当前位置:文档之家› 高2015年高三物理期末专题复习三 带电粒子在电磁场中的运动

高2015年高三物理期末专题复习三 带电粒子在电磁场中的运动

高2015年高三物理期末专题复习三 带电粒子在电磁场中的运动
高2015年高三物理期末专题复习三 带电粒子在电磁场中的运动

《专题训练三》带电粒子在重力场、电场、磁场中的运动

1.设在地面上方的真空室内存在匀强电场和匀强磁场。已知电场强度和磁感应强度的方向是相同的,电场强度的大小E=4.0伏/米,磁感应强度的大小B=0.15特。今有一个带负电的质点以v=20米/秒的速度在此区域内沿垂直场强方向做匀速直线运动,求此带电质点的电量与质量之比q/m以及磁场的所有可能方向(角度可用反三角函数表示)。

2.真空中存在空间范围足够大的、水平向右的匀强电场。在电场中,若将一个质量为m、带正电的小球由静止释放,小球的速度与竖直方向夹角为37°(取sin370.6

?=).

?=,cos370.8

现将该小球从电场中某点以初速度v O竖直向上抛出。求运动过程中:

(1)小球受到的电场力的大小及方向; (2)小球从抛出点至最高点的电势能变化量;(3)小球的最小动量的大小及方向。

3.有三根长度皆为l=1.00m的不可伸长的绝缘轻线,其中两根的一端固定在天花板上的O 点,另一端分别拴有质量皆为m=1.00310-2kg的带电小球A和B,它们的电量分别为-q 和+q,q=1.00310-7C。A、B之间用第三根线连接起来。空间中存在大小为E=1.003106N/C 的匀强电场,场强方向沿水平向右,平衡时A、B球的位置如图所示。现将O、B之间的线烧断,由于有空气阻力,A、B球最后会达到新的平衡位置。求最后两球的机械能与电势能的总和与烧断前相比改变了多少。(不计两带电小球间相互作用的静电力)

4.如图所示,匀强电场方向竖直向上,匀强磁场方向水平且垂直纸面向里,有两个带电小球 a 和b ,a 恰能在垂直于磁场方向的竖直平面内做半径r =0.8m 的匀速圆周运动,b 恰能以 v =2m/s 的水平速度在垂直于磁场方向的竖直平面内向右做匀速直线运动.小球a 、b 质量 m a =10g ,m b =40g ,电荷量q a =1310-2C ,q b = 2310-2C ,g =10m/s 2。求: (1)小球a 和b 分别带什么电?电场强度E 与磁感应强度B 的大小?

(2)小球a 做匀速周周运动绕行方向是顺时针还是逆时针?速度大小v a 是多大? (3)设小球b 的运动轨迹与小球a 的运动轨迹的最低点相切, 当 小球a 运动到最低点即切点时小球b 也同时运动到切点,a 、b

相碰后合为一体,设为c ,在相碰结束的瞬间,c 的加速度a c =?

5.如图所示,在x 轴上方有垂直于xy 平面向里的匀强磁场,磁感应强度为B.在x 轴下方有 沿y 轴负方向的匀强电场,场强为E ,一质量为m ,电荷量 为-q 的粒子从坐标原点O 沿着y 轴正方向射出,射出之后, 第三次到达x 轴时,它与点O 的距离为L ,求此粒子射出 的速度v 和运动的总路程s.(重力不计)

6.如题图为一种质谱仪工作原理示意图.在以O 为圆心,OH 为对称轴,夹角为2α的扇形区 域内分布着方向垂直于纸面的匀强磁场.对称于OH 轴的C 和D 分别是离子发射点和收集 点.CM 垂直磁场左边界于M ,且OM=D .现有一正离子束以小发散角(纸面内)从C 射出, 这些离子在CM 方向上的分速度均为v 0.若该离子束中比荷为

q

m

的离子都能汇聚到D ,试求: (1)磁感应强度的大小和方向(提示:可考虑沿CM 方向运动的离子为研究对象); (2)离子沿与CM 成θ角的直线CN 进入磁场,其轨道半径和在磁场中的运动时间; (3)线段CM 的长度.

b

B

7.有人设计了一种带电颗粒的速率分选装置,其原理如图所示。两带电金属板间有匀强电场,方向竖直向上。其中PQNM矩形区域内还有方向垂直纸面向外的匀强磁场。一束比荷(电荷1的带正电颗粒,以不同的速率沿着磁场区域的水平中心线O'O进入两量与质量之比)均为

k

金属板之间,其中速率为v0的颗粒刚好从Q点处离开磁场,然后做匀速直线运动到达收集板。重力加速度为g,PQ=3d,NQ=2d,收集板与NQ的距离为l,不计颗粒间相互作用。求:

(1)电场强度E的大小; (2)磁感应强度B的大小;

(3)速率为λv0(λ>1)的颗粒打在收集板上的位置

到O点的距离。

8.对铀235的进一步研究在核能的开发和利用中具有重要意义。如图所示,质量为m、电荷量为q的铀235离子,从容器A下方的小孔S1不断飘入加速电场,其初速度可视为零,然后经过小孔S2垂直于磁场方向进入磁感应强度为B的匀强磁场中,做半径为R的匀速圆周运动。离子行进半个圆周后离开磁场并被收集,离开磁场时离子束的等效电流为I。不考虑离子重力及离子间的相互作用。 (1)求加速电场的电压U;

(2)求出在离子被收集的过程中任意时间t内收集到离子的质量M;

(3)实际上加速电压的大小会在U±ΔU范围内微小变化。若容

器A中有电荷量相同的铀235和铀238两种离子,如前述情况

它们经电场加速后进入磁场中会发生分离,为使这两种离子在

应小于多少?(结果用百分

磁场中运动的轨迹不发生交叠,ΔU

U

数表示,保留两位有效数字)

9.如图所示,在直角坐标系的第一.二象限内有垂直于纸面的匀强磁场,第三象限有沿y 轴 负方向的匀强电场,第四象限内无电场和磁场.质量为m .带电量为q 粒子从M 点以速度 V 0沿x 轴负方向进入电场,粒子先后经x 轴上的N .P 点。不计粒子的重力,设OM =OP =L , ON =2L ,求:(1)匀强电场的场强E ;

(2)匀强磁场的磁感强度B 的大小和方向。

10.如图,在xOy 平面第一象限整个区域分布一匀强电场,电场方向平行y 轴向下.在第四象 限内存在一有界匀强磁场,左边界为y 轴,右边界为2

5l x 的直线,磁场方向垂直纸面向

外.一质量为m 、带电量为+q 的粒子从y 轴上P 点以初速度v 0垂直y 轴射入匀强电场,在 电场力作用下从x 轴上Q 点以与x 轴正方向45°角进入匀强磁场.已知OQ =l ,不计粒子 重力.求:(1)P 与O 两点的距离;

(2)要使粒子能再进入电场,磁感应强度B 的取值范围; (3)要使粒子能第二次进入磁场,磁感应强度B 的取值范围.

11.如图所示为研究电子枪中电子在电场中运动的简化模型示意图。在Oxy平面的ABCD区域内,存在两个场强大小均为E的匀强电场I和II,两电场的边界均是边长为L的正方形。(1)在该区域AB边的中点处由静止释放电子,求电子离开ABCD区域的位置。

(2)在电场I区域内适当位置由静止释放电子,电子恰能从ABCD区域左下角D处离开,求所有释放点的位置。

(3)若将左侧电场II整体水平向右移动L/n(n≥1),仍使电子从ABCD区域左下角D处离开(D不随电场移动),求在电场I区域内由静止释放电子的所有位置。

12.某仪器用电场和磁场来控制电子在材料表面上方的运动,如题图所示,材料表面上方矩形区域PP'N'N充满竖直向下的匀强电场,宽为d;矩形区域NN'M'M充满垂直纸面向里的匀强磁场,磁感应强度为B,长为3s,宽为s;NN'为磁场与电场之前的薄隔离层。一个电荷量为e、质量为m、初速为零的电子,从P点开始被电场加速经隔离层垂直进入磁场,电子每次穿越隔离层,运动方向不变,其动能损失是每次穿越前动能的10%,最后电子仅能从磁场边界M'N'飞出。不计电子所受重力。

(1)求电子第二次与第一次圆周运动半径之比; (2)求电场强度的取值范围;

