当前位置:文档之家› 汽轮机数字电液控制系统(DEH培训教材)

汽轮机数字电液控制系统(DEH培训教材)

汽轮机数字电液控制系统(DEH培训教材)
汽轮机数字电液控制系统(DEH培训教材)

东方电气自动控制工程有限公司培训教材

汽轮机数字电液控制系统Turbine Digital Electric Hydraulic Control System

第一版

中国东方电气集团

东方电气自动控制工程有限公司

内容提要

本教材是为适应DEH数字电液控制系统(高压抗燃油电液控制系统,以下简称DEH)的培训而编写的,本教材着重介绍控制系统的原理、系统构成、控制功能、操作指导、接地要求、检测调试、故障诊断及分析等。

本书适用于电厂运行、维修人员学习使用,也适用于我公司经营、服务、管理、生产人员学习使用。

主编:唐东主审:尚小林徐正华

责任校对:陈建国陈容江责任编辑:秦晴

前言

东方电气自控公司(原东方汽轮机厂自控开发处)为适应大机组提高自动化水平的迫切要求,从1983年起就在借鉴国外大机组先进控制技术的基础上,率先积极自主开发汽轮机DEH数字电液控制系统(电液并存型低压油系统)。曾先后设计和生产了六十多台电液并存型DEH控制系统,为35MW、50MW、200MW、300MW等冷凝、供热和空冷机组配套,并有十三套DEH控制系统随机组出口,十余年来,我们不仅积累了丰富的设计、生产和调试经验,还培养了一支实力雄厚、训练有素的汽轮机控制工程技术队伍,保证了设备的调试、安装及投运。确保了产品的售前、售中及售后的全方位服务。

上世纪90年代,东汽以技贸结合的方式,与日立公司合作设计生产600MW 汽轮机。学习并参与了与其配套的DEH数字电液控制系统(高压抗燃油电液控制系统)的设计和调试工作,从而为我公司300MW机组全电调DEH控制系统的开发打下了坚实的基础。遵照前机械部、能源部领导的部署和专家的意见,1993年起东汽又与美国ETSI公司(贝利集团)联合开发300MW机组DEH数字电液控制系统(高压抗燃油电液控制系统)。在我公司参与系统设计及应用软件设计的基础上,生产出了具有九十年代国际先进水平的DEH数字电液控制系统(高压抗燃油电液控制系统)。其电气硬件采用INFI90 OPEN分散控制系统,液压硬件采用高压抗燃油为介质。我们还建成数字仿真器及油动机阀门总装试验台,以便出厂前能进行全面的仿真试验。

时至今日,我公司投运的全电调300MW新机组已近百台,采用同样控制方式进行的125MW、200MW及300MW老机组改造已在徐州电厂、姚孟电厂、鹤壁电厂、能港电厂、沙岭子电厂、黄埔电厂等投运成功。

为了给安装、检修及运行人员提供DEH系统的基础知识,特编写此教材。本教材仅供培训用,不能代替相关技术资料及图纸。

编者

目录

第一章控制系统原理 (1)

第二章控制系统的构成 (8)

第三章控制系统主要功能 (13)

第四章主要控制画面和操作 (16)

第五章系统接地 (25)

第六章电源连接 (27)

第七章外部信号连接 (29)

第八章检测与调试 (31)

第九章系统功能检查 (34)

第十章故障诊断及分析 (36)

第十一章开箱及设备安装 (39)

第一章控制系统原理

DEH的主要任务就是调节汽轮机的蒸汽转矩,使之维持等转速运行,与外界负荷相适应。在讨论汽轮发电机组的控制系统时,通常将汽轮发电机轴系看作一个整体旋转刚体,建立一个系统较为完善的数学模型,然后对该系统进行较准确的分析和设计。汽轮机控制系统设计的依据就是转子的能量平衡方程式,大家都知道转子的转动方程为:

J×dω/dt = M T -M G -M f (1-1)

式中:J—汽轮发电机组转子的转动惯量(Kg.m.s2)

ω—转子的旋转角速度(s-1)

M T—汽轮机蒸汽转矩(N.m)

M G—发电机电磁转矩(N.m)

M f—各种阻力矩(N.m)

转动惯量对于特定的机组安装完成后,即为一常数,DEH要控制的转速n与角速度ω成正比。

ω=2πf=2πn/60

其中:f—频率(s-1)

n—转速(r/min)

为:

由汽轮机工作原理知,蒸汽转矩M

T

M T =4.73×D×H0×η0e/n (N.m)(1-2)

式中:D—进入汽轮机的蒸汽流量(Kg/h)

H0—绝热焓降(KJ/Kg)

η0e—汽轮机相对效率

n—转速(r/min)

发电机电磁转矩M G,它主要取决于负载的特性,可表示为:=K1+K×n+K3×n2(1-3)

M

G

式中,K1,K2,K3为随机变量,且均为正值。

各种阻力矩M f,它与转速、真空、轴系油温等很多因素有关,可视随转速增大的随机变量。

图1 表示汽轮机和发电机的转矩特性,其中曲线M T1及曲线M T2表明了蒸汽轮机转矩和转速的关系曲线,称为汽轮机的内特性。曲线M T1及曲线M T2对应于两个不同的进汽量。其中曲线M G1及曲线M G2表明了发电机阻力转矩和转速的关系曲线,称为发电机的特性。曲线M G1及曲线M G2对应于两个不同的电负载。曲线M T1和曲线M G1的交点a即为汽轮机带发电机运转,在转速n a时一个稳定状态。

