当前位置:文档之家› 实验1_函数的图形

实验1_函数的图形

二次函数与几何图形结合练习

3.2 与几何图形结合3.2.1 与等腰三角形结合1、如图,直线y=3x+3交x 轴于A 点,交y 轴于B 点,过A 、B 两点的抛物线交 x 轴于另 一点C (3,0). ⑴求抛物线的解析式 ; ⑵在抛物线的对称轴上是否存在点Q ,使△ABQ 是等腰三角形?若存在,求出符合条件的 Q 点坐标;若不存在,请说明理由 2、如图,已知直线y=x 与交于A 、B 两点. (1)求交点A 、B 的坐标;(2)记一次函数y=x 的函数值为y 1,二次函数 的函数值为y 2.若y 1>y 2,求x 的 取值范围; (3)在该抛物线上存在几个点,使得每个点与AB 构成的三角形为等腰三角形?并求出不 少于3个满足条件的点 P 的坐标. y =x 2 y =x 2

3、如图,已知二次函数的图象经过点A (3,3)、B (4,0)和原点O 。P 为二次函数图象 上的一个动点,过点 P 作x 轴的垂线,垂足为 D (m ,0),并与直线OA 交于点C . (1)求出二次函数的解析式; (2)当点P 在直线OA 的上方时,求线段PC 的最大值; (3)当m >0时,探索是否存在点P ,使得△PCO 为等腰三角形,如果存在,求出 P 的坐 标;如果不存在,请说明理由. 3.2.2 与直角三角形结合1、二次函数的图象的一部分如图所示.已知它的顶点 M 在第二象限,且经 过点A(1,0)和点B(0,l).(1)试求,所满足的关系式;(2)设此二次函数的图象与x 轴的另一个交点为 C ,当△AMC 的面积为△ABC 面积的 倍时,求a 的值;(3)是否存在实数a ,使得△ABC 为直角三角形.若存在,请求出 a 的值;若不存在,请说 明理由. 2 y ax bx c a b 5 4

第一章一元函数的极限

第一章 一元函数的极限 §1.1 利用定义及迫敛性定理求极限 设R 表示实数集合,*R 表示扩张的实数集,即*R {}+∞∞-?=,R . 例1 若*lim R a a n n ∈=+∞ →.证明*21lim R a n a a a n n ∈=++++∞→ (算术平均值收敛公式). 证明 (1)设R a ∈,由a a n n =+∞ →lim ,0>?ε,01>?N ,当1N n >时, 2 ε< -a a n . 因此 a n a a a n -+++ 21 n a a a a a a n ) ()()(21-++-+-= n a a a a a a N -++-+-≤121 n a a a a n N -++-+ + 11 21ε?-+≤ n N n n A 2 ε+N ,当2N n >时, 2 ε 时, a n a a a n -+++ 21εε ε=+<22. (2)设+∞=+∞ →n n a lim ,则0>?M ,01>?N ,当1N n >时,M a n 3>. 因此 n a a a n +++ 21 n a a a N 121+++= n a a a n N N ++++++ 2111M n N n n A 31?-+>, 其中121N a a a A +++= .由于0→n A ,11→-n N n )(+∞→n ,所以存在02>N ,当2 N n >时, 2M n A <,211>-n N n .因此n a a a n +++ 21M M M =-?>2 1321. (3) 当-∞=+∞ →n n a lim 时,证明是类似的.(或令n n a b -=转化为(2)). 注 例1的逆命题是不成立的.反例()n n a 1-=),2,1( =n ,容易看出0lim 21=++++∞→n a a a n n , 但是极限n n a +∞ →lim 不存在.

几何图形中的函数问题

D C B A 几何图形中的函数问题 1如图,在梯形ABCD 中,AB ∥CD . (1)如果∠A =?50,∠B =?80,求证:AB CD BC =+. (2)如果AB CD BC =+,设∠A =?x ,∠B =?y ,那么y 关于x 的函数关系式是_______. 2.如图,P 是矩形ABCD 的边CD 上的一个动点,且P 不与C 、D 重合,BQ ⊥AP 于点Q ,已知AD=6cm,AB=8cm ,设AP=x(cm),BQ=y(cm). (1)求y 与x 之间的函数解析式并求自变量x 的取值范围; (2)是否存在点P ,使BQ=2AP 。若存在,求出AP 的长;若不存在,说明理由。 3.如图,矩形EFGH 内接与△ABC ,AD ⊥BC 与点D ,交EH 于点M ,BC=10cm , AD=8cm , 设EF=x cm ,EH=y cm ,矩形EFGH 的面积为S cm2, ①分别求出y 与x ,及S 与x 的函数关系式,写出x 的取值范围; ②若矩形EFGH 为正方形,求正方形的边长; ③ x 取何值时,矩形EFGH 的面积最大。 A B D A B C D E F M H G

