当前位置:文档之家› 大学物理大作业(一;三;五)

大学物理大作业(一;三;五)

大学物理大作业(一;三;五)
大学物理大作业(一;三;五)

《大学物理》学期作业一质点运动学与牛顿运动定律

学院

专业

班级

姓名

学号

一. 选择题

1. 以下四种运动,加速度保持不变的运动是

(A) 单摆的运动;

(B) 圆周运动; (C) 抛体运动; (D) 匀速率曲线运动.

2. 质点在y 轴上运动,运动方程为y =4t 2

-2t 3

,则质点返回原点时的速度和加速度分别为: (A) 8m/s, 16m/s 2

. (B) -8m/s, -16m/s 2. (C) -8m/s, 16m/s 2. (D) 8m/s, -16m/s 2.

3. 物体通过两个连续相等位移的平均速度分别为v 1=10m/s ,v 2=15m/s ,若物体作直线运动,则在整个过程中物体的平均速度为

(A) 12 m/s. (B) 11.75 m/s. (C) 12.5 m/s. (D) 13.75 m/s.

4. 质点沿X 轴作直线运动,其v- t 图象为一曲线,如图1.1,则以下说法正确的是

(A) 0~t 3时间内质点的位移用v- t 曲线与t 轴所围面积绝对值之和表示, 路程用v- t 曲线与t 轴所围面积的代数和表示;

(B) 0~t 3时间内质点的路程用v- t 曲线与t 轴所围面

积绝对值之和表示, 位移用v- t 曲线与t 轴所围面积的代数和表示;

(C) 0~t 3时间内质点的加速度大于零; (D) t 1时刻质点的加速度不等于零.

5. 质点沿XOY 平面作曲线运动,其运动方程为:x =2t , y =19-2t 2

. 则质点位置矢量与速度矢量恰好垂直的时刻为

(A) 0秒和3.16秒. (B) 1.78秒. (C) 1.78秒和3秒. (D) 0秒和3秒

.

图1.1

6. 下面表述正确的是

(A) 质点作圆周运动,加速度一定与速度垂直;

(B) 物体作直线运动,法向加速度必为零;

(C) 轨道最弯处法向加速度最大;

(D) 某时刻的速率为零,切向加速度必为零.

7. 由于地球自转,静止于地球上的物体有向心加速度,下面说法正确的是

(A) 静止于地球上的物体,其向心加速度指向地球中心;

(B) 荆州所在地的向心加速度比北京所在地的向心加速度大;

(C) 荆州所在地的向心加速度比北京所在地的向心加速度小;

(D) 荆州所在地的向心加速度与北京所在地的向心加速度一样大小.

8. 下列情况不可能存在的是

(A) 速率增加,加速度大小减少;

(B) 速率减少,加速度大小增加;

(C) 速率不变而有加速度;

(D) 速率增加而无加速度;

(E) 速率增加而法向加速度大小不变.

9. 质点沿半径R=1m的圆周运动,某时刻角速度ω=1rad/s,角加速度α=1rad/s2,则质点速度和加速度的大小为

(A) 1m/s, 1m/s2.

(B) 1m/s, 2m/s2.

(C) 1m/s, 2m/s2.

(D) 2m/s, 2m/s2.

10. 一抛射体的初速度为v0,抛射角为θ,抛射点的法向加速度,最高点的切向加速度以及最高点的曲率半径分别为

(A) g cosθ ,0 , v02 cos2θ/g.

(B) g cosθ , g sinθ, 0.

(C) g sinθ, 0, v02/g.

(D) g ,g ,v02sin2θ/g.

11. 下面说法正确的是

(A) 物体在恒力作用下,不可能作曲线运动;

(B) 物体在变力作用下,不可能作直线运动;

(C) 物体在垂直于速度方向,且大小不变的力作用下,作匀速园周运动; (D) 物体在不垂直于速度方向力的作用下,不可能作园周运动;

(E) 物体在垂直于速度方向,但大小可变的力的作用下,可以作匀速曲线运动. 12. 如图1.2(A)所示,m A >μm B 时,算出m B

向右的加速度为a ,今去掉m A 而代之以拉力T =

m A g , 如图1.2(B)所示,算出m B 的加速度a ',则

(A) a > a '. (B) a = a '. (C) a < a '. (D) 无法判断.

13. 把一块砖轻放在原来静止的斜面上,砖不往下滑动,如图1.3所示,斜面与地面之间无摩擦,则

(A) 斜面保持静止. (B) 斜面向左运动. (C) 斜面向右运动. (D) 无法判断斜面是否运动.

14. 如图1.4所示,弹簧秤挂一滑轮,滑轮两边各挂一质量为m 和2m 的物体,绳子与滑轮的质量忽略不计,轴承处摩擦忽略不计,在m 及2m 的运动过程中,弹簧秤的读数为

(A) 3mg . (B) 2mg . (C) 1mg . (D) 8mg / 3.

15. 如图1.5所示,手提一根下端系着重物的轻弹簧,竖直向上作匀加速运动,当手突然停止运动的瞬间,物体将

(A) 向上作加速运动. (B) 向上作匀速运动. (C) 立即处于静止状态

.

图1.2

图1.4

< < < < 图1.5

a

(D) 在重力作用下向上作减速运动.

二. 填空题

1. 一小球沿斜面向上运动,其运动方程为s=5+4t-t2 (SI),则小球运动到最高点的时刻为

t= 秒.

2. 一质点沿X轴运动, v=1+3t2 (SI), 若t=0时,质点位于原点.

则质点的加速度a= (SI);质点的运动方程为x= (SI).

3. 一质点的运动方程为r=A cosω t i+B sinω t j, 其中A, B ,ω为常量.则质点的加速

度矢量为a= , 轨迹方程为 .

4. 一人骑摩托车跳越一条大沟,他能以与水平成30°角,其值为30m/s的初速从一边起跳,

刚好到达另一边,则可知此沟的宽度为 .

5. 任意时刻a t=0的运动是运动;任意时刻a n=0的运动是运动;

任意时刻a=0的运动是运动;任意时刻a t=0, a n=常量的运动是运动.

6. 已知质点的运动方程为r=2t2i+cosπt j (SI), 则其速度v= ;加速度a= ;当t=1秒时,其切向加速度τa= ;法向加速度n a= .

7. 如图2.1所示,一根绳子系着一质量为m的小球,悬挂在天花板上,小球在水平面内

T cosθ-mg = 0 (1)

也有人在沿绳子拉力方向求合力写出

T - mg cosθ= 0 (2)

显然两式互相矛盾,你认为哪式正确?答 .理由

是 .

三.计算题

1. 湖中有一条小船,岸边有人用绳子通过岸上高于水面h的滑轮拉船,设人收绳的速率

为v0,求船的速度u和加速度a.

2. 一人站在山脚下向山坡上扔石子,石子初速为v0,与水平夹角为θ(斜向上),山坡与水平面成α角.

(1) 如不计空气阻力,求石子在山坡上的落地点对山脚的距离s;

(2) 如果α值与v0值一定,θ取何值时s最大,并求出最大值s max.

3. 一轻杆CA以角速度ω绕定点C转动,而A端与重物M用

细绳连接后跨过定滑轮B,如图3.1所示.试求重物M的速度.(已

知CB=l为常数,?=ωt,在t时刻∠CBA=α,计算速度时α作为已知

数代入).

4. 质量为m的子弹以速度v0水平射入沙土中,设子弹所受阻力与速度成正比,比例系数为k,忽略子弹的重力,求:

(1) 子弹射入沙土后,速度随时间变化的函数关系式;

(2) 子弹射入沙土的最大深度.

《大学物理》学期作业三

刚体力学基础

学院

专业

班级

姓名

学号

一.选择题

1. 以下运动形态不是平动的是

(A) 火车在平直的斜坡上运动;

(B) 火车在拐弯时的运动;

(C) 活塞在气缸内的运动;

(D) 空中缆车的运动.

2. 以下说法正确的是

(A) 合外力为零,合外力矩一定为零; (B) 合外力为零,合外力矩一定不为零; (C) 合外力为零,合外力矩可以不为零; (D) 合外力不为零,合外力矩一定不为零; (E) 合外力不为零,合外力矩一定为零.

3. 有A 、B 两个半径相同,质量相同的细圆环.A 环的质量均匀分布,B 环的质量不均匀分布,设它们对过环心的中心轴的转动惯量分别为I A 和I B ,则有

(A) I A >I B . (B) I A <I B .

(C) 无法确定哪个大. (D) I A =I B .

