

=46.67℃

3.3.2 根据热量衡算,且忽略热损失,米醪与麦醪混合前后的焓不变,则米醪的中间温度为:G混合=G米醪+G麦醪=5183.9+7598.43=12782.33 Kg (14)

C混合=(G米醪C米醪+G麦醪C麦醪)/(G米醪+G麦醪)(15)

=(5183.9×3.76+7598.43×3.63)/12782.33

=3.68kJ/(kg·K)

t=(G混合C混合×t混合-G麦醪C麦醪×t麦醪)/(G米醪C米醪)(16) =(12782.33×3.68×63-7598.43×3.63×46.67)/(5183.9×3.76)

=86℃

3.3.3 Q3

Q3=G混合C混合(70-63)=12782.33×3.68(70-63)=329272.821(kJ)(17)

3.4 第二次煮沸混合醪的耗热量Q4

由糖化工艺流程可知:

Q4=Q41+Q42+Q43 (18)

3.4.1 混合醪升温至沸腾所耗热量Q41

(1)经第一次煮沸后米醪量为:

G/米醪=G米醪-V=5183.9-172.80=5011.1(kg) (19)

糖化锅的麦芽醪量为:

G麦醪=G麦芽+G2=1688.54+5909.89=7598.43 (kg) (20)

故进入第二次煮沸的混合醪量为:

G混合=G/米醪+G麦醪=5183.9+7598.43=12782.33 (kg) (21)

(2)根据工艺,糖化结束醪温为78℃,抽取混合醪的温度为70℃,则送到第二次煮沸的混合醪量为:

[G混合(78-70)]/[G混合(100-70)]×100%=26.7% (22)

(3)麦醪的比热容

c麦醪=(G麦芽C麦芽+G2Cw)/(G麦芽+G2)

=(1688.54×1.71+5909.89×4.18)/(1688.54+5909.89)(23)

=3.63KJ/(kg.K)

混合醪比热容:

C混合=(G/米醪c米醪+G麦醪c麦醪)/(G/米醪+G麦醪)(24)

=(5183.9×3.76+7598.43×3.63)/12782.33

=3.68kJ/(kg·K)

(4)故Q41=26.7%G混合c混合(100-70)=376782.184(kJ)(25)

3.4.2 二次煮沸过程蒸汽带走的热量Q42

煮沸时间为10min,蒸发强度5%,则蒸发水分量为:

V2=G混合×5%×10/60

=12782.33×5%×10/60

=106.52(kg)

Q42=IV2=2257.2×106.52=240435.628 (kJ) (26)

式中,I为煮沸温度下饱各蒸汽的焓(kJ/kg)

3.4.3 热损失Q43

根据经验有:Q42=15%(Q41+Q42)(27)

3.4.4 把上述结果代入公式(27)得

Q4 =1.15(Q41+Q42) =1.15(376782.184+240435.628) =709800.484 (kJ) (28)

3.5 洗槽水耗热量Q5

设洗槽水平均温度为80℃,每100kg原料用水450kg,则用水量为:

G=2638.34×450/100=11872.53(kg)

故Q5=GCw(80-18)=11872.53×4.18×(80-18)=3076884.87(kJ) (29)

3.6 麦汁煮沸过程耗热量Q6

(30)

3.6.1 麦汁升温至沸点耗热量Q61

由表2啤酒厂酿造车间物料衡算表可知,100kg混合原料可得到735.8kg热麦汁,并设过滤完毕麦汁温度为70℃,则进入煮沸锅的麦汁量为:

G麦汁=2638.34×735.8/100=19412.91(kg)

又C麦汁=(1846.84×1.71+791.5×1.89+2638.34×6.4×4.18)/(2638.34×7.4)=3.85(kJ/kg.k)

故Q61= G麦汁C麦汁(100-70)=19412.91×3.85×30=2242190.61(kJ) (31)

3.6.2 煮沸强度10%,时间1.5h,则蒸发水分为:

V3=19412.91×10%×1.5=2911.94(kg)

故Q62=I V3=6572821.62(KJ) (32)

3.6.3 热损失为

(33)

3.6.4 把上述结果代入上式得出麦汁煮沸总耗热

Q6 =1.15(Q61+ Q62)=10137264.1(KJ) (34)

3.7 糖化一次总耗热量Q总

Q总=Q1+Q2+Q3+Q4+Q5+Q6 = 17240772.1(KJ)(35)

3.8 糖化一次砂耗用蒸汽用量D

使用表压0.3MPa的饱和蒸汽,I=2725.3Kj/kg,则:

D= Q总/[(I-i)η]

= 17240772.1/[(2725.3-561.47) ×95% ] (36)

=8387.06(kg/h)

式中,i为相应冷凝水的焓(561.47kJ/kg);η为蒸汽的热效率,取η=95%。

3.9 糖化过程每小时最大蒸汽耗量Qmax

在糖化过程各步骤中,麦汁煮沸耗热量Q6为最大,且已知煮沸时间为90min热效率为95%,故:

Qmax=Q6/(1.5×95%)=10137264.1/(1.5×95%)=7113869.55(KJ/h) (37)

相应的最大蒸汽耗量为:

Dmax=Qmax/(I-i)=7113869.55/(2725.3-561.47)=3287.63 (kg/h) (38)

3.10 蒸汽单耗

据设计,每年糖化次数为1800次,总共生产啤酒30000t.年耗蒸汽总量为:

Dr=8387.06×1800=15096708(Kg)

每吨啤酒成品耗蒸汽(对糖化):

D5=15096708/30000=503.22(kg/t啤酒)

每昼夜耗蒸汽量(生产旺季算)为:

Dd=8387.06 ×8=67096.48(kg/d)

至于糖化过程的冷却,如热麦汁被冷却成热麦汁后才送井发酵车间,必须尽量回收其中的热量。最后若需要耗用冷冻水,则在以下“耗冷量计算”中将会介绍

最后,把上述结果列成热量消耗综合表,如表3

表3 30000t/a啤酒厂糖化车间总热量衡算表

四、30000t/a啤酒厂发酵车间的耗冷量衡算

啤酒发酵工艺有上面发酵和下面发酵两大类,而后者有传统的发酵槽发酵和锥形罐发酵等之分[8]。不同的发酵工艺,其耗冷量也随之改变。下面以目前我国应用最普遍的锥形罐发酵工艺进行20000t/a啤酒厂发酵车间的耗冷量计算。

