当前位置:文档之家› 基于abaqus的钢梁特征值屈曲与失稳分析

基于abaqus的钢梁特征值屈曲与失稳分析

基于abaqus的钢梁特征值屈曲与失稳分析
基于abaqus的钢梁特征值屈曲与失稳分析

目录:

1. 绪论 (2)

1.1背景 (2)

1.2 钢梁稳定理论的发展状况 (2)

2 . 稳定的概念 (3)

3. 线性屈曲分析 (4)

3.1 工程实例的简化 (4)

3.2 有限元模型的建立 (4)

3.2.1创建部件 (4)

3.2.2创建材料和截面的属性 (6)

3.2.3定义装配件 (7)

3.2.4设置分析步 (7)

3.2.5定义在载荷和边界条件 (8)

3.2.6网格的划分 (9)

3.2.7 提交分析作业 (9)

3.2.8 模型数据的后处理 (10)

3.2.9 数据分析总结 (12)

4.结论 (12)

基于abaqus的钢梁特征值屈曲与失稳分析

摘要:钢结构的稳定性能是决定其承载力的一个特别重要的因素,稳定理论和

设计方法需要完善。近几十年以来,在研究发挥钢结构稳定性能的潜力和完善稳定计算的理论方面,国内外都取得了长足的进步。例如完善钢结构的弹塑性稳定理论,研究有几何缺陷和残余应力的钢结构的实际受力性能和其极限荷载,用数值法来解决这类问题等都取得了不少研究成果。在作理论分析的同时进行稳定性能的试验验证,以及将理论研究结果利用图表表示或深化为计算公式,从而将弹塑性稳定理论用于解决钢结构设计中的问题都取得了丰硕成果。

本文的主要内容是对现有失稳理论进行完善和发展及其总结,利用通用有限元abaqus软件,采用特征值的Lanczos方法及子空间迭代法对钢梁进行屈曲分析,文中总共给了10个特征向量,进而得出相应的模态分析变形图,最后把lanczos 方法及子空间迭代法进行了比较,提出一些新的问题。

关键词:有限元abaqus 失稳特征值屈曲分析

1. 绪论

1.1背景

钢材具有强度高、质量轻、力学性能好的优点,是制造结构物的一种极好的建筑材料。钢材与在建筑结构中应用广泛的钢筋混凝土结构相比,对于受力功能相同的构件,具有截面轮廓尺寸小、构件细长和板件薄柔的特点。但是对于因受压、受弯和受剪等存在受压区域的构件和板件,如果技术上处理不当,可能使钢结构出现整体失稳或局部失稳。失稳前结构物的变形可能很微小,突然失稳使结构物的几何形状急剧改变而导致结构物完全丧失抵抗能力,以致整体塌落。

1.2 钢梁稳定理论的发展状况

自Michell 研究矩形截面梁,并在1899 年发表《长梁在横向力作用下弹性稳定》一文以来,已有近百年的历史。对于细长梁弹性稳定问题已建立了一套相对完备的理论,并为实验所验证。对于中长梁,失稳时截面的某些部分已经屈服,它属于非弹性稳定问题。非弹性稳定问题是几何与材料的双重非线性问题,其临界荷载不但要受初始缺陷、残余应力、荷载形式、加载位置、截面形式、材料特性、约束条件等因素的影响;而且还受到部分截面塑化后,梁的剪切中心和截面特性变化的影响。如何综合考虑各种影响因素,并根据梁非弹性失稳的工作状态来较精确地求其临界荷载,是有关学者一直试图解决的问题。早先,Timoshenko 和Bleich 提出用折算模量或切线模量代替弹性公式中的弹性模量来求非弹性失稳临界荷载。由于应用上有困难,Galambos 为此引用了弹性核概念,Trahair 指出:“由于残余应力存在,即使是双轴对称截面,部分截面屈服后,弹性核将变为单轴对称,其剪切中心和梁的截面特性随屈服区变化而变化[5]。”Nethercot 提出翼缘尖端的残余应力水平对非弹性稳定有较大影响[6]。

2 . 稳定的概念

在结构设计中,结构的极限承载力是应考虑的最重要的一种极限状态。根据结构形式、受力方式、支承形式、材料性质等方面具体条件不同,一个结构的承载能力可能取决于材料所能达到的最大强度,结构或其构件的平衡丧失稳定,材料发生疲劳或脆性断裂等各种不同的因素,简言之就是结构破坏有三种形式:强度破坏、稳定破坏和疲劳破坏。稳定问题是钢结构设计中的突出问题,作为结构安全的控制因素,稳定性的保证必须认真对待。虽然在过去近几百年中,对稳定问题己经进行了很多研究,取得了很大成就,但由于稳定问题本身的复杂性,以及材料性能的改善提高、新的结构型式和构造等问题的出现,这方面的研究仍在进行。所谓结构丧失稳定,是指结构的平衡状态由稳定形式转变为不稳定形式,结构因无法维持平衡而屈曲破坏。钢结构的失稳现象是多种多样的,但是就其失稳性质而言,

可分为以下三类稳定分岔失稳,不稳定分岔失稳,跃越失稳。

(1)稳定分岔失稳,荷载挠度曲线是按小挠度理论分析得到的。理论上轴心受压构件屈曲后,挠度增加时荷载还略有增加,如下图,

(2)不稳定分叉失稳

还有一类结构,在屈曲后只能在远比屈曲荷载低的条件下维持平衡状态。例如承受均匀压力的圆柱壳,其荷载变形曲线如图 1.3(a)所示的oAB 或oAB`,这属于不稳定分岔失稳,

(3)跳跃失稳

对于这样一类结构,在外荷载作用下,其平衡位置发生了突然地不连续的变化,如拱桥,

3. 线性屈曲分析

3.1 工程实例的简化

一个长4.2米的钢柱,下端固定,上端铰接,截面尺寸如下图,计算钢柱在不同的特征值下变形情况,钢柱的材料特性:弹性模量E=2e11N/M2,泊松比u=0.3,屈服强度f y=3.45e8N/M2。

单位:cm

3.2 有限元模型的建立

3.2.1创建部件

1,创建部件

进入abaqus主界面,点击Part模块,点击左侧的创建部件命令,弹出Creat Part 对话框,将模型空间设定为三维空间,类型设置为可拉伸的壳,在此申明,本文利用壳单元来模拟钢柱,点击Continue,进入二维绘图界面。