4. 质量为m , 内外半径分别为R 1、R 2的均匀宽圆环,求对中心轴的转动惯量.先取宽度为d r 以中心轴为轴的细圆环微元,如图1.1所示.宽圆环的质量面密度为σ = m /S =m /[π (R 22

-R 12

)],细圆环的面积为d S =2πr d r ,得出微元质量d m = σd S = 2mr d r /( R 22

-R 12

),接着要进行的计算是,

(A) I =

()

2d 2d 212

2

2

1

2232

2

1

R R m R R r mr m r m

R R +=-=?

?

. (B) I =???

??? ?

?-=m R R R R R r mr R m 2221222

221d 2)d (

=mR 22 . (C) I =?????? ?

?-=m

R R R R R r mr R m 2121222

1

21d 2)d (=mR 12

. (D) I =()42d 22)d (2

122

1221222

1221R R m R R R R r mr R R m m

R R +=??? ?

?+???? ??-=??? ??+??. (E) I =()42d 22)d (2122

12212221221R R m R R R R r mr R R m m

R R -=??? ?

?-???? ?

?-=???

??-??. (F) I =?

m

R m 22)d (

-?m

R m 21)d (=m (R 22-R 12

) .

(G) I =I 大圆-I 小圆=m (R 22

-R 12

)/2.

5. 一质量为m ,长为l 的均质细杆可在水平桌面上绕杆的一端转动,

杆与桌面间的摩擦系

图1.1

数为μ,求摩擦力矩Mμ. 先取微元细杆d r,其质量d m= λd r= (m/l)d r.它受的摩擦力是d fμ=μ(d m)g =(μmg/l)d r,再进行以下的计算,

(A) Mμ=?r d fμ=?l r r

l

mg

d

μ

=μmgl/2.

(B) Mμ=(?d fμ)l/2=(?l r

l

mg

d

μ

)l/2=μmgl/2.

(C) Mμ=(?d fμ)l/3=(?l r

l

mg

d

μ

)l/3=μmgl/3.

(D) Mμ=(?d fμ)l=(?l r

l

mg

d

μ

)l=μmgl.

6. 以下说法错误的是:

(A) 角速度大的物体,受的合外力矩不一定大;

(B) 有角加速度的物体,所受合外力矩不可能为零;

(C) 有角加速度的物体,所受合外力一定不为零;

(D) 作定轴(轴过质心)转动的物体,不论角加速度多大,所受合外力一定为零.

7. 在定轴转动中,如果合外力矩的方向与角速度的方向一致,则以下说法正确的是:

(A) 合力矩增大时, 物体角速度一定增大;

(B) 合力矩减小时, 物体角速度一定减小;

(C) 合力矩减小时,物体角加速度不一定变小;

(D) 合力矩增大时,物体角加速度不一定增大.

8. 质量相同的三个均匀刚体A、B、C, 如图1.2所示。以相同的角速度ω绕其对称轴旋转, 已知R A=R C<R B,若从某时刻起,

的阻力矩,则

(A) A先停转.

(B) B先停转.

(C) C先停转.

(D) A、C同时停转.

9. 银河系中有一天体是均匀球体,其半径为R,绕其对称轴自转的周期为T,由于引力凝聚的作用,体积不断收缩,则一万年以后应有

(A) 自转周期变小,动能也变小.

(B) 自转周期变小,动能增大.

(C) 自转周期变大,动能增大.

(1)

(2)

图2.1

(D) 自转周期变大,动能减小. (E) 自转周期不变,动能减小.

10. 一人站在无摩擦的转动平台上并随转动平台一起转动,双臂水平地举着二哑铃,当他把二哑铃水平地收缩到胸前的过程中,

(A) 人与哑铃组成系统对转轴的角动量守恒,人与哑铃同平台组成系统的机械能不守恒. (B) 人与哑铃组成系统对转轴的角动量不守恒,人与哑铃同平台组成系统的机械能守恒. (C) 人与哑铃组成系统对转轴的角动量,人与哑铃同平台组成系统的机械能都守恒. (D) 人与哑铃组成系统对转轴的角动量,人与哑铃同平台组成系统的机械能都不守恒. 11. 芭蕾舞演员可绕过脚尖的铅直轴旋转,当她伸长两手时的转动惯量为I 0,角速度为ω0,当她突然收臂使转动惯量减小为I 0 / 2时,其角速度应为

(A) 2ω0 . (B) 2ω0 . (C) 4ω0 . (D) ω0/2 . (E) ω0/2.

12. 转动惯量相同的两物体m 1、m 2 都可作定轴转动,分别受到不过转轴的两力F 1、F 2的作用,且F 1>F 2,它们获得的角加速度分别为α1和α2.则以下说法不正确的是

(A) α1可能大于α2 ; (B) α1可能小于α2 ; (C) α1可能等α2 ; (D) α1一定大于α2 .

二.填空题

1. 如图

2.1所示,两个质量和半径都相同的均匀滑轮,轴处无摩擦, α1和α2分别表示图(1)、图(2)中滑轮的角加速度,则α1 α2(填< = >) .

2. 质量为m 的均匀圆盘,半径为r ,绕中心轴的转动惯量I 1 = ;质量为M ,半径为R , 长度为l 的均匀圆柱,绕中心轴的转动惯量I 2 = . 如果M = m , r =

R , 则I 1 I 2 .

3. 如图2.2所示,半径分别为R A 和R B 的两轮,同皮带连结,若皮带不打滑,则两轮的角速度ωA :ωB = ;两轮边缘上A 点及B 点的线速度v A :v B = ;切向加速度A a τ:

B a τ= ;法向加速度nA a : nB a = .

4. 半径为20cm 的主动轮,通过皮带拖动半径为50cm 的被动轮转动, 皮带与轮之间无相对滑动,主动轮从静止开始作匀角加速转动,在4s 内被动轮的角速度达到8π rad/s ,则主动轮在这段时间内转过了 圈.

5. 在XOY 平面内的三个质点,质量分别为m 1 = 1kg, m 2 = 2kg,和 m 3 = 3kg,位置坐标(以米为单位)分别为m 1 (-3,-2)、m 2 (-2,1)和m 3 (1,2),则这三个质点构成的质点组对Z 轴的转动惯量I z = .

6. 光滑水平桌面上有一小孔,孔中穿一轻绳,绳的一端栓一质量为m 的小球,另一端用手拉住.若小球开始在光滑桌面上作半径为R 1速率为v 1的圆周运动,今用力F 慢慢往下拉绳子,当圆周运动的半径减小到R 2时,则小球的速率为 , 力F 做的功为 .

三.计算题

1. 质量为m 的均匀细杆长为l ,竖直站立,下面有一绞链,如图3.1,开始时杆静止,因处于不稳平衡,它便倒下,求当它与铅直线成60?角时的角加速度和角速度.

图2.2

图3.1

2. 一质量为m,半径为R的均匀圆盘放在粗糙的水平桌面上,圆盘与桌面的摩擦系数为μ,圆盘可绕过中心且垂直于盘面的轴转动,求转动过程中,作用于圆盘上的摩擦力矩.

3. 如图3.2所示,有一飞轮,半径为r= 20cm,可绕水平轴转动,在轮上绕一根很长的轻绳,若在自由端系一质量m1 = 20g的物体,此物体匀速下降;若系m2=50g的物体,则此物体在10s 内由静止开始加速下降40cm.设摩擦阻力矩保持不变.求摩擦阻力矩、飞轮的转动惯量以及绳系

重物m2后的张力?

图3.2

4. 如图3.3所示,质量为M的均匀细棒,长为L,可绕过端点O的水平光滑轴在竖直面内转动,当棒竖直静止下垂时,有一质量为m的小球飞来,垂直击中棒的中点.由于碰撞,小球碰后以初速度为零自由下落,而细棒碰撞后的最大偏角为θ,求小球击中细棒前的速度值.

图3.3

《大学物理》学期作业五

恒定电流的磁场

院、系

班级

姓名

学号

一.选择题

1. 关于平面线圈的磁矩,以下说法错误的是

(A) 平面线圈的磁矩是一标量,其大小为P m=IS;

(B) 平面线圈的磁矩P m=Is n. 其中I为线圈的电流, S为线圈的所围面积,n.为线圈平面的法向单位矢量,它与电流I成右手螺旋;

(C) 平面线圈的磁矩P m是一个矢量, 其大小为P m=IS, 其方向与电流I成右手螺旋;

(D) 单匝平面线圈的磁矩为P m=Is n,N匝面积相同且紧缠在一起的平面线圈的磁矩为P m=NIS n;

2. 两无限长载流导线,如图1.1放置,则坐标原点的磁感应强度的大小和方向分别为:

(A)2μ0 I/ (2π a) ,在yz面内,与y成45?角.