(3)A是M N''的中点,若要使电子在A、M'间垂直于A M'飞出,求电子在磁场区域中运

动的时间。

13.如图,离子源A产生的初速为零、带电量均为e、质量不同的正离子被电压为U0的加速电场加速后匀速通过泄直管,垂直射入匀强偏转电场,偏转后通过极板M上的小孔S离开电场,经过一段匀速直线运动,垂直于边界MN进入磁感应强度为B的匀强磁场。已知HO=d,

HS=2d,∠MNQ=90°。(忽略粒子所受重力)

(1)求偏转电场场强E0的大小以及HM与MN的夹角 ;

(2)求质量为m的离子在磁场中做圆周运动的半径;

(3)若质量为4m的离子垂直打在NQ的中点S1处,质

量为16m的离子打在S2处。求S1和S2之间的距离

以及能打在NQ上的正离子的质量范围。

14.如图所示的坐标系中,第Ⅰ、Ⅳ象限内存在着垂直纸面向里的匀强磁场,在x=-2L与y轴之间第Ⅱ、Ⅲ象限内存在大小相等、方向相反的匀强电场,场强方向如图所示.在A(-2L,L)到C(-2L,0)的连线上连续分布着电荷量为+q、质量为m的粒子.从t=0时刻起,这些带电粒子依次以相同的速度v沿x轴正方向射出.从A点射入的粒子刚好沿如图所示的运动轨迹从y轴上的A′(0,-L)沿x轴正方向穿过y轴.不计粒子重力及它们间的相

互作用,不考虑粒子间的碰撞.

(1)求电场强度E的大小.

(2)在AC间还有哪些位置的粒子,通过电场后也能

沿x轴正方向穿过y轴.

(3)若从A点射入的粒子,恰能垂直返回x=-2L的

线上,求匀强磁场的磁感应强度B.

1.解:由题意知此带电质点所受的重力、电场力和洛仑兹力的合力必定为零。由此推知此三个力在同一竖直平面内,如右图所示,质点的速度垂直纸面向外。因质点带负电,电场方向与电场力方向相反,因而磁砀方向也与电场力方向相反。设磁场

方向与重力方向间夹角为θ,

可得qEsin θ=qvBcos θ, qEcos θ+qvBsin θ=mg 解得2

2)(E vB g m

q +=

,代入数据得q/m =1.96库/千克。

tg θ=vB/E=2030.15/4.0, θ=arctg0.75。

即磁场是沿着与重力方向成夹角θ=arctg0.75,且斜向下方的一切方向。 2.解:(1)根据题设条件,电场力大小mg

mg F e 4

337tan =?=

电场力的方向水平向右. (2)小球沿竖直方向做匀减速运动,速度为gt v v y -=0 沿水平方向做初速度为0的匀加速运动,加速度为g m F a

e x

4

3==

小球上升到最高点的时间0v t g

= 此过程小球沿电场方向位移g

v t a s x

x 832

12

02==

电场力做功W=20x e 32

9s F mv = 小球上升到最高点的过程中,电势能减少20

329mv (3)水平速度t a v x x =,竖直速度gt v v y -=0

小球的速度22y x v v v +=

由以上各式得出 0)(216

25220022=-+-v v gt v t g 此时025

9v v x =24

3tan ,25

90===x

y y v v v v θ,

即与电场方向夹角为37°斜向上小球动量的最小值为0min min 53mv mv P ==

最小动量的方向与电场方向夹角为37°,斜向上。

3.解:图1中虚线表示A 、B 球原来的平衡位置,实线表示烧断后重新达到平衡的位置,其中α、β分别表示OA 、AB 与竖直方向的夹角。A 球受力如图2所示: 重力mg ,竖直向下;电场力qE ,水平向左;细线OA 对A 的拉力T 1, 方向如图;细线AB 对A 的拉力T 2,方向如图。由平衡条件 qE T T =+βαsin sin 21① βαcos cos 21T mg T +=②

B 球受力如图3所示:重力mg ,竖直向下;电场力qE ,水平右;细线 AB 对B 的拉力F 2,方向如图。由平衡条件 qE T =βsin 2③ mg a T =cos 2④

联立以上各式并代入数据,得0=α⑤ 45=β⑥ 由此可知,A 、B 球重新达到平衡的位置如图4所示。 与原来位置相比,A 球的重力势能减少了 )60sin 1( -=mgl E A ⑦ B 球的重力势能减少了 )45cos 60sin 1( +-=mgl E B ⑧ A 球的电势能增加了

W A =qElcos 60°⑨ B 球的电势能减少了 )30sin 45(sin -=qEl W B ⑩

两种势能总和减少了

B

A

A

B

E

E

W

W

W+

+

-

=.得J

W2

10

8.6-

?

=

4.解:(1)小球a做匀速圆周运动,电场力和重力的合力为零,电场力方

向向上,所以小球a带正电,且有m a g=q a E得E=10N/C

小球b做匀速直线运动,合力为零,带正电,且有m b g=q b vB+q b E得B=5T

(2)小球a做匀速圆周运动绕行方向是逆时针方向,由

r

m

B

q a

a

a

a

2

υ

υ=得

a

a

a m

Br

q

=

υ=4m / s (3)设碰后的共同速度为v c,则m a v a+m b v=(m a+m b)v c得v c=2.4m/s

由牛顿第二定律得m c a c=q c E+q c v c B -m e g,m c=m a+m b ,q c=(q a+q b)解得a c=3.2m/s2

5.解:如图所示关系有L=4R,由qvB=m2

R

v2,得v=

4m

qBL

设粒子进入电场做减速运动的最大路程为l,加速度为a,

则v2=2al,而在电场中据牛顿第二定律有qE=ma,

粒子运动的总路程为s=2πR+2l,连解得

16mE

L

qB

L

2

1

s

2

2

+

=π.

6.解:(1)设离子在磁场中做圆周运动的轨道半径为R,由

2

mv

qv B

R

=,R=d.得B=0

mv

qd 磁场方向垂直纸面向外

(2)设沿CN运动的离子速度大小为v,在磁场中的轨道半径为R′,运动时间为t

由v cosθ=v0 得v=0

cos

v

θ

.R′=mv

qB

=

cos

d

θ

方法一:设弧长为s,t=s

v

s=2(θ+α)3R′;t=

2

v

d

?

+)

(α

θ

方法二:离子做匀速圆周运动的周期T=2m

qB

π, t=T3

π

α

θ+=

)

(2

v

d

α

θ+

(3)方法一:CM=MN cotθ,

)

sin(β

α+

+d

MN=

α

sin

R',R′=

θ

cos

d.

解得CM=d cotα方法二:设圆心为A,过A做AB垂直NO,可以证明NM=BO,∵NM=CM tanθ

又∵BO=AB cotα=R′sinθcotα=α

θ

θ

cot

sin

cos

d∴CM=d cotα

7.解:(1)设带电颗粒的电荷量为q,质量为m,

有Eq=mg将q

m

=1

k

代入,得E=kg

(2)如图1,有qv0B=m20v

R

,R2=(3d)2+(R-d)2得B=0

5

kv

d

(3)如图2所示,有qλv0B=m20

1

()

v

R

λ

tanθ

,y1=R1

y2=l tanθ,y=y1+y2,得y=d(5λ

8.解:(1)设离子经电场加速后进入磁场时的速度为v ,由动能定理得qU=12

mv 2

离子在磁场中所受洛伦兹力充当向心力,即qvB=m 2v R

,解得U=

222qB R m (2)设在t 时间内收集到的离子个数为N ,总电荷量为Q ,则Q=It ,,N=Q q

,M=Nm ,解得M=mIt q

(3)由①②式有

设m'为铀238离子质量,由于电压在U±ΔU 之间有微小变化,

铀235的最大半径为R max

铀238的最小半径为R'min

在磁场中运动的轨迹不发生交叠的条件为R max

则有m (U+ΔU )

<'-'m m m m

+.

其中铀235离子的质量m=235 u(u 为原子质量单位),铀238离子的质量m'=238 u,故

ΔU U <238u 235u 238u 235u

-+,解得ΔU U <0.63%

9.解:(1)粒子带负电,x 方向:2L =v 0t 1,y 方向:2121t m qE L ?= ,得:ql

m v E 22

0=

(2)设到达N 点的速度v ,运动方向与x -轴方向的夹角为θ如图所示,

由动能定理得2022121mv mv qEL -=,将ql

mv E 22

0= 代入得02v v = o 45=∴θ

粒子在磁场中做匀速圆周运动,经过P 点时速度方向也与x -方向成45°,从到M 作

直线运动OP =OM =L ,所以 NP =NO +OP =3L

粒子在磁场中的轨道半径为 L NP R 2

345cos =??= 。

又因qB m v

R =,

联立解得 qL

m v B 320= ,方向垂直纸面。

10.解:(1)设粒子进入电场时y 方向的速度为v y ,?=45tan 0v v y

由t v 0=,t v t y

y 2==

2l = (2)粒子刚好能再进入电场的轨迹如图所示,设此时的轨迹半径为r 1,l r r =?+45sin 11 l r )22(1-=,速度00

245cos v v v =?