5.如图,在△ABC 中,AB=AC=1,点D,E 在直线BC 上运动.设BD=x, CE=y (l )如果∠BAC=30°,∠DAE=l05°,试确定y 与x 之间的函数关系式; (2)如果∠BAC=α,∠DAE=β,当α, β满足怎样的关系时,(l )中y 与x 之间的函数关系式还成立?试说明理由. 6.已知:在矩形ABCD 中,AB =10,BC =12,四边形EFGH 的三个顶点E 、F 、H 分别在 矩形ABCD 边AB 、BC 、DA 上,AE =2. (1)如图①,当四边形EFGH 为正方形时,求△GFC 的面积;(5分) (2)如图②,当四边形EFGH 为菱形,且BF = a 时,求△GFC 的面积(用含a 的代数式表示); D C A B E F D C A B E F H G

(完整版)六大基本初等函数图像及其性质

六大基本初等函数图像及其性质一、常值函数(也称常数函数)y =C(其中C 为常数); α

1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称; 2)当α为负整数时。函数的定义域为除去x=0的所有实数; 3)当α为正有理数 n m 时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1); 4)如果m>n 图形于x 轴相切,如果ma ,1≠a ),定义域是R ; [无界函数] 1.指数函数的图象: 2. 1)当1>a 时函数为单调增,当10<

3.(选,补充)指数函数值的大小比较* N ∈a ; a.底数互为倒数的两个指数函数 x a x f =)(, x a x f ? ? ? ??=1)( 的函数图像关于y 轴对称。 b.1.当1>a 时,a 值越大,x a y = 的图像越靠近y 轴; b.2.当10<∈>=n Z n m a a a n m n m (2)) 1,,,0(1 1*>∈>= =- n Z n m a a a a n m n m n m y x f x x x x g ? ? ?=1)(

中考数学重难点专题讲座第八讲动态几何与函数问题

中考数学重难点专题讲座 第八讲 动态几何与函数问题 【前言】 在第三讲中我们已经研究了动态几何问题的一般思路,但是那时候没有对其中夹杂的函数问题展开来分析。整体说来,代几综合题大概有两个侧重,第一个是侧重几何方面,利用几何图形的性质结合代数知识来考察。而另一个则是侧重代数方面,几何性质只是一个引入点,更多的考察了考生的计算功夫。但是这两种侧重也没有很严格的分野,很多题型都很类似。所以相比昨天第七讲的问题,这一讲将重点放在了对函数,方程的应用上。其中通过图中已给几何图形构建函数是重点考察对象。不过从近年北京中考的趋势上看,要求所构建的函数为很复杂的二次函数可能性略小,大多是一个较为简单的函数式,体现了中考数学的考试说明当中“减少复杂性”“增大灵活性”的主体思想。但是这也不能放松,所以笔者也选择了一些较有代表性的复杂计算题仅供参考。 【例1】 如图①所示,直角梯形OABC 的顶点A 、C 分别在y 轴正半轴与x 轴负半轴上.过点B 、C 作直线l .将直线l 平移,平移后的直线l 与x 轴交于点D ,与y 轴交于点E. (1)将直线l 向右平移,设平移距离CD 为t (t≥0),直角梯形OABC 被直线l 扫过的面积(图中阴影部份)为s ,s 关于t 的函数图象如图②所示,OM 为线段,MN 为抛物线的一部分,NQ 为射线,且NQ 平行于x 轴,N 点横坐标为4,求梯形上底AB 的长及直角梯形OABC 的面积. (2)当24t <<时,求S 关于t 的函数解析式. 【思路分析】本题虽然不难,但是非常考验考生对于函数图像的理解。很多考生看到图二

的函数图像没有数学感觉,反应不上来那个M 点是何含义,于是无从下手。其实M 点就表示当平移距离为2的时候整个阴影部分面积为8,相对的,N 点表示移动距离超过4之后阴影部分面积就不动了。脑中模拟一下就能想到阴影面积固定就是当D 移动过了0点的时候.所以根据这么几种情况去作答就可以了。第二问建立函数式则需要看出当24t <<时,阴影部分面积就是整个梯形面积减去△ODE 的面积,于是根据这个构造函数式即可。动态几何连带函数的问题往往需要找出图形的移动与函数的变化之间的对应关系,然后利用对应关系去分段求解。 【解】 (1)由图(2)知,M 点的坐标是(2,8) ∴由此判断:24AB OA ==, ; ∵N 点的横坐标是4,NQ 是平行于x 轴的射线, ∴4CO = ∴直角梯形OABC 的面积为: ()()112441222 AB OC OA +?=+?=..... (3分) (2)当24t <<时, 阴影部分的面积=直角梯形OABC 的面积-ODE ?的面积 (基本上实际考试中碰到这种求怪异图形面积的都要先想是不是和题中所给特殊图形有割补关系) ∴1122S OD OE =-? ∵142 OD OD t OE ==-, ∴()24OE t =- . ∴()()()21122441242 S t t t =-?-?-=-- 284S t t =-+-. 【例2】 已知:在矩形AOBC 中,4OB =,3OA =.分别以OB OA ,所在直线为x 轴和y 轴,建立如图所示的平面直角坐标系.F 是边BC 上的一个动点(不与B C ,重合),过F 点的反比例函数(0)k y k x =>的图象与AC 边交于点E . (1)求证:AOE △与BOF △的面积相等;