首先从图1和式(1-1)可知,汽轮发电机组具有一定的自平衡能力,比如当发电机的阻力矩M G1变为M G2时,若汽轮机进汽量保持不变,那么新的平衡工况点即为b,即汽轮发电机组以n b转速稳定运行,也就是说汽轮发电机组具有一定的自平衡能力,此时工作转速n b和n a相差较大。但汽轮机、发电机和电网负载是不允许网频(汽轮机转速)有大幅度的变化的,这就要求当发电机的阻力矩M G1变为M G2时,汽轮机进汽量能跟随变化,那么新的平衡工况点就可变为c,汽轮发电机组以n c转速稳定运行,此时工作转速n c和n a相差不大,这是电气设备允许的,而这只有靠汽轮机调节系统才能实现。

汽轮机调节系统控制汽轮机的D,即能改变M T,使M T始终跟随M G 变化,以维持转速n即供电频率在规定的范围内,满足国家对供电品质的要求。

实际汽轮机控制系统都是通过执行机构(油动机)来控制安装在进汽口上的调节汽阀来改变M T,以调节汽轮机的转速和功率的。汽轮机控制流程框图见图2,图2表示汽轮机控制的整个过程及整个控制过程中的各个物理对象的数学描述,是做系统稳定性分析的基础。汽轮机控制原理图见图3,图3则是根据上述原理进行DEH系统设计的依据。

从图3可以看出机组在启动和正常运行过程中,DEH接收到操作人员通过人机接口所发出的增、减指令、CCS指令、汽轮机发电机组的转速和功率以及调节阀的位置反馈信号等进行分析处理,综合运算,输出控制信号到伺服阀,改变调节阀的开度,以控制机组的运行。

机组在升速过程中(即机组没有并网),DEH控制系统通过转速调节回路来控制机组的转速,功率控制回路不起作用。这点可从原理图中看出,当没有并网信号时,控制信号就为1,则输出等于输入1(即转速回路调节

器输出)。在此回路下,DEH控制系统接收现场汽轮机的转速信号,经DEH 三取二逻辑处理后,作为DEH的反馈信号。此信号与DEH的转速设定值进行比较后,送到转速回路调节器进行偏差计算,PID调节,然后输出油动机的开度指令到伺服卡。此开度指令在伺服卡内与现场LVDT油动机位置反馈信号进行比较后,输出控制信号到伺服阀,控制油动机的开度,即控制调节阀的开度,从而控制机组转速。升速时,操作人员可设置目标转速和升速率。

机组并网后,DEH控制系统便切到功率控制回路,转速调节回路便不起作用。这点可从原理图中看出:当有并网信号时,控制信号就为0,则输出等于输入2(即功率控制回路的输出)。在此回路下有三种调节方式(此三种模式下,一次调频回路,始终存在):

(1) 负荷反馈不投入,调节级压力反馈也不投入。

在这种情况下,阀门开度直接由操作员设定进行控制。设定所要求的开度后,DEH输出阀门开度指令到伺服卡,与阀位反馈信号进行比较后,输出控制信号到伺服阀,从而控制阀门的开度,以满足要求的功率。

(2) 负荷反馈投入。

这种情况下,负荷回路调节器起作用。DEH接收现场功率信号经DEH 三取二逻辑处理后与给定功率进行比较后,送到负荷回路调节器进行差值放大,综合运算,PID调节输出阀门开度信号到伺服卡,与阀位反馈信号进行比较后,输出控制信号到伺服阀,从而控制阀门的开度,满足要求的功率。

(3) 调节级压力反馈投入。

在这种情况下,调节级压力回路调节器起作用。DEH接收汽轮机调节级压力信号与给定信号进行比较后,送到调节级压力回路调节器进行差值放大,综合运算,PID调节输出阀门开度信号到伺服卡,与阀位反馈信号进行比较后,输出控制信号到伺服阀,从而控制阀门的开度,满足要求的功率。

上述三种模式下,一次调频回路,始终存在于每一个回路中,只是有死区而已,在网频(汽机转速)波动较小时,它不产生作用而已。运行时,操作人员可设置目标值和升负荷率。DEH控制系统逻辑设定负荷反馈投入

方式和调节级压力投入方式不能同时投入,投入一种反馈时另一种反馈自动切除。

机组启动时可选用高中压联合启动方式和中压缸启动方式里的任何一种方式。当选择高中压联合启动方式时,阀切换系数等于1,阀门开度信号同时输出到高压调节阀和中压调节阀。当选择中压缸启动方式时,阀切换系数等于0,则阀门开度信号送高压调节阀的指令乘系数0,值为0,则高调阀开度为0。因此,阀位开度信号便送到中压调阀控制回路,从而控制中调阀的开度,满足中压缸启动方式。在阀切换过程中,阀切换系数由0逐渐变到1,机组便转换为高中压联合进汽形式。对汽轮发电机组来讲,由于调节阀的开度同蒸汽流量存在非线性,因此要进行阀门的线性修正,DEH控制系统设计了阀门修正函数F(x)来进行阀门的线性修正。

汽轮机和发电机的转矩特性图1 汽轮机和发电机的转矩特性

图2 汽轮机控制流程框图

图3 数字电液控制器原理图

第二章控制系统的构成

作为数字电液控制器的DEH,它实际上主要由两部分构成,一是具有微处理器的控制器,二是控制对象的执行机构。其中控制器又分为硬件和软件,硬件应该说是控制系统的基础,软件是控制系统的灵魂。DEH的硬件是由带微处理器的主机、接口电路及外部有关设备构成,其典型配置为控制机柜(包括CPU、I/O板件、手操盘、专用电缆等)、操作员站、工程师站、网络服务器、打印机和网络电缆等,具体硬件配置一般是根据系统设计要求确定。软件分为系统软件和应用软件两部分,系统软件是用来使用和管理微机本身的程序,应用软件是用于完成控制系统要求需要开发的程序,它分为过程监视程序,过程控制程序,公共程序等等。用不同的软硬件构成的系统,它的设计特点也各不相同,但其所要完成的功能是大同小异的。下面4张图分别是配我公司300MW汽轮机的控制系统配置图。