=

根据牛顿第二定律1

2

1

r v m qvB = 得ql

mv B 01)12(+=

要使粒子能再进入电场,磁感应强度B 的范围ql

mv B 0)12(+≥

(3)要使粒子刚好能第二次进入磁场的轨迹如图.

粒子从P 到Q 的时间为t ,则粒子从C 到D 的时间为2t ,所以

l CD 2=,2)2

5(2l

l l l QD CD CQ =--=-=

设此时粒子在磁场中的轨道半径为r 2,由几何关系CQ r =?45sin 22 l

r 4

22=

根据牛顿第二定律2

22

r v m qvB = ql mv B 0

24=

要使粒子能第二次进磁场,磁感应强度B 的范

围21B B B ≤≤ 即ql mv B ql mv 0

04)12(≤≤+ 。

11.解:(1)设电子的质量为m ,电量为e ,电子在电声I 中做匀加速直线运动,出区域I 时 的为0v ,此后电场Ⅱ做类平抛运动,假设电子子从CD 边射出,出射点纵坐标为y ,有

2

02202121)2(,21???

? ??==-=v L m eE at y L m v eEL 解得L y 41=,即电子离开位置坐标为)41,2(L L - (2)设释放点在电场区域I 中,其坐标为),(y x ,在电场I 中电子被加速到1v ,然后进

入电场Ⅱ做类平抛运动,有 2

12212121,21???

? ??===v L m eE at y m v eEx 解得42L xy =, 即在电场I 区域内满足议程的点即为所求位置。

(3)设电子从),(y x 点释放,在电子场I 中加速到2v ,进入电场Ⅱ做类平抛运动,在

高度为'y 处离开电子场Ⅱ时的情景与(2)类似,然后电子做匀速直线运动,经过D 点,

则有2

222

21'2

1???? ??=-=v L m eE y y m v eEx 22',nv L v y mv eEL at v y y ===.解得 ??

? ??+=41212n L xy , 即在电场I 区域内满足议程的点即为所求位置

12.解:(1)设圆周运动的半径分别为R 1、R 2、……、R n 、R n+1,…,第一和第二次圆周运动速

率分别为v 1和v 2,动能分别为E k1和E k2

由:E k2=0.81E k1,R 1=Be

m v

1,R 2=,2Be m v 22221121,21mv E mv E k k ==.得:R 2:R 1=0.9

(2)设电场强度为E .第一次到达隔离层前的速率为v′

由:s R mv v m v m eEd ≤='?'=12

122,21219.0,21.得:md

es B E 9522≤

又由:s R R R n n n 3)9.09.09.01(2,9.02111>+++++=-

得:md es B E 802

2>

,

md

es B E md es B 95802

22

2≤

<

(3)设电子在匀强磁场中,圆周运动的周期为T ,运动的半圆周个数为n ,运动总时间

为t ,由题意有:.2,9.0,,39.01)9.01(2111111s R R R s R s R R n n n n n ≥=≤=+--+++ 得:n=2.又由:T=eB m π2,得:eB m

t 25π=

13.解:(1)?

??====-=21021021,2,,021at d t v d ma eE F mv eU .得d U E /00=

由at

v 1tan =φ,得?=45φ

(2)由??

???=+=+=R v m

evB at v v v v 22

212221)(得20

2eB mU R = (3)将m m 164和代入R ,得R 1、R 2 由,)(12122

2R R R R S ---=?

将21,R R 代入得2

0)13(4eB

mU S -=?

由21212)()2(R R R R -'+= ,得1

2

5R R =' 由112

521R R R <<,得m m m x 25<<

高中物理平抛运动试题整理

平抛运动 ⑴平抛定义:抛出的物体只受力作用下的运动。 ⑵平抛运动性质:是加速度恒为的曲线运动。 ⑶平抛运动公式: 水平方向运动V x= X= t= 竖直方向运动V y= y= t= V合= S合= 1.决定一个平抛运动的总时间的因素() A 抛出时的初速度 B 抛出时的竖直高度 C 抛出时的竖直高度和初速度 D 与做平抛运动物体的质量有关 2、一个物体以初速度V0水平抛出,经时间t,其竖直方向速度大小与V0大小相等,那么t 为() A V0/g B 2V0/g C V0/2g D 2V0/g 3、关于平抛运动,下列说法正确的是() A 是匀变速运动 B 是变加速运动 C 任意两段时间的速度变化量的方向相同 D 任意相等时间内的速度变化量相等 4、物体以初速度V0水平抛出,当抛出后竖直位移是水平位移的2倍时,则物体抛出的时间是( ) A 1∶1 B 2 ∶1 C 3∶1D4∶1 5、做平抛运动的物体:() A、速度保持不变 B、加速度保持不变 C、水平方向的速度逐渐增大 D、竖直方向的速度保持不变 6、关于物体的运动,下列说法中正确的是() A、当加速度恒定不变时,物体做直线运动 B、当初速度为零时,物体一定做直线运动 C、当初速度和加速度不在同一直线上时,物体一定做曲线运动 D、当加速度的方向与初速度方向垂直时,物体一定做圆周运动 7、下面说法中正确的是() A、曲线运动一定是变速运动 B、平抛运动是匀速运动 C、匀速圆周运动是匀速运动 D、只有变力才能使物体做曲线运动 8、做平抛运动的物体,在水平方向通过的最大距离取决于() A、物体的高度和所受重力 B、物体的高度和初速度 C、物体所受的重力和初速度 D、物体所受的重力、高度和初速度 1.关于平抛运动,下列说法中正确的是 A.平抛运动是匀变速运动 B.做平抛运动的物体在任何相等时间内的速度的变化量都相等 C.可以分解为水平方向上的匀速直线运动和竖直方向的自由落体运动 D.落地的时间和速度只与抛出点的高度有关 2.飞机以150m/s的水平速度匀速飞行,某时刻让A球落下,相隔1s又让B球落下,不计空气阻力,在以后的运动中,关于A球与B 球的相对位置关系,正确的是 A.A 球在B球的前下方,两球间的距离保持不变 B.A 球在B球的后下方,两球间的距离逐渐增大 C.A 球在B球的正下方,两球间的距离保持不变 D.A 球在B球的正下方,两球间的距离逐渐增大

高中物理运动学经典习题30道 带答案

一.选择题(共28小题) 1.(2014?陆丰市校级学业考试)某一做匀加速直线运动的物体,加速度是2m/s2,下列关于该物体加速度的理解 D 9.(2015?沈阳校级模拟)一物体从H高处自由下落,经时间t落地,则当它下落时,离地的高度为() D 者抓住,直尺下落的距离h,受测者的反应时间为t,则下列结论正确的是()

∝ ∝ 光照射下,可观察到一个下落的水滴,缓缓调节水滴下落的时间间隔到适当情况,可以看到一种奇特的现象,水滴似乎不再下落,而是像固定在图中的A、B、C、D四个位置不动,一般要出现这种现象,照明光源应该满足(g=10m/s2)() 地时的速度之比是 15.(2013秋?忻府区校级期末)一观察者发现,每隔一定时间有一滴水自8m高的屋檐落下,而且看到第五滴水 D

17.(2014秋?成都期末)如图所示,将一小球从竖直砖墙的某位置由静止释放.用频闪照相机在同一底片上多次曝光,得到了图中1、2、3…所示的小球运动过程中每次曝光的位置.已知连续两次曝光的时间间隔均为T,每块砖的厚度均为d.根据图中的信息,下列判断正确的是() 小球下落的加速度为 的速度为 :2 D: 2 D O点向上抛小球又落至原处的时间为T2在小球运动过程中经过比O点高H的P点,小球离开P点至又回到P 23.(2014春?金山区校级期末)一只气球以10m/s的速度匀速上升,某时刻在气球正下方距气球6m处有一小石 2

v0v0D 27.(2013?洪泽县校级模拟)一个从地面竖直上抛的物体,它两次经过同一较低a点的时间间隔为T a,两次经 g(T a2﹣T b2)g(T a2﹣T b2)g(T a2﹣T b2)D g(T a﹣T b) 28.(2013秋?平江县校级月考)在以速度V上升的电梯内竖直向上抛出一球,电梯内观者看见小球经t秒后到 h=