基本初等函数图像

基本初等函数及图形 基本初等函数为以下五类函数: (1) 幂函数 ,y x μμ=是常数; 1.当μ为正整数时,函数的定义域为区间(,)x ∈-∞+∞,他们的图形都经过原点,并当μ>1时在原点处与x 轴相切。且μ为奇数时,图形关于原点对称;μ为偶数时图形关于y 轴对称; 2.当μ为负整数时。函数的定义域为除去x =0的所有实数。 3.当μ为正有理数m n 时,n 为偶数时函数的定义域为(0,)+∞,n 为奇数时函数的定义域为(,)-∞+∞。函数的图形均经过原点和(1,1). 如果m n >图形于x 轴相切,如果m n <,图形于y 轴相切,且m 为偶数时,还跟y 轴对称;m ,n 均为奇数时,跟原点对称 .4.当μ为负有理数时,n 为偶数时,函数的定义域为大于零的一切实数;n 为奇数时,定义域为去除x =0以外的一切实数. (2) 指数函数 x a y =(a 是常数且01a a >≠,),),(+∞-∞∈x ;

1.当μ为正整数时,函数的定义域为区间 ,他们的图形都经过原点,并当μ>1时在原点处与x 轴相切。且μ为奇数时,图形关于原点对称;μ为偶数时图形关于y 轴对称; 2.当μ为负整数时。函数的定义域为除去x =0的所有实数。 3.当μ为正有理数m n 时,n 为偶数时函数的定义域为(0,)+∞,n 为奇数时函数的定义域为(,)-∞+∞。函数的图形均经过原点和(1,1). 如果m n >图形于x 轴相切,如果m n <,图形于y 轴相切,且m 为偶数时,还跟y 轴对称;m ,n 均为奇数时,跟原点对称. 4.当μ为负有理数时,n 为偶数时,函数的定义域为大于零的一切实数;n 为奇数时,定义域为去除x =0以外的一切实数. (3) 对数函数 x y a log =(a 是常数且01a a >≠,),(0,)x ∈+∞; 1. 他的图形为于y 轴的右方.并通过点(1,0) 2. 当a >1时在区间(0,1),y 的值为负.图形位于x 的下方,在区间(1,)+∞,y 值为正,图形位于x 轴上方.在定义域是单调增函数.a <1在实用中很少用到. (4) 三角函数 正弦函数 x y sin =,),(+∞-∞∈x ,]1,1[-∈y ,

二次函数与几何图形结合题及答案

1.如图,已知抛物线2 1y x =-与x 轴交于A 、B 两点,与y 轴交于点C . (1)求A 、B 、C 三点的坐标; (2)过点A 作AP ∥CB 交抛物线于点P ,求四边形ACBP 的面积; (3)在x 轴上方的抛物线上是否存在一点M ,过M 作MG ⊥x 轴于点G ,使以A 、M 、G 三点为顶点的三角形与?PCA 相似.若存在,请求出M 点的坐标;否则,请说明理由. 解:(1)令0y =,得2 10x -= 解得1x =± 令0x =,得1y =- ∴ A (1,0)- B (1,0) C (0,1)- ……………………3分 (2)∵O A =O B =O C =1 ∴∠BAC =∠AC O=∠BC O= 45 ∵A P ∥CB , ∴∠P AB = 45 过点P 作P E ⊥x 轴于E ,则?A P E 为等腰直角三角形 令O E =a ,则P E =1a + ∴P (,1)a a + ∵点P 在抛物线21y x =-上 ∴2 11a a +=- 解得12a =,21a =-(不合题意,舍去) ∴P E =3……………………………………………………………………………5分 ∴四边形ACB P 的面积S =12AB ?O C +12AB ?P E =11 2123422 ??+??=………………………………6分 (3). 假设存在 ∵∠P AB =∠BAC =45 ∴P A ⊥AC ∵MG ⊥x 轴于点G , ∴∠MG A =∠P AC =90 在Rt △A O C 中,O A =O C =1 ∴AC =2 在Rt △P AE 中,AE =P E =3 ∴A P= 32 ………8分 设M 点的横坐标为m ,则M 2 (,1)m m - ①点M 在y 轴左侧时,则1m <- (ⅰ) 当?A MG ∽?P CA 时,有 AG PA =MG CA ∵A G=1m --,MG=2 1m -即2322 = 解得11m =-(舍去) 23m =(舍去)………9分 G M C B y P A o x

第一章 一元函数极限(定理)

第一章 一元函数极限 §1.1 函数 一、有界函数 定义:设函数)(x f 在数集A 有定义,若函数值的集合 {}A x x f A f ∈=|)()( 有上界(有下界、有界),即M x f M x f M x f A x M ≤-≥≤∈?>?)(,)(()(,,0,则称函数)(x f 在A 有上界(有下界、有界)。 二、奇函数、偶函数 定义:函数)(x f 定义在数集A ,若A x ∈?,有A x ∈-且 )()()(()(x f x f x f x f -=-=-, 则称)(x f 为偶函数(奇函数)。奇函数图像关于原点对称,偶函数图像关于y 轴对称。 三、周期函数 §1.2 用定义证明极限的存在性 一、 用定义证明极限 二、 定义:εε<->?∈?>??=+∞ →a a N n N N a a n n n ,,,0lim ;