图4 INFI-90电气系统配置图

图5 OV ATION电气系统配置图

图6 HITASS电气系统配置图

图7 FOXBORO电气系统配置图

图4 INFI-90电气系统配置图

图5 OV ATION电气系统配置图

(DI/O) (DI/O) (AI/O)

图6 HITACHI电气系统配置图

第二章 控制系统的构成

工厂信息网络

I /A S e r i e s 节点总线

I /A S e r i e s 现场总线

A p p l i c a t i o n P r o c e s s o r C o n t r o l P r o c e s s o r

W o r k s t a t i o n

P r o c e s s o r D e v i c e I n t e g r a t o r

F i e l d b u s M o d u l e D i g i t a l F i e l d L i n k

3r d P a r t y D e v i c e s : P L C ’s E S D ’s

R T U ’s S c a n n e r s P o w e r P l a n t S c a l e s T a n k F a r m s A n a l y z e r s S p e c t r u m e t c

I /A S e r i e s 局域网

C o m m u n i c a t i o n s

P r o c e s s o r

P e r i p h e r a l s :

B /W &

C o l o r

P r i n t e r s , T e r m i n a l s : F o x W a t c h

F

i e l d b u s C a r d s LBUG

Fo xb or o LBUG XXX Fo xb or o Fo xb or o Fo xb or o Fo xb or o Fo xb or o Fo xb or o Fo xb or o Fo xb or o Fo xb or o Fo xb or o Fo xb or o Fo xb or o Fo xb or o Fo xb or o Fo xb or o XXX XXX XXX XXX XXX XXX

XXX

XXX

XXX

XXX

XXX

XXX

XXX

Fo xb or o Fo xb or o Fo

xb or o Fo xb or o XXX

XXX

XXX

XXX

XXX

XXX

XXX Fo xb or o

图7 F O X B O R O 电气系统配置图

第三章控制系统主要功能

3.1远控自动挂闸

在“汽轮机已跳闸”和“所有阀全关”的条件下,通过集控室按钮或CRT 操作使调节系统安全油复位。

3.2根据经验启动曲线自启动

根据主机启动运行说明书的要求,将不同汽机状态和不同运行要求的汽机运行曲线生成在控制软件中,自动完成机组的升速、升负荷。

3.3ATS自启动

ATS以汽轮发电机组运行参数为依据,汽轮机转子热应力和寿命管理为核心实现启停及变负荷全过程自动控制。当汽轮机处于盘车阶段,运行人员按下ATS 按钮,ATS能够根据机组现行状态,实际运行参数,自动判别是否具备升速条件,并选择合适的升速率。ATS能够自动记录低速检查时间,待低速检查时间到,自动进行升速。在中速暖机阶段,自动判别暖机是否结束,是否具备升速条件。在暖机转速下,若参数符合要求,具备升速条件,可自动逾越中速暖机阶段。在高速暖机阶段,选择合适的暖机时间,使其汽轮机转子顺利渡过低温脆性转变温度(FATT)。在转子临界转速区自动选择高的升速率,使其机组顺利通过临界转速区。在临界转速区,若振动超过一定限度,ATS能自动降速,并避开临界转速区,维持转速恒定。总之ATS能够控制机组平稳、均匀地升至额定转速。在额定转速下ATS控制自动退出,自动同期投入,DEH根据自动同期的的指令微调汽轮发电机组的转速以适应发电机并网的要求。机组并网后自动接带2%—5%负荷。此后ATS自动方式投入,ATS可根据ADS或CCS的负荷要求,自动选择升负荷率、暖机负荷、暖机时间,尽快达到负荷要求或接带满负荷。在正常运行工况下,ATS可以投入,也可以切除。在ATS投入情况下,一旦系统有新的负荷指令,ATS可自动选择升降负荷率,尽快满足系统的要求。此外,ATS还具有启动和运行中的监视功能,OIS还能提供彩色图面,以系统图、棒形图、趋势图、数据图表形式生动形象地显示机组当前运行状态,提供运行操作指导。

3.4定—滑—定运行

调节系统满足机组定压运行,滑压运行,最后再定压运行的方式,机组启动参数一般相对额定参数较低,升速及带初负荷过程是定压过程,接着调节系统保

持阀门在一个固定开度(汽机滑压点),锅炉升参数,汽机负荷增加,使参数接近额定参数,这是一个滑压过程,接着调节系统控制阀门开度,使汽机负荷接近额定参数,这又是一个定压过程。

3.5阀门管理

阀门管理一是指汽轮机的进汽调节分为节流调节和喷嘴调节两种,这两种控制模式是通过转化阀门流量曲线由控制系统完成的,这两种控制模式之间的转换也是在一定条件下由控制系统完成的。二是指根据汽机运行要求确定阀门的控制方式,如中压缸启动,阀门活动试验等。

3.6超速预警及超速控制

超速预警是指当汽机转速超过3090rpm时,调节系统快速关闭调节门,待汽机转速下降至3090rpm以下时,调节门再次根据调节系统计算输出开启阀门,同时向声光报警盘报警。

超速控制是指当汽机转速超过3300rpm时,调节系统快速关闭汽机侧所有阀门,同时向ETS和声光报警盘发出跳机信号。

3.7在线进行高中压主汽阀和调节阀活动试验

可以认为是阀门管理的一部分,是根据汽机运行要求,进行相应阀门的全行程或部分行程的活动试验。

3.8远方喷油试验和机械、电气超速试验

远方喷油试验是指通过OIS站在一定条件下,完成活动危急遮断器撞击子的试验,该试验是不跳机的。

机械超速试验指通过OIS站在一定条件下,确认危急遮断器撞击子飞出转速和相应的汽机遮断功能的试验,该试验跳机。

电气超速试验是指通过OIS站在一定条件下,确认TSI装置和DEH装置的相应转速整定值和相应的汽机遮断功能的试验。

3.9TPC主汽压力低保护控制功能

主要是限制高压调节门前的主蒸汽压力不低于一个要求的限制值,当主汽压力值小于限制值时,TPC动作开始减负荷,负荷一旦减至20%阀位或主汽压力再次大于限制值后停止减负荷