2018年高考物理复习天体运动专题练习(含答案)

2018年高考物理复习天体运动专题练习(含答 案) 天体是天生之体或者天然之体的意思,表示未加任何掩盖。查字典物理网整理了天体运动专题练习,请考生练习。 一、单项选择题(本题共10小题,每小题6分,共60分.) 1.(2014武威模拟)2013年6月20日上午10点神舟十号航天员首次面向中小学生开展太空授课和天地互动交流等科 普教育活动,这是一大亮点.神舟十号在绕地球做匀速圆周运动的过程中,下列叙述不正确的是() A.指令长聂海胜做了一个太空打坐,是因为他不受力 B.悬浮在轨道舱内的水呈现圆球形 C.航天员在轨道舱内能利用弹簧拉力器进行体能锻炼 D.盛满水的敞口瓶,底部开一小孔,水不会喷出 【解析】在飞船绕地球做匀速圆周运动的过程中,万有引

力充当向心力,飞船及航天员都处于完全失重状态,聂海胜做太空打坐时同样受万有引力作用,处于完全失重状态,所以A错误;由于液体表面张力的作用,处于完全失重状态下的液体将以圆球形状态存在,所以B正确;完全失重状态下并不影响弹簧的弹力规律,所以拉力器可以用来锻炼体能,所以C正确;因为敞口瓶中的水也处于完全失重状态,即水对瓶底部没有压强,所以水不会喷出,故D正确. 【答案】 A 2.为研究太阳系内行星的运动,需要知道太阳的质量,已知地球半径为R,地球质量为m,太阳与地球中心间距为r,地球表面的重力加速度为g,地球绕太阳公转的周期T.则太阳的质量为() A.B. C. D. 【解析】地球表面质量为m的物体万有引力等于重力,即G=mg,对地球绕太阳做匀速圆周运动有G=m.解得M=,D正确.

【答案】 D 3.(2015温州质检)经国际小行星命名委员会命名的神舟星和杨利伟星的轨道均处在火星和木星轨道之间.已知神舟星平均每天绕太阳运行1.74109 m,杨利伟星平均每天绕太阳运行1.45109 m.假设两行星都绕太阳做匀速圆周运动,则两星相比较() A.神舟星的轨道半径大 B.神舟星的加速度大 C.杨利伟星的公转周期小 D.杨利伟星的公转角速度大 【解析】由万有引力定律有:G=m=ma=m()2r=m2r,得运行速度v=,加速度a=G,公转周期T=2,公转角速度=,由题设知神舟星的运行速度比杨利伟星的运行速度大,神舟星的轨道半径比杨利伟星的轨道半径小,则神舟星的加速度比杨利伟星的加速度大,神舟星的公转周期比杨利伟星的公转周期小,神舟星的公转角速度比杨利伟星的公转角速度大,故选

(完整)高中物理平抛运动经典例题

1. 利用平抛运动的推论求解 推论1:平抛运动的末速度的反向延长线交平抛运动水平位移的中点。 证明:设平抛运动的初速度为,经时间后的水平位移为,如图10所示,D为末速度反向延长线与水平分位移的交点。根据平抛运动规律有 水平方向位移 竖直方向和 由图可知,与相似,则 联立以上各式可得 该式表明平抛运动的末速度的反向延长线交平抛运动水平位移的中点。 图10 [例1] 如图11所示,与水平面的夹角为的直角三角形木块固定在地面上,有一质点以初速度从三角形木块的顶点上水平抛出,求在运动过程中该质点距斜面的最远距离。 图11 解析:当质点做平抛运动的末速度方向平行于斜面时,质点距斜面的距离最远,此时末速度的方向与初速度方向成角。如图12所示,图中A为末速度的反向延长线与水平位移的交点,AB即为所求的最远距离。根据平抛运动规律有 ,和 由上述推论3知 据图9中几何关系得 由以上各式解得 即质点距斜面的最远距离为

图12 推论2:平抛运动的物体经时间后,其速度与水平方向的夹角为,位移与水平方向的夹角为,则有 证明:如图13,设平抛运动的初速度为,经时间后到达A点的水平位移为、速度为,如图所示,根据平抛运动规律和几何关系: 在速度三角形中 在位移三角形中 由上面两式可得 图13 [例2] 如图1所示,某人骑摩托车在水平道路上行驶,要在A处越过的壕沟,沟面对面比A处低,摩托车的速度至少要有多大? 图1 解析:在竖直方向上,摩托车越过壕沟经历的时间 在水平方向上,摩托车能越过壕沟的速度至少为 2. 从分解速度的角度进行解题 对于一个做平抛运动的物体来说,如果知道了某一时刻的速度方向,则我们常常是“从分解速度”的角度来研究问题。