(B)2μ0 I/ (2π a) ,在yz面内,与y成135?角.

(C)2μ0 I/ (2 π a) ,在xy面内,与x成45?角.

(D)2μ0 I/ (2 π a) ,在zx面内,与z成45?角.

3. 电流元I d l位于直角坐标系原点,电流沿z轴正方

向,空间点P ( x , y , z )磁感应强度d B 沿x 轴的分量是:

(A) 0.

(B) -(μ0 / 4π)I y d l / ( x 2 + y 2 +z 2 )3/2 . (C) -(μ0 / 4π)I x d l / ( x 2 + y 2 +z 2 )3/2 . (D) -(μ0 / 4π)I y d l / ( x 2 + y 2 +z 2 ) .

4. 长直导线1 沿垂直bc 边方向经a 点流入一电阻均匀分布的正三角形线框,再由b 点沿垂直ac 边方向流出,经长直导线2 返

回电源 (如图1.2),若载流直导线1、2和三角形框在框中心O 点产生的磁感应强度分别用B 1 、B 2和B 3 表示,则O 点的磁感应强

度大小

(A) B = 0,因为B 1 = B 2 = B 3 = 0 . (B) B = 0,因为虽然B 1 ≠0,B 2 ≠0,但 B 1 +B 2 = 0 ,B 3 = 0.

(C) B ≠ 0,因为虽然B 3 =0,但B 1 +B 2 ≠ 0.

(D) B ≠ 0,因为虽然B 1 +B 2 = 0,但B 3 ≠0 .

5. 在磁感应强度为B 的匀强磁场中, 有一如图1.3所示的三棱柱, 取表面的法线均向外,设过面AA 'CO , 面B 'BOC ,

面AA 'B 'B 的磁通量为Φm1,Φ m 2,Φ m 3,则

(A) Φ m1=0, Φ m2=Ebc , Φ m3=-Ebc . (B) Φ m1=-Eac , Φ m2=0, Φ m3=Eac . (C) Φ m1=-Eac , Φ m2=-Ec 22b a +, Φ m3=-Ebc .

(D) Φ m1

=Eac , Φ m2

=Ec 22b a +, Φ m3

=Ebc . 6. 如图1.4所示,xy 平面内有两相距为L 的无限

长直载流导线,电流的大小相等,方向相同且平行于x 轴,距坐标原点均为a ,Z 轴上有一点P 距两电流均为2a ,则P 点的磁感应强度B

(A) 大小为3μ0I /(4πa ),方向沿z 轴正向. (B) 大小为μ0I /(4πa ),方向沿z 轴正向. (C) 大小为3μ0I /(4πa ),方向沿y 轴正向.

(D) 大小为3μ0I /(4πa ),方向沿y 轴负向.

7. 如图1.5所示,有两根无限长直载流导线平行放置,电流分别为I 1和I

,

线,I 1在L 内,I 2在L 外,P 是L 上的一点,今将

I 2 在L 外向I 1移近时,则有

(A)

l B d ??L

与B P

同时改变. (B) l B d ??L

与B P

都不改变. (C) l B d ??L

不变,B P

改变. (D) l B d ??L

改变,B P

不变.

8. 如图1.6,一环形电流I 和一回路l ,则积分l B d ??

l

应等于

(A) 0.

(B) 2 I . (C) -2μ0 I . (D) 2μ0 I .

图1.2 图1.4 图1.3 I 图1.5

图1.6

9. 载流空心圆柱导体的内外半径分别为a 和 b ,电流在导体截面上均匀分布,则空间各点的 B -r 曲线应为图1.7中的哪一图

10. 对于某一回路l ,积分l B d ??

l

等于零,则可以断定

(A) 回路l 内一定有电流. (B) 回路l 内可能有电流. (C) 回路l 内一定无电流.

(D) 回路l 内可能有电流,但代数和为零.

11. 在电流为I 0的无线长直载流导线旁有一段与之共面电流为I 的直线导线AC .如图1.8所示。则导线ab 受磁力方向向右,其大小为

(A).μ0I 0Ib/(2πa ).

(B) μ0I 0Ib/[2π(a +b )].. (C) μ0I 0Ib/[π(a +b )].. (D)

a

b

a I I +ln 200πμ. 12. 如图1.9,将一导线密绕成内半径为R 1 ,外半径为R 2 的园形平

面线圈,导线截面直径为d ,电流为I ,则此线圈磁矩的大小为

(A) π(R 23-R 13)I /(3d ).

(B) π(R 22-R 12) I /(3 d ).

(C)π(R 22 + R 12)I /(3 d ). (D) π(R 22-R 12)I .

13. 通有电流I 的正方形线圈MNOP ,边长为a (如图1.10),

放置在均匀磁场中,已知磁感应强度B 沿Z 轴方向,则线圈所受的磁力矩M 为

(A) I a 2 B ,沿y 负方向. (B) I a 2 B/2 ,沿z 方向. (C) I a 2 B ,沿y 方向 . (D) I a 2

B/2 ,沿y 方向 .

14. 一均匀磁场,其磁感应强度方向垂直于纸面,两带电粒子

在该磁场中的运动轨迹如图1.11所示,则

(A) 两粒子的电荷必然同号.

(B) 粒子的电荷可以同号也可以异号.

(C) 两粒子的动量大小必然不同.

(D) 两粒子的运动周期必然不同.

15. 如图1.12所示,两个比荷(q/m )相同的带导号电荷的粒子,

以不同的初速度v 1和v 2(v 1>v 2)射入匀强磁场B 中,设T 1 、T 2分别

为两粒子作圆周运动的周期,则以下结论正确的是:

(A) T 1 = T 2,q 1和q 2都向顺时针方向旋转; (B) T 1 = T 2,q 1和q 2都向逆时针方向旋转;

(A)

(B)

(C)

(D)

1.7

图1.10 图1.8

× × × × × × × × × ×

v B · · · · · · · · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

B 图1.11

(C) T 1 ≠ T 2,q 1向顺时针方向旋转,q 2向逆时针方向旋转; (D) T 1 = T 2,q 1向顺时针方向旋转,q 2向逆时针方向旋转。

二.填空题

1. 对于位于坐标原点,方向沿x 轴正向的电流元Idl ,它在x 轴上a 点, y 轴上b 点, z 轴上c 点(a ,b ,c 距原点O 均为r )产生磁感应强度的大小分别为B a = , B b = , B c = 。

2. 氢原子中的电子,以速度v 在半径r 的圆周上作匀速圆周运动,它等效于一圆电流,其电流I 用v 、r 、e (电子电量)表示的关系式为I = ,此圆电流在中心产生的磁场为B= ,它的磁矩为p m = .

3. 一带正电荷q 的粒子以速率v 从x 负方向飞过来向x 正方向飞去,当它经过坐标原点时, 在x 轴上的x 0点处的磁感应强度矢量表达式为B = ,在y 轴上的y 0处的磁感应强度矢量表达式为 .

4. 如图2.1所示,真空中稳恒电流I 流过两个半径分别为R 1 、R 2的共面同心半圆形导线,两半圆导线间由沿直径的直导线连接,电流沿直导线流入流出,则圆心O 点磁感应强度B 0 的大小为 ,方向为 ;

5. 如图2.2所示,真空中有两圆形电流I 1 和 I 2 和三个

环路L 1 L 2 L 3,则安培环路定律的表达式为

l B d 1??L = ,

l B d 2??L = ,l B d 3

??

L = . 6. 平面线圈的磁矩P m = I S n , 其中S 是电流为I 的平面线圈的 ,n 是线圈的 ;按右手螺旋法则,当四指的方

向代表 方向时,大姆指方向代表 方向.

7. 一矩形闭合线圈, 长a = 0.3m ,宽b = 0.2m 通过电流I = 5A , 放

在均匀磁场中. 磁场方向与线圈平面平行, 如图 2.3所示. 磁感应强度B =0.5T. 则线圈所受到磁力矩为 . 若此线圈受磁力矩的

作用从上述位置转到线圈平面与磁场方向成30?的位置, 则此过程中磁力矩作功为 .

8. 一电子在B =2×10-3T 的磁场中沿半径为R =2×10-

2m 、螺距为

h =5.0×10-

2m 的螺旋运动,如图 2.4所示,则磁场的方向 , 电子速度大小为 .

9. 磁场中某点处的磁感应强度B =0.40i -0.20j (T), 一电子以速度v =0.50?106i +1.0?106

j (m/s)通过该点,则作用于该电子上的磁场力F = .

10. 在匀强磁场中,电子以速率v =8.0×105m/s 作半径R =0.5cm 的圆周运动.则磁场的磁感应强度的大小B = .