4.1发酵工艺流程示意图

冷却

94℃热麦汁冷麦汁(6℃)锥形灌发酵过冷却至

-1℃贮酒过滤清酒灌

图4发酵工艺流程

4.2工艺技术指标及基础数据

年产10°淡色啤酒30000t;旺季每天糖化8次,淡季为4次,每年共糖化1800次;主发酵时间6天;

4锅麦汁装1个锥形罐;

10°Bx麦汁比热容c1=4.0KJ/(kgK);

冷媒用15%酒精溶液,其比热容可视为c2=4.18 KJ/(kgK);

麦芽糖化厌氧发酵热q=613.6kJ/kg;

麦汁发酵度60%。

根据发酵车间耗冷性质,可分成工艺耗冷量和非工艺耗冷量两类,即:(39)

4.3工艺耗冷量

4.3.1麦汁冷却耗冷量Q1

近几年来普遍使用一段式串联逆流式麦汁冷却方法[9]。使用的冷却介质为2℃的冷冻水,出口的温度为85℃。糖化车间送来的热麦汁温度为94℃,冷却至发酵起始温度6℃。

根据表2啤酒生产物衡酸表,可知每糖化一次热麦汁20053L,而相应的麦汁密度为1048kg/m3,故麦汁量为:

G=1048×18.62871=19522.89(kg)

又知100 Bx麦汁比热容C1=4.0KJ/(Kg·k),工艺要求在1h小时内完成冷却过程,则所耗冷量为:

Q1=[G C(t1-t2)]/τ (40)

=[19522.89×4.0(94-6)]/1

=6872056.61(KJ/h)

式中t1和t2——分别表示麦汁冷却前后温度(℃)

τ——冷却操作过程时间(h)

根据设计结果,每个锥形发酵罐装4锅麦汁,则麦汁冷却每罐耗冷量为:

Q f=4Q1=4×6872056.61=27488226.42(kJ) (41)

相应地冷冻介质(2℃的冷冻水)耗量为:

M f=Q1/[C m(t4-t3)]= 6872056.61/[4.18(85-2)]=19807.62(kg/h) (42)

式中,t3和t4——分别表示冷冻水的初温和终温(℃)

C m——水的比热容[KJ/(kg·K)]

4.3.2发酵耗冷量Q2

(1)发酵期间发酵放热Q21,假定麦汁固形均为麦芽糖,而麦芽糖的厌氧发酵房热量为613.6kJ/kg。设发酵度为60%,则1L麦汁放热量为:

q0=613.6×10%×60%=36.82(kJ)

根据物料衡算,每锅麦汁的冷麦汁量为17324.7L,则每锥形缺罐发酵放热量为:

Q01=36.82×17324.7×4=2551581.82(kJ)

由于工艺规定主发酵时间为6天,每天糖化8锅麦汁(旺季),并考虑到发酵放热不平衡,取系数1.5,忽略主发酵的升温,则发酵高温时期耗冷量为:

Q21 =(Q01×1.5×7)/(24×6×4)

=(2551581.82×1.5×7)/(24×6×4)]

=46513.21(kJ/h)

(2)发酵后期发酵液降温耗Q22主发酵后期,发酵后期,发酵液温度从6℃缓降到-1℃。每天单罐降温耗冷量为:

Q02=4GC1[6-(-1)]=4×19522.89×4.0×

7=2186563.68(KJ) (43)

工艺要求此过程在2天内完成,则耗冷量为(麦汁每天装1.5个锥形罐):

Q22=(1.5Q02)/(24×2)=(1.5×2186563.68)/(24×2)=68330.12(KJ/h) (44)

(3)发酵总耗冷量Q2

Q2=Q21+Q22=46513.21+68330.12=114843.33(kJ/h) (45)

(4)每罐用冷媒耗冷量Q0

Q0=Q01+Q02=2551581.82+2186563.68=4738145.5kg/h (46)

(5)发酵用冷媒耗(循环量)M2发酵全过程冷却用稀酒精液作冷却介质,进出口温度为-8℃和0℃,故耗冷媒量为:

M2=Q2/(Cm×8)=114843.33/(4.18×8)=3434.31kg/h (47)

4.3.3酵母洗涤用冷无菌水冷却的耗冷量Q3

在锥形罐啤酒发酵过程,主发酵结束时要排放部分酵母,经洗涤活化后重复用于新麦汁的发酵,一般可重复使用5—7次。设湿酵母添加量为麦汁量的1.0%,且使用1℃的无菌水洗涤,洗涤无菌水量为酵母量的3倍。冷却前无菌水温30℃。用-8℃的酒精液作冷地介质。

由中述条件,可得无菌水用量为:

Gw′=19522.89×6×1.0%×3=3514.12(kg/d)

式中 19522.89——糖化一次的冷麦汁量(kg)

每班无菌水量:Gw= Gw′/3=3514.12/3=1171.37(kg/每班) (48)

假无菌水冷却操作在2h小时内完成,则无菌水冷却耗量为:

Q3=[GwGm(tw-tw′)]/r =[1171.37×4.18×(30-1)]/2=70996.94(kg/h) (49)

所耗冷冻介质量为:

M3=Q3[cw(t2-t1)]/r=70996.94(4.18×8)=2374137.73(kg/h) (50)

式中,t1和t2——冷冻酒精液热交换前后的温度,分别为-8℃和0℃。

每罐用于酵母洗涤的耗冷量:

Q3=[GwGm(tw-tw′)]/1.5=[1171.37×4.18×(30-1)]/1.5 (51)

=94662.31(kJ)

式中 1.5——每班装罐1.5罐

4.3.4 酵母培养耗冷量Q4

根据工艺设计,每月需进行一次酵母纯培养,培养时间为12d,即288h。根据工厂实践,年产30000t啤酒培养冷量为41800(Kj/h),则

对应的年冷耗量为:

Q4’= Q4×288×10=1.20×108(KJ) (52)

相应的高峰冷冻介质循环量为:

M4 =Q4/[cw(t1-t2)]=41800/(4.18×8) =1250(kg/h)

4.3.5发酵车间工艺耗冷量Qt

综上计算,可算出发酵车间的工艺耗冷量为:

Qt=Q1+Q2+Q3+Q4=6872056.61+114843.33+70996.94+41800 (53)

=7099696.88(Kj/h)

4.4非工艺耗冷量Qnt

除了上述的发酵过程工艺耗冷量外,发酵罐外壁、运转机械、维护结构及管道等均会耗用或散失冷量,构成所谓的非工艺耗冷量,现分别介绍。

4.4.1露天锥形罐冷量散失Q5

锥形罐啤酒发酵工厂几乎都把发酵罐置天露天,由于太阳辐射,对流传热和热传导等造成冷量散失。通常,这部分的冷量由经验数据坟取。根据经验,年产2万吨啤酒厂露天锥形罐的冷量在9000-20000kJ/t啤酒之间,若在南方亚热地区设厂,可取高值。故旺季生天耗冷量为:

(54)

式中,G b——旺季成品啤酒日产量(t)

若白天日晒高峰耗冷为平均每小时耗冷量的2倍,则高峰耗冷量为:

(55)

冷媒(-8℃稀酒精)用量:

(56)

4.4.2清酒罐、过滤机及管道等散失冷量Q6

因涉及的设备、管路很多,若按前面介绍的公式计算,十分繁杂,故啤酒厂设计时往往根据实验经验选取。通常,取,所以:

Q6=12%Qt=12%×7099696.88=851963.63(KJ/h) (57)

冷媒(-8℃稀酒精)用量:

M6=Q6/[cw(t2-t1)]=851963.63/(4.18×8)=25477.38(KJ/h) (58)

4.5 30000t/a啤酒厂发酵车间冷量衡算表

将上述计算结果,整理后可得30000t/a啤酒厂发酵车间冷量衡算表,如表4所得

表4 啤酒厂发酵车间冷量衡算表

年产万吨聚氯乙烯生产工艺设计

设计课题 年产10万吨聚氯乙烯生产工艺设计方案 2014年 10 月16日

设计说明 聚氯乙烯(PVC)是一种热塑性合成树脂,有优良的电绝缘性,难以自燃,主要用于生产透明薄膜、塑料管件、各类板材等。其再加工产品在全球不同领域都有着非常广泛的应用。 根据设计任务书,本设计进行了年产10万吨聚氯乙烯(PVC)工艺的设计。在查阅、参考大量文献以及对以往部分车间设计的研究学习下,进行了科学的设计以及对相关物料的衡算。 本设计计划采用悬浮聚合法生产聚氯乙烯,原料为氯乙烯单体以及混合用有机过氧化物和偶氮类引发剂、明胶分散剂和去离子水。结合所选择的生产工艺方案和产品生产实际情况,进行了有关物料和热量平衡的计算。安排每日三班次,每班8小时的生产强度,设计可达到日产303吨年产达10万吨的聚氯乙烯生产车间。 本设计也充分考虑到工作人员的工作环境以及工作安全性,尽可能将车间规划为安全的,绿色的,在工作人员遵守车间操作规程的情况下,工作更加安全高效。 本设计由许春华副教授指导,在反应确定、生产流程安排等整个设计过程中提出了许多宝贵意见,使得设计能更高效地完成,在此表示衷心感谢。 鉴于知识和实际经验所限,设计难免存在欠缺,恳请批评指正。

目录 1总论 .................................................... 1.1 概述.................................................................................................................................. 1.1.1 聚氯乙烯(PVC)概述与应用范围......................................................................... 1.1.2 聚氯乙烯(PVC)改性品种..................................................................................... 1.1.3 聚氯乙烯(PVC)生产行业现状及发展前景......................................................... 1.2 聚氯乙烯(PVC)产品的分类和命名............................................................................ 1.2.1 聚氯乙稀(PVC)产品分类..................................................................................... 1.2.2 聚氯乙稀(PVC)产品命名..................................................................................... 1.3 聚氯乙烯(PVC)生产方法[5]......................................................................................... 1.3.1 悬浮聚合法[6] ............................................................................................................ 1.3.2 乳液聚合法............................................................................................................... 1.3.3 本体聚合法............................................................................................................... 1.3.4 溶液聚合法............................................................................................................... 1.4 设计规模原料选择与产品规格 ...................................................................................... 1.4.1设计规模.................................................................................................................... 1.4.2主要原料规格及技术指标 ........................................................................................ 1.4.3产品规格.................................................................................................................... 2工艺设计与计算 .......................................... 2.1 工艺原理.......................................................................................................................... 2.2 工艺条件影响因素 .......................................................................................................... 2.2.1 聚氯乙烯(PVC)聚合主要影响因素................................................................... 2.3 工艺路线选择.................................................................................................................. 2.3.1 工艺路线选择原则................................................................................................... 2.3.2 悬浮法聚氯乙烯(PVC)工艺流程具体工艺路线................................................. 2.3.3 工艺流程示意图..................................................................................................... 2.4 工艺配方与工艺参数 ...................................................................................................... 2.4.1 工艺配方(质量份): ........................................................................................... 2.4.2 工艺参数:............................................................................................................... 2.5 物料衡算........................................................................................................................ 2.5.2 物料衡算的方法与步骤 ........................................................................................... 2.5.3 物料衡算...................................................................................................................

啤酒发酵车间设计

年产10万吨啤酒的发酵车间设计

目录 一、绪论 (3) (一)设计题目 (3) (二)参数 (3) (三)内容简介 (3) 二、生产工艺简介 (4) (一)全厂工艺流程图 (4) (二)原料 (5) (三)麦芽汁制备工艺 (7) (四)啤酒发酵 (11) 三、车间物料衡算 (15) (一)工艺计算 (15) (二)车间物料衡算表 (17) 四、车间热量衡算 (18) (一)工艺流程示意图 (18) (二)工艺计算 (19) (三)热量衡算表 (20) 五、车间用水量衡算 (20) 六、设备计算与选型 (22) 七、设备装配图 (25) 八、车间设备布置 (27) 九、设计总结 (29) 十、参考文献 (30)

一、绪论 (一)设计题目 年产10万吨啤酒的发酵车间设计 (二)参数 1、每年生产300天,产品啤酒10o 2、定额指标: 原料利用率 % 麦芽水分 5 % 大米水分 12 % 无水麦芽出芽率 75% 无水大米浸出率 95 % 3、各生产阶段损失率: 麦芽汁冷却澄清损失:热麦芽汁量的5 % 主发酵损失:冷麦汁量的% 过滤和灌装损失:啤酒量的2 % (三)内容简介 随着中国经济的快速发展,人们生活水平的提高,啤酒作为含酒精量最低的饮料酒,由于其营养丰富且价廉物美已受到越来越多消费者的喜爱,已经逐步成为人们大众最喜爱的饮料之一。从1903年啤酒进入中国市场到今天,我国啤酒产量逐年增加,已成为世界啤酒产量最大的国家,由此可见啤酒在我国的发展速度之迅猛。然而,我国啤酒产量却仅以每年10%的速度增加,这说明啤酒在我国还无法完全满足人们日益增长的物质文化需求,中国啤酒市场拥有非常广阔的前