高三物理复习讲义:运动学

1 一、运动学 1.伽利略在研究自由落体运动时,做了如下的实验:他让一个铜球从阻力很小(可忽略不计)的斜面上由静止开始滚下,并且做了上百次.假设某次试验伽利略是这样做的:在斜面上任取三个位置A 、B 、C ,让小球分别由A 、B 、C 滚下,如图2所示.设A 、B 、C 与斜面底端的距离分别为x 1、x 2、x 3,小球由A 、B 、C 运动到斜面底端的时间分别为t 1、t 2、t 3,小球由A 、B 、C 运动到斜面底端时的速度分别为v 1、v 2、v 3,则下列关系式中正确并且是伽利略用来证明小球沿光滑斜面向下的运动是匀变速直线运动的是( ) A .v 1=v 2=v 3 B.v 1t 1=v 2t 2=v 3t 3 C .x 1-x 2=x 2-x 3 D.x 1t 12=x 2t 22=x 3 t 3 2 2.质点由A 点出发沿直线AB 运动,行程的第一部分是加速度大小为a 1的匀加速运动,接着做加速度大 小为a 2的匀减速运动,到达B 点时恰好速度减为零.若AB 间总长度为s ,则质点从A 到B 所用时间t 为( ) A. s (a 1+a 2) a 1a 2 B. 2s (a 1+a 2)a 1a 2 C.2s (a 1+a 2) a 1a 2 D. a 1a 2 2s (a 1+a 2) 3.如图所示,a 、b 、c 三个物体在同一条直线上运动,其位移-时间图象中,图线c 是一条x =0.4t 2的抛物线.有关这三个物体在0~5 s 内的运动,下列说法正确的是( ) A .a 物体做匀加速直线运动 B .c 物体做匀加速直线运动 C .t =5 s 时,a 物体速度比c 物体速度大 D .a 、b 两物体都做匀速直线运动,且速度相同 4.如图甲所示,一维坐标系中有一质量为m =2 kg 的物块静置于x 轴上的某位置(图中未画出),t =0时刻,物块在外力作用下沿x 轴开始运动,如图乙为其位置坐标和速率平方关系图象的一部分.下列说法正确的是( ) A .物块做匀加速直线运动且加速度大小为1 m/s 2 B .t =4 s 时物块位于x =4 m 处 C .t =4 s 时物块的速率为2 m/s D .在0~4 s 时间内物块所受合外力做功为2 J 5.甲、乙两物体从同一地点开始沿同一方向运动,其速度随时间的变化关系如图所示,图中t 2=t 42,乙物体的速度时间图象为两段均为1 4圆弧的曲线,则( ) A .两物体在t 1时刻加速度相同 B .两物体在t 2时刻运动方向均改变 C .两物体在t 3时刻相距最远,在t 4时刻相遇 D .0~t 4时间内甲物体的平均速度大于乙物体的平均速度 6.一物体以某一初速度在粗糙的水平面上做匀减速直线运动,最后静止下来.若物体在最初5 s 内通过的位移与最后5 s 内通过的位移之比为x 1∶x 2=11∶5,物体运动的加速度大小为a =1 m/s 2,则( ) A .物体运动的时间可能大于10 s B .物体在最初5 s 内通过的位移与最后5 s 内通过的位移之差为x 1-x 2=15 m C .物体运动的时间为8 s D .物体的初速度为10 m/s 7.A 、B 两小球从不同高度自由下落,同时落地,A 球下落的时间为t ,B 球下落的时间为t 2,当B 球开 始下落的瞬间,A 、B 两球的高度差为(重力加速度为g )( ) A .gt 2 B.38gt 2 C.34gt 2 D.1 4 gt 2 8. 如图所示,直线和抛物线(开口向上)分别为汽车a 和b 的位移—时间图象,则( ) A .0~1 s 时间内a 车的平均速度大小比b 车的小 B .0~3 s 时间内a 车的路程比b 车的小 C .0~3 s 时间内两车的平均速度大小均为1 m/s D .t =2 s 时a 车的加速度大小比b 车的大 9.某质点做匀减速直线运动,依次经过A 、B 、C 三点,最后停在D 点.已知AB =6 m ,BC =4 m ,从A 点运动到B 点,从B 点运动到C 点两个过程速度变化量都为-2 m/s ,则下列说法正确的是( ) A .质点到达B 点时速度大小为2.55 m/s B .质点的加速度大小为2 m/s 2 C .质点从A 点运动到C 点的时间为4 s D .A 、D 两点间的距离为12.25 m 10.甲、乙两车某时刻由同一地点沿同一方向开始做直线运动,若以该时刻作为计时起点,得到两车的位移—时间图象,即x -t 图象如图所示,甲图象过O 点的切线与AB 平行,过C 点的切线与OA 平行,则下列说法中正确的是( ) A .在两车相遇前,t 1时刻两车相距最远 B .t 3时刻甲车在乙车的前方 C .0~t 2时间内甲车的瞬时速度始终大于乙车的瞬时速度 D .甲车的初速度等于乙车在t 3时刻的速度 11.物体以速度v 匀速通过直线上的A 、B 两点,所用时间为t ,现在物体从A 点由静止出发,先做匀加速直线运动(加速度为a 1)到某一最大速度v m ,然后立即做匀减速直线运动(加速度大小为a 2)至B 点速度恰好减为0,所用时间仍为t .则物体的( ) A .v m 只能为2v ,与a 1、a 2的大小无关 B .v m 可为许多值,与a 1、a 2的大小有关 C .a 1、a 2必须是一定的 D .a 1、a 2必须满足a 1a 2a 1+a 2=2v t 12.小球从一定高度处由静止下落,与地面碰撞后回到原高度再次下落,重复上述运动,取小球的落地点为原点建立坐标系, 竖直向上为正方向.下列速度v 和位置x 的关系图象中,能描述该过程的是( ) 13.磕头虫是一种不用足跳但又善于跳高的小甲虫.当它腹朝天、背朝地躺在地面时,将头用力向后仰,拱起体背,在身下形成一个三角形空区,然后猛然收缩体内背纵肌,使重心迅速向下加速,背部猛烈撞击地面,地面反作用力便将其弹向空中.弹射录像显示,磕头虫拱背后重心向下加速(视为匀加速)的距离大约为0.8 mm ,弹射最大高度为24 cm ,而人原地起跳方式是,先屈腿下蹲,然后突然蹬地向上加速,假设人加速与磕头虫加速过程的加速度大小相等,如果加速过程(视为匀加速)重心上升高度为0.5 m ,那么人离地后重心上升的最大高度可达(空气阻力不计,重力加速度g 取10 m/s 2,设磕头虫撞击地面和弹起的速率相等)( ) A .150 m B .75 m C .15 m D .7.5 m 14.如图所示是在高速公路上用超声波测速仪测量车速的示意图,测速仪发出并接收超声波脉冲信号,根据发出和接收到的信号间的时间差,测出被测汽车的速度.图中p 1、p 2是测速仪发出的超声波信号,n 1、n 2分别是p 1、p 2由汽车反射回来的信号.设测速仪匀速扫描,p 1、p 2之间的时间间隔Δt =1.0 s ,超声波在空气中传播的速度是v =340 m/s ,若汽车是匀速行驶的,则根据图可知,汽车在接收到p 1、p 2两个信号之间的时间内前进的距离是______m ,汽车的速度是________m/s. 15.某同学站在一平房边观察从屋檐边滴下的水滴,发现屋檐的滴水是等时的,且第5 滴正欲滴下时, 第1 滴刚好到达地面; 第 2滴和第 3 滴水刚好位于窗户的下沿和上沿,他测得窗户上、 下沿的高度差为 1 m ,由此求屋檐离地面的高度.

高一物理天体运动方面练习题

物理测试 1、 两颗人造卫星A 、B 绕地球做圆周运动,周期之比为TA :TB=1:8;则轨道半径之比和运动速率之比分别为( ) A 、RA :RB=4:1 vA :vB=1:2 B、RA :RB=4:1 vA :vB=2:1 C、RA :RB=1:4 vA :vB=1:2 D、RA :RB=1:4 vA :vB=2:1 2、如图,在一个半径为R、质量为M的均匀球体中,紧贴着球的边缘挖去一个半径为R/2的球星空穴后,剩余的 阴影部分对位于球心和空穴中心连线上、与球心相距d的质点m的引力是多大? 3、两个球形的行星A、B各有一个卫星a和b,卫星的圆轨迹接近各行星的表面。如果两行星质量之比为MA/MB=p,两个行星半径之比RA/RB=q,则两卫星周期之比TA/TB为______ 4、一颗人在地球卫星以初速度v发射后,可绕地球做匀速圆周运动,若使发射速度为2v,该卫星可能( ) A、绕地球做匀速圆周运动,周期变大 B、绕地球运动,轨道变为椭圆 C、不绕地球运动,轨道变为椭圆 D、挣脱太阳引力的束缚,飞到太阳系以外的宇宙 5、如图,有A、B两颗行星绕同一颗恒星做圆周运动,A行星的周期为T1,B行星的周期为T2,在某一时刻两行星相距最近,则 (1)至少经过多长时间,两行星再次相距最近? (2)至少经过多长时间,两行星相距最远? 6、已知地球的质量为M,地球的半径为R,地球的自传周期为T,地球表面的重力加速度为g,无线电信号的传播 速度为C,如果你用卫星电话通过地球卫星中的转发器发的无线电信号与对方通话,则在你讲完话后要听到对 方的回话,所需要的最短时间为( ) A、322244πT gR c ? B 、322242πT gR c ? C 、)4(43222R T gR c -?π D 、)4(23222R T gR c -?π 7、在天体演变过程中,红色巨星发生爆炸后,可以形成中子星,中子星具有极高的密度。 (1)若已知某中子星的密度为ρ,该中子星的卫星绕它作圆周运动,试求该中子星运行的最小周期。

高中物理天体运动超经典

天体运动(经典版) 一、开普勒运动定律 1、开普勒第一定律:所有的行星绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上. 2、开普勒第二定律:对于每一个行星而言,太阳和行星的连线在相等的时间内扫过的面积相等. 3、开普勒第三定律:所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等. 二、万有引力定律 1、内容:宇宙间的一切物体都是互相吸引的,两个物体间的引力大小,跟它们的质量的 乘积成正比,跟它们的距离的平方成反比. 2、公式:F =G 22 1r m m ,其中2211/1067.6kg m N G ??=-,称为为有引力恒量。 3、适用条件:严格地说公式只适用于质点间的相互作用,当两个物体间的距离远远大于 物体本身的大小时,公式也可近似使用,但此时r 应为两物体重心间的距离. 注意:万有引力定律把地面上的运动与天体运动统一起来,是自然界中最普遍的规律之一, 式中引力恒量G 的物理意义:G 在数值上等于质量均为1千克的两个质点相距1米时相互作用的万有引力. 4、万有引力与重力的关系:合力与分力的关系。 三、卫星的受力和绕行参数(角速度、周期与高度) 1、由()()22 mM v G m r h r h =++,得()GM v r h =+,∴当h↑,v↓ 2、由G () 2h r mM +=mω2(r+h ),得ω=()3h r GM +,∴当h↑,ω↓ 3、由G () 2h r mM +()224m r h T π=+,得T=()GM h r 324+π ∴当h↑,T↑ 注:(1)卫星进入轨道前加速过程,卫星上物体超重. (2)卫星进入轨道后正常运转时,卫星上物体完全失重. 4、三种宇宙速度 (1)第一宇宙速度(环绕速度):v 1=7.9km/s ,人造地球卫星的最小发射速度。也是人 造卫星绕地球做匀速圆周运动的最大速度。 计算:在地面附近物体的重力近似地等于地球对物体的万有引力,重力就是卫星做 圆周运动的向心力.() 21v mg m r h =+.当r >>h 时.g h ≈g 所以v 1=gr =7.9×103m/s 第一宇宙速度是在地面附近(h <<r ),卫星绕地球做匀速圆周运动的最大速度. (2)第二宇宙速度(脱离速度):v 2=11.2km/s ,使卫星挣脱地球引力束缚的最小发射速