3.10快卸负荷(RUNBACK)功能

主要是完成当电厂中其他影响汽机出力的系统设备出现故障时,汽机控制系

统能根据DCS系统的要求迅速减负荷至规定值。

3.11机炉协调控制功能

主要指汽机调节系统能根据CCS指令的要求调整阀门开度,来控制汽机负荷。

3.12遮断电磁铁在线试验

是指在汽机运行过程中,使相应的遮断电磁阀动作,以保证汽机的安全运行。

3.13阀门校验

主要是通过阀门整定,确定阀门的线性工作范围,使整个执行机构的动态及静态特性满足调节系统的要求。

3.14手动控制功能

一般可归纳为两种手动控制模式,硬操作盘手动和软件手动,硬操作盘手动是指当控制系统的CPU发生故障时,通过硬手操盘上的按钮,发指令直接到伺服驱动板件,控制阀门开度,目前CPU质量可靠,这种功能已逐渐取消。软件手动是指外围设备(硬操作盘或OIS站)通过CPU,来控制阀门开度。上面所述的手动控制均为开环控制,不作为汽机运行的主要模式。

3.15背压保护功能

为保护汽轮机末级叶片的安全,调节系统通过控制阀门开度调整负荷控制背压,使汽轮机运行在安全区或限时区。

汽轮机数字电液控制(DEH)技术探讨

汽轮机数字电液控制(DEH)技术探讨 发表时间:2019-06-04T15:53:29.007Z 来源:《电力设备》2019年第2期作者:康晓华[导读] 摘要:汽轮机数字电液控制技术是电厂运行中必不可少的控制系统,可以实现对汽轮机精准控制、快速响应的特点。 (山西兴能发电有限责任公司山西省太原市古交市 030206) 摘要:汽轮机数字电液控制技术是电厂运行中必不可少的控制系统,可以实现对汽轮机精准控制、快速响应的特点。另外,随着汽轮机的运行功率越来越大,对参数的控制要求也不断提升,采用先进的热工自动化技术是提高机组安全、经济运行最有效的措施之一。本文对数字电液控制技术进行详细分类描述,便于更好的理解和应用此技术。 关键词:数字电液控制技术汽轮机电液伺服控制 1引言 随着电子技术和计算机技术的发展,电厂汽轮机的调节方式也发生了重大的变化,汽轮机最初的调节模式是机械液压调节,逐渐过渡到基于电子模拟技术的模拟电调模式,最后发展到如今的基于计算机技术的数字电液调节模式。数字电液调节模式以汽轮机为控制对象,运用计算机技术、自动控制技术、液压控制技术完成对汽轮机的控制过程。 2 DEH控制系统概述 数字式电液控制技术(DEH)是由两个部分组成,分别为计算机控制技术和EH电液控制技术。由于DEH基于上述两个组成部分,因此其控制技术也就依赖于计算机控制技术(数字控制技术、网络技术)和液压伺服控制技术。随着集成电路技术的快速发展,计算机及网络技术的发展,使得数字电子技术的安全性和可靠性有了较大的发展。另外,液压伺服控制技术也有了快速发展,其中包括电液比例阀、伺服阀等的广泛使用。综合计算机技术和液压伺服控制技术,形成了适合电厂汽轮机运行控制的技术-数字式电液控制技术。 2.1计算机控制系统 通过DEH技术,可以实现汽轮机高中压阀门的控制精度,能够实现机组的协调控制,并且提升整个机组的运行稳定性和安全性。 2.2EH液压系统 EH油系统包括供油系统、执行机构和危急遮断系统,供油系统的功能是提供高压抗燃油,并由它来驱动伺服执行机构,执行机构响应从DEH送来的电指令信号,以调节汽轮机各蒸汽阀开度。危急遮断系统由汽轮机的遮断参数控制,当这些参数超过其运行限制值时,该系统就关闭全部汽轮机进汽门或只关闭调速汽门。 DEH 是汽轮机的数字化电液调节系统是汽轮机组的心脏和大脑。DEH 汽轮机综合控制系统是结合先进的计算机软、硬件技术,吸取了国内外众多同类系统的优点, 系统结构充分考虑了系统的先进性、易用性、开放性、可靠性、可扩展性、兼容性和即插即用等特性,结构完整、功能完善。数字电液控制系统可以实现自动系统控制。随着大容量汽轮机的发展和电网峰谷差的不断增大,对机组的调峰和调频要求越来越高。因此,降低成本,改善机组运行的经济性、可靠性、可调性。数字电液控制系统可以部分完成各种控制回路、控制逻辑的运算。随着大型联合电网和现代大功率汽轮发电机组的发展,为了适应电站自动化的需要,要求装备比以往采用的液压机械式调节系统更为迅速,更加精确的控制系统。同时大容量汽轮机的发展,使老机组将面临调峰和调频,加上原来纯液压调节系统存在控制精度低、稳定性差等陷已不能满足电站自动化的需要。 3汽轮机电液伺服技术电液伺服技术可以分为高压抗燃油系统自容式系统,两种控制技术都有各自的适用性和特点。 3.1高压抗燃油系统 随着西屋汽轮机技术的引进,高压抗燃油系统逐渐被认知和使用。对于传统的液压调节控制技术的缺陷,高压抗燃油系统利用灵活的控制策略以应对多种不同工况自动化控制要求,从而实现汽轮机机炉协调控制。在300MW及以上的大型机组控制系统上,高压燃油控制系统主要有以下控制特点: (1)控制精度高,反映速度快。 (2)系统复杂,体积较大,制造和运行成本高。 (3)对于油质的清洁度要求高,油品需循环再生使用,运行成本高。 (4)能够实现对阀门的管理。 高压抗燃油系统主要包含供油系统、伺服执行机构、危急遮断保护系统组成,其中供油系统主要负责为控制系统提供高压抗燃油,其压力可达到14Mpa,高压抗燃油驱动伺服执行机构,执行机构响应从DEH送来的电控指令信传输到各个阀门,控制阀门的相应动作。危急遮断保护系统由汽轮机的遮断参数进行控制,如果运行参数超过上限值,该系统直接对阀门进行控制,以保证机组运行的安全性。 3.2自容式系统 通过将油源站和伺服系统集成在一起,形成了自容式液压伺服控制系统,通过优化技术,实现了油动机的动态性能与高压抗燃油系统相当,采用小流量容积泵和蓄能器满足了油动机稳态流量很小和动态流量大的特点。伺服系统主要由伺服器、液控单向阀、油缸和电磁阀等构成。 伺服机构主要由油缸、伺服阀、液控单向阀、电磁阀和插装阀等组成。油源站过来的压力油进入集成块直接作用在油动机的上腔,这形成一个固定的油压和一个作用面积。活塞的下腔通过伺服阀进行控制,这样形成一个差动回路,压力油通过伺服阀引入到活塞下腔因为上下腔面积不同,压力不同,会把油动机往上推。 4 DEH电控技术 4.1伺服方法技术 在DEH电控技术中,要完成对某些电液伺服器的控制,需要对电液伺服信号进行放大处理,使用专门的伺服控制模块。早期的伺服控制模块采用模拟放大的电路,采用比例P、积分I来实现电位器的调节控制,存在调试不便的情况。随着数字技术的不断发展,逐渐可以通过数字伺服控制模块来实现控制,采用可编程阵列来管理转换器,通过转换器,传输信号功率被放大后传输到伺服器,达到控制目的。此方法具有响应速度快、控制精度高等特点。 4.2快速反馈调节技术