创建部件 钢柱截面二维图 2,绘制二维模型 选择工具区的

按钮,在提示区输入X,Y 坐标(-0.11,0.1),点击鼠标中间键完

成点的绘制,再绘制点(0.11,0.1),绘制出第一条水平线,依次绘制点对(-0.11,

-0.1),(0.11,-0.1),绘制出第二条水平线,输入(0,0.1),(0,-0.1),绘制第三条直线,完成部件的二维平面图,如上图。 3,生成三维模型

在绘图的空白区点击鼠标中键,弹出Edit Base Extrusion 对话框,如下图,在Depth 项中输入4.2,点击ok ,部件创建如下图。

钢梁的三维模型图

3.2.2创建材料和截面的属性

在窗口环境栏的模块下拉列表选择属性模块,进入Property模块。

1 创建材料

点击左侧的工具创建材料,弹出Edit Material对话框,输入质量密度7850,弹性模量2e11,泊松比为0.3,保持剩余参数不变,完成材料的创建。

2 创建截面属性

1)创建翼缘板截面属性

点击左侧工具面板的工具项,弹出Creat section对话框,将种类设置为壳,性质均质,Value后填0.01,其他参数不变,点击完成,退出属性的创建。

2)创建腹板截面属性

依照同样的步骤,Value后填0.006,其他参数不变,完成腹板截面的属性创建。

图1 翼缘板截面属性图2 腹板截面属性

3,给部件赋予截面属性

点击左侧工具面板按钮,分别选择翼缘板和腹板进行属性的指派。

3.2.3定义装配件

在环境栏的Module的列表中选择Assembly功能模块。

点击左侧的创建实例按钮,即可完成装配。

3.2.4设置分析步

在环境栏的Module列表中选择Step(分析步)功能模块

点击左侧的按钮,弹出Creat Step对话框,在Name 后面输入Load,分析

步类型选择Linear perturbation,下拉菜单中选择Buckle,如下图所示,点击Continue,弹出Edit step对话框,选择Lanczos,所需特征值数量填入10,即分析10个特征值下的变形情况。

3.2.5定义在载荷和边界条件

1,给钢柱施加边界荷载

点击左侧的工具,弹出Create Load对话框,Step选择Load,载荷类型选

择壳边缘荷载,点击继续,在画图区选择荷载作用的钢柱的边缘,点击鼠标中键,弹出Create Load对话框,在Magnitude选框输入1e4,剩余参数不变,点击ok 完成边界荷载的定义,此时模型显示边界荷载如下图,

2,定义钢柱的边界条件

点击工具区左侧的来定义边界条件,弹出Create Boundary Condition对话框,Step选择Initial,分析步的边界类型选择转角/位移,点击Continue,在左边界输入约束,选中U1,U2,即铰接。同样对钢柱的右边界输入的约束,选中U1,U2,U3,即在三个方向约束钢柱的位移,完成边界条件定义,模型如下图。

3.2.6网格的划分

在环境栏的Module列表中选择Mesh功能模块进行网格划分,事先将环境栏的Object项设为part1,

依次进行布置种子,设置网格种子参数,划分网格如下图。

3.2.7 提交分析作业

在环境栏的Module列表中选择Job(分析作业)功能模块进行作业提交依次进行创建分析作业,提交分析,直到对话框中的Status提示依次变为Subminted(提交),Running(运算)和completed(完成),此时对模型的分析已经成功完成。

3.2.8 模型数据的后处理

通过对场结果输出的设置,可以输出钢柱的外荷载作用下,在X,Y,Z方向上的线位移及其转角,相应的输出云图为U1,U2,U3.以最低的特征向量(Mode 1)下的位移云图为例。

U1位移云图

U2位移云图

U3位移云图

同样,abaqus也给出了十个特征值

3.2.9 数据分析总结

本文采用了lanczos方法提取了钢柱线性屈曲分析所需要的特征值,即定义了计算屈曲荷载所需要的第一到第十的十阶模态,最终的屈曲荷载就等于模态一中的EigenValue值与所定义的壳边缘荷载值的乘积,而且在分析模态的过程中,我们可以发现第一,二阶的变形主要以平面内的弯曲为主,第三阶以后的模态都是扭转为主。

4.结论

本文是基于abaqus对钢柱的屈曲失稳过程进行了有限元分析,采用特征值向量的分析方法,得出了各个特征值对应的变形形状,并与课本中的数值计算进行了对比,充分的显示了有限元分析方法的快速性和可视性,但其中如果刚度矩阵不确定,采用的lanczos方法就不能应用于屈曲分析,这也显示了数值模拟计算的局限性。

参考文献:

[1] 石亦平,周玉蓉.ABAQUS有限元分析实例详解[M].北京:机械工业出版社,2006.

[2] 曾攀.有限元分析及应用[M].北京:清华大学出版社,2004

[3] 江见鲸,何放龙,何益斌等.有限元法及其应用[M].北京:机械工业出版社,2005.

[4] 庄茁, 张凡, 等. ABAQUS非线形有限元分析与实例[M]. 北京: 科学出版社, 2005.

[5] 美国ABAQUS ZUG编著,庄茁主译.ABAQUS有限元软件6.4版入门指南[M].北京:清华大学出版社,2004.