高三高考物理二轮复习强化练习:天体运动

天体运动 一、单选题(共8题,40分) 1、2018年2月,我国500 m口径射电望远镜(天眼)发现毫秒脉冲星“J0318+0253”,其自转周期T=5.19 ms.假设星体为质量均匀分布的球体,已知万有引力常量为6.67×10-11N·m2/kg2.以周期T稳定自转的星体的密度最小值约为() A.5×109 kg/m3B.5×1012 kg/m3 C.5×1015 kg/m3D.5×1018 kg/m3 2、地球赤道上有一物体随地球的自转,所受的向心力为F1,向心加速度为a1,线速度为v1,角速度为ω1;绕地球表面附近做圆周运动的人造卫星(高度忽略),所受的向心力为F2,向心加速度为a2,线速度为v2,角速度为ω2;地球的同步卫星所受的向心力为F3,向心加速度为a3,线速度为v3,角速度为ω3;地球表面的重力加速度为g,第一宇宙速度为v,假设三者质量相等,则() A.F1=F2>F3 B.a1=a2=g>a3 C.v1=v2=v>v3D.ω1=ω3<ω2 3、我国高分系列卫星的高分辨对地观察能力不断提高.今年5月9日发射的“高分五号”轨道高度约为705 km,之前已运行的“高分四号”轨道高度约为36 000 km,它们都绕地球做圆周运动.与“高分四号”相比,下列物理量中“高分五号”较小() A.周期B.角速度C.线速度D.向心加速度 4、人造地球卫星在绕地球做圆周运动的过程中,下列说法中正确的是() A.卫星离地球越远,角速度越大 B.同一圆轨道上运行的两颗卫星,线速度大小一定相等 C.一切卫星运行的瞬时速度都大于7.9 km/s D.地球同步卫星可以在以地心为圆心、离地高度为固定值的一切圆轨道上运动 5、为了探测引力波,“天琴计划”预计发射地球卫星P,其轨道半径约为地球半径的16倍;另一地球卫星Q 的轨道半径约为地球半径的4倍.P与Q的周期之比约为()

高中物理平抛运动经典例题

[例1] 如图1所示,某人骑摩托车在水平道路上行驶,要在A处越过的壕沟,沟面对面比A处低,摩托车的速度至少要有多大? 图1 解析:在竖直方向上,摩托车越过壕沟经历的时间 在水平方向上,摩托车能越过壕沟的速度至少为 2. 从分解速度的角度进行解题 对于一个做平抛运动的物体来说,如果知道了某一时刻的速度方向,则我们常常是“从分解速度”的角度来研究问题。 [例2] 如图2甲所示,以9.8m/s的初速度水平抛出的物体,飞行一段时间后,垂直地撞在倾角为的斜面上。可知物体完成这段飞行的时间是() A. B. C. D. 图2 解析:先将物体的末速度分解为水平分速度和竖直分速度(如图2乙所示)。根据平抛运动的分解可知物体水平方向的初速度是始终不变的,所以;又因为与斜面垂直、与水平面垂直,所以与间的夹角等于斜面的倾角。再根据平抛运动的 分解可知物体在竖直方向做自由落体运动,那么我们根据就可以求出时间了。则 所以 根据平抛运动竖直方向是自由落体运动可以写出

所以 所以答案为C。 3. 从分解位移的角度进行解题 对于一个做平抛运动的物体来说,如果知道了某一时刻的位移方向(如物体从已知倾角的斜面上水平抛出,这个倾角也等于位移与水平方向之间的夹角),则我们可以把位移分解成水平方向和竖直方向,然后运用平抛运动的运动规律来进行研究问题(这种方法,暂且叫做“分解位移法”) [例3] 在倾角为的斜面上的P点,以水平速度向斜面下方抛出一个物体,落在斜面上的Q点,证明落在Q点物体速度。 解析:设物体由抛出点P运动到斜面上的Q点的位移是,所用时间为,则由“分解位移法”可得,竖直方向上的位移为;水平方向上的位移为。 又根据运动学的规律可得 竖直方向上, 水平方向上 则, 所以Q点的速度 [例4] 如图3所示,在坡度一定的斜面顶点以大小相同的速度同时水平向左与水平向右 抛出两个小球A和B,两侧斜坡的倾角分别为和,小球均落在坡面上,若不计空气阻力,则A和B两小球的运动时间之比为多少? 图3 解析:和都是物体落在斜面上后,位移与水平方向的夹角,则运用分解位移的方法可以得到 所以有

高中物理运动学公式word版(带答案)可编辑

匀变速直线运动公式: 加速度的定义式:a=速度与时间的关系:v= 位移与时间的关系:X=平均速度与中间时刻瞬时速度的关系:末速度与初速度的平方差关系:等时相邻的两段位移差的关系:ΔX=a 某段时间内中间时刻的瞬时速度:经过某段位移中点时的瞬时速度: 初速为零的匀加速直线运动的比例关系: ①前1秒、前2秒、前3秒……前n秒末的速度之比为: 1 : 2 : 3 : …… : n ②第1秒、第2秒、第3秒……第n秒末的速度之比为: 1 : 2 : 3 : …… : n ③前1秒、前2秒、前3秒……前n秒内的位移之比为: 1 : 4 : 9 : …… : ④第1秒、第2秒、第3秒……第n秒内的位移之比为: 1 : 3 : 5 : …… : (2n-1) ⑤前1米、前2米、前3米……前n米所用的时间之比为: 1 : : : …… : ⑥第1米、第2米、第3米……第n米所用的时间之比为: 1 : : : …… : ⑦第1米、第2米、第3米……第n米末的速度之比为: 1 : : : …… : 自由落体运动规律: 加速度:a=速度与时间的关系:v= 下落高度与时间的关系:h=平均速度与中间时刻瞬时速度的关系:末速度与下落高度的关系:等时相邻的两段高度差的关系:Δh=g 某段时间内中间时刻的瞬时速度:经过某段下落高度中点时的瞬时速度:落地时间:t= 竖直上抛运动规律: 运动性质:上升时为_匀减速直线运动__,下落时为自由落体运动 . 加速度:a=速度与时间的关系:v= 上升的时间:回到抛出点的时间:

位移与时间的关系(位移的初位置在抛出点):X= 上升时的平均速度与初速度的关系: . 最高点离抛出点的高度:h m=落回抛出点的速度为v=- 平抛运动 1、实质:水平方向做匀速直线运动,竖直方向做自由落体运动。 2、水平分运动:水平分速度:水平位移: 3、竖直分运动:竖直分速度:竖直位移:。 4、合运动:位移:X=速度:V=。 5、下落时间:t= 6、任意时刻:速度与水平面夹角α的正切值: 位移与水平面夹角β的正切值: 7、某时刻速度、位移与初速度方向的夹角α、β的关系为 8、平抛运动的物体,任意时刻随时速度的反向延长线一定通过水平位移的中点。 顺着斜面平抛物体,物体又重新落在斜面上 1、落在斜面上时速度方向与斜面加角恒定 . 2、物体在斜面上运动时间: 3、运动过程中距离斜面的最大距离: 4、运动过程中离斜面距离最大的时间:t= 5、水平位移和竖直位移的关系: 6、物体的位移:X=

重点高中物理天体运动知识

重点高中物理天体运动 知识 文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)

“万有引力定律”习题归类例析 万有引力定律部分内容比较抽象,习题类型较多,不少学生做这部分习题有一种惧怕感,找不着切入点.实际上,只要掌握了每一类习题的解题技巧,困难就迎刃而解了.下面就本章的不同类型习题的解法作以归类分析. 一、求天体的质量(或密度) 1.根据天体表面上物体的重力近似等于物体所受的万有引力,由天体表面上的重力加速度和天体的半径求天体的质量 由mg=G得.(式中M、g、R分别表示天体的质量、天体表面的重力加速度和天体的半径.) [例1]宇航员站在一星球表面上的某高处,沿水平方向抛出一小球,经过时间t,小球落在星球表面,测得抛出点与落地点之间的距离为L,若抛出时的初速度增大到2倍,则抛出点与落地点间的距离为L,已知两落地点在同一水平面上,该星球的半径为R,引力常量为G,求该星球的质量M和密度ρ. [解析]此题的关键就是要根据在星球表面物体的运动情况求出星球表面的重力加速度,再根据星球表面物体的重力等于物体受到的万有引力求出星球的质量和星球的密度. 根据平抛运动的特点得抛出物体竖直方向上的位移为 设初始平抛小球的初速度为v,则水平位移为x=vt.有○1 当以2v的速度平抛小球时,水平位移为x'=2vt.所以有② 在星球表面上物体的重力近似等于万有引力,有mg=G③ 联立以上三个方程解得 而天体的体积为,由密度公式得天体的密度为。 2.根据绕中心天体运动的卫星的运行周期和轨道半径,求中心天体的质量