年产万吨度淡色啤酒的工厂设计

引言 本次主要是简要的介绍年产10万吨10度淡色啤酒厂的工厂设计。它主要包括啤酒厂的规划,啤酒工艺计算,啤酒厂资金的估算等方面的内容。一个年产量10万吨啤酒厂主要车间平面图及项目工艺方案的设计原则、方法、程序、设备等等。本次设计一共画三张图:全厂平面布置图、工艺流程图、车间工艺布置图。 1 厂址的选择 根据我国的具体情况,食品工厂一般建在距原产地附近大中城市的郊区。由于啤酒属于消费性强的休闲饮品,为了有利于销售,所以选择建于市区比较合适。这样不但可以获得足够的原料,而且利于产品的销售,同时还可以减少运输费用。 厂址选择的原则 (1)厂址的位置要符合城市规划(供气、供电、给排水、交通运输等)和工厂 对环境的要求。 (2)厂址地区要接近原料基地和产品销售市场,还要接近水源和能源。(3)具有良好的交通运输条件。 (4)场地有效利用系数高,并有远景规划的最终总体布局。 (5)有一定的施工条件和投产后的协作条件。

(6)厂址选择要有利于三废处理,保证环境卫生[1]。 1.2自然条件及能源 根据食品工厂厂址选择的要求,将啤酒厂建于淮安市郊区内。厂址地势平坦,周围无污染源,符合标准。场地面积有利于合理布置,符合工厂发展需要,并有一定扩建余地。该地自来水使用方便,且水质良好,可不用地下水,减少处理费用。接近排水系统,有利废水排放。供电系统也配备良好,可以满足生产需要。附近有居民区和学校,方便销售。 1.3政治经济和交通 该地区在城市规划区内,经规划部门批准,符合规划布局。并且接近销售渠道,有良好的经济开发前景。附近有发达的交通运输条件,接近高速公路,使原料入厂和啤酒出厂顺利进行。 2 总平面设计 2.1 总品面设计原则 (1)符合生产工艺要求。 (2)布置紧凑合理,节约用地,同时为长期发展留有余地。 (3)必须满足食品工厂卫生要求和食品卫生要求。 (4)优化建筑物间距,按有关规划进行设计。 (5)适合运输要求。

年产15万吨啤酒工厂工艺设计

年产15万吨啤酒工厂工艺设计 摘要 啤酒是世界上最古老也是消费量最大的酒精饮料,同时也是仅次于水和茶的第三大饮料。啤酒是用含有淀粉的谷类(主要是大麦)酿造而成的,多数添加啤酒花来调味,有时候还会添加一些香草和水果。 本设计是对年产15万吨淡色啤酒的工厂工艺设计。主要包括工厂厂址选择及总平面设计,啤酒生产的工艺流程设计,工艺计算,糖化车间物料衡算(工艺技术指标及基础数据)、糖化车间热量衡算(糖化用水消耗热量、第一次米醪煮沸消耗热量、第二次煮沸前混合醪升温耗热量、第二次米醪煮沸消耗热量、洗槽水耗热量、麦汁煮沸耗热量、糖化一次总耗热量、糖化一次耗用蒸汽量、蒸汽单耗)、发酵车间耗冷量衡算(工艺耗冷量、非工艺耗冷量),设备的设计与选型(包括糖化锅、糊化锅、过滤锅、煮沸锅、回旋沉淀槽、发酵罐),环境保护及末端治理,工业卫生与劳动安全。绘制啤酒生产工艺流程图和全厂平面布置图。 关键词:啤酒工艺设计

150,000 tons annual output of beer plant process design ABSTRACT Beer is the world's oldest and largest alcoholic beverage consumption, but also after the third largest of water and tea drin ks. Beer, made of starch grains (containin g), is mainly barley and brew ing, the majority of hops to add flavor and sometimes add some van ilia and fruit. This desig n is an annual output of 150,000 tons of light beer pla nt process desig n. In clude plant site selection and general graphic design, beer production process design, process calculatio n, glycosylated pla nt material bala nee (tech no logy in dicators and basic data), glycosylated plant heat balanee (glycosylated water burn calories, the first mash boiled rice con sumpti on of calories, the sec ond boili ng temperature before the heat con sumpti on of mixed mash, mash boiled rice con sumpti on of the sec ond heat, wash water tank heat loss, wort boil ing heat loss, a total heat loss glycosylated, glycosylated a steam consumption, steam alone con sumpti on), ferme nted pla nt cooli ng con sumptio n acco unting (process cooli ng con sumpti on, non-process cooli ng con sumpti on), equipme nt desig n and select ion (in clud ing glycosylated pot, paste pot, filter pot, boiling pot, swing sedimentation tank, fermentation pot ), environmental protect ion and end treatme nt, in dustrial hygie ne and labor safety. Draw beer product ion flow chart and the factory floor pla ns. Key words:Beer Tech no logy Desig n 摘要 ......................................................... I ABSTRACT. ......................... I I 1 绪论 (1) 1.1啤酒的起源 (1) 1.2我国啤酒工业发展简况 (1)

聚氯乙烯PVC介绍及配方介绍分解

目录 一、聚氯乙烯 (2) 1聚氯乙烯 (2) 2聚氯乙烯的分类 (2) 3聚氯乙烯的性质 (3) 4 PVC板材性能: (3) 二、PVC配方各物配料比 (3) 高级装饰用软板(质量份) (3) 1.硬质PVC板材基本配方 (4) 2.普通防火板参考配方 (4) 3. 泡沫夹心型防火板参考配方 (4) 4.彩色艺术面层防火板配方 (5) 5.发泡防火板或超轻型防火板参考配方 (6) 6.复合材料珍珠岩板 (6) 三、聚氯乙烯配方介绍 (7) 1.树脂的选择 (7) 2.增塑剂体系 (8) 3.稳定剂体系 (8) 4.润滑剂 (10) 5.填充料 (10) 6.着色剂 (11) 7.发泡剂 (11) 8.阻燃剂 (11)