[6] 陈绍蕃钢结构设计原理[M]北京科学出版社.2000

[7] 陈绍蕃钢结构稳定设计指南[M]北京.中国建材工业出版社.1995

[8] 钢结构设计规范

abaqus压杆屈曲分析

a b a q u s压杆屈曲分析 Revised by Petrel at 2021

压杆屈曲分析1.问题描述 在钢结构中,受压杆件一般在其达到极限承载力前就会丧失稳定性,所以失稳是钢结构最为突出的问题。压杆整体失稳形式可以是弯曲、扭转和弯扭。钢构件在轴心压力作用下,弯曲失稳是常见的失稳形式。影响轴心受压构件整体稳定性的主要因素为纵向残余应力、初始弯曲、荷载初偏心及端部约束条件等。实际的轴心受压构件往往会存在上述的一种或多种缺陷,导致构件的稳定承载力降低。 本文利用abaqus对一定截面不同长细比下的H型钢构件进行屈曲分析,通过考虑材料非线性、几何非线性并引入初弯曲,得出构件发生弯曲失稳的极限荷载。通过比较不同长细比下的弯曲失稳的临界荷载得出构件荷载位移曲线,并与《规范》中的构件曲线相比较。钢构件的截面尺寸如图1-1所示。 构件的材料特性:,, 图1-1 2.长细比计算 通过计算截面几何特性,截面绕y轴的回转半径为,长细比取值及杆件长度见表1: 表1 50 60 80 100 120 150 180 (m) 1.92 2.30 3.07 3.84 4.60 5.76 6.90 3.模型分析

ABAQUS非线性屈曲分析的方法有riks法,generalstatics法(加阻尼),或者动力法。非线性屈曲分析采用riks算法实现,可以考虑材料非线性、几何非线性已及初始缺陷的影响。其中,初始缺陷可以通过屈曲模态、振型以及一般节点位移来描述。 利用abaqus进行屈曲分析,一般有两步,首先是特征值屈曲分析,此分析为线性屈曲分析,是在小变形的情况进行的,也即上面提到过的模态,目的是得出临界荷载(一般取一阶模态的eigenvalue乘以所设定的load)。其次,就是后屈曲分析,此步一般定义为非线性,原因在于是在大变形情况进行的,一般采用位移控制加修正的弧长法,可以定义材料非线性,以及几何非线性,加上初始缺陷,所以也称为非线性屈曲分析。此步分析,为了得到极限值,需要得出荷载位移曲线的下降段。缺陷较小的结构初始位移变形较小,在极值点突变,而初始缺陷较大的结构,载荷位移曲线较平滑。 4.建模计算过程 建模计算过程以长细比为50的构件为例,其余构件建模计算过程与之类似。 4.1buckle分析 1在buckle分析中创建part模块,创建的模型为三位可变形壳体单元,截面参数见图1-1,构件长度1.92。如图4-1示 图4-1 2定义材料特性及截面属性并将其赋予单元。材料定义为弹塑性,泊松比0.3,屈服强度,弹性模量;腹板和翼缘板为壳单元,厚度分别为0.008和0,01。材料定义见图4-2

abaqus屈曲分析实例

整个计算过程包括2个分析步,第1步做屈曲分析,笫2步做极限强度分析。 第1步:屈曲分析 载荷步定义如下: Step 1-Initial Step 2- Buckle

? Re Mbs M^nce C^wvoini live 2oc*$ *l^*?4 tjdp V :i.Jsa&# 录 +r A AJIu fffiC? fe3 Ha ? ;r????y fa-t n>rr ?: OfEYcm v Se?今 gh 3, gqcvKeiry C*p*?9r ? ? O?lec? ■ %?no?v C5 廉 H5Wr> MM fa Tin* Forti Sv Al€ *dep6?? ve^ tbjUx9)lo t JeiWA Tc?D -^lQZlll?hQ we' E ejewwiw b>w* biE Glcte 」r?>w* 69D eJe*MKi r?jw* bee CWfcr*?9*^ s£ Zac? “ Iraftet H U 匕“rb ? 2 更 K?4dCu^u!R? 虫 Hntwr GUput b 伽》ezi5 &■心 AcUxv? V H H?*?ctnr? 易 htecMtlar. hra, 日 CcrtadCcrtra 0 C?Wl >?wt K Ccctect sub lx 權 CwMoarSt Hj fiUdi _n ,.. ? ?! ? MCg WtW Swtfc lk2 pe**j". liwar p?nwbia?ko ▼ freque." 拯 sufAuun The 11?-51>^ )L>4ldH9jjn-2 “9 wioZ S *0 Sxe U>* oil^ 51 “ed S iU* TO . 0 . -ISO -MO mtb rew :t no 心 &逐Ply OCCOIIMV * 巧恪tc ?:?L -5Moe>?* bw tZfft to ?D7cp 炉、?ZlHWr? Me" “乡“r?x HMldrann ?2 vd 乡 tygeJa* 400 0 0 with x*w :? ?o tfi* oc

基于ABAQUS的钢管轴心受压非线性屈曲分析

一.问题描述 在钢结构中,受压杆件一般在其达到极限承载力前就会丧失稳定性,所以失稳是钢结构最为突出的问题。压杆整体失稳形式可以是弯曲、扭转和弯扭。钢构件在轴心压力作用下,弯曲失稳是常见的失稳形式。而影响轴心受压构件整体稳定性的主要因素为纵向残余应力、初始弯曲、荷载初偏心及端部约束条件等。实际的轴心受压构件往往会存在上述的一种或多种缺陷,导致构件的稳定承载力降低。 本文主要针对任意轴对称的圆形钢管截面,利用ABAQUS有限元非线性分析软件,对其在轴心受压情况下进行特征值屈曲分析和静态及动态的非线性屈曲分析(考虑材料弹塑性和初始缺陷的影响)。通过考虑材料非线性、几何非线性并引入初弯曲,得出构件发生弯曲失稳的极限荷载,并且由弯曲失稳的临界荷载得出的构件荷载位移曲线。同时再进行非线性分析时,需要施加初始扰动,以帮助非线性分析时失稳,可以通过特征值屈曲分析得到的初始弯曲模态来定义初始缺陷;最后由可以将特征值屈曲分析得到的临界荷载作为非线性屈曲分析时所施加荷载的参考。 二.结构模型 用ABAQUS中的壳单元建立轴心受压模型,采用SI国际单位制(m)。 1.构件的材料特性: E= 2.0×1011N m2,μ=0.3, f y=2.35×

108N m2,ρ=7800kg m3,钢管半径:60mm,厚度:3mm,长度:2.5m。 2.钢管的截面尺寸及钢管受到的约束和荷载施加的模型图如图2-1及图2-2所示。 图2-1 图2-2 三.建模步骤(Buckle分析) (1)创建部件 在创建part模块中命名构件的名字为gang guan,创建的模型为三维可变形壳体单元,如图3-1所示。截面参数见图2-1,构件长度2.5m。 图3-1