卫星绕中心天体运动的向心力由中心天体对卫星的万有引力提供,利用牛顿第二定律得若已知卫星的轨道半径r和卫星的运行周期T、角速度或线速度v,可求得中心天体的质量为 [例2]下列几组数据中能算出地球质量的是(万有引力常量G是已知的)() A.地球绕太阳运行的周期T和地球中心离太阳中心的距离r B.月球绕地球运行的周期T和地球的半径r C.月球绕地球运动的角速度和月球中心离地球中心的距离r D.月球绕地球运动的周期T和轨道半径r [解析]解此题关键是要把式中各字母的含义弄清楚,要区分天体半径和天体圆周运动的轨道半径.已知地球绕太阳运行的周期和地球的轨道半径只能求出太阳的质量,而不能求出地球的质量,所以A项不对.已知月球绕地球运行的周期和地球的半径,不知道月球绕地球的轨道半径,所以不能求地球的质量,所以B项不对.已知月球绕地球运动的角速度和轨道半径,由可以求出中心天体地球的质量,所以C项正确.由求得地球质量为,所以D 项正确. 二、人造地球卫星的运动参量与轨道半径的关系问题 根据人造卫星的动力学关系 可得 由此可得线速度v与轨道半径的平方根成反比;角速度与轨道半径的立方的平方根成反比,周期T与轨道半径的立方的平方根成正比;加速度a与轨道半径的平方成反比.[例3两颗人造卫星A、B绕地球做圆周运动,周期之比为,则轨道半径之比和运动速率之比分别为() A. B.

高中物理运动学公式总结

高中物理运动学公式总结 一、质点的运动——直线运动。 1)匀变速直线运动。 1、平均速度;t x V =定义式平均速率;t s V = 2、有用推理ax Vo Vt 222=- 3、中间时刻速度;202V Vt V Vt +==平 4、末速度Vt=V0+at 5、中间位置速度2 2220Vt V Vx += 6、位移 t 2t 2a t 0t t 2V V V s =+==平 7、加速度t V Vt a 0 +=(以V0为正方向,a 与V0同向[加速]a ?0,反向则a <0) 8、实验推论;S1-S2=S3-S2=S4-S3=ΛΛ=?x=a t 2 9、初速度为0n 个连续相等的时间内s 的比;s1:s2:s3ΛΛ:Sn=1:3:5ΛΛ:(2n-1) 10、初速度为0的n 个连续相等的位移内t 之比; t1:t2:t3ΛΛ:tn=1:(12-0):(23-):ΛΛ:(1--n n ) 11、a=t n m Sn Sm 2--(利用上个段位移,减少误差---逐差法) 12、主要物理量及单位:初速度V0= s m ;加速度a=s m 2;末速度Vt=s m 1s m =h k m 注; 1平均速度是矢量, 2物体速度大,加速度不一定加大 2)自由落体运动 1初速度V0=0 2末速度Vt=gt 23下落高度)位置向下计算从00(22 V g h t = 4推论t 2V =2gh 注; 1自由落体运动是初速度为0的匀加速直线运动,遵循匀变速直线运动规律。

2a=g=s 2m ≈10s 2m (重力加速度在赤道附近较小,在高山处比平底小,方向竖直向下)3) 竖直上抛运动 1位移S=Vot-22 gt 2末速度Vt=Vo-gt 3有理推论02 2V Vt -=-2gs 4上升最大高度Hm= g Vo 22(从抛出到落回原位置的时间) 5往返时间g t Vo 22= 注; 1全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值。 2分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性。 称性上升与下落过程具有对3:1如在同点,速度等值反向。 2上升过程经过两点所用时间与下落过程经过这两点所 用时间相等。 物理规律汇总 1)相互作用力 1重力 【1】方向竖直向下,但不一定与接触面垂直,不一定指向地心。(除赤道与两级) 【2】重力是由地球的引力而产生,但重力≠引力(除两级) 2弹力 【1】绳子的拉力方向总是沿着绳,且指向绳子收缩的方向。、 【2】同一根绳子上的力相同。 【3】杆的力可以是拉力,也可以是推力。方向可以沿各个方向。 3摩擦力 【1】摩擦力不一定是阻力,也可以使动力。 【2】受滑动摩擦力的物体也可能是静止的。 【3】受静摩擦力的物体也可能是运动的。 2)牛顿运动定律 1力是改变物体运动状态的原因, 2力是产生加速度的原因, 3物体具有加速度,则物体一定具有加速度,物体具有加速度,则一定受力。 4质量是惯性大小的唯一量度, 5物体具有向下的加速度时,物体处于失重状态, 6物体具有向上的加速度时,物体处于超重状态。 打点计时器

高中物理天体运动专题练习

2014—2015学年高三复习———《天体运动》练习 1(2014年海淀零模)“神舟十号”飞船绕地球的运行可视为匀速圆周运动,其轨道高度距离地面约340km,则关于飞船的运行,下列说法中正确的是() A.飞船处于平衡状态 B.地球对飞船的万有引力提供飞船运行的向心力 C.飞船运行的速度大于第一宇宙速度 D.飞船运行的加速度大于地球表面的重力加速度 2(2014东城零模)“探路者”号宇宙飞船在宇宙深处飞行的过程中,发现A、B两颗均匀球形天体,两天体各有一颗靠近其表面飞行的卫星,测得两颗卫星的周期相等,以下判断正确的是() A. 两颗卫星的线速度一定相等 B. 天体A、B的质量一定不相等 C. 天体A 、B的密度一定相等 D. 天体A 、B表面的重力加速度一定不相等 3(2014顺义二模)地球赤道上有一相对于地面静止的物体A,所受的向心力为F1,向心加速度为a1,线速度为v1,角速度为ω1;绕地球表面附近做匀速圆周运动的人造地球卫星B (离地面的高度忽略)所受的向心力为F2,向心加速度为a2,线速度为v2,角速度为ω2;地球同步卫星C所受的向心力为F3,向心加速度为a3,线速度为v3,角速度为ω3。若上述的A、B、C三个物体的质量相等,地球表面重力加速度为g,第一宇宙速度为v,则() A.F1=F2>F3 B.a1=a2=g>a3 C.ω1=ω3<ω2 D. v1=v2=v>v3 4(2014昌平二模)“马航MH370”客机失联后,我国已紧急调动多颗卫星,利用高分辨率对地成像、可见光拍照等技术对搜寻失联客机提供支持。关于环绕地球运动的卫星,下列说法正确的是() A.低轨卫星(环绕半径远小于地球同步卫星的环绕半径)都是相对地球运动的,其环绕速率可能大于7.9km/s B.地球同步卫星相对地球是静止的,可以固定对一个区域拍照,但由于它距地面较远,照片的分辨率会差一些 C.低轨卫星和地球同步卫星,可能具有相同的速率 D.低轨卫星和地球同步卫星,可能具有相同的周期 5(2014丰台二模)“嫦娥三号”探测器已成功在月球表面预选着陆区实现软着陆,“嫦娥三号”着陆前在月球表面附近绕月球做匀速圆周运动,经测量得其周期为T。已知引力常量为G,根据这些数据可以估算出() A.月球的质量B.月球的半径 C.月球的平均密度D.月球表面的重力加速度 6(2014顺义二模)地球赤道上有一相对于地面静止的物体A, 所受的向心力为F1,向心加速度为a1,线速度为v1,角速度 为ω1;绕地球表面附近做匀速圆周运动的人造地球卫星B(离 地面的高度忽略)所受的向心力为F2,向心加速度为a2,线速 度为v2,角速度为ω2;地球同步卫星C所受的向心力为F3,