一、聚氯乙烯 1聚氯乙烯 (英文:PolyVinyl Chloride,简称:PVC)是一种使用一个氯原子取代聚乙烯中的一个氢原子的高分子材料。PVC为无定形结构的白色粉末,支化度较小。工业生产的PVC分子量一般在5~12万范围内,具有较大的多分散性,分子量随聚合温度的降低而增加。无固定熔点,80~85℃开始软化,130℃变为粘弹态,160~180℃开始转变为粘流态。其抗张强度60MPa左右,冲击强度5~10kJ/m2;有优异的介电性能。对光和热的稳定性差,在100℃以上或经长时间阳光曝晒,就会分解而产生氯化氢,并自动催化分解引起变色,在实际应用中必须加入稳定剂以提高对热和光的稳定性。PVC很坚硬,只能溶于环己酮、二氯乙烷和四氢呋喃等少数溶剂中,对有机和无机酸、碱、盐均稳定,化学稳定性随使用温度的升高而降低。 2聚氯乙烯的分类 生产方法的不同,PVC可分为:通用型PVC树脂、高聚合度PVC树脂、交联PVC树脂。通用型PVC树脂是由氯乙烯单体在引发剂的作用下聚合形成的;高聚合度PVC树脂是指在氯乙烯单体聚合体系中加入链增长剂聚合而成的树脂;交联PVC树脂是在氯乙烯单体聚合体系中加入含有双烯和多烯的交联剂聚合而成的树脂。 软PVC一般用于地板、天花板以及皮革的表层,但由于软PVC中含有柔软剂,容易变脆,不易保存,所以其使用范围受到了局限。硬PVC不含柔软剂,柔韧性好,易成型,不易脆,无毒无污染,保存时间长,因此具有很大的开发应用价值。 PVC发泡板具有防腐、防潮、防霉、不吸水、可钻、可锯、可刨、易于热成型、热弯曲加工等特性,因此广泛应用于家具、橱柜、浴柜、展览架用板、箱体芯层、室内外装饰、建材、化工等领域用板,广告标示、印刷、丝印、喷绘、电脑刻字、电子仪表产品包装等行业。 PVC硬塑板具有优良的耐腐蚀性、绝缘性,并有一定的机械强度;经二次加工后可制成硫酸(盐酸)槽(桶箱);医药用空针架,化程架;公共卫生间水箱;加工产品的模板、装饰板、排风管道、设备衬里等各种异型制品、容器。是化工、建材、装饰及其他工业的理想选择材料。 60年代后期退居第二位。由于PVC树脂合成原料丰富,价格低廉需求量增加很快,地位逐渐加强。通用型PVC平均聚合度500~~150高聚和度型PVC平均聚合度为1700以上。我们常用的PVC树脂都为通用型。

年产5万8°啤酒发酵车间设计

课程设计报告 题目:年产5万8°啤酒发酵车间设计 学院化学化工与生命科学学院 专业生物工程 班级10生物工程 姓名汪新荣 学号10008037 组员刘照闫春伟 指导老师陈小举 2014年1月2日

2013—2014 学年第一学期 化学化工与生命科学学院生物工程专业 设计题目:年产5万吨8°啤酒发酵车间(工厂)设计完成期限:自2013 年12月20日至2014 年1月2日共二周 一、主要内容及基本要求 主要内容: 1.拟在巢湖市选择厂址新建年产5万吨啤酒工厂 2.设计范围:以发酵车间为主体设计,只做初步设计 基本要求:生产技术方案和平面布局合理,工艺流程设计和设备选择及生产技术经济指标具有先进性与合理性,工艺计算正确,绘图规范,综合指标达到同类工厂先进水平,“三废”环保符合国家有关规定 二、重点研究的问题 生产工艺流程的选择和设计;物料衡算;发酵主车间布置设计以及专业设备选型。三、工作计划和进度 设计进度安排 (1)2013年12月20-21日查阅相关资料 (2)2013年12月22-23日完成开题报告 (3)2013年12月23-30日完成设计的撰写和图纸的绘制 (4)2013年12月31日-2014年1月2日修改设计 四、设计成果形式 1) 完成设计报告2) 绘制工艺流程图

摘要 本设计是年产五万吨8°的啤酒厂设计,此啤酒的酿造方法采用75%的麦芽,25%的大M,经过糊化,糖化,煮沸,过滤,冷却,发酵而成。发酵设备采用圆筒体锥底发酵罐,发酵周期是14天。本设计内容主要包括物料衡算,热量衡算,冷耗衡算和设备选型的计算及重点设备选型及计算。本次设计还进行了“三废”处理和副产物综合利用的设计。糖化方法采用双醪浸出糖化法,发酵方法采用下面发酵法。本设计的图纸主要包括发酵罐图,厂区图。本论文对啤酒生产线工艺设计中的关键部分—原料的糊化、糖化、麦汁过滤、煮沸、发酵、啤酒过滤进行了研究。在核心设备上选用国际先进装置,在提高啤酒质量、降低生产成本方面相对现实的生产工艺具有较大优势。 关键词:啤酒;糖化;发酵;发酵罐

年产10万吨啤酒工厂设计

项目策划书 鲁东大学设计题目:年产10万吨啤酒工厂设计 2010年06月05日

目录 一.可行性研究报告 (3) 1.1 总论 (3) 1.2 项目建设的目的和意义 (3) 1.3 产品方案及需求预测 (4) 1.4 建厂条件及厂址选择 (4) 1.5 项目实施预规划及资金支付 (6) 1.6 经济效益及社会效益的初步估算 (6) 二.总平面布局 (7) 三.淡色啤酒生产的工艺设计 (7) 3.1 原料 (7) 3.2 生产工艺 (8) 四.工艺计算 (10) 4.1 100000t/a啤酒厂糖化车间的物料衡算 (10) 4.2 100000t/a啤酒厂糖化车间的热量衡算 (12) 4.3 100000t/a啤酒厂发酵车间的耗冷量衡算 (15) 4.4 年产10万吨12度啤酒的用水量计算 (18) 4.5 总容积200立方米啤酒锥底发酵罐计算 (19) 五.设备计算及选型 (20) 5.1 主要设备的计算 (20) 5.2 设备清单 (21) 六.工厂布局 (22) 七.啤酒工厂卫生 (22) 7.1 工厂设计规范 (22) 7.2 厂库环境卫生 (22) 7.3 厂区设施卫生 (22) 7.4 车间卫生 (22) 7.5 厂区公共卫生 (22) 八.环境保护与综合利用 (23) 8.1 环保治理工艺的设计原则: (23) 8.2 三废处理 (23) 九. 经济技术及概算 (23) 9.1人力资源配置 (23) 9.2产品成本及利润估算 (24) 十.总结 (25) 参考文献 (25)