三.计算题

1. 如图3.1所示,真空中稳恒电流2I 从正无穷远沿z 轴流入直导线,再沿z 轴负向沿另一直导线流向无穷远,中间流过两个半径分别为R 1 、R 2,且相互垂直的同心半圆形导线,两半圆导线间由沿直径的直导线连接.两支路电流均为I .求圆心O

2

图2.2

B

图2.3

2. 如图

3.2所示,无限长直导线载有电流I , 旁边有一与之共面的长方形平面,长为a ,宽为b ,近边距电流I 为c ,求过此面的磁通量.

3. (1)用安培环路定律求半径为a 电流为I 的无限长直均匀载流导线在空间任意一点(该点距轴线为r )激发的磁场.(2)如图3.3所示,两条平行的半径为a 的无限长直载流导线A 、B 相距为d ,电流为I . 点P 1、P 2、P 3分别距电流A 的中心轴线为x 1、x 2、x 3,,它们与电流A 、B 的轴线共面,求P 1、P 2、P 3各点处的磁感应强度的大小和方向.

3.2

图3.3

4. 一个半径为R、带电量为Q的均匀带电圆盘以角速度ω绕过圆心且垂直盘面的轴线AA'旋转,今将其放入磁感应强度为B的均匀外磁场中,B的方向垂直于轴线AA',如图3.4所示.

求圆盘所受磁力矩的大小和方向.

5. 如图3.5所示,有一电子以初速度v0沿与均匀磁场B 成α角度的方向射入磁场空间.试证明当图中的距离

L=2π m e nv0cos α /(eB)

时,

(其中m e为电子质量,e为电子电量的绝对值,n=1,2……),电子经过一段飞行后恰好打在图中的O点.

图3.4 图3.5

最新大学物理活页作业答案及解析((全套))

1.质点运动学单元练习(一)答案 1.B 2.D 3.D 4.B 5.3.0m ;5.0m (提示:首先分析质点的运动规律,在t <2.0s 时质点沿x 轴正方向运动;在t =2.0s 时质点的速率为零;,在t >2.0s 时质点沿x 轴反方向运动;由位移和路程的定义可以求得答案。) 6.135m (提示:质点作变加速运动,可由加速度对时间t 的两次积分求得质点运动方程。) 7.解:(1))()2(22 SI j t i t r -+= )(21m j i r += )(242m j i r -= )(3212m j i r r r -=-=? )/(32s m j i t r v -=??= (2))(22SI j t i dt r d v -== )(2SI j dt v d a -== )/(422s m j i v -= )/(222--=s m j a 8.解: t A tdt A adt v t o t o ωω-=ωω-== ?? sin cos 2

t A tdt A A vdt A x t o t o ω=ωω-=+=??cos sin 9.解:(1)设太阳光线对地转动的角速度为ω s rad /1027.73600 *62 /5-?=π= ω s m t h dt ds v /1094.1cos 3 2 -?=ωω== (2)当旗杆与投影等长时,4/π=ωt h s t 0.31008.144=?=ω π = 10.解: ky y v v t y y v t dv a -==== d d d d d d d -k =y v d v / d y ??+=- =-C v ky v v y ky 2 22 121, d d 已知y =y o ,v =v o 则2020 2 121ky v C --= )(22 22y y k v v o o -+=

大学物理试题及答案

第2章刚体得转动 一、选择题 1、如图所示,A、B为两个相同得绕着轻绳得定滑轮.A滑轮挂一质量为M得物体,B滑轮受拉力F,而且F=Mg.设A、B两滑轮得角加速度分别为βA与βB,不计滑轮轴得摩擦,则有 (A) βA=βB。(B)βA>βB. (C)βA<βB.(D)开始时βA=βB,以后βA<βB。 [] 2、有两个半径相同,质量相等得细圆环A与B。A环得质量分布均匀,B环得质量分布不均匀。它们对通过环心并与环面垂直得轴得转动惯量分别为JA与J B,则 (A)JA>J B.(B) JA

大物作业标准答案

大物作业答案

————————————————————————————————作者:————————————————————————————————日期: 2

本习题版权归物理与科学技术学院物理系所有,不得用于商业目的 《大学物理》作业 No.5 光的衍射 班级 ________ 学号 ________ 姓名 _________ 成绩 _______ 一、选择题: 1. 在如图所示的单缝夫琅禾费衍射装置中,设中央明纹的衍射角范围很小。若使单缝宽度a 变为原来的 23,同时使入射的单色光的波长λ 变为原来的3 / 4,则屏幕E 上单缝衍射条纹中央明纹的 宽度?x 将变为原来的 [ ] (A) 3 / 4倍 (B) 2 / 3倍 (C) 9 / 8倍 (D) 1 / 2倍 (E) 2倍 解:单缝衍射中央明纹两侧第一暗纹中心间距离为中央明纹线宽度: θtg 2f x =? 由第一暗纹中心条件: λθ=sin a 即 a λ θ= sin 当θ 小时,有 θθsin tg ≈ ∴ a f x λ 2≈? 已知题意:122 3 a a = , 4/312λλ= ,可得 ()()1112 2 2 2 12212x a f a f x ?=???? ??= =?λλ ∴ a 、λ 改变后的中央明纹宽度(?x )2变为原来宽度(?x )1的1/2 故选D 2. 波长 λ=500nm(1nm=10- 9m)的单色光垂直照射到宽度a =0.25 mm 的单缝上,单缝后面 放置一凸透镜,在凸透镜的焦平面上放置一屏幕,用以观测衍射条纹。今测得屏幕上中央明条纹一侧第三个暗条纹和另一侧第三个暗条纹之间的距离为d =12 mm ,则凸透镜的焦距f 为 [ ] (A) 2 m (B) 1 m (C) 0.5 m (D) 0.2 m (E) 0.1 m 解:由单缝衍射第一暗纹中心条件: λθ±=sin a 可得中央明纹线宽度a f x λ 2=? 而其余明纹线宽度a f x λ ='? 故中央明条纹一侧第三个暗条纹和另一侧第三个暗条纹之间的距离应是其余明纹线宽度 单缝 λa L E f O x y

大学物理作业(二)答案

班级___ ___学号____ ____姓名____ _____成绩______________ 一、选择题 1. m 与M 水平桌面间都是光滑接触,为维持m 与M 相对静止,则推动M 的水平力F 为:( B ) (A)(m +M )g ctg θ (B)(m +M )g tg θ (C)mg tg θ (D)Mg tg θ 2. 一质量为m 的质点,自半径为R 的光滑半球形碗口由静止下滑,质点在碗内某处的速率为v ,则质点对该处的压力数值为:( B ) (A)R mv 2 (B)R mv 232 (C)R mv 22 (D)R mv 252 3. 如图,作匀速圆周运动的物体,从A 运动到B 的过程中,物体所受合外力的冲量:( C ) (A) 大小为零 (B ) 大小不等于零,方向与v A 相同 (C) 大小不等于零,方向与v B 相同 (D) 大小不等于零,方向与物体在B 点所受合力相同 二、填空题 1. 已知m A =2kg ,m B =1kg ,m A 、m B 与桌面间的摩擦系数μ=0.5,(1)今用水平力F =10N 推m B ,则m A 与m B 的摩擦力f =_______0______,m A 的加速度a A =_____0_______. (2)今用水平力F =20N 推m B ,则m A 与m B 的摩擦力f =____5N____,m A 的加速度a A =_____1.7____. (g =10m/s 2) 2. 设有三个质量完全相同的物体,在某时刻t 它们的速度分别为v 1、v 2、v 3,并且v 1=v 2=v 3 ,v 1与v 2方向相反,v 3与v 1相垂直,设它们的质量全为m ,试问该时刻三物体组成的系统的总动量为_______m v 3________. 3.两质量分别为m 1、m 2的物体用一倔强系数为K 的轻弹簧相连放在光滑水平桌面上(如图),当两物体相距为x 时,系统由静止释放,已知弹簧的自然长度为x 0,当两物体相距为x 0时,m 1的速度大小为 2 2 121 Km x m m m + . 4. 一弹簧变形量为x 时,其恢复力为F =2ax -3bx 2,现让该弹簧由x =0变形到x =L ,其弹力的功为: 2 3 aL bL - . 5. 如图,质量为m 的小球,拴于不可伸长的轻绳上,在光滑水平桌面上作匀速圆周运动,其半径为R ,角速度为ω,绳的另一端通过光 滑的竖直管用手拉住,如把绳向下拉R /2时角速度ω’为 F m A m B m M F θ A O B R v A v B x m 1 m 2 F m R