三、 定理 1))(lim x f a x →存在)(lim x f a x +→?与)(lim x f a x -→都存在,且=+→)(lim x f a x )(lim x f a x -→; 2))(lim x f x ∞→存在)(lim x f x +∞→?与)(lim x f x -∞→都存在,且=+∞→)(lim x f x )(lim x f x -∞→; 3))()()(lim x B x f B x f a x α+=?=→,其中0)(lim =→x a x α; 4)无穷小与有界函数的积为无穷小; 5)有限个无穷小的和或积为无穷小; 收敛数列的性质 1)唯一性:若数列{}n a 收敛,则它的极限是唯一的。 2)有界性:若数列{}n a 收敛,则数列{}n a 有界,即M a N n M n ≤∈?>?+,,0。 3)保序性:若a a n n =∞→lim 与b b n n =∞ →lim ,且b a <,则n n b a N n N N <>?∈?+,,。 推论:若a a n n =∞→lim 与b b n n =∞ →lim ,且)(,,n n n n b a b a N n N N <≤>?∈?+,则b a ≤。 函数极限的性质 1)唯一性:若)(x f 在a (∞)收敛,则它的极限是唯一的。 2)局部有界性: ①若b x f a x =→)(lim ,则δδ<-?>?a x x M 0:,0,0,有M x f ≤)(。 ②若b x f x =∞ →)(lim ,则A x x A M >?>?>?:,0,0,有M x f ≤)(。 3)保序性:若b x f a x =→)(lim 与c x g a x =→)(lim ,且c b <,则δδ<-?a x x 0:,0,有)()(x g x f <。 推论:若b x f a x =→)(lim 与c x g a x =→)(lim ,且δδ<-?a x x 0:,0,有)()(x g x f ≤()()(x g x f <)则c b ≤。 (其它极限形式,可类似给出)

几何图形中的动态问题

几何图形中的动态问题 ★1.如图,在矩形ABCD中,点E在BC边上,动点P 以2厘米/秒的速度从点A出发,沿△AED的边按照A→E→D→A的顺序运动一周.设点P从点A出发经x(x>0)秒后,△ABP的面积是y. (1)若AB=8cm,BE=6cm,当点P在线段AE上时,求y关于x的函数表达式; (2)已知点E是BC的中点,当点P在线段ED上时,y=12 5x;当点P在线段AD上时,y=32-4x.求y关于x的函数表达式. 第1题图 解:(1)∵四边形ABCD是矩形,∴∠ABE=90°, 又∵AB=8cm,BE=6cm,

∴AE=AB2+BE2=82+62=10厘米,如解图①,过点B作BH⊥AE于点H, 第1题解图① ∵S△ABE=1 2AE·BH=1 2AB·BE, ∴BH=24 5cm,又∵AP=2x, ∴y=1 2AP·BH=24 5x(0

∴AE =DE , ∵y =12 5x (P 在ED 上), y =32-4x (P 在AD 上), 当点P 运动至点D 时,可联立得,?????y =125x y =32-4x , 解得x =5, ∴AE +ED =2x =10, ∴AE =ED =5cm , 当点P 运动一周回到点A 时,y =0, ∴y =32-4x =0, 解得x =8, ∴AE +DE +AD =16, ∴AD =BC =6cm ,∴BE =3cm , 在Rt △ABE 中, AB = AE 2-BE 2=4cm , 如解图②,过点B 作BN ⊥AE 于N ,则BN =12 5cm ,

6类基本初等函数的图形及性质(考研数学基础)_完美版

基本初等函数及图形 (1) 常值函数(也称常数函数) y =c (其中c 为常数) (2) 幂函数 μ x y =,μ是常数; (3) 指数函数 x a y = (a 是常数且01a a >≠,),),(+∞-∞∈x ; (4) 对数函数 x y a log =(a 是常数且01a a >≠,),(0,)x ∈+∞; 1. 当u 为正整数时,函数的定义域为区间) ,(+∞-∞∈x ,他们的图形都经过原点,并当 u>1时在原点处与X 轴相切。且u 为奇数时,图形关于原点对称;u 为偶数时图形关于Y 轴对称; 2. 当u 为负整数时。函数的定义域为除去x=0的所有实数。 3. 当u 为正有理数m/n 时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞+∞)。函数的图形均经过原点和(1 ,1). 如果m>n 图形于x 轴相切,如果m1时函数为单调增,当a<1时函数为单调减. 2. 不论x 为何值,y 总是正的,图形在x 轴上方. 3. 当x=0时,y=1,所以他的图形通过(0,1)点. 1. 他的图形为于y 轴的右方.并通过点(1,0) 2. 当a>1时在区间(0,1),y 的值为负.图形位于x 的下方, 在区间(1, +∞),y 值为正,图形位于x 轴上方.在定义域是单调增函数. a<1在实用中很少用到/