一.可行性研究报告 1.1 总论 1.1.1 项目名称:年产100000吨啤酒工厂设计 1.1.2 承办单位:青岛三德工艺品有限公司 昌邑得益工艺品有限公司 1.1.3 项目地址:潍坊市昌邑饮马工业园区 1.1.4 项目经理:杨玉琨 1.2项目建设的目的和意义 1.2.1 提出背景和依据 啤酒是夏秋季防暑降温解渴止汗的清凉饮料。 据医学和食品专家们研究,啤酒含有4%的酒精,能促进血液循环;含二氧化碳,饮用时有清凉舒适感;还能帮助消化,促进食欲。 啤酒花含有蛋白质、维生素、挥发油、苦味素、树脂等,具有强心、健胃、利尿,镇痛等医疗效能,对高血压病、心脏病及结核病等均有较好的辅助疗效。产妇喝啤酒,以增加母体乳汁,使婴儿得到更充分的营养。适量适用啤酒对心脏和高血压患者亦有一定疗效。啤酒生产是采用发芽的谷物作原料,经磨碎,糖化,发酵等工序制得.。在古代中国,也有类似于啤酒的酒精饮料,古人称之为醴.大约在汉代后,醴被酒曲酿造的黄酒所淘汰.清代末期开始,国外的啤酒生产技术引入我国,新中国成立后,尤其是80年代以来,啤酒工业得到了突飞猛进的发展,到现在中国已成为世界第二啤酒生产大国. 如今可说是中国的啤酒工业进入了旺盛的成熟期,一方面, 啤酒工业继续以高速度发展,在高速发展的同时,开始对啤酒的质量, 啤酒工业的经济效益更加重视,啤酒工业的规模按照国际上的惯例,开始向大型化,集团化方向发展.一些中小型啤酒厂被大型啤酒厂兼并. 1.2.2 投资的必要性和经济意义 现在我国啤酒产量方面跃居世界第二位,而且在质量、技术、装备水平等方 面也都有了较大幅度的提高,充分显示了我国啤酒工业强劲的发展势头。但是,我 国啤酒与世界发达国家相比,仍有很大差距。我国啤酒厂不合理企业规模偏多,达不到啤酒生产应有的经济规模。通过对国内外技术经济指标的数据分析得出,10万吨/年规模以上 的啤酒厂才有较好的技术经济指标水平。而现在这样的酒厂还较少,多数是设备陈旧、老化,生产能力不足,设备的自动化程度不高,工艺落后的小酒厂。所以建设一个现代化的大规模的啤酒厂势在必行。 1.2.3 产品优势 经过10年有价值的健康研究,专家们发现,经常性、中度啤酒摄入量——即每天1—2杯12盎司(350毫升)啤酒——对于男性和女性都有益,特别是如果你正面临衰老或受到最常见疾病的困扰。而以下7个你梦寐以求的好处,啤酒都可以带给你。 1护心脏健康: 大量的研究表明,适度饮酒,包括啤酒,可降低患心脏病的危险。 2护血管: 适度喝啤酒也有助于防止血栓形成,预防缺血性脑中风。 3低糖尿病风险: 研究显示,糖尿病人中度饮酒也能减少最大的杀手——冠心病发作的风险。这可能是因为,

聚氯乙烯生产毕业论文设计

聚氯乙烯生产毕业论文设计

毕业设计(论文) (化工系) 题目年产40万吨电石法氯乙烯生产工艺设计专业 班级 姓名 学号 指导教师 完成日期2011年6月25日~2011年10月10日

(论文) 摘要....................................................................... I I 前言 (4) 第一章文献综述 (8) 1.1化学品名称 (8) 1.2成分组成信息 (8) 1.3危险性概述 (8) 第二章电石法制氯乙烯所用的原料及其性质错误!未定义书签。 2.1乙炔氧氯化法生产氯乙烯 ... 错误!未定义书签。 2.2电石乙炔法生产氯乙烯错误!未定义书签。第三章电石法制氯乙烯工艺流程...错误!未定义书签。 3.1乙炔性质 (10) 3.2生产方法 (11) 3.3影响因素 (12) 第四章电石法制氯乙烯工段物料及热量衡算方法......................................... 错误!未定义书签。

4.1制备方法 (13) 4.2盐酸脱吸法生产氯化氢 (15) 4.3副产盐酸脱吸法生产氯化氢 (17) 第五章电石法制氯乙烯工段的主要设备错误!未定义书签。 5.1合成部分设备.............. 错误!未定义书签。 5.2列管式石墨换热器 ..... 错误!未定义书签。 5.3吸收部分设备.............. 错误!未定义书签。总结 ............................................................................................... 错误!未定义书签。致谢 ............................................................................................... 错误!未定义书签。参考文献 ....................................................................................... 错误!未定义书签。 摘要 氯乙烯的制备在PVC的生产过程中是一个非常重要的环节,它把从氯化氢装置送来的干燥氯化氢气体和从乙炔装置送来的精制乙炔气体在这里合成反应生成粗氯乙烯,并经过脱水、净化、精馏等工序后,制成精制氯乙烯,即单体,用来满足聚合的需要。 本设计主要论述了电石法生产氯乙烯,以及原料气的物理性质和化学性质,以及它的用途;还介绍了生产氯乙烯的主要设备,基本原理和工

年产7万吨11度淡色啤酒厂糖化车间设计(主体设备:煮沸锅)

以下是俺有的论文题目,扣扣:1447781645.你懂的! 论文目录: 年产7万吨11度淡色啤酒厂糖化车间设计(主体设备:煮沸锅) 年产7万吨11度淡色啤酒厂糖化车间设计(主体设备:煮沸锅)年产8万吨10°黑色啤酒厂发酵车间工艺初步设计 年产8万吨淡色9°啤酒厂发酵车间发酵罐设计 年产10万吨9°淡色啤酒厂发酵车间工艺初步设计 年产10万吨10°P啤酒厂糖化车间设计(主体:糖化锅) 年产10万吨10°淡色啤酒厂糖化车间工艺初步设计 年产20万吨a-淀粉酶设计糖化酶工厂设计 年产100吨四环素发酵车间工艺设计 年产600吨青霉素钠发酵车间设计 年产9000万瓶氨基酸大输液生产车间工业设计定稿版 年产量200吨穿心莲内酯提取车间工艺设计 年产一万吨味精工厂发酵车间工艺设计 日产200吨麦芽糖 十五万吨α-中温淀粉酶 年产10万吨9°P淡色啤酒厂发酵车间设计 年产200万只卤蛋制品加工厂设计 年产4500t青霉素G钠 宜宾芽菜中优势菌群的分离纯化 糟醅中酒精含量测定方法的优化研究