大学物理习题及答案

x L h 书中例题:1.2, 1.6(p.7;p.17)(重点) 直杆AB 两端可以分别在两固定且相互垂直的直导线槽上滑动,已知杆的倾角φ=ωt 随时间变化,其中ω为常量。 求:杆中M 点的运动学方程。 解:运动学方程为: x=a cos(ωt) y=b sin(ωt) 消去时间t 得到轨迹方程: x 2/a 2 + y 2/b 2 = 1 椭圆 运动学方程对时间t 求导数得速度: v x =dx/dt =-a ωsin(ωt) v y =dy/dt =b ωcos(ωt) 速度对时间t 求导数得加速度: a x =d v x /dt =-a ω2cos(ωt) a y =d v y /dt =-b ω2sin(ωt) 加速度的大小: a 2=a x 2+a y 2 习题指导P9. 1.4(重点) 在湖中有一小船,岸边有人用绳子跨过一高处的滑轮拉船靠岸,当绳子以v 通过滑轮时, 求:船速比v 大还是比v 小? 若v 不变,船是否作匀速运动? 如果不是匀速运动,其加速度是多少? 解: l =(h2+x2)1/2 221/2 122()d l x d x v d t h x d t ==+ 221/2()d x h x v d t x += 当x>>h 时,dx/dt =v ,船速=绳速 当x →0时,dx/dt →∞ 加速度: x y M A B a b φ x h

220d x d t =2221/22221/2221/2221/2221/22221/2()1()11()()1112()2()d x d h x v dt dt x d h x v dt x d dx d h x dx h x v v dx x dt x dx dt dx x dx h x v v x dt x h x dt ?? +=??????=?+???? +??=?++ ???=-?+++ 将221/2()d x h x v d t x +=代入得: 2221/2221/2 221/2 22221/21()112()()2()d x h x x h x h xv v v v d t x x x h x x ++=-?+++3222232222)(x v h x v v x x h dt x d -=++-= 分析: 当x ∞, 变力问题的处理方法(重点) 力随时间变化:F =f (t ) 在直角坐标系下,以x 方向为例,由牛顿第二定律: ()x dv m f t dt = 且:t =t 0 时,v x =v 0 ;x =x 0 则: 1 ()x dv f t dt m = 直接积分得: 1 ()()x x v dv f t dt m v t c ===+?? 其中c 由初条件确定。 由速度求积分可得到运动学方程:

大学物理大作业

荷兰物理学家安德烈·吉姆(Andre Geim)曾经做过一个有关磁悬浮的著名实验,将一只活的青蛙悬浮在 空中的技术 迈纳斯效应—完全抗磁性 零电阻是超导体的一个基本特性,但超导体的完全抗磁性更为基本。是否 转变为超导态,必须综合这两种测量结果,才能予以确定。 如果将一超导体样品放入磁场中,由于样品的磁通量发生了变化,样品的 表面产生感生电流,这电流将在样品内部产生磁场,完全抵消掉内部的外磁场, 使超导体内部的磁场为零。根据公式和,由于超导体=-1,所以超导体具有完全抗磁性。 内部B=0,故 m 超导体与理想导体在抗磁性上是不同的。若在临界温度以上把超导样品放 入磁场中,这时样品处于正常态,样品中有磁场存在。当维持磁场不变而降低 温度,使其处于超导状态时,在超导体表面也产生电流,这电流在样品内部产 生的磁场抵消了原来的磁场,使导体内部的磁感应强度为零。超导体内部的磁 场总为零,这一现象称为迈纳斯效应。 超导体的抗磁性可用下面的动画来演示,小球是用超导态的材料制成的, 由于小球的抗磁性,小球被悬浮于空中,这就是所说的磁悬浮。 下图是小磁铁悬浮在Ba-La-Cu-O超导体圆片(浸在液氮中)上方的照片。

零电阻是超导体的一个基本特性,但超导体的完全抗磁性更为基本。是否转变为超导态,必须综合这两种测量结果,才能予以确定。 如果将一超导体样品放入磁场中,由于样品的磁通量发生了变化,样品的表面产生感生电流,这电流将在样品内部产生磁场,完全抵消掉内部的外磁场,使超导体内部的磁场为零。根据公式和,由于超导体内部B=0,故cm=-1,所以超导体具有完全抗磁性。 超导材料必须在一定的温度以下才会产生超导现象,这一温度称为临界温度。

大学物理试题及答案()

第2章 刚体的转动 一、 选择题 1、 如图所示,A 、B 为两个相同的绕着轻绳的定滑轮.A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且F =Mg .设A 、B 两滑轮的角加速度分别为?A 和?B ,不计滑轮轴的摩擦,则有 (A) ?A =?B . (B) ?A >?B . (C) ?A <?B . (D) 开始时?A =?B ,以后?A <?B . [ ] 2、 有两个半径相同,质量相等的细圆环A 和B .A 环的质量分布均匀,B 环的质量分布不均匀.它们对通过环心并与环面垂直的轴的转动惯量分别为J A 和J B ,则 (A) J A >J B . (B) J A <J B . (C) J A = J B . (D) 不能确定J A 、J B 哪个大. [ ] 3、 如图所示,一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴O 旋转,初始状态为静止悬挂.现有一个小球自左方水平打击细杆.设小球与细杆之间为非弹性碰撞,则在碰撞过程中对细杆与小球这一系统 (A) 只有机械能守恒. (B) 只有动量守恒. (C) 只有对转轴O 的角动量守恒. (D) 机械能、动量和角动量均守恒. [ ] 4、 质量为m 的小孩站在半径为R 的水平平台边缘上.平台可以绕通过其中心的竖直光滑固定轴自由转动,转动惯量为J .平台和小孩开始时均静止.当小孩突然以相对于地面为v 的速率在台边缘沿逆时针转向走动时,则此平台相对地面旋转的角速度和旋转方向分别为 (A) ??? ??=R J mR v 2 ω,顺时针. (B) ?? ? ??=R J mR v 2ω,逆时针. (C) ??? ??+=R mR J mR v 22ω,顺时针. (D) ?? ? ??+=R mR J mR v 22ω,逆时针。 [ ] 5、 如图所示,一静止的均匀细棒,长为L 、质量为M ,可绕通过棒的端点且垂直于棒长的光滑固定轴O 在水平面内转动,转动惯量为231ML .一质量为m 、速率为v 的子弹在水平面内沿与棒垂直的方向射出并穿出棒的自由端,设穿过棒后子弹的速率为v 2 1,则此时棒的角速度应为 (A) ML m v . (B) ML m 23v .

大学物理作业(1-5)

1—4 一质点的运动学方程为2t x =,()2 1-=t y (S1)。试求: (1)质点的轨迹方程:(2) 在2=t s 时,质点的速度和加速度。 [解] (1) 由质点的运动方程 2t x = (1) ()2 1-=t y (2) 消去参数t ,可得质点的轨迹方程 21)y = (2) 由(1)、(2)对时间t 求一阶导数和二阶导数可得任一时刻质点的速度和加速度 t dt dx v x 2== ()12-==t dt dy v y 所以 ()221x y v v t t =+=+-v i j i j (3) 222==dt x d a x 222==dt y d a y 所以 22=+a i j (4) 把t =2s 代入式(3)、(4),可得该时刻质点的速度和加速度。 42=+v i j 22=+a i j 1—6 质点的运动学方程为() 2 22t t =++r i j (S1),试求:(1)质点的轨道方程;(2)t =2s 时质点的速度和加速度。 [解] (1) 由质点的运动方程,可得 2 2,2x t y t ==+ 消去参数t ,可得轨道方程 2124 y x =+ (2) 由速度、加速度定义式,有 d /d 22t t ==+v r i j 22d /d 2t ==a r j 将t=2s 代入上两式,得 24=+v i j , 2=a j 1—10 在重力和空气阻力的作用下,某物体下落的加速度为Bv g a -=,g 为重力加速度,B 为与物体的质量、形状及媒质有关的常数。设t =0时物体的初速度为零。(1)试求物体的速度随时间变化的关系式;(2)当加速度为零时的速度(称为收尾速度)值为多大? [解] (1) 由dt dv a /=得 dt Bv g dv =-

大学物理实验报告答案大全(实验数据)