高三-物理天体运动

专题 天体运动的“四个热点”问题 双星或多星模型 1.双星模型 (1)定义:绕公共圆心转动的两个星体组成的系统,我们称之为双星系统。如图1所示。 (2)特点 ①各自所需的向心力由彼此间的万有引力提供,即 Gm 1m 2L 2=m 1ω21r 1,Gm 1m 2L 2=m 2ω22r 2 ②两颗星的周期及角速度都相同,即T 1=T 2,ω1=ω2 ③两颗星的半径与它们之间的距离关系为r 1+r 2=L (3)两颗星到圆心的距离r 1、r 2与星体质量成反比,即m 1m 2=r 2r 1 。 【例1】(多选)2017年,人类第一次直接探测到来自双中子星合并的引力波。根据科学家们复原的过程,在两颗中子星合并前约100 s 时,它们相距约400 km ,绕二者连线上的某点每秒转动12圈。将两颗中子星都看作是质量均匀分布的球体,由这些数据、万有引力常量并利用牛顿力学知识,可以估算出这一时刻两颗中子星( ) A.质量之积 B.质量之和 C.速率之和 D.各自的自转角速度 2.为探测引力波,中山大学领衔的“天琴计划”将向太空发射三颗完全相同的卫星(SC1、SC2、SC3)构成一个等边三角形阵列,地球恰处于三角形的中心,卫星将在以地球为中心、离地面高度约10万公里的轨道上运行,针对确定的引力波源进行引力波探测。如图所示,这三颗卫星在太空中的分列图类似乐器竖琴,故命名为“天琴计划”。已知地球同步卫星距离地面的高度约为 3.6万公里,以下说法正确的是( ) A.若知道引力常量G 及三颗卫星绕地球的运动周期T ,则可估算出地球的密度 B.三颗卫星具有相同大小的加速度 C.三颗卫星绕地球运动的周期一定大于地球的自转周期 D.从每颗卫星可以观察到地球上大于13的表面

高一物理平抛运动测试题-(有答案)

3.3 平抛运动 【学业达标训练】 1.从水平匀速飞行的直升飞机上向外自由释放一个物体,不计空气阻力,在物体下落过程中,下列说法正确的是() A.从飞机上看,物体静止 B.从飞机上看,物体始终在飞机的后方 C.从地面上看,物体做平抛运动 D.从地面上看,物体做自由落体运动 【解析】选C.从飞机上看,物体做自由落体运动,从地面上看,因物体释放时已具有与飞机相同的水平速度,所以做平抛运动,即C正确. 2.平抛物体的运动规律可概括为两条:第一条,水平方向做匀速直线运动;第二条,竖直方向做自由落体运动.为了研究平抛物体的运动,可做下面的实验,如图3-3-8所示,用小锤打击弹性金属片,A球水平飞出,同时B球被松开.两球同时落到地面,则这个实验() A.只能说明上述规律中的第一条 B.只能说明上述规律中的第二条 C.不能说明上述规律中的任何一条 D.能同时说明上述两条规律 【解析】选B.实验中A球做平抛运动,B球做自由落体运动,两球同时落地说明A球平抛运动的竖直分运动和B球相同,而不能说明A球的水平分运动是匀速直线运动,所以B项正确,A、C、D三项都不对. 3.甲、乙两物体做平抛运动的初速度之比为2∶1,若它们的水平射程相等,则它们抛出点离地面的高度之比为() A.1∶2 B.1∶ C.1∶4 D.4∶1

4.抛体运动在各类体育运动项目中很常见,如乒乓球运动.现讨论乒乓球发球问题,设球台长2L,网高h,如图3-3-9乒乓球反弹前后水平分速度不变,竖直分速度大小不变、方向相反,且不考虑乒乓球的旋转和空气阻力(设重力加速度为g),将球水平发出,则可以求出() A.发球时的水平初速度 B.发球时的竖直高度 C.球落到球台上时的速度 D.从球被发出到被接住所用的时间 5.如图3-3-10所示,AB为斜面,倾角为30°,小球从A点以初速度v0水平抛出,恰好落到B 点,求:AB间的距离及物体在空中飞行的时间.

高中物理运动学公式总结

高中物理运动学公式总结 一、质点的运动——直线运动。 1)匀变速直线运动。 1、平均速度; t x V = 定义式平均速率; t s V = 2、有用推理ax Vo Vt 22 2 =- 3、中间时刻速度;2 2V Vt V Vt += =平 4、末速度Vt=V0+at 5、中间位置速度2 2 2 2 Vt V Vx += 6、位移 t 2t 2 a t 0t t 2 V V V s = +==平 7、加速度t V Vt a 0 += (以V0为正方向,a 与V0同向[加速]a ?0,反向则a <0) 8、实验推论; S1-S2=S3-S2=S4-S3= =? x=a t 2 9、初速度为0n 个连续相等的时间内s 的比;s1:s2:s3 :Sn=1:3:5 :(2n-1) 10、初速度为0的n 个连续相等的位移内t 之比; t1:t2:t3 :tn=1:(12-0):(23- ): :( 1-- n n ) 11、a= t n m Sn Sm 2 --(利用上个段位移,减少误差---逐差法) 12、主要物理量及单位:初速度V0=s m ;加速度a=s m 2 ;末速度Vt= s m 1 s m =3.6 h km 注; 1平均速度是矢量, 2物体速度大,加速度不一定加大 2)自由落体运动 1初速度V0=0 2末速度Vt=gt 23下落高度 ) 位置向下计算 从00(2 2 V g h t = 4推论t 2 V =2gh

注; 1自由落体运动是初速度为0的匀加速直线运动,遵循匀变速直线运动规律。 2a=g=9.8s 2 m ≈10s 2 m (重力加速度在赤道附近较小,在高山处比平底小,方向竖直向下) 3)竖直上抛运动 1位移S=V o t- 22 gt 2末速度Vt=V o-gt 3有理推论0 2 2 V Vt -=-2gs 4上升最大高度H m= g Vo 22 (从抛出到落回原位置的时间) 5往返时间g t Vo 2 2= 注; 1全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值。 2分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性。 称性上升与下落过程具有对 3:1如在同点,速度等值反向。 2上升过程经过两点所用时间与下落过程经过这两点所 用时间相等。 物理规律汇总 1)相互作用力 1重力 【1】方向竖直向下,但不一定与接触面垂直,不一定指向地心。(除赤道与两级) 【2】重力是由地球的引力而产生,但重力≠引力(除两级) 2弹力 【1】绳子的拉力方向总是沿着绳,且指向绳子收缩的方向。、 【2】同一根绳子上的力相同。 【3】杆的力可以是拉力,也可以是推力。方向可以沿各个方向。 3摩擦力 【1】摩擦力不一定是阻力,也可以使动力。 【2】受滑动摩擦力的物体也可能是静止的。 【3】受静摩擦力的物体也可能是运动的。 2)牛顿运动定律 1力是改变物体运动状态的原因, 2力是产生加速度的原因, 3物体具有加速度,则物体一定具有加速度,物体具有加速度,则一定受力。 4质量是惯性大小的唯一量度, 5物体具有向下的加速度时,物体处于失重状态, 6物体具有向上的加速度时,物体处于超重状态。

高中物理天体运动多星问题 (2)

双星模型、三星模型、四星模型 天体物理中的双星,三星,四星,多星系统是自然的天文现象,天体之间的相互作用遵循万 有引力的规律,他们的运动规律也同样遵循开普勒行星运动的三条基本规律。双星、三星系统的等效质量的计算,运行周期的计算等都是以万有引力提供向心力为出发点的。双星系统的引力作用遵循牛顿第三定律:F F =',作用力的方向在双星间的连线上,角速度相等,ωωω==21。 【例题1】天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星。双星系统在银 r ,1、 持不变,并沿半径不同的同心轨道作匀速园周运动,设双星间距为L ,质量分别为M 1、M 2,试计算(1)双星的轨道半径(2)双星运动的周期。 解析:双星绕两者连线上某点做匀速圆周运动,即: 22 21212 21L M L M L M M G ωω==---------? ..L L L =+21-------?由以上两式可得:L M M M L 2121+= ,L M M M L 2 12 2+= 又由1 2212214L T M L M M G π=.----------?得:) (221M M G L L T +=

【例题3】我们的银河系的恒星中大约四分之一是双星.某双星由质量不等的星体S 1和S 2构成,两 星在相互之间的万有引力作用下绕两者连线上某一定点C 做匀速圆周运动.由天文观察测得其运动周期为T ,S 1到C 点的距离为r 1,S 1和S 2的距离为r ,已知引力常量为G .由此可求出S 2的质量为(D ) A .2 12)(4GT r r r -2π B .2 312π4GT r C .2 32π4GT r D .2 122π4GT r r 答案:D , 球A 引球看成似处理 这样算得的运行周期T 。已知地球和月球的质量分别为且A 对A 根据牛顿第二定律和万有引力定律得L m M T m L +=22)( 化简得) (23 m M G L T +=π ⑵将地月看成双星,由⑴得) (23 1m M G L T +=π 将月球看作绕地心做圆周运动,根据牛顿第二定律和万有引力定律得 L T m L GMm 2 2 )2(π= 化简得GM L T 3 22π=

相关主题
文本预览
相关文档 最新文档