变桨控制系统培训教材

变桨控制系统培训教材 1. 变桨控制系统概述 图1 变桨系统 变桨控制系统包括三个主要部件,驱动装置-电机,齿轮箱和变桨轴承。从额定功率起,通过控制系统将叶片以精细的变桨角度向顺桨方向转动,实现风机的功率控制。如果一个驱动器发生故障,另两个驱动器可以安全地使风机停机。 变桨控制系统是通过改变叶片迎角,实现功率变化来进行调节的。通过在叶片和轮毂之间安装的变桨驱动电机带动回转轴承转动从而改变叶片迎角,由此控制叶片的升力,以达到控制作用在风轮叶片上的扭矩和功率的目的。在90度迎角时是叶片的工作位置。在风力发电机组正常运行时,叶片向小迎角方向变化而达 轮毂 变桨轴承 变桨驱动器 雷电保护装置 变桨控制柜 撞块装置 限位开关装置

到限制功率。一般变桨角度范围为0~86度。采用变桨矩调节,风机的启动性好、 刹车机构简单,叶片顺桨后风轮转速可以逐渐下降、额定点以前的功率输出饱满、 额定点以的输出功率平滑、风轮叶根承受的动、静载荷小。变桨系统作为基本制 动系统,可以在额定功率范围内对风机速度进行控制。 变桨控制系统有四个主要任务: 1.通过调整叶片角把风机的电力速度控制在规定风速之上的一个恒定速 度。 2.当安全链被打开时,使用转子作为空气动力制动装置把叶子转回到羽状 位置(安全运行)。 3.调整叶片角以规定的最低风速从风中获得适当的电力。 4.通过衰减风转交互作用引起的震动使风机上的机械载荷极小化。 2.变桨轴承 变桨驱动装置 变桨轴承

图2 变桨轴承和驱动装置 2.1安装位置 变桨轴承安装在轮毂上,通过外圈螺栓把紧。其内齿圈与变桨驱动装置啮合 运动,并与叶片联接。 2.2工作原理 当风向发生变化时,通过变桨驱动电机带动变桨轴承转动从而改变叶片对风 向地迎角,使叶片保持最佳的迎风状态,由此控制叶片的升力,以达到控制作用 在叶片上的扭矩和功率的目的。 2.32.3变桨轴承的剖面图 6 一 1 2 3 4 5 7 图3 变桨轴承的剖面图 从剖面图可以看出,变桨轴承采用深沟球轴承,深沟球轴承主要承受纯径向 载荷,也可承受轴向载荷。承受纯径向载荷时,接触角为零。 位置1:变桨轴承外圈螺栓孔,与轮毂联接。 位置2:变桨轴承内圈螺栓孔,与叶片联接。

变桨系统维护培训资料

变桨系统维护

华锐风电科技有限公司 风力发电机组培训教材 变桨部分 1.变桨控制系统简介

变桨控制系统包括三个主要部件,驱动装置-电机,齿轮箱和变桨轴承。从额定功率起,通过控制系统将叶片以精细的变桨角度向顺桨方向转动,实现风机的功率控制。如果一个驱动器发生故障,另两个驱动器可以安全地使风机停机。 变桨控制系统是通过改变叶片迎角,实现功率变化来进行调节的。通过在叶片和轮毂之间安装的变桨驱动电机带动回转轴承转动从而改变叶片迎角,由此控制叶片的升力,以达到控制作用在风轮叶片上的扭矩和功率的目的。在90度迎角时是叶片的工作位置。在风力发电机组正常运行时,叶片向小迎角方向变化而达到限制功率。一般变桨角度范围为0~86度。采用变桨矩调节,风机的启动性好、刹车机构简单,叶片顺桨后风轮转速可以逐渐下降、额定点以前的功率输出饱满、额定点以的输出功率平滑、风轮叶根承受的