U 2 I 2 大学物理实验报告答案大全(实验数据及思考题答案全包括) 伏安法测电阻 实验目的 (1) 利用伏安法测电阻。 (2) 验证欧姆定律。 (3) 学会间接测量量不确定度的计算;进一步掌握有效数字的概念。 实验方法原理 根据欧姆定律, R = U ,如测得 U 和 I 则可计算出 R 。值得注意的是,本实验待测电阻有两只, 一个阻值相对较大,一个较小,因此测量时必须采用安培表内接和外接两个方式,以减小测量误差。 实验装置 待测电阻两只,0~5mA 电流表 1 只,0-5V 电压表 1 只,0~50mA 电流表 1 只,0~10V 电压表一 只,滑线变阻器 1 只,DF1730SB3A 稳压源 1 台。 实验步骤 本实验为简单设计性实验,实验线路、数据记录表格和具体实验步骤应由学生自行设计。必要时,可提示学 生参照第 2 章中的第 2.4 一节的有关内容。分压电路是必须要使用的,并作具体提示。 (1) 根据相应的电路图对电阻进行测量,记录 U 值和 I 值。对每一个电阻测量 3 次。 (2) 计算各次测量结果。如多次测量值相差不大,可取其平均值作为测量结果。 (3) 如果同一电阻多次测量结果相差很大,应分析原因并重新测量。 数据处理 (1) 由 U = U max ? 1.5% ,得到 U 1 = 0.15V , U 2 = 0.075V ; (2) 由 I = I max ? 1.5% ,得到 I 1 = 0.075mA , I 2 = 0.75mA ; (3) 再由 u R = R ( 3V ) + ( 3I ) ,求得 u R 1 = 9 ? 101 &, u R 2 = 1& ; (4) 结果表示 R 1 = (2.92 ± 0.09) ?10 3 &, R 2 = (44 ± 1)& 光栅衍射 实验目的 (1) 了解分光计的原理和构造。 (2) 学会分光计的调节和使用方法。 (3) 观测汞灯在可见光范围内几条光谱线的波长 实验方法原理

大学物理-作业与答案

《大学物理》课后作业题 专业班级: 姓名: 学号: 作业要求:题目可打印,答案要求手写,该课程考试时交作业。 第一章 质点力学 1、质点的运动函数为: 5 4;22 +==t y t x , 式中的量均采用SI 单位制。求:(1)质点运动的轨道方程;(2)s 11=t 和s 22=t 时,质点的位置、速度和加速度。 1、用消元法 t=x/2 轨迹方程为 y=x2+5 2、运动的合成 x 方向上的速度为x'=2, y 方向上的速度为y'=8t+5 将t 带入分别求出x 和y 方向上的速度 然后合成 x 方向上的加速度为x''=0 y 方向上的加速度为y''=8 所以加速度为8 2、如图所示,把质量为m 的小球悬挂在以恒加速度水平运动的小车上,悬线与竖直方向的夹角为θ,求小车的加速度和绳的张力。 绳子的拉力F ,将其水平和竖直正交分解为 Fsinα 和 Fcosα 竖直:Fcosα=mg 水平:Fsinα=ma a=gtanα 方向水平向右 3、一质量为0.10kg 的质点由静止开始运动,运动函数为j i 23 53 += t r (SI 单位) 求在t=0到t=2s 时间内,作用在该质点上的合力所做的功。 质点的速度就是 V =dr / dt =5* t^2 i +0 j 即质点是做直线运动,在 t =0时速度为V0=0;在 t =2秒时,速度为 V1=5*2^2=20 m/s 由动能定理得所求合力做的功是 W 合=(m*V1^2 / 2)-(m*V0^2 / 2)= m*V1^2 / 2=0.1*20^2 / 2=20 焦耳 第二章 刚体力学 T 1

1、在图示系统中,滑轮可视为半径为R、质量为m0的匀质圆盘。设绳与滑轮之间无滑动, 水平面光滑,并且m1=50kg,m2=200kg,m0=15kg,R=0.10m,求物体的加速度及绳中的张力。 解将体系隔离为 1 m, m, 2 m三个部分,对 1 m和 2 m分别列牛顿方程,有 a m T g m 2 2 2 = - a m T 1 1 = β2 1 22 1 MR R T R T= - 因滑轮与绳子间无滑动,则有运动学条件 R aβ = 联立求解由以上四式,可得 R M m m g m ? ? ? ? ? + + = 2 1 2 1 2 β 由此得物体的加速度和绳中的张力为 2 2 1 262 .7 15 5.0 200 50 81 .9 200 2 1 - ? = ? + + ? = + + = =s m M m m g m R aβ N a m T381 62 .7 50 1 1 = ? = =N a g m T438 ) 62 .7 81 .9( 200 ) ( 2 2 = - ? = - = 第四章静止电荷的电场 1、如图所示:一半径为R的半圆环上均匀分布电 荷Q(>0),求环心处的电场强度。 解:由上述分析,点O的电场强度 由几何关系θd d R l=,统一积分变量后,有 y x O

西工大大学物理 大作业参考答案-真空中的静电场2009

第九章 真空中的静电场 一、选择题 ⒈ C ; ⒉B ;⒊ C ; ⒋ B ; ⒌ B ; 6.C ; 7.E ; 8.A,D ; 9.B ;10. B,D 二、填空题 ⒈ 2 3 08qb R πε,缺口。 ⒉ 0 q ε,< ; ⒊ 半径为R 的均匀带电球面(或带电导体球); ⒋ 12 21 E E h h ε--; 2.21?10-12C/m 3; ⒌ 100N/C ;-8.85×10-9C/m 2 ; ⒍ -135V ; 45V ; ⒎ 006q Q R πε;0;006q Q R πε- ;006q Q R πε ; ⒏ 1 2 22 04() q x R πε+; 32 22 04() qx x R πε+ ; 2 R ;432.5 V/m ; 9.有源场;无旋场 (注意不能答作“保守场”,保守场是针对保守力做功讲的)。 三、 问答题 1. 答: 电场强度0E F q =r r 是从力的角度对电场分布进行的描述,它给出了一个矢量场分布的图像;而电势V =W /q 是从能量和功的角度对电场分布进行的描述,它给出了一个标量场分布的图像。 空间任意一点的电场强度和该点的电势之间并没有一对一的关系。二者的关系是: "0"p d grad ,d d P V E V V E l n =-=-=??r r r 。即空间任一点的场强和该点附近电势的空间变化率相联 系;空间任一点的电势和该点到电势零点的整个空间的场强分布相联系。 由于电场强度是矢量,利用场叠加原理计算时,应先将各电荷元产生的电场按方向进行分解,最后再合成,即: d d d d ;x y z E E i E j E k =++r r r r , d ,d ,d x x y y z z E E E E E E ===??? 而电势是标量可以直接叠加,即:V dV =?。但用这种方法求电势时,应注意电势零点的选择。

济南大学大学物理大作业完整答案

济南大学 大学物理大作业答案完整版

第1章 质点运动学 §1.3 用直角坐标表示位移、速度和加速度 一.选择题和填空题 1. (B) 2. (B) 3. 8 m 10 m 4. ()[] t t A t ωβωωωββsin 2cos e 22 +-- ()ωπ/122 1 +n (n = 0, 1, 2,…) 5. h 1v /(h 1-h 2) 二.计算题 1解: (1) 5.0/-==??t x v m/s (2) v = d x /d t = 9t - 6t 2 v (2) =-6 m/s (3) S = |x (1.5)-x (1)| + |x (2)-x (1.5)| = 2.25 m 2解: =a d v /d t 4=t , d v 4=t d t ? ?=v v 0 0d 4d t t t v=2t 2 v=dx/dt=2t 2 t t x t x x d 2d 0 20 ?? = x 2=t 3 /3+x 0 (SI) §1.5 圆周运动的角量描述 角量与线量的关系 一.选择题和填空题 1. (D) 2. (C) 3. 16R t 2 4rad /s 2 4. -c (b -ct )2/R 二.计算题 1. 解: ct b t S +==d /d v c t a t ==d /d v ()R ct b a n /2 += 根据题意: a t = a n 即 ()R ct b c /2 += 解得 c b c R t -=

§1.6 不同参考系中的速度和加速度变换定理简介 一.选择题和填空题 1. (C) 2. (B) 3. (A) 4.0321=++v v v 二.计算题 1.解:选取如图所示的坐标系,以V 表示质点的对地速度,其x 、y 方向投影为: u gy u V x x +=+=αcos 2v , αsin 2gy V y y = =v 当y =h 时,V 的大小为: () 2cos 2222 2 2αgh u gh u y x ++= +=V V V V 的方向与x 轴夹角为γ, u gh gh x y +==--ααγcos 2sin 2tg tg 1 1 V V 第2章 牛顿定律 §2.3 牛顿运动定律的应用 一.选择题和填空题 1. (C) 2. (C) 3. (E) 4. l/cos 2 θ 5. θcos /mg θ θ cos sin gl 二.计算题 1. 解:质量为M 的物块作圆周运动的向心力,由它与平台间的摩擦力f 和质量为m 的物块 对它的拉力F 的合力提供.当M 物块有离心趋势时,f 和F 的方向相同,而当M 物块有 向心运动趋势时,二者的方向相反.因M 物块相对于转台静止,故有 F + f max =M r max ω2 2分 F - f max =M r min ω2 2分 m 物块是静止的,因而 F = m g 1分 又 f max =μs M g 1分 故 2.372 max =+= ωμM Mg mg r s mm 2分 4.122 min =-=ωμM Mg mg r s mm 2分 γ v