采用ABAQUS进行屈曲后屈曲和破坏分析

| w w w .3d s .c o m | ? D a s s a u l t S y s t èm e s | Buckling, Postbuckling, and Collapse Analysis with Abaqus | w w w .3d s .c o m | ? D a s s a u l t S y s t èm e s | Day 1 ?Lecture 1Basic Concepts and Overview ?Workshop 1Buckling and Postbuckling Analyses of a Crane Structure ?Lecture 2 Finite Element Formulation ?Lecture 3Finite Element Implementation in Abaqus ?Lecture 4Eigenvalue Buckling Analysis ?Workshop 2Eigenvalue Buckling of a Ring Subjected to External Pressure ?Workshop 3 Elastic Buckling of Ring-Supported Cylindrical Shell under Hydrostatic Pressure

| w w w .3d s .c o m | ? D a s s a u l t S y s t èm e s | Buckling, Postbuckling, and Collapse Analysis with Abaqus Day 2 ?Lecture 5 Regular and Damped Static Solution Procedures for Postbuckling Analyses ?Workshop 4Nonlinear Buckling of Ring-Supported Cylindrical Shell under Hydrostatic Pressure ?Workshop 5Static Buckling Analysis of a Circular Arch ?Lecture 6Modified Riks Static Solution Procedure for Postbuckling Analyses ?Workshop 5Static Buckling Analysis of a Circular Arch (continued)?Lecture 7Dynamic Analysis Solution Procedures for Postbuckling Analyses ?Workshop 5Static Buckling Analysis of a Circular Arch (continued)?Workshop 6Tube Crush Dynamic Analysis ?Lecture 8Putting It All Together… ?Workshop 7Capstone Workshop: Lee’s Frame Buckling Problem ?Workshop 8 Buckling and Postbuckling Analyses of a Stiffened Panel | w w w .3d s .c o m | ? D a s s a u l t S y s t èm e s | Legal Notices The Abaqus Software described in this documentation is available only under license from Dassault Systèmes and its subsidiary and may be used or reproduced only in accordance with the terms of such license. This documentation and the software described in this documentation are subject to change without prior notice. Dassault Systèmes and its subsidiaries shall not be responsible for the consequences of any errors or omissions that may appear in this documentation. No part of this documentation may be reproduced or distributed in any form without prior written permission of Dassault Systèmes or its subsidiary.? Dassault Systèmes, 2011. Printed in the United States of America Abaqus, the 3DS logo, SIMULIA and CATIA are trademarks or registered trademarks of Dassault Systèmes or its subsidiaries in the US and/or other countries. Other company, product, and service names may be trademarks or service marks of their respective owners. For additional information concerning trademarks, copyrights, and licenses, see the Legal Notices in the Abaqus 6.11 Release Notes and the notices at: https://www.doczj.com/doc/2917274872.html,/products/products_legal.html.

本人学习abaqus五年的经验总结 让你比做例子快十倍

第二章 ABAQUS 基本使用方法 [2](pp15)快捷键:Ctrl+Alt+左键来缩放模型;Ctrl+Alt+中键来平移模型;Ctrl+Alt+右键来旋转模型。 ②(pp16)ABAQUS/CAE 不会自动保存模型数据,用户应当每隔一段时间自己保存模型以避免意外 丢失。 [3](pp17)平面应力问题的截面属性类型是Solid(实心体)而不是Shell(壳)。ABAQUS/CAE 推荐的建模方法是把整个数值模型(如材料、边界条件、载荷等)都直接定义在几 何模型上。 载荷类型Pressure 的含义是单位面积上的力,正值表示压力,负值表示拉力。 [4](pp22)对于应力集中问题,使用二次单元可以提高应力结果的精度。 [5](pp23)Dismiss 和Cancel 按钮的作用都是关闭当前对话框,其区别在于:前者出现在包含只读数 据的对话框中;后者出现在允许作出修改的对话框中,点击Cancel 按钮可关闭对话框,而不保存 所修改的内容。 [6](pp26)每个模型中只能有一个装配件,它是由一个或多个实体组成的,所谓的“实体”(instance) 是部件(part)在装配件中的一种映射,一个部件可以对应多个实体。材料和截面属性定义在部件 上,相互作用(interaction)、边界条件、载荷等定义在实体上,网格可以定义在部件上或实体上, 对求解过程和输出结果的控制参数定义在整个模型上。 [7](pp26) ABAQUS/CAE 中的部件有两种:几何部件(native part)和网格部件(orphan mesh part)。 创建几何部件有两种方法:(1)使用Part 功能模块中的拉伸、旋转、扫掠、倒角和放样等特征来直 接创建几何部件。(2)导入已有的CAD 模型文件,方法是:点击主菜单 File→Import→Part。网 格部件不包含特征,只包含节点、单元、 面、集合的信息。创建网格部件有三种方法:(1)导入 ODB 文件中的网格。(2)导入INP 文件中的网格。(3)把几何部件转化为网格部件,方法是:进 入Mesh 功能模块,点击主菜单Mesh→Create Mesh Part。 [8](pp31)初始分析步只有一个,名称是initial,它不能被编辑、重命名、替换、复制或删除。在初 始分析步之后,需要创建一个或多个后续分析步,主要有两大类:(1)通用分析步(general analysis step)可以用于线性或非线性分析。常用的通用分析步包含以下类型:—Static, General: ABAQUS/Standard 静力分析 —Dynamics, Implicit: ABAQUS/Standard 隐式动力分析 —Dynamics, Explicit: ABAQUS/ Explicit 显式动态分析