正弦函数 x y sin =,),(+∞-∞∈x ,]1,1[-∈y , 余弦函数 x y cos =,),(+∞-∞∈x ,]1,1[-∈y , 正切函数 x y tan =, 2π π+ ≠k x ,k Z ∈,),(+∞-∞∈y , 余切函数 x y cot =,πk x ≠,k Z ∈,),(+∞-∞∈y ;

2021年二次函数与特殊图形的存在性问题(学生版+解析版)

二次函数与特殊图形的存在性问题 类型一二次函数与等腰三角形 利用抛物线探求等腰三角形分三步:先分类,按腰相等分为三种情况;再根据两点间的距离公式列方程,后解方程并检验。 1.如图①,在平面直角坐标系xOy中,已知A(﹣2,2),B(﹣2,0),C(0,2),D(2,0)四点,动点M以每秒个单位长度的速度沿B→C→D运动(M不与点B、点D重合),设运动时间为t(秒).(1)求经过A、C、D三点的抛物线的解析式; (2)点P在(1)中的抛物线上,当M为BC的中点时,若△PAM≌△PBM,求点P的坐标; (3)当M在CD上运动时,如图②.过点M作MF⊥x轴,垂足为F,ME⊥AB,垂足为E.设矩形MEBF与△BCD重叠部分的面积为S,求S与t的函数关系式,并求出S的最大值; (4)点Q为x轴上一点,直线AQ与直线BC交于点H,与y轴交于点K.是否存在点Q,使得△HOK 为等腰三角形?若存在,直接写出符合条件的所有Q点的坐标;若不存在,请说明理由.

类型二二次函数与直角三角形 利用抛物线探求直角三角形,逐次选择顶角进行讨论,一般运用勾股定理建立方程,然后解方程并检验。2.如果抛物线C1的顶点在拋物线C2上,抛物线C2的顶点也在拋物线C1上时,那么我们称抛物线C1与C2“互为关联”的抛物线.如图1,已知抛物线C1:y1=x2+x与C2:y2=ax2+x+c是“互为关联”的拋物线,点A,B分别是抛物线C1,C2的顶点,抛物线C2经过点D(6,﹣1). (1)直接写出A,B的坐标和抛物线C2的解析式; (2)抛物线C2上是否存在点E,使得△ABE是直角三角形?如果存在,请求出点E的坐标;如果不存在,请说明理由; (3)如图2,点F(﹣6,3)在抛物线C1上,点M,N分别是抛物线C1,C2上的动点,且点M,N 的横坐标相同,记△AFM面积为S1(当点M与点A,F重合时S1=0),△ABN的面积为S2(当点N与点A,B重合时,S2=0),令S=S1+S2,观察图象,当y1≤y2时,写出x的取值范围,并求出在此范围内S的最大值.

二次函数与几何图形综合题(可编辑修改word版)

二次函数与几何图形综合题 类型 1 二次函数与相似三角形的存在性问题 1.(2015·昆明西山区一模)如图,已知抛物线y=ax2+bx+c(a≠0)经过A(-1,0),B(4,0),C(0,2) 三点. (1)求这条抛物线的解析式; (2)P 为线段BC 上的一个动点,过P 作PE 垂直于x 轴与抛物线交于点E,设P 点横坐标为m,PE 长度为y,请写出y 与m 的函数关系式,并求出PE 的最大值; (3)D 为抛物线上一动点,是否存在点D 使以A、B、D 为顶点的三角形与△COB 相似?若存在,试求出点D 的坐标;若不存在,请说明理由.

2.(2013·曲靖)如图,在平面直角坐标系xOy 中,直线y=x+4 与坐标轴分别交于A,B 两点,过A,B 两点的抛物线为y=-x2+bx+c.点D 为线段AB 上一动点,过点D 作CD⊥x 轴于点C,交抛物线于点E. (1)求抛物线的解析式; (2)当DE=4 时,求四边形CAEB 的面积; (3)连接BE,是否存在点D,使得△DBE 和△DAC 相似?若存在,求出D 点坐标;若不存在,说明理由. 3.(2015·襄阳)边长为 2 的正方形OABC 在平面直角坐标系中的位置如图所示,点D 是边OA 的中点,连接CD,点E 在第一象限,且DE⊥DC,DE=DC.以直线AB 为对称轴的抛物线过C,E 两点.