Burkholderia sp.WGB静息细胞体系转化茴脑产茴香醛的条件研究α-葡萄糖苷酶抑制剂产生菌的筛选及发酵培养基的优化 超声—酶法结合提取花生粕多糖 低聚异麦芽糖高产菌株的筛选 固定化黑曲霉生产低聚异麦芽糖的复合载体选择 木聚糖酶的分离和发酵 微波-亚硝酸钠复合诱变无色高产黄原胶菌株 纤溶酶提取方法研究 植物乳酸菌高密度发酵技术的研究 紫外线-亚硝酸钠复合诱变高产黄原胶菌株 小麦为原料的固态法白酒发酵及正丙醇等含量的 微生物肥料课题研究 耐高温酒精酵母菌的驯化及诱变育种 拮抗性放线菌的分离和筛选 酵母菌降解养殖水体中氨氮特性的研究 不同酵母菌株的液态法白酒发酵及正丙醇等含量的气相色谱分析 白灵菇的液体菌种培养研究及无土栽培 香菇菌液体发酵啤酒糟 从土壤中筛选二羟基丙酮产生菌 巧克力工厂设计 酒精蒸煮车间设计 年产18万吨乳酸菌饮料厂生产车间的设计 胸腺素发酵工厂初步设计 日产300万片剂GMP车间规范设计

年产三万吨啤酒厂啤酒发酵工艺设计C

年产三万吨啤酒厂啤酒发酵工艺设计C(2007-12-06 20:32:30) 标签:发酵工艺设计 四、30000t/a啤酒厂发酵车间的耗冷量衡算 啤酒发酵工艺有上面发酵和下面发酵两大类,而后者有传统的发酵槽发酵和锥形罐发酵等之分[8]。不同的发酵工艺,其耗冷量也随之改变。下面以目前我国应用最普遍的锥形罐发酵工艺进行20000t/a啤酒厂发酵车间的耗冷量计算。 4.1发酵工艺流程示意图 冷却 94℃热麦汁冷麦汁(6℃)锥形灌发酵过冷却至-1℃贮酒过滤清酒灌 图4发酵工艺流程 4.2工艺技术指标及基础数据 年产10°淡色啤酒30000t;旺季每天糖化8次,淡季为4次,每年共糖化1800次;主发酵时间6天; 4锅麦汁装1个锥形罐; 10°Bx麦汁比热容c1=4.0KJ/(kgK); 冷媒用15%酒精溶液,其比热容可视为c2=4.18 KJ/(kgK); 麦芽糖化厌氧发酵热q=613.6kJ/kg; 麦汁发酵度60%。 根据发酵车间耗冷性质,可分成工艺耗冷量和非工艺耗冷量两类,即:(39) 4.3工艺耗冷量 4.3.1麦汁冷却耗冷量Q1 近几年来普遍使用一段式串联逆流式麦汁冷却方法[9]。使用的冷却介质为2℃的冷冻水,出口的温度为85℃。糖化车间送来的热麦汁温度为94℃,冷却至发酵起始温度6℃。 根据表2啤酒生产物衡酸表,可知每糖化一次热麦汁20053L,而相应的麦汁密度为1048kg/m3,故麦汁量为: G=1048×18.62871=19522.89(kg) 又知100Bx麦汁比热容C1=4.0KJ/(Kg·k),工艺要求在1h小时内完成冷却过程,则所耗冷量为: Q1=[G C(t1-t2)]/τ(40) =[19522.89×4.0(94-6)]/1

年产10万吨啤酒厂设计_本科生毕业论文(设计)

本科生毕业设计年产10万吨啤酒厂设计 姓名 学号 专业食品科学与工程班级 指导教师 学部食品与环境学部答辩日期

黑龙江东方学院本科生毕业论文(设计)评语(一) 姓名学号专业 班级 05-D 总 成绩 毕业论文(设计)题目:年产10万吨啤酒厂设计 答 辩 委 员 会 评 语 答辩成绩 主任签字:年月日答辩委员会成员签字 学部 毕业 论文 (设 计)领 导小 组意 见 组长签字:年月日学部公章

黑龙江东方学院本科生毕业论文(设计)评语(二)姓名李季学号054131235 专业班级05-D 毕业论文(设计)题目:年产10万吨啤酒厂设计 指导教师成绩 指 导 教 师 评 语 指导教师签字:年月日

黑龙江东方学院本科生毕业论文(设计)评语(三)姓名李季学号054131235 专业班级05-D 毕业论文(设计)题目:年产10万吨啤酒厂设计 评阅教师成绩 评 阅 教 师 评 语 评阅教师签字:年月日

黑龙江东方学院本科生毕业论文(设计)任务书姓名李季学号054131235专业班级05-D 毕业论文(设计)题目:年产10万吨啤酒厂设计 毕业论文(设计)的立题依据 主要内容及要求 进度安排 学生签字: 指导教师签字: 年月日本表一式三份,学生本人、指导教师、学部各一份。

年产10万吨啤酒厂设计 摘要 本文主要是简要的介绍年产10万吨10度淡色啤酒厂的工厂设计。它主要包括啤酒发展,啤酒原料,啤酒厂建设的目的,啤酒厂的规划,啤酒工艺计算、啤酒厂设备的计算和重点设备的计算,啤酒厂的发展状况,啤酒厂资金的估算等方面的内容主要是糖化车间的工艺。本设计一共画二张图:全厂平面布置图、工艺流程图。 本文设计的工厂采用3班倒的工作制,每天工作时间24小时,除去设备清洗和升温时间4小时,实际生产时间按20小时计,本设计设计了一个年产量10万吨啤酒厂主车间平面图及项目工艺方案的设计原则、方法、程序、设备、等等。 关键词:啤酒厂;工厂设计;工艺流程

聚氯乙烯的生产工艺

第一章概述 第一节聚氯乙烯简述 氯乙烯的聚合物。英文缩写PVC。聚氯乙烯是仅次于聚乙烯的第二大塑料品种。玻璃化温度80~85℃,密度1.35~1.45克/厘米3,使用温度-15~60℃。PVC具有优良的耐酸碱、耐磨、耐燃及绝缘性能,与大多数增塑剂的混合性好,因此可大幅度改变材料的力学性能。加工性能优良,价格便宜,但对光、热稳定性差,100℃以上或光照下性能迅速下降。 聚氯乙烯用自由基加成聚合制备,方法有悬浮、本体、乳液和溶液等,其中以悬浮法为主,以过氧化物等引发,加分散剂后可得到疏松树脂颗粒,加工性能好。聚合温度高,链转移速率高,产物分子量小,一般应稳定在±0.5℃以内。溶液聚合产物直接用作涂料胶粘剂,乳液聚合产物也可直接应用,或喷雾干燥为固体。 聚氯乙烯(PVC)是五大通用塑料之一,其产量仅次于聚乙烯居第二位。PVC以其具有的阻燃、绝缘、耐磨损等优良的综合性能赢得了广阔市场,广泛应用于轻工、建材、农业、日常生活、包装、电力、公用事业等部门,尤其在建筑塑料、农用塑料、塑料包装材料、日用塑料等领域占有重要地位。 聚氯乙烯(PVC)用途广泛,并是最早用于工业化生产的塑料管道材料,至今仍是管道生产的主导材料。PVC的强度高、造价低、可回收利用、性能受环境影响小、安全卫生,可用于压力和重力管道,也可用于塑料包装、制品等领域,其低廉的价格和突出的均衡性能,已经在工业和消费用途方面成为十分理想的材料。 聚氯乙烯是由液态的氯乙烯单体经悬浮,乳液,本体或溶液法工艺聚合而成,其中悬浮工艺在世界PVC生产装置中大约占百分之九十的比例。在世界PVC总产量中均聚物也占大约百分之九十的比例。PVC是应用最广泛的热塑性树脂,可以制造强度和硬度制品。硬质品目前占PVC总消费量的百分之六十五左右,今后PVC消费量进一步增长的机会主要是在硬质制品应用领域。目前PVC在建筑领域中的消费量占总消费量的一半以上。 第二节国内生产及应用状况