(完整word版)abaqus6.12-典型实例分析

1.应用背景概述 随着科学技术的发展,汽车已经成为人们生活中必不可少的交通工具。但当今由于交通事故造成的损失日益剧增,研究汽车的碰撞安全性能,提高其耐撞性成为各国汽车行业研究的重要课题。目前国内外许多著名大学、研究机构以及汽车生产厂商都在大力研究节省成本的汽车安全检测方法,而汽车碰撞理论以及模拟技术随之迅速发展,其中运用有限元方法来研究车辆碰撞模拟得到了相当的重视。而本案例就是取材于汽车碰撞模拟分析中的一个小案例―――保险杠撞击刚性墙。 2.问题描述 该案例选取的几何模型是通过导入已有的*.IGS文件来生成的(已经通过Solidworks软件建好模型的),共包括刚性墙(PART-wall)、保险杠(PART-bumper)、平板(PART-plane)以及横梁(PART-rail)四个部件,该分析案例的关注要点就是主要吸能部件(保险杠)的变形模拟,即发生车体碰撞时其是否能够对车体有足够的保护能力?这里根据具体车体模型建立了保险杠撞击刚性墙的有限元分析模型,为了节省计算资源和时间成本这里也对保险杠的对称模型进行了简化,详细的撞击模型请参照图1所示,撞击时保险杠分析模型以2000mm/s的速度撞击刚性墙,其中分析模型中的保险杠与平板之间、平板与横梁之间不定义接触,采用焊接进行连接,对于保险杠和刚性墙之间的接触采用接触对算法来定义。 1.横梁(rail) 2.平板(plane) 3.保险杠(bumper) 4.刚性墙(wall) 图2.1 碰撞模型的SolidWorks图

为了使模拟结果尽可能真实,通过查阅相关资料,定义了在碰撞过程中相关的数据以及各部件的材料属性。其中,刚性墙的材料密度为7.83×10-9,弹性模量为2.07×105,泊松比为0.28;保险杠、平板以及横梁的材料密度为7.83×10-9,弹性模量为2.07×105,泊松比为0.28,塑形应力-应变数据如表2.1所示。 表2.1 应力-应变数据表 应力210 300 314 325 390 438 505 527 应变0.0000 0.0309 0.0409 0.0500 0.1510 0.3010 0.7010 0.9010 注:本例中的单位制为:ton,mm,s。 3.案例详细求解过程 本案例使用软件为版本为abaqus6.12,各详细截图及分析以该版本为准。3.1 创建部件 (1)启动ABAQUS/CAE,创建一个新的模型数据库,重命名为The crash simulation,保存模型为The crash simulation.cae。 (2)通过导入已有的*.IGS文件来创建各个部件,在主菜单中执行【File】→【Import】→【Part】命令,选择刚刚创建保存的的bumper_asm.igs文件,弹出【Create Part From IGS File】对话框如图3.1所示,根据图3.1所示设定【Repair Options】的相关选项,其它参数默认,单击【Ok】按钮,可以看到在模型树中显示了导入的部件bumper_asm。 图3.1 Create Part From IGS File对话框

ABAQUS时程分析实例

ABAQUS时程分析法计算地震反应得简单实例ABAQUS时程分析法计算地震反应得简单实例(在原反应谱模型上 修改) 问题描述: 悬臂柱高12m,工字型截面(图1),密度7800kg/m3,EX=2、1e11Pa,泊松比0、3,所有振型得阻尼比为2%,在3m高处有一集中质量160kg,在6m、9m、12m处分别有120kg 得集中质量。反应谱按7度多遇地震,取地震影响系数为0、08,第一组,III类场地,卓越周期Tg=0、45s。 图1 计算对象 第一部分:反应谱法 几点说明: λ本例建模过程使用CAE; λ添加反应谱必须在inp中加关键词实现,CAE不支持反应谱; λ *Spectrum不可以在keyword editor中添加,keyword editor不支持此关键词读入。 λ ABAQUS得反应谱法计算过程以及后处理要比ANSYS方便得多。 操作过程为: (1)打开ABAQUS/CAE,点击create model database。

(2)进入Part模块,点击create part,命名为column,3D、deformation、wire。continue (3)Create lines,在 分别输入0,0回车;0,3回车;0,6回车;0,9回车;0,12回车。

(4)进入property模块,create material,name:steel,general-->>density,mass density:7800 mechanical-->>elasticity-->>elastic,young‘s modulus:2、1e11,poisson’s ratio:0、3、

abaqus压杆屈曲分析78112

压杆屈曲分析 1.问题描述 在钢结构中,受压杆件一般在其达到极限承载力前就会丧失稳定性,所以失稳是钢结构最为突出的问题。压杆整体失稳形式可以是弯曲、扭转和弯扭。钢构件在轴心压力作用下,弯曲失稳是常见的失稳形式。影响轴心受压构件整体稳定性的主要因素为纵向残余应力、初始弯曲、荷载初偏心及端部约束条件等。实际 2 压杆截面尺寸(单位:m) 图1-1 2.长细比计算 通过计算截面几何特性,截面绕y轴的回转半径为i y=0.0384m ,长细比取

值及杆件长度见表1: 表1 3.模型分析 ABAQUS非线性屈曲分析的方法有riks法,general statics法(加阻尼),或者动力法。非线性屈曲分析采用riks算法实现,可以考虑材料非线性、几何非线性已及初始缺陷的影响。其中,初始缺陷可以通过屈曲模态、振型以及一般节点位移来描述。 利用abaqus进行屈曲分析,一般有两步,首先是特征值屈曲分析,此分析为线性屈曲分析,是在小变形的情况进行的,也即上面提到过的模态,目的是得出临界荷载(一般取一阶模态的eigenvalue乘以所设定的load)。其次,就是后屈曲分析,此步一般定义为非线性,原因在于是在大变形情况进行的,一般采用位移控制加修正的弧长法,可以定义材料非线性,以及几何非线性,加上初始缺陷,所以也称为非线性屈曲分析。此步分析,为了得到极限值,需要得出荷载位移曲线的下降段。缺陷较小的结构初始位移变形较小,在极值点突变,而初始缺陷较大的结构,载荷位移曲线较平滑。 4.建模计算过程 建模计算过程以长细比为50的构件为例,其余构件建模计算过程与之类似。 4.1 buckle分析 1 在buckle分析中创建part模块,创建的模型为三位可变形壳体单元,截面参数见图1-1,构件长度1.92。如图4-1示

(完整word版)ABAQUS实例分析

《现代机械设计方法》课程结业论文 ( 2011 级) 题目:ABAQUS实例分析 学生姓名 XXXX 学号 XXXXX 专业机械工程 学院名称机电工程与自动化学院 指导老师 XX 2013年 5 月8 日