大学物理试题及答案

《大学物理》试题及答案 一、填空题(每空1分,共22分) 1.基本的自然力分为四种:即强力、、、。 2.有一只电容器,其电容C=50微法,当给它加上200V电压时,这个电容储存的能量是______焦耳。 3.一个人沿半径为R 的圆形轨道跑了半圈,他的位移大小为,路程为。 4.静电场的环路定理公式为:。5.避雷针是利用的原理来防止雷击对建筑物的破坏。 6.无限大平面附近任一点的电场强度E为 7.电力线稀疏的地方,电场强度。稠密的地方,电场强度。 8.无限长均匀带电直导线,带电线密度+λ。距离导线为d处的一点的电场强度为。 9.均匀带电细圆环在圆心处的场强为。 10.一质量为M=10Kg的物体静止地放在光滑的水平面上,今有一质量为m=10g的子弹沿水平方向以速度v=1000m/s射入并停留在其中。求其 后它们的运动速度为________m/s。 11.一质量M=10Kg的物体,正在以速度v=10m/s运动,其具有的动能是_____________焦耳 12.一细杆的质量为m=1Kg,其长度为3m,当它绕通过一端且垂直于细杆 的转轴转动时,它的转动惯量为_____Kgm2。 13.一电偶极子,带电量为q=2×105-库仑,间距L=0.5cm,则它的电距为________库仑米。 14.一个均匀带电球面,半径为10厘米,带电量为2×109-库仑。在距球心 6厘米处的电势为____________V。 15.一载流线圈在稳恒磁场中处于稳定平衡时,线圈平面的法线方向与磁场强度B的夹角等于。此时线圈所受的磁力矩最。 16.一圆形载流导线圆心处的磁感应强度为1B,若保持导线中的电流强度不

《大学物理》习题和答案

《大学物理》习题和答案 第9章热力学基础 1,选择题 2。对于物体的热力学过程,下面的陈述是正确的,即 [(A)的内能变化只取决于前两个和后两个状态。与所经历的过程无关(b)摩尔热容量的大小与物体所经历的过程无关 (C),如果单位体积所含热量越多,其温度越高 (D)上述说法是不正确的 8。理想气体的状态方程在不同的过程中可以有不同的微分表达式,那么方程 Vdp?pdV?MRdT代表[(M)(A)等温过程(b)等压过程(c)等压过程(d)任意过程 9。热力学第一定律表明 [] (A)系统对外界所做的功不能大于系统从外界吸收的热量(B)系统内能的增量等于系统从外界吸收的热量 (C)在这个过程中不可能有这样一个循环过程,外部对系统所做的功不等于从系统传递到外部的热量(d)热机的效率不等于1 13。一定量的理想气体从状态(p,V)开始,到达另一个状态(p,V)。一旦它被等温压缩到2VV,外部就开始工作;另一种是绝热压缩,即外部功w。比较这两个功值的大小是22 [] (a) a > w (b) a = w (c) a 14。1摩尔理想气体从初始状态(T1,p1,V1)等温压缩到体积V2,由外部对气体所做的功是[的](a)rt 1ln v2v(b)rt 1ln 1v1 v2(c)P1(v2?

V1(D)p2v 2?P1V1 20。两种具有相同物质含量的理想气体,一种是单原子分子气体,另一种是双原子分子气体, 通过等静压从相同状态升压到两倍于原始压力。在这个过程中,两种气体[(A)从外部吸收相同量的热量和内部能量增量,(b)从外部吸收相同量的热量和内部能量增量是不同的,(c)从外部吸收相同量的热量和内部能量增量是不同的,(d)从外部吸收相同量的热量和内部能量增量是相同的。这两个气缸充满相同的理想气体,并具有相同的初始状态。在等压过程之后,一个钢瓶内的气体压力增加了一倍,另一个钢瓶内的气体温度也增加了一倍。在这个过程中,这两种气体从[以外吸收的热量相同(A)不同(b),前者吸收的热量更多(c)不同。后一种情况吸收更多热量(d)热量吸收量无法确定 25。这两个气缸充满相同的理想气体,并具有相同的初始状态。等温膨胀后,一个钢瓶的体积膨胀是原来的两倍,另一个钢瓶的气体压力降低到原来的一半。在其变化过程中,两种气体所做的外部功是[] (A)相同(b)不同,前者所做的功更大(c)不同。在后一种情况下,完成的工作量很大(d)完成的工作量无法确定 27。理想的单原子分子气体在273 K和1atm下占据22.4升的体积。将这种气体绝热压缩到16.8升需要做多少功? [](a)330j(b)680j(c)719j(d)223j 28。一定量的理想气体分别经历等压、等压和绝热过程后,其内能从E1变为E2。在以上三个过程中,

大学物理作业(一)答案

大学物理作业(一)答 案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

班级___ ___学号____ ____姓名____ _____成绩______________ 一. 填空: 1. 已知质点的运动方程:22,2t y t x -== (SI 制),则(1) t =1s 时质点的位置矢量 2i j +,速度 22i j -,加速度___2j -_________,(2) 第1s 末到第2s 秒末质点的位移____23i j -___ ___,平均速度___23i j -_______. 2. 一人从田径运动场的A 点出发沿400米的跑道跑了一圈回A 点,用了1分钟的时间,则在上述时间内其平均速度为_____0_________. 3. 一质点沿线x 轴运动,其加速度为t a 4=(SI 制),当t =0时,物体静止于x =10m 处,则t 时刻质点的速度______22t _____,位置____32103 t +_____________. 4. 一质点的运动方程为j i r 232t t +=(SI 制),任意时刻t 的切向加速度为 ,法向加速度为 . 二. 选择: 1. 以下说法错误的是:( ABC ) (A) 运动物体的加速度越大,物体的速度也越大. (B) 物体在直线前进时,如果物体向前的加速度减小了,物体前进的速度也减小. (C) 物体的加速度值很大,而物体的速度值可以不变,是不可能的. (D) 在直线运动中且运动方向不发生变化时,位移的量值与路程相等. 2. 下面叙述哪一种正确: ( B ) (A)速度为零,加速度一定为零. (B)当速度和加速度方向一致,但加速度量值减小时,速度的值一定增加. (C)速度很大加速度也一定很大. 3. 如图河中有一小船,人在离河面一定高度的岸上通过 绳子以匀速度0v 拉船靠岸,则船在图示位置处的速率 为:( C ) (A)0v (B)θcos 0v (C) θcos /0v (D) θtan 0v 4. 以初速度0v ,仰角θ抛出小球,当小球运动到最高点时,其轨道曲率半径为(不计空气 阻力): ( D )

大学物理作业答案(下)

65. 如图所示,几种载流导线在平面内分布,电流均为I ,求:它们在O 点的磁感应强度。 1 R I B 80μ= 方向 垂直纸面向外 2 R I R I B πμμ2200- = 方向 垂直纸面向里 3 R I R I B 4200μπμ+ = 方向 垂直纸面向外 66. 一半径为R 的均匀带电无限长直圆筒,电荷面密度为σ,该筒以角速度ω绕其轴线匀速旋转。试求圆筒内部的磁感应强度。 解:如图所示,圆筒旋转时相当于圆筒上具有同向的面电流密度i , σωσωR R i =ππ=)2/(2 作矩形有向闭合环路如图中所示.从电流分布的对称性分析可知,在ab 上各点B 的 大小和方向均相同,而且B 的方向平行于ab ,在bc 和fa 上各点B 的方向与线元垂直, 在de , cd fe ,上各点0=B .应用安培环路定理 ∑??=I l B 0d μ 可得 ab i ab B 0μ= σωμμR i B 00== 圆筒内部为均匀磁场,磁感强度的大小为σωμR B 0=,方向平行于轴线朝右.