动、静载荷小。变桨系统作为基本制动系统,可以在额定功率范围内对风机速度进行控制。 变桨控制系统有四个主要任务: 1. 通过调整叶片角把风机的电力速度控制在规定风速之上的一个恒定速度。 2. 当安全链被打开时,使用转子作为空气动力制动装置把叶子转回到羽状位置(安全运行)。 3. 调整叶片角以规定的最低风速从风中获得适当的电力。 4. 通过衰减风转交互作用引起的震动使风机上的机械载荷极小化。 2.变桨轴承

2.1安装位置 变桨轴承安装在轮毂上,通过外圈螺栓把紧。其内齿圈与变桨驱动装置啮合运动,并与叶片联接 2.2工作原理 当风向发生变化时,通过变桨驱动电机带动变桨轴承转动从而改变叶片对风向地迎角,使叶片保持最佳的迎风状态,由此控制叶片的升力,以达到控制作用在叶片上的扭矩和功率的目的。

汽轮机数字电液控制系统DEH介绍及控制方式讨论(4)讲解

汽轮机数字电液控制系统DEH 介绍及控制方式讨论 一、DEH系统介绍 1、DEH系统各部分介绍 1.1、DEH系统慨述 汽轮机数字电液控制系统(Digital Electric-Hydraulic Control System,以下简称DEH)是当今汽轮机特别是大型汽轮机必不可少的控制系统,是电厂自动化系统最重要的组成部分之一。现代DEH系统由于采用计算机控制技术为核心的分散控制系统结构,提高了控制精度,并且能够方便地实现各种复杂的控制算法。其执行部分由于采用了液压控制系统,具有响应快速、安全、驱动力强的特点。 1.2 、DEH系统计算机控制部分硬件配置 (1)基本控制计算机柜 主要由电源、1对冗余DPU、3个基本控制I/O站、1个OPC超速保护站及1个伺服控制系统站组成,完成对汽轮机的基本控制功能。转速测量卡(MCP卡)、模拟量测量卡(AI卡)、开关量输入卡(DI卡)、回路控制卡(LC卡)、开关量输出卡(DO卡)组成基本控制的信号输入部分。输入I/O卡件及重要信号均采用三选二冗余配置。由三块测速卡(MCP卡)和OPC卡组成超速保护控制功能块,基本控制DPU软件中,同时也具有OPC控制功能,达到硬件、软件的双重保护。由多块阀门控制卡(VCC卡)组成阀门伺服控制系统部分,每一块VCC卡用于一个阀门的控制,相互独立,在VCC卡件的设计上保证了即使在主机故障情况下,也能通过后备手操盘,手动控制机组阀门开度。 DPU主控制机是2台完全相同的、互为冗余的计算机组成。 DPU的整机面板如下图所示: 每台计算机有五个指示灯和一个电源钥匙开关,说明如下: 电源指示灯:接上电源,该灯亮,否则暗。 主控指示灯:当系统正常运行时,此时电源灯和运行灯都亮,如该机处于主控状态,主控灯亮;如处于跟踪和初始状态,主控灯暗。 运行指示灯:当计算机正在运行应用程序时,该灯亮。