目录 第一章Abaqus简介 (1) 一、Abaqus总体介绍 (1) 二、Abaqus基本使用方法 (2) 1.2.1 Abaqus分析步骤 (2) 1.2.2 Abaqus/CAE界面 (3) 1.2.3 Abaqus/CAE的功能模块 (3) 第二章基于Abaqus的通孔端盖分析实例 (4) 一、工作任务的明确 (6) 二、具体步骤 (6) 2.2.1 启动Abaqus/CAE (4) 2.2.2 导入零件 (5) 2.2.3 创建材料和截面属性 (6) 2.2.4 定义装配件 (7) 2.2.5 定义接触和绑定约束(tie) (10) 2.2.6 定义分析步 (14) 2.2.7 划分网格 (15) 2.2.8 施加载荷 (19) 2.2.9 定义边界条件 (20) 2.2.10 提交分析作业 (21) 2.2.11 后处理 (22) 第三章课程学习心得与作业体会 (23)

第一章: Abaqus简介 一、Abaqus总体介绍 Abaqus是功能强大的有限元分析软件,可以分析复杂的固体力学和结构力学系统,模拟非常庞大的模型,处理高度非线性问题。Abaqus不但可以做单一零件的力学和多物理场的分析,同时还可以完成系统级的分析和研究。 Abaqus使用起来十分简便,可以很容易的为复杂问题建立模型。Abaqus具备十分丰富的单元库,可以模拟任意几何形状,其丰富的材料模型库可以模拟大多数典型工程材料的性能,包括金属、橡胶、聚合物、复合材料、钢筋混泥土、可压缩的弹性泡沫以及地质材料(例如土壤、岩石)等。 Abaqus主要具有以下分析功能: 1.静态应力/位移分析 2.动态分析 3.非线性动态应力/位移分析 4.粘弹性/粘塑性响应分析 5.热传导分析 6.退火成形过程分析 7.质量扩散分析 8.准静态分析 9.耦合分析 10.海洋工程结构分析 11.瞬态温度/位移耦合分析 12.疲劳分析 13.水下冲击分析 14.设计灵敏度分析 二、Abaqus基本使用方法 1.2.1 Abaqus分析步骤 有限元分析包括以下三个步骤: 1.前处理(Abaqus/CAE):在前期处理阶段需要定义物理问题的模型,并生 成一个Abaqus输入文件。提交给Abaqus/Standard或 Abaqus/Explicit。 2.分析计算(Abaqus/Standard或Abaqus/Explicit):在分析计算阶段, 使用Abaqus/Standard或Abaqus/Explicit求解输入文件中所定义的

(整理)基于ABAQUS复合材料薄壁圆筒的屈曲分析.

基于ABAQUS复合材料薄壁圆筒的屈曲分析 由于玻璃钢复合材料的薄壁圆筒结构具有强度高、重量轻、刚度大、耐腐蚀,电绝缘及透微波等优点,目前已广泛应用于航空航天和民用领域中。工程中广泛使用的这些薄壁圆筒,当它们受压缩、剪切、弯曲和扭转等荷载作用时,最常见的失效模式为屈曲。因此,为了保证结构的安全,需要进行屈曲分析。 对结构进行屈曲分析,涉及到较复杂的弹(塑)性理论和数学计算,要通过求解高阶偏微分方程组,才能求解失稳临界荷载,而且只有少数简单结构才能求得精确的解析解。因此,只能采用能量法、数值方法和有限元方法等近似的分析方法进行分析。近20年来,随着计算机和有限元方法的迅猛发展,形成了许多的实用分析程序,提高了对复杂结构进行屈曲分析的能力和设计水平。ABAQUS 就是其中的杰出代表。 1.屈曲有限元理论 有限元方法中,对结构的屈曲失稳问题的分析方法主要有两类:一类是通过特征值分析计算屈曲载荷,另一类是利用结合Newton—Raphson迭代的弧长法来确定加载方向,追踪失稳路径的几何非线性分析方法,能有效分析高度非线性屈曲和后屈曲问题。 1.1线性屈曲 假设结构受到的外载荷模式为。,幅值大小为,结构内力为Q,则静力平衡方程应为 进一步考察结构在载荷作用下的平衡方程,得到 由于结构达到保持稳定的临界载荷时有,代入上式得 该方程对应的特征值问题为 如果忽略几何刚度增量的影响,屈曲分析的方程又可进一步简化为 该方程即为求解线性屈曲的特征值方程。为屈曲失稳载荷因子,为结构失稳形态的特征向量。

1.2非线性屈曲 非线性屈曲分析方法多采用弧长法进行分步迭代计算,在增量非线性有限元分析中,沿着平衡路径迭代位移增量的大小(也叫弧长)和方向,确定载荷增量的自动加载方案,可用于高度非线性的屈曲失稳问题。与提取特征值的线性屈曲分析相比,弧长法不仅考虑刚度奇异的失稳点附近的平衡,而且通过追踪整个失稳过程中实际的载荷、位移关系,获得结构失稳前后的全部信息,适合于高度非线性的屈曲失稳问题。 2.ABAQUS的线性屈曲分析 ABAQUS中提供两种分析方法来确定结构的临界荷载和结构发生屈曲响应的特征形状:线性屈曲分析(特征值屈曲分析)、非线性屈曲分析。 线性屈曲分析用于预测一个理想的弹性结构的理论屈曲强度。它是预期的线性屈曲荷载的上限,可以作为非线性屈曲分析的给定荷载,在渐进加载达到此荷载前,非线性求解必然发散;它还可以作为施加初始缺陷或扰动荷载的依据。所以预先进行特征值屈曲分析有助于非线性屈曲分析,进行特征值屈曲分析是必要的。 3.算例 3.1问题概述 图3-1 实例模型 如图所示两端开口的复合材料薄壁圆筒,底端固支,顶端作用有均匀分布的轴压边载。半径R=152mm,高度300mm,厚度t=0.804mm,对称铺层[±45,0]s,

abaqus压杆屈曲分析63758

压杆屈曲分析 1.问题描述 在钢结构中,受压杆件一般在其达到极限承载力前就会丧失稳定性,所以失稳是钢结构最为突出的问题。压杆整体失稳形式可以是弯曲、扭转和弯扭。钢构件在轴心压力作用下,弯曲失稳是常见的失稳形式。影响轴心受压构件整体稳定性的主要因素为纵向残余应力、初始弯曲、荷载初偏心及端部约束条件等。实际的轴心受压构件往往会存在上述的一种或多种缺陷,导致构件的稳定承载力降低。 本文利用abaqus 对一定截面不同长细比下的H 型钢构件进行屈曲分析,通过考虑材料非线性、几何非线性并引入初弯曲,得出构件发生弯曲失稳的极限荷载。通过比较不同长细比下的弯曲失稳的临界荷载得出构件荷载位移曲线,并与《规范》中的构件曲线相比较。钢构件的截面尺寸如图1-1所示。 构件的材料特性: E =2.0×1011 N m 2? ,μ=0.3 , f y =3.45×108N m 2? 压杆截面尺寸(单位:m)