(1)求抛物线的解析式; (2)点P 从点C 出发,沿射线CB 以每秒 1 个单位长度的速度运动,运动时间为t 秒.过点P 作PF⊥CD 于点F.当t 为何值时,以点P,F,D 为顶点的三角形与△COD 相似? (3)点M 为直线AB 上一动点,点N 为抛物线上一动点,是否存在点M,N,使得以点M,N,D,E 为顶点的四边形是平行四边形?若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由. 类型 2 二次函数与平行四边形的存在性问题 1.(2014·曲靖)如图,抛物线y=ax2+bx+c 与坐标轴分别交于A(-3,0),B(1,0),C(0,3)三点,D

二次函数与几何图形动点问题--答案

二次函数与几何图形 模式1:平行四边形 分类标准:讨论对角线 例如:请在抛物线上找一点p 使得P C B A 、、、四点构成平行四边形,则可分成以下几种情况 (1)当边AB 是对角线时,那么有BC AP // (2)当边AC 是对角线时,那么有CP AB // (3)当边BC 是对角线时,那么有BP AC // 1、本题满分14分)在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C(2,0)三点. (1)求抛物线的解析式; (2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△AMB 的面积为S.求S 关于m 的函数关系式,并求出S 的最大值; (3)若点P 是抛物线上的动点,点Q 是直线y=-x 上的动点,判断有几个位置能使以点P 、Q 、B 、0为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.

2、如图1,抛物线322 ++-=x x y 与x 轴相交于A 、B 两点(点A 在点B 的左侧),与y 轴相交于点C ,顶点为D . (1)直接写出A 、B 、C 三点的坐标和抛物线的对称轴; (2)连结BC ,与抛物线的对称轴交于点E ,点P 为线段BC 上的一个动点,过点P 作PF //DE 交抛物线于点F ,设点P 的横坐标为m . ①用含m 的代数式表示线段PF 的长,并求出当m 为何值时,四边形PEDF 为平行四边形? ②设△BCF 的面积为S ,求S 与m 的函数关系.

模式2:梯形 分类标准:讨论上下底 例如:请在抛物线上找一点p 使得P C B A 、、、四点构成梯形,则可分成以下几种情况 (1)当边AB 是底时,那么有PC AB // (2)当边AC 是底时,那么有BP AC // (3)当边BC 是底时,那么有AP BC // 3、已知,矩形OABC 在平面直角坐标系中位置如图1所示,点A 的坐标为(4,0),点C 的坐标为)20(-,,直线 x y 3 2 -=与边BC 相交于点D . (1)求点D 的坐标; (2)抛物线c bx ax y ++=2 经过点A 、D 、O ,求此抛物线的表达式; (3)在这个抛物线上是否存在点M ,使O 、D 、A 、M 为顶点的四边形是梯形?若存在,请求出所有符合条件的点M 的坐标;若不存在,请说明理由.

基本初等函数图像及性质大全

一、一次函数与二次函数 (一)一次函数 (1)二次函数解析式的三种形式 ①一般式:2 ()(0)f x ax bx c a =++≠ ②顶点式:2 ()()(0)f x a x h k a =-+≠ ③两根式:12()()()(0)f x a x x x x a =--≠ (2)求二次函数解析式的方法 ①已知三个点坐标时,宜用一般式. ②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便. (3)二次函数图象的性质

①.二次函数2 ()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2x a =- 顶点坐标是2 4(,)24b ac b a a -- ②当0a >时,抛物线开口向上,函数在(,]2b a -∞- 上递减,在[,)2b a -+∞上递增,当2b x a =-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递 增,在[,)2b a -+∞上递减,当2b x a =- 时,2max 4()4ac b f x a -=. 二、幂函数 (1)幂函数的定义 一般地,函数y x α =叫做幂函数,其中x 为自变量,α是常数. (2)幂函数的图象

过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1). 三、指数函数 (1)根式的概念:如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根. (2)分数指数幂的概念 ①正数的正分数指数幂的意义是:0,,,m n a a m n N +=>∈且1)n >.0的正分数 指数幂等于0. ②正数的负分数指数幂的意义是: 1()0,,,m m n n a a m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. (3)运算性质

(完整版)二次函数与几何图形综合题.doc

二次函数与几何图形综合题 类型 1二次函数与相似三角形的存在性问题 1. (2015 ·明西山区一模昆)如图,已知抛物线y= ax2+bx+ c(a≠0)经过 A(- 1, 0), B(4, 0), C(0 ,2) 三点. (1)求这条抛物线的解析式; (2)P 为线段 BC 上的一个动点,过P 作 PE 垂直于 x 轴与抛物线交于点 E,设 P 点横坐标为 m, PE 长度为 y,请写出 y 与 m 的函数关系式,并求出PE 的最大值; (3)D 为抛物线上一动点,是否存在点 D 使以 A、B、D 为顶点的三角形与△ COB 相似?若存在,试求出点 D 的坐标;若不存在,请说明理由.

2. (2013 ·靖曲 )如图,在平面直角坐标系xOy 中,直线y= x+ 4 与坐标轴分别交于A, B 两点,过A,B 两点的抛物线为y=- x2+ bx+ c.点 D 为线段 AB 上一动点,过点 D 作 CD⊥ x 轴于点 C,交抛物线于点 E. (1)求抛物线的解析式; (2)当 DE= 4 时,求四边形CAEB 的面积; (3)连接 BE,是否存在点 D ,使得△ DBE 和△ DAC 相似?若存在,求出 D 点坐标;若不存在,说明理由.