数字电液控制系统在核电厂中的应用

数字电液控制系统在核电厂中的应用 发表时间:2019-05-20T16:37:54.500Z 来源:《电力设备》2018年第32期作者:张夏莲 [导读] 摘要:海南核电1,2号机数字电液控制系统(Digital Electric Hydraulic Control System)采用西屋公司的OV ATION 系统,由冗余的分布式处理单元和一套安装在标准机柜内的输入输出模件组成。为在操作员站CRT 发生故障时能安全停机,还提供了一块手操盘,能够根据用户的要求组成不同的配置。 (中国核电工程有限公司华东分公司浙江嘉兴 314000) 摘要:海南核电1,2号机数字电液控制系统(Digital Electric Hydraulic Control System)采用西屋公司的OVATION 系统,由冗余的分布式处理单元和一套安装在标准机柜内的输入输出模件组成。为在操作员站CRT 发生故障时能安全停机,还提供了一块手操盘,能够根据用户的要求组成不同的配置。 关键词:数字电液控制;原理;功能;控制。 DEH控制系统能按操纵员或自动启动装置给出的指令来控制主汽阀、主汽调节阀、再热主汽阀和再热调节阀,使机组按一定要求升、降转速、负荷、停机等。DEH装置接受转速、功率及第一级前汽压的实际信号,对机组的转速、功率、蒸汽流量实行闭环调节。此外,DEH还能监测显示参数、超速保护、自启停控制等。 1.工作原理 DEH采取一对一的方式来实现对机组的控制,即DEH发出的阀位控制指令通过4块伺服卡分别送到4个调节汽门(GV)的电液伺服阀(MOOG阀)上;MOOG阀将电气信号转换成液压信号,由安装在油动机上的高压抗燃油执行机构直接带动调节汽门的蒸汽阀头开启和关闭。2个主汽阀(MSV)、6个再热主汽阀(RSV)、6个中压调节阀为开/关型,DEH通过控制与其对应的电磁阀使其开启/关闭。 2. 功能 DEH控制系统主要有两种功能:一个是当发电机断路器“打开”时控制汽机转速;另一个是当发电机断路器“关闭”时控制汽机负荷,而这些都是通过4个高压调节阀(GV)开度实现的,高压调节阀受控于专门设计的带自诊断和自动校验的伺服卡。同时,机组还配有开/关型的主汽阀(MSV)2个、再热主汽阀(RSV)6个、中压调节阀6个。一个独立的高压油源系统为机组上所有阀门提供原动力。DEH根据不同的运行工况,如启动,停机,变负荷和Runback而自动产生转速/负荷设定值。 3.控制方式 3.1 手动这是一种开环运动方式,控制各个阀门的开度,操作员在操作盘上通过按键直接改变阀门的开度,各按钮之间由逻辑互锁,该方式作为自动方式的备用,在手动方式下具备OPC功能。DEH硬操盘上主要有阀位增减按钮和阀位指示等,它通过硬件的方式直接操作阀门控制卡(VCC卡),其阀位指示也由硬件卡给出,因而,只要VCC卡及直流电源正常,在DPU等计算机故障或停电,无法实现自动控制时,仍能通过硬操盘对汽轮机进行手动控制。 3.2操作员自动(OA)在该方式下,可实现汽轮机的转速和负荷的闭环控制,具有各种保护功能。目标转速、目标负荷、升速速率和升负荷速率等均可由操作人员设置。因本系统采用的是双机系统,因而,该方式下可分为A机控制和B机控制两种情况,两者之间的切换可以手动也可做到自动,如两机都发生故障,则自动转至手动方式运行。 3.3自动汽机控制(ATC)启动过程中,ATC模式自动将目标值从0 rpm增加到3000 rpm,同时监视所有振动和金属温度信号。当满足保持条件时,自动保持当前转速。转速升至约2/3额定转速时自动进入暖机状态。当转速进入同期范围时,自动将控制切换到自动同期装置。断路器初始闭合时控制自动切回OA模式,ATC仅监视。 当阀门控制卡故障,需在线更换时;一只LVDT故障,在线更换故障的LVDT时;DPU(主控站)故障时;操作员站故障时,机组可暂时切至手动控制;在线更换BC站控制板时,DEH系统必须由自动控制切至手动控制。 4.DEH控制环节 4.1 整定值生成整定值用来和过程值比较,产生的偏差信号经过调节器作用后去调节阀门动作。在OA模式下,整定值= 当前值+ 升降速率* 时间。操纵员输入目标值以及升降速率,按下启动后,程序就会按照操纵员设定好的速率使整定值增加或减少,直到整定值达到目标值,DEH将整定值自动保持,在这个过程中操纵员可以根据情况使用“hold”按钮手动使整定值保持在当前值。 4.2 转速控制 DEH处于转速控制或功率控制取决于发电机是否并网,通过断路器状态来自动判断。在转速控制模式下,整定值与转速测量值比较,产生的偏差信号经过PID调节器作用后产生输出动作阀门。 4.3 频率校正操纵员可根据电网要求将频率校正回路投入或者切除,这种投切在操纵员终端手动实现。频率校正的作用是在电网频率偏离额定频率时,调整发电机功率,使发电机功率符合电网频率要求。当电网频率过高时降低功率整定值,反之则增加功率整定值。校正量的大小由频率偏差量来决定,符合一定的比例关系并设置有死区。 4.4 MW(电功率)反馈并网以后,操纵员在操纵员终端上手动投入MW反馈回路。MW反馈回路的作用是使控制回路成为闭环回路,从而实现对功率的准确控制,MW反馈回路上设置有PID调节器。MW反馈的测量信号来自于发电机出口断路器前,同样使用3个信号,经过中选器处理,进行信号判断并将故障信号排除。汽机发生RUNBACK时,MW反馈回路被自动切除,避免闭环控制方式下汽机功率的过度超调。 4.5 IMP(冲动级压力)反馈冲动级压力与汽轮机发电机组功率之间有固定的对应关系,当蒸汽压力发生变化,引起冲动级压力变化,IMP反馈回路快速响应调整阀门开度而使发电机功率快速返回到初始水平。IMP反馈回路上的PID参数设置使得该反馈回路对冲动级压力变化能够快速响应。由于在10%功率以后冲动级压力IMP与功率之间才会有较好的线性对应关系,所以一般在10%功率以后才可以投运IMP反馈回路。 4.6 阀门流量修正曲线控制信号、阀门开度以及蒸汽流量之间如果具有很好的线性关系,即使在开环控制模式下(所有反馈回路切除),汽机调阀也能准确地将功率控制在功率整定值上。但是实际的调阀开度与蒸汽流量之间并不是纯粹的线性关系。因此要使阀门控制信号与蒸汽流量成线性对应关系,就必须对阀门控制信号进行修正,修正方法就是设定阀门流量修正曲线。 4.7 超速保护控制(OPC) OPC的主要功能是当汽轮机甩负荷时(电网故障),发出OPC信号使EH油回路中的OPC电磁阀带电开启,卸去OPC母管中的油压,使调节阀和再热调节阀快速关闭,OPC信号消失后,调节阀和再热调节阀重新开启,从而防止汽轮机超速跳