图1-1 2.长细比计算 通过计算截面几何特性,截面绕y轴的回转半径为i y=0.0384m ,长细比取值及杆件长度见表1: 表1 λ50 60 80 100 120 150 180 ι(m) 1.92 2.30 3.07 3.84 4.60 5.76 6.90 3.模型分析 ABAQUS非线性屈曲分析的方法有riks法,general statics法(加阻尼),或者动力法。非线性屈曲分析采用riks算法实现,可以考虑材料非线性、几何非线性已及初始缺陷的影响。其中,初始缺陷可以通过屈曲模态、振型以及一般节点位移来描述。 利用abaqus进行屈曲分析,一般有两步,首先是特征值屈曲分析,此分析为线性屈曲分析,是在小变形的情况进行的,也即上面提到过的模态,目的是得出临界荷载(一般取一阶模态的eigenvalue乘以所设定的load)。其次,就是后屈曲分析,此步一般定义为非线性,原因在于是在大变形情况进行的,一般采用位移控制加修正的弧长法,可以定义材料非线性,以及几何非线性,加上初始缺陷,所以也称为非线性屈曲分析。此步分析,为了得到极限值,需要得出荷载位移曲线的下降段。缺陷较小的结构初始位移变形较小,在极值点突变,而初始缺陷较大的结构,载荷位移曲线较平滑。 4.建模计算过程

ABAQUS和WB非线性屈曲方法综述

Workbench (1)首先进行线性屈曲分析,得到屈曲的特征值和屈曲模态。实现方式如下: (2)添加Mechanical APDL模块 右键单击Analysis,输入模型缺陷文件:

/prep7 upgeom,0.1,1,1,file,rst cdwrite,db,file,cdb /solu UPGEOM, FACTOR, LSTEP, SBSTEP, Fname, Ext FACTOR: Multiplier for displacements being added to coordinates. The value 1.0 will add the full value of the displacements to the geometry of the finite element model. Defaults to 1.0. LSTEP: Load step number of data to be imported. Defaults to the last load step. SBSTEP: sub step number of data to be imported. Defaults to the last substep. Fname: File name and directory path (248 characters maximum, including the characters needed for the directory path). An unspecified directory path defaults to the working directory; in this case, you can use all 248 characters for the file name. The field must be input (no default). Ext:Filename extension (8 character maximum).The extension must be an RST extension. (3)添加Finite Element Modeler模块 (4)重新导入新的Static Structual模块以进行非线性屈曲分析,此时需重新建立模型的接触关系、边界条件、荷载。 本模块分析时需打开大变形(large deflection),

abaqus实例

一.创建部件 1.打开abaqus; 开始/程序/Abaqus6.10-1/Abaque CAE 2.Model/Rename/Model-1,并输入名字link4

3.单击Create part弹出Create part对话框, Name输入link-4; Modeling Space 选择2D Planar Type 选择Deformable Base Feature 选择Wire Approximate size 输入800;然后单击continue 4.单击(Create Lines:connected)通过点(0,0)、(400,0)、(400,300)、(0,300)单击(Create Lines:connected)连接(400,300)和(0,0)两点,单击提示区中的Done按钮(或者单击鼠标滚轮,也叫中键),形成四杆桁架结构

5.单击工具栏中的(Save Model Database),保存模型为link4.cae 二.定义材料属性 6.双击模型树中的Materials(或者将Module切换到Property,单击Create Material -ε) 弹出Edit Material对话框后。 执行对话框中Mechanical/Elasticity/Elastic命令, 在对话框底部出现的Data栏中输入Young’s Module为29.5e4, 单击OK.完成材料设定。

7.单击“Create Section ”,弹出Create Section对话框, Category中选择Beam; Type中选择Truss; 单击continue按钮 弹出Edit Section对话框, 材料选择默认的Material-1,输入截面积(Cross-sectional area)为100,单击ok按钮。

ABAQUS实例分析论文

目录 第一章Abaqus简介 (1) 一、Abaqus总体介绍 (1) 二、Abaqus基本使用方法 (2) 1.2.1 Abaqus分析步骤 (2) 1.2.2 Abaqus/CAE界面 (3) 1.2.3 Abaqus/CAE的功能模块 (3) 第二章基于Abaqus的通孔端盖分析实例 (4) 一、工作任务的明确 (5) 二、具体步骤 (5) 2.2.1 启动Abaqus/CAE (4) 2.2.2 导入零件 (5) 2.2.3 创建材料和截面属性 (6) 2.2.4 定义装配件 (7) 2.2.5 定义接触和绑定约束(tie) (10) 2.2.6 定义分析步 (14) 2.2.7 划分网格 (15) 2.2.8 施加载荷 (19) 2.2.9 定义边界条件 (20) 2.2.10 提交分析作业 (21) 2.2.11 后处理 (22) 第三章课程学习心得与作业体会 (22)