3.(2015 襄·阳 )边长为 2 的正方形O ABC 在平面直角坐标系中的位置如图所示,点D是边OA的中点,连接 CD ,点 E 在第一象限,且DE⊥ DC , DE =DC.以直线 AB 为对称轴的抛物线过C, E 两点. (1)求抛物线的解析式; (2)点 P 从点 C 出发,沿射线 CB 以每秒 1 个单位长度的速度运动,运动时间为t 秒.过点 P 作 PF ⊥ CD 于点 F .当 t 为何值时,以点P, F ,D 为顶点的三角形与△COD 相似? (3)点 M 为直线 AB 上一动点,点N 为抛物线上一动点,是否存在点M, N,使得以点M,N, D, E 为顶点的四边形是平行四边形?若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由.

几何图形中的函数问题

D C B A 几何图形中的函数问题 1如图,在梯形ABCD 中,AB ∥CD 、 (1)如果∠A =?50,∠B =?80,求证:AB CD BC =+、 (2)如果AB CD BC =+,设∠A =?x ,∠B =?y ,那么y 关于x 的函数关系式就是_______、 2、如图,P 就是矩形ABCD 的边CD 上的一个动点,且P 不与C 、D 重合,BQ ⊥AP 于 点Q,已知AD=6cm,AB=8cm,设AP=x(cm),BQ=y(cm)、 (1)求y 与x 之间的函数解析式并求自变量x 的取值范围; (2)就是否存在点P,使BQ=2AP 。若存在,求出AP 的长;若不存在, 说明理由。 3、如图,矩形EFGH 内接与△ABC,AD ⊥BC 与点D,交EH 于点M,BC=10cm, AD=8cm, 设EF=x cm,EH=y cm ,矩形EFGH 的面积为S cm2, ①分别求出y 与x,及S 与x 的函数关系式,写出x 的取值范围; ②若矩形EFGH 为正方形,求正方形的边长; ③x 取何值时,矩形EFGH 的面积最大。 5.如图,在△ABC 中,AB=AC=1,点D,E 在直线BC 上运动.设BD=x, CE=y (l)如果∠BAC=30°,∠DAE=l05°,试确定y 与x 之间的函数关系式; (2)如果∠BAC=α,∠DAE=β,当α, β满足怎样的关系时,(l)中y 与x 之间的函数关系式还成立?试说明理由. 6、已知:在矩形ABCD 中,AB =10,BC =12,四边形EFGH 的三个顶点E 、F 、H 分别在 矩形ABCD 边AB 、BC 、DA 上,AE =2、 (1)如图①,当四边形EFGH 为正方形时,求△GFC 的面积;(5分) (2)如图②,当四边形EFGH 为菱形,且BF = a 时,求△GFC 的面积 (用含a 的 A B C D P Q A B C D E F M H G

一元函数求极限的若干方法

一元函数求极限的若干方法 (陕西师范大学 数学系,陕西 ) 摘 要:极限是数学分析中最基本的,也是最重要的概念之一,是研究微积分学的重要工具.因此掌握好极限的思想与方法是学好微积分的前提条件,针对这种情况,本文探讨了一些常用的求极限的方法 关键词:极限;方法 大家知道,极限是数学分析中最基本、也是最重要的概念之一,数学分析中许多深层次的理论及应用都是极限的拓展和延伸,如:连续、导数、微积分等都是由极限定义的,而离开了极限思想的数学分析就失去了其基础与价值,因此极限运算在数学分析中占有举足轻重的地位.由于极限定义的高度抽象使我们很难用极限本身的定义去求极限,而对极限的求法可谓是多种多样,针对这种情况,通过归纳和总结,罗列出一些常用的求法. 1 利用极限的定义求极限 极限是指无穷的趋于一个固定的数值,数学分析中的极限包括:数列极限和函数极限. 1.1 数列极限的定义 设{}n x 是一个数列,a 是定数,如果对任意给定的0>ε,总存在正整数N ,使得当N n >时有 ε<-a x n , 我们就称定数a 是数列}{n x 的极限.记为 a x n n =∞ →lim 或 ()∞→→n a a n . 例1 按定义证明01 lim =∞→a n n ,这里a 是常数. 证 由于 a a n n 1 01=-, 故对任给的0>ε,只要取11 1+??? ?????=a εN ,则当N n >时,便有 εN n a a <<11 即εn a <-01.

这就证明了 01 lim =∞→a n n . 例2证明2 23lim 33 n n n →∞=- 分析 由于()222399 3333n n n n n -=≤≥-- (1) 因此,对任给的0ε>,只要 9 n ε<,便有 2 233,3 n n ε-<- (2) 即当9 n ε > 时,(2)式成立.又由于(1)式是在3n ≥的条件下成立的,故应取 9max 3,.N ε?? =???? (3) 证 任给0ε>,取9max 3,.N ε?? =????据分析,当n>N 时有(2)式成立.于 是本题得证. 注 本例在求N 的过程中,(1)式中运用了适当放大的方法,这样求N 就比较方便.但应注意这种放大必须“适当” ,以根据给定的ε能确定出N .又(3)式给出的N 不一定是正整数.一般地,在定义1中N 不一定限于正整数,而只要它是正数即可. 1.2 函数极限的定义 函数极限的定义包括两个,一个是x 趋于∞时函数的极限,另一个是x 趋于 0x 时函数的极限. 1.2.1 x 趋于∞时函数的极限 设f 为定义在[)+∞,a 上的函数,A 为定数.若对任给的0>ε,存在正数 ()a M ≥,使得当M x >时有 ()ε<-A x f , 则称函数f 当x 趋于∞+时以A 为极限,记为 ()A x f x =+∞ →lim 或 ()()+∞→→x A x f .