年产10万吨啤酒厂糖化车间设计

年产12万吨啤酒厂糖化车间设计 本设计的内容 摘要:啤酒,但是酿造原理却是一样的。在整个酿造过程中,大体可以分为四大工序:麦芽制造;麦汁制备;啤酒发酵;啤酒包装与成品啤酒。其中麦汁制造是啤酒生产的重要环节,它包含了对原料的糊化、液化、糖化、麦醪过滤和麦汁煮沸等处理工艺。设计从实际生产出发,确定出生产10万吨啤酒所需要的物料量,热量和糖化车间内的常用设备如糊化锅、糖化锅、过滤槽、煮沸锅、沉淀槽及薄板冷却器的主要尺寸、选型以及其他辅助设备、管道的选型。设备均是现今国内常用的类型,具有一定的先进性。而且对整个车间的布局进行了设计,包括设备布置图,工艺流程图等。 关键词:糖化锅物料衡算热量衡算 一、前言: 啤酒是全世界分布最广,也是历史最悠久的酒精性饮料,它的酒精度低、营养丰富、有益于人的健康,因而有“液体面包”之美称,受到众人的喜爱。 我国最新的国家标准规定:啤酒是以大麦芽(包括特种麦芽)为主要原料,加酒花,经酵母发酵酿制而成的、含二氧化碳的、起泡的、低酒精度(2.5%~7.5%,V/V)的各类熟鲜啤酒。 目前,我国人均啤酒消费量虽然已接近22升,但中西部地区仅在10升左右,8亿多人口的农村人均连5 升不到。因此,我国啤酒市场还拥有很大的挖掘潜力,消费量仍将保持增长。 啤酒品种很多,一般可根据生产方式,按产品浓度、啤酒的色泽、啤酒的消费对象、啤酒的包装容器、啤酒发酵所用的酵母菌等种类来分类。 ◆根据原麦汁浓度分类 啤酒酒标上的度数与白酒上的度数不同,它并非指酒精度,它的含义为原麦汁浓度,即啤酒发酵进罐时麦汁的浓度。主要的度数有18、16、14、12、11、10、8度啤酒。日常生活中我们饮用的啤酒多为11、12度啤酒。 ◆根据啤酒色泽分类 淡色啤酒——色度在5-14EBC之间。淡色啤酒为啤酒产量最大的一种。浅色啤酒又分为浅黄色啤酒、金黄色啤酒。 浅黄色啤酒口味淡爽,酒花香味突出。金黄色啤酒口味清爽而醇和,酒花香味也突出。 浓色啤酒——色泽呈红棕色或红褐色,色度在14-40EBC之间。浓色啤酒麦芽香味突出、口味醇厚、酒花苦味较清。黑色啤酒——色泽呈深红褐色乃至黑褐色,产量较低。黑色啤酒麦芽香味突出、口味浓醇、泡沫细腻,苦味根据产品类型而有较大差异。 ◆根据杀菌方法分类 鲜啤酒——啤酒包装后,不经巴氏灭菌的啤酒。这种啤酒味道鲜美,但容易变质,保质期7天左右。 熟啤酒——经过巴氏灭菌的啤酒。可以存放较长时间,可用于外地销售,优级啤酒保质期为120天。 ◆根据包装容器分类 瓶装啤酒——国内主要为640ml和355ml两种包装。国际上还有500ml和330ml等其他规格。 易拉罐装啤酒——采用铝合金为材料,规格多为355ml。便于携带,但成本高。

聚氯乙烯反应釜的设计

摘要 随着国内聚氯乙烯行业的竞争越来越激烈,小规模聚氯乙烯生产设备将越来越表现出不经济性。考虑到今后国内新建聚氯乙烯生产设备规模至少将在20万t/a 以上,60m3聚氯乙烯反应釜及其成套工艺技术具有很大的推广前景。由于引进国外60m3以上聚氯乙烯反应釜及其成套工艺技术的设备和技术费用相当昂贵,在今后较长一段时期内,国产化60m3聚氯乙烯反应釜及其成套工艺技术将是企业的理想选择。因此,60m3聚氯乙烯反应釜的设计和成套工艺技术的开发,将极大的推动国内PVC行业的技术进步和长远发展。本次毕业设计是设计一个60m3聚氯乙烯反应釜,考虑到了筒体所受的内压和外压,进行了罐体和夹套内压强度计算,对罐体进行了外压强度校核,另外还设计了搅拌装置与传动装置,并对其进行了强度和刚度校核。 关键词:聚氯乙烯; 反应釜;设计 Abstract With the domestic PVC industry more competitive, PVC production equipment for small-scale will become more and more non-economic. Tacking into account the future of domestic new PVC production equipment will be at least more than 200,000t/a, 60m3PVC reactor and packaged process have a great spread. The equipment investments and construction investments for bring in the 60m3 PVC reactor and packaged process is so expensive that the companies should choose the 60m3 PVC reactor and packaged process that we have in the near future. So, the design of the 60m3PVC reactor and the study of packaged process have great historical significance and far-reaching impact in the history of domestic PVC production, will greatly promote the development of domestic PVC industry.This graduation design is to design a 60m3PVC reactor.This design considered the cylinder body from the internal pressure and the external pressure,Tank and jacket were calculated compressive strength,and the tank strength of the external pressure was checked.In addition, I also designed a mixing device and transmission device and checked its strength and stiffness. Key words: PVC; reactor; design

相关主题
文本预览
相关文档 最新文档