第一章: Abaqus简介 一、Abaqus总体介绍 Abaqus是功能强大的有限元分析软件,可以分析复杂的固体力学和结构力学系统,模拟非常庞大的模型,处理高度非线性问题。Abaqus不但可以做单一零件的力学和多物理场的分析,同时还可以完成系统级的分析和研究。 Abaqus使用起来十分简便,可以很容易的为复杂问题建立模型。Abaqus具备十分丰富的单元库,可以模拟任意几何形状,其丰富的材料模型库可以模拟大多数典型工程材料的性能,包括金属、橡胶、聚合物、复合材料、钢筋混泥土、可压缩的弹性泡沫以及地质材料(例如土壤、岩石)等。 Abaqus主要具有以下分析功能: 1.静态应力/位移分析 2.动态分析 3.非线性动态应力/位移分析 4.粘弹性/粘塑性响应分析 5.热传导分析 6.退火成形过程分析 7.质量扩散分析 8.准静态分析 9.耦合分析 10.海洋工程结构分析 11.瞬态温度/位移耦合分析 12.疲劳分析 13.水下冲击分析 14.设计灵敏度分析 二、Abaqus基本使用方法 1.2.1 Abaqus分析步骤 有限元分析包括以下三个步骤: 1.前处理(Abaqus/CAE):在前期处理阶段需要定义物理问题的模型,并生

ABAQUS非线性屈曲分析步骤

ABAQUS6.7非线性屈曲分析步骤 riks法,或者general statics法(加阻尼),或者动力法 一共三种方法, 【问】在aba中能实现非线性屈曲分析吗?在step中选定line- perturbation下的各项,其Nlgeom都为Off,是不是意味着是进行不了啊? 【答】 line-perturbation应该是特征值屈曲分析,只能是线性的,要想进行非线性屈曲分析要引入初始缺陷 ABAQUS中非线性屈曲分析采用riks算法实现,可以考虑材料非线性、几何非线性已经初始缺陷的影响。其中,初始缺陷可以通过屈曲模态、振型以及一般节点位移来描述。 no.1:利用abaqus进行屈曲分析,一般有两步,首先是特征值屈曲分析,此分析为线性屈曲分析,是在小变形的情况进行的,也即上面提到过的模态,目的是得出临界荷载(一般取一阶模态的eigenvalue乘以所设定的load),且需要在inp 文件中,作如下修改 *node file,global=yes *End Step 此修改目的在于:在下一步后屈曲分析所需要的初始缺陷的节点输出为.fil文件。no.2:其次,就是所谓的后屈曲分析,此步一般定义为非线性,原因在于是在大变形情况进行的,一般采用位移控制加修正的弧长法,可以定义材料非线性,以及几何非线性,加上初始确定,所以也称为非线性屈曲分析。此步分析,为了得到极限值,需要得出荷载位移曲线的下降段,除了采用位移控制以及弧长法设定外,需在所得到的inp文件中,嵌入no.1中的.fil节点数据。修改如下: *IMPERFECTION(缺陷), FILE=results_file(此文件名为.fil), STEP=step(特征

本人学习abaqus五年的经验总结,让你比做例子快十倍

第二章ABAQUS基本使用方法 [2] (pp15)快捷键: Ctrl+Alt+左键来缩放模型;Ctrl+Alt+中键来平移模型;Ctrl+Alt+右键来旋转模型。 ②(pp16)ABAQUS/CAE不会自动保存模型数据,用户应当每隔一段时间自己保存模型以避免意外丢失。 [3] (pp17)平面应力问题的截面属性类型是Solid (实心体)而不是Shell (壳)。 ABAQUS/CAE隹荐的建模方法是把整个数值模型(如材料、边界条件、载荷等)都直接定义在几何模型上。 载荷类型Pressure的含义是单位面积上的力,正值表示压力,负值表示拉力。 [4] (pp22)对于应力集中问题,使用二次单元可以提高应力结果的精度。 [5] (pp23)Dismiss和Cancel按钮的作用都是关闭当前对话框,其区别在于: 前者出现在包含只读数据的对话框中;后者出现在允许作出修改的对话框中,点击Cancel按钮可关闭对话框,而不保存所修改的内容。 ⑹(pp26)每个模型中只能有一个装配件,它是由一个或多个实体组成的,所谓的实体”(instanee)是部件(part)在装配件中的一种映射,一个部件可以对应多个实体。材料和截面属性定义在部件上,相互作用(in teraction)、边界条件、载荷等定义在实体上,网格可以定义在部件上或实体上,对求解过程和输出结果的控制参数定义在整个模型上。 [7] (pp26) ABAQUS/CAE中的部件有两种: 几何部件(n ative part)和网格部件(orpha n mesh part)。 创建几何部件有两种方法: (1)使用Part 功能模块中的拉伸、旋转、扫掠、倒角和放样等特征来直接创建几何部件。

多体分析实例

第八章多体分析实例 多体分析:由多个刚体或柔体组成,各实体之间具有一定的约束关系和相对运动关系。Abaqus 的多体分析可以模拟系统的运动状况和系统各部分之间的相互作用,得到所关系部位的位移、速度、加速度、力和力矩等。如果是柔体,还可以得到柔体的应力、应变等分析结果。 8.1多体分析的主要方法 Abaqus模拟多体分析的 基本思路: abaqus使用两节点连接单元在系统各部分之间建立连接,并通过定义连接属性来描述各部分之间的相对运动约束关系。 基本步骤: 1.在PART 、ASSEMBLY或INTERACTION功能模块中,定义连接单元和约束所要用到的参 考点和基准坐标系 2.在INTERACTION模块中,设置连接单元、连接属性和约束 3.在STEP模块中,设置单元的历史变量输出;如果模型中出现较大的位移或转动,应将 几何非线性参数NLGEOM设置为ON 4.在LOAD模块中,定义边界条件和载荷,以及连接单元的边界条件和载荷 5.在VISUALIZATION模块中,查看连接单元的历史变量输出、控制连接单元的显示方式。8.1.1连接单元 用来模拟模型中的两个点或一个点和地面之间的运动和力学关系,所涉及到的点称为连接点。 8.1.2连接属性 分类:基本连接属性和组合连接属性 基本连接属性:平移连接属性和旋转连接属性 两个节点上的局部坐标系有如下三种情况: REQUIRED;IGNORED;OPTIONAN 两个连接点之间的相对运动分量:平移运动分量和旋转运动分量;又可以分为受约束的相对

运动分量和可用的相对运动分量。 几种常用的连接属性: JOIN;LINK;SLOT;REVOLVE;HINGE 8.1.3输出单元的分析结果 连接单元的作用:在两个连接点之间施加运动约束,度量两个连接点之间的相对运动、力和力矩 分析结果:运动分析结果和力与力矩的分析结果 8.2实例1:圆盘的旋转过程模拟

相关主题
文本预览