-几何图形在二次函数中的存在性问题探解

---几何图形在二次函数中的存在性问题探解 二次函数是初中数学的重要内容,更是中考的重要考点之一,它以丰富的知识内涵,深远的知识综合,深厚的数学思想,灵活的解题方法,奇趣的知识背景等深深吸引着命题老师,更深刻启迪着每位同学.下面就把几何图形在二次函数中的存在性问题介绍给大家,供学习时借鉴. 一、.三角形的存在性 1.1 等腰三角形的存在性 例1 (2017年淮安)如图1-1,直线y=﹣x+3与x 轴、y 轴分别交于点B 、点C ,经过B 、C 两点的抛物线y=2x +bx+c 与x 轴的另一个交点为A ,顶点为P . (1)求该抛物线的解析式; (2)在该抛物线的对称轴上是否存在点M ,使以C ,P ,M 为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M 的坐标;若不存在,请说明理由; (3)当0<x <3时,在抛物线上求一点E ,使△CBE 的面积有最大值(图1-2、1-3供画图探究). 分析: 第一问考查的是待定系数法确定函数的解析式,思路有几个待定系数,解答时就需要确定几个点的坐标; 第二问探析等腰三角形的存在性,解答时,要做到一先一后,先清楚动点的位置与特点,后对等腰三角形进行科学分类,一是按边分类,一是按角分类; 第三问探求三角形面积的最大值,这是二次函数的看家本领,只需将三角形的面积适当分割,恰当表示,最后将三角形面积最大问题转化为二次函数的最值问题求解即可. 解: (1)因为直线y=﹣x+3与x 轴、y 轴分别交于点B 、点C ,所以B (3,0),C (0,3), 所以{c =39a+3b+c =0,解得{c =3b =4-,所以抛物线解析式为y=2x ﹣4x+3; (2)因为y=2x ﹣4x+3=2(x 2)-﹣1,所以抛物线对称轴为x=2,顶点P (2,﹣1), 设M (2,t ),因为△CPM 为等腰三角形,如图2所示, ①当MC=PC 时,过C 作CQ ⊥对称轴,垂足为Q ,则Q(2,3),所以QP=MQ=3-(-1)=4,所以M 到x 轴的距离8-1=7,所以1M 的坐标(2,7); ②当MP=MC 时,作PC 的垂直平分线交对称轴于点M ,所以222(t+1)2+(t-3)=,解得t=32,所以2M 的坐标(2, 32 );

五大基本初等函数性质及其图像

五、基本初等函数及其性质和图形 1.幂函数 函数称为幂函数。如,,,都是幂函数。没有统一的定义域,定义域由值确定。如,。但在总是有定义的,且都经过(1,1)点。当时,函数在上是单调增加的,当时,函数在是单调减少的。下面给出几个常用的幂函数:的图形,如图1-1-2、图1-1-3。 图1-1-2 图1-1-3

2.指数函数 函数称为指数函数,定义域,值域;当时函数为单调增加的;当时为单调减少的,曲线过点。高等数学中常用的指数函数是时,即。以与为例绘出图形,如图1-1-4。 图1-1-4 3.对数函数 函数称为对数函数,其定义域,值域。当时单调增加,当时单调减少,曲线过(1,0)点,都在右半平面。与互为反函数。当时的对数函数称为自然对数,当时,称为常用对数。以为例绘出图形,如图 1-1-5。 图1-1-5 4.三角函数有 ,它们都是周期函数。对三角函数作简要的叙述: (1)正弦函数与余弦函数:与定义域都是,值域都是。它们都是有界函数,周期都是,为奇函数,为偶函数。图形为图1-1-6、图1-1-7。 图1-1-6 正弦函数图形

图1-1-7 余弦函数图形 (2)正切函数,定义域,值域为。周期,在其定义域单调增加的奇函数,图形为图1-1-8 图1-1-8 (3)余切函数,定义域,值域为,周期。在定义域是单调减少的奇函数,图形如图1-1-9。

图1-1-9 (4)正割函数,定义域,值域为,为无界函数,周期的偶函数,图形如图1-1-10。 图1-1-10 (5)余割函数,定义域,值域为,为无界函数,周期在定义域为奇函数,图形如图1-1-11。

图1-1-11 5.反三角函数 反正弦函数,定义域,值域,为有界函数,在其定义域是单调增加的奇函数,图形如图1-1-12; 图1-1-12 反余弦函数,定义域为[-1,1],值域为,为有界函数,在其定义域为单调减少的非奇非偶函数,图形如图1-1-13;

相关主题
文本预览
相关文档 最新文档