67.在半径为R 的长直金属圆柱体内部挖去一个半径为r 的长直圆柱体,两柱体轴线平行,其间距为a (如图)。今在此导体内通以电流I ,电流在截面上均匀分布,求:空心部分轴线上O ' 点的磁感应强度的大小。 解:) (22r R I J -= π 1012 1 r J B ?= μ 2022 1 r k J B ?-=μ j Ja O O k J r r J B B 021******** 21)(2 1 μμμ=?=-?= += r R Ia ) (22 2 0-= πμ 68.一无限长圆柱形铜导体,半径为R ,通以均匀分布的I 今取一矩形平面S (长为L ,宽为2R ),位置如图,求:通过该矩形平面的磁通量。

大学物理习题与作业答案

大学物理习题与作业答 案 集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]

理想气体 状 态方程 5-1一容器内储有氧气,其压强为105 Pa ,温度为270 C ,求:(1)气体分子的数密度;(2)氧气的质量密度;(3)氧分子的质量;(4)分子间的平均距离(设分子均匀等距分布)。 解:(1)nkT p =,32523 5 /m 1044.2) 27273(1038.11001.1?=+???==-kT p n (2)R M m T pV mol = ,335mol kg/m 30.1)27273(31.810321001.1=+????== =∴-RT pM V m ρ (3)n m O 2 =ρ , kg 1033.510 44.230.126 25 2-?=?= = ∴n m O ρ (4)m 1045.31044.2119 325 3 -?=?==n d 5-2在容积为V 的容器中的气体,其压强为p 1,称得重量为G 1。然后放掉一部分气体,气体的压强降至p 2,再称得重量为G 2。问在压强p 3下,气体的质量密度多大 解:设容器的质量为m ,即放气前容器中气体质量为m g G m -=1 1,放气后容器中气体质量为m g G m -= 2 2。 由理想气体状态方程有 RT M m g G RT M m V p mol 1mol 11-==, RT M m g G RT M m V p mol 2 mol 22-==

上面两式相减得 V p p G G g M RT )()(1212mol -=-,)(1 21 2mol p p G G gV RT M --= 当压强为3p 时,1 21 2 33mol 3p p G G gV p RT p M V m --?=== ρ 压强、温度的微观意义 5-3将10-2kg 的氢气装在10-3m 2的容器中,压强为105Pa ,则氢分子的平均平动动能为多少 解:RT M m pV mol = ,mR pV M T mol =∴ 5-4体积33m 10-=V ,压强Pa 105=p 的气体分子平均平动动能的总和为多少 解:kT N t 2 3=∑ε,其中N 为总分子数。kT V N nkT p = = ,kT pV N = 5-5温度为0℃和100℃时理想气体分子的平均平动动能各为多少欲使分子的平均 平动动能等于1eV ,气体的温度需多高(1eV=10-19J ) 解:C 0?时,J 1065.52731038.12 32321230--=?=???==kT t ε C 100?时,J 1072.73731038.12 3 232123100--=?=???== kT t ε J 106.1eV 119-?= ,∴分子具有1eV 平均动能时,气体温度为 能量均分、理想气体内能

大学物理试题及答案

大学物理试题及答案 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

第1部分:选择题 习题1 1-1 质点作曲线运动,在时刻t 质点的位矢为r ,速度为v ,t 至()t t +?时间内的位移为r ?,路程为s ?,位矢大小的变化量为r ?(或称r ?),平均速度为v ,平均速率为v 。 (1)根据上述情况,则必有( ) (A )r s r ?=?=? (B )r s r ?≠?≠?,当0t ?→时有dr ds dr =≠ (C )r r s ?≠?≠?,当0t ?→时有dr dr ds =≠ (D )r s r ?=?≠?,当0t ?→时有dr dr ds == (2)根据上述情况,则必有( ) (A ),v v v v == (B ),v v v v ≠≠ (C ),v v v v =≠ (D ),v v v v ≠= 1-2 一运动质点在某瞬间位于位矢(,)r x y 的端点处,对其速度的大小有四种意见,即 (1) dr dt ;(2)dr dt ;(3)ds dt ;(4下列判断正确的是: (A )只有(1)(2)正确 (B )只有(2)正确 (C )只有(2)(3)正确 (D )只有(3)(4)正确 1-3 质点作曲线运动,r 表示位置矢量,v 表示速度,a 表示加速度,s 表示路程,t a 表示切向加速度。对下列表达式,即 (1)dv dt a =;(2)dr dt v =;(3)ds dt v =;(4)t dv dt a =。

下述判断正确的是( ) (A )只有(1)、(4)是对的 (B )只有(2)、(4)是对的 (C )只有(2)是对的 (D )只有(3)是对的 1-4 一个质点在做圆周运动时,则有( ) (A )切向加速度一定改变,法向加速度也改变 (B )切向加速度可能不变,法向加速度一定改变 (C )切向加速度可能不变,法向加速度不变 (D )切向加速度一定改变,法向加速度不变 * 1-5 如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向 岸边运动。设该人以匀速率0v 收绳,绳不伸长且湖水静止,小船的速率为v ,则小船作( ) (A )匀加速运动,0 cos v v θ= (B )匀减速运动,0cos v v θ= (C )变加速运动,0cos v v θ = (D )变减速运动,0cos v v θ= (E )匀速直线运动,0v v = 1-6 以下五种运动形式中,a 保持不变的运动是 ( ) (A)单摆的运动. (B)匀速率圆周运动. (C)行星的椭圆轨道运动. (D)抛体运动. (E)圆锥摆运动. 1-7一质点作直线运动,某时刻的瞬时速度v=2m/s,瞬时加速度22/a m s -=-,则一秒钟后质点的速度 ( ) (A)等于零. (B)等于-2m/s. (C)等于2m/s. (D)不能确定.

大学物理试题和参考答案

《大学物理》试题及参考答案 一、填空题(每空1分、共20分) 1.某质点从静止出发沿半径为m R 1=的圆周运动,其角加速度随时间的变 化规律是t t 6122-=β(SI) ,则该质点切向加速度的大小 为 。 2.真空中两根平行的无限长载流直导线,分别通有电流1I 和2I ,它们之间 的距离为d ,则每根导线单位长度受的力为 。 3.某电容器电容F C μ160=,当充电到100V 时,它储存的能量为 ____________焦耳。 4.一个均匀带电球面,半径为10厘米,带电量为2×109 -库仑。在距球 心6厘米处的场强为__________。 5.一平行板电容器充电后切断电源。若使两极板间距离增加,则两极板间 场强E __________,电容C__________。(选填:增加、不变、减少) 6.一质量为m ,电量为q 的带电粒子以速度v 与磁感应强度为B 的磁场成 θ角进入时,其运动的轨迹为一条等距螺旋,其回旋半径R 为 ____________ ,周期T 为__________,螺距H 为__________。 7. 真空中一个边长为a 的正方体闭合面的中心,有一个带电量为Q 库仑的 点电荷。通过立方体每一个面的电通量为____________。 8.电力线稀疏的地方,电场强度 。稠密的地方,电场强度 。 9. 均匀带电细圆环在圆心处的场强为 。 10.一电偶极子,带电量为q=2×105-库仑,间距L =0.5cm ,则它的电距为 ________库仑米 11.一空心圆柱体的内、外半径分别为1R ,2R ,质量为m (SI 单位).则其

绕中心轴竖直轴的转动惯量为____________。 12.真空中的两个平行带电平板,板面面积均为S ,相距为d (S d ??),分 别带电q + 及q -,则两板间相互作用力F 的大小为____________。 13.一个矩形载流线圈长为a 宽为b ,通有电流I ,处于匀强磁场B 中。当 线圈平面与外磁场方向平行时,线圈受到的磁力矩大小为 。 14.一长为L 质量为M 的均匀直棒一端吊起,使其可以在竖直平面内自由 摆动。先用手将棒持水平,放开手的瞬间,棒受的对转轴的重力矩是 。此时棒的角加速度是 。 直棒下摆到竖直位置时的角速度是 。 二、判断题 (每题1分、共 10分 )( √或× )。 ( )1.质量相同的刚体对同一个转轴的转动惯量一定相同。 ( )2.场强为零处,电势一定为零。 ( )3.一电容器两板间原为真空,当充满介电质后,其板间电场强 度变小 ( )4.一质点作匀速率圆周运动,其动量方向在不断改变,所以角 动量的方向也随之不断改变。 ( )5.洛仑兹力总与速度方向垂直,所以带电粒子的运动轨迹必定 是圆。 ( )6.通过某闭合曲面的电通量为零,则肯定该曲面上任一点的场 强都等于零。 ( )7.静止电荷在磁场中不受洛仑兹力,而在电场中却受电场力的 作用 ( )8.同一组电荷(包括运动的静止的)产生的电场和磁场在任何 一个参考系测量都是一样的。 ( )9.电偶极子在中垂线上任一点产生的场强的方向与电偶极矩的 方向相反。 ( )10.产生磁场的“源”有运动的电荷和变化的磁场。 三、单项选择题( 每题2分、共20分) 1.一小球沿半径为R 的圆周做匀速率运动。要使其运动的角速度增大到3

相关主题
文本预览
相关文档 最新文档