DEH数字电液控制系统

第1章数字电液控制系统 1.1概述 汽轮机的启动运行及安全保护是通过汽轮机控制系统实现的,作为汽轮机的脑袋,控制系统是汽轮机不可分割的一部分。 汽轮机的控制系统是从单纯的调节系统发展起来的,早期的液压调节系统,由主油泵提供整个系统的动力油和控制油,与润滑油系统共用一个供油系统,启动是靠人工操纵主汽门来控制汽轮机转速。在升速过程中,整个控制过程处于开环运行状态,由人工监视控制。当转速达到一定转速时,旋转阻尼感受到转速信号,产生一次油压反馈信号,再通过放大器放大为二次油压,控制油动机驱动进汽调节阀进一步提升转速,以达到同步、并网、带负荷,从而完成整个汽轮机的控制过程。 由于控制信号和反馈信号都是由机械或液压部件产生,在信号的产生和执行过程中,这些部件难免存在着摩擦迟缓,以至准确性差,迟缓率大,造成控制精度不高,不可避免地影响汽轮机控制性能。同时缺少合适的控制接口,很难使机组满足整个系统的协调控制要求,阻碍了控制系统自动化程度的进一步提高。 为了使汽轮机能更准确、更协调、更安全、更可靠地实现控制,使电厂用户能更方便、更灵活地使用和维护,同时为提高整台机组的控制水平,与世界接轨,增强产品的竞争力,汽轮机控制系统的发展也应与世俱进。随着科学技术的发展,国内汽轮机控制系统经过电子管、晶体管、模拟电路几个阶段的发展,通过二代人的努力,已具备实现数字控制的能力。 80年代初,引进国外先进技术,通过不断地消化和实践,使我们的设计技术和生产制造能力有了质的飞跃。以引进技术为借鉴,一种以数字技术为基础的电液控制系统控制汽轮机的愿望得以实现。数字式电液控制系统,简称DEH,它将现场的信号转化成数字信号,代替原有机械液压信号。通过计算机的运算,控制汽轮机的运行,使运行人员可以通过DEH来完成对汽轮机的控制和监视。 1.2调节保安系统 调节保安系统由调节系统和保安系统组成。调节系统是汽轮机控制的主要环节,全面控制汽轮机的启停、升速、带负荷及电厂的协调控制,采集各种汽轮机的运行信息,显示汽轮机的运行状态;保安系统是汽轮机保护的重要部分,它全方位监视汽轮机的各个危害安全运行的参数,保护汽轮机安全可靠的运行。 每个系统都是由电气部分和液压部分组成。 1.2.1调节系统 1.2.1.1电气部分 数字式电液控制系统(DEH)是电气部分中最主要组成部分,也是整个调节系统中的大脑,它把所有汽轮机的运行参数都收集起来,经过逻辑判断、数据计算处理,最后发出控制指令。DEH主要由操作站、工程师站、控制处理器、I/O输入输出模件、阀位驱动卡、电源组件、通讯接口等电子硬件组成。(图1-1、DEH 硬件配置图),由于电子产品生产厂家较多,使得DEH的硬件类型也较多,目前,已投入使用的DEH有西屋公司的WDPF II、FOXBORO公司的I/A’S,MOORE公司的APACS、ABB公司的INFI90、WOODWARD公司505等电子产品。 1.2.1.1.1电调控制系统(DEH)简述 DEH通过现场一次仪表的数据采集,如磁阻发送器采集汽轮机转速,压力开关采

风机变桨控制系统简介

风力发电机组变桨系统介绍

一.风力发电机组概述 双馈风机

1.风轮:风轮一般由叶片、轮毂、盖板、连接螺栓组件和导流罩组成。风轮是风力机最关 键的部件,是它把空气动力能转变成机械能。大多数风力机的风轮由三个叶片组成。 叶片材料有木质、铝合金、玻璃钢等。风轮在出厂前经过试装和静平衡试验,风轮的叶片不能互换,有的厂家叶片与轮毂之间有安装标记,组装时按标记固定叶片。 组装风轮时要注意叶片的旋转方向,一般都是顺时针。固定扭矩要符合说明书的要求。 风轮的工作原理:风轮产生的功率与空气的密度成正比﹑与风轮直径的平方成正比﹑与风速的立方成正比.风力发电机风轮的效率一般在0.35—0.45之间(理论上最大值为0.593)。贝兹(Betz)极限 2.发电机与齿轮箱 双馈异步发电机 变频同步发电机 同步发电机---风力发电机中很少采用(造价高﹑并网困难) (同步发电机在并网时必须要有同期检测装置来比较发电机侧和系统侧的 频率﹑电压﹑相位,对风力发电机进行调整,使发电机发出电能的频率与系 统一致;操作自动电压调压器将发电机电压调整到与系统电压相一致;同时, 微调风力机的转速,从周期检测盘上监视,使发电机的电压与与系统的电压 相位相吻合,就在频率﹑电压﹑相位同时一致的瞬间,合上断路器,将风力发 电机并入电网.) 永磁发电机---是一种将普通同步发电机的转子改变成永磁结构的发电机.组. 异步发电机---是异步电机处于发电状态,从其激励方式有电网电源励磁(他励)发电和并联电容自励(自励)发电两种情况.

电网电源励磁(他励)发电是将异步电机接到电网上, 电机内的定子绕组产 生以同步转速转动的旋转磁场,再用原动机拖动,使转子转速大于同步转速, 电网提供的磁力矩的方向必定与转速方向相反,而机械力矩的方向则与转 速方向相同,这时就将原动机的机械能转化为电能. 异步电机发出的有功 功率向电网输送,同时又消耗电网的有功功率作励磁,并供应定子与转子漏 磁所消耗的无功功率,因此异步发电机并网发电时,一般要求加无功补偿装 置,通常用并联电容补偿的方式. 异步发电机的起动﹑并网很方便,且便于自动控制﹑价格低﹑运行可靠﹑ 维修便利﹑运行效率也较高,因此在风力发电机并网机组基本上都是采用 异步发电机,而同步发电机则常用于独立运行. 3.偏航控制系统 风力机的偏航系统也称对风装置.其作用在于当风速矢量的方向变化时,能够快速平稳地对准风向,以便风轮获得最大的风能. 大中型风力机一般采用电动的偏航系统来调整风轮并使其对准风向. 偏航系统一般包括感应风向的风向标, 偏航电机, 偏航行星齿轮减速器,回转体大齿轮等. 解缆 大多数风机的发电机输出功率的同轴电缆在风力机偏航时一同旋转,为了防止偏航超出而引起的电缆旋转,应该设置解缆装置,并增加扭缆传感器以监视电缆的扭转状态. 4. 变桨控制系统 5. 变流器 6. 塔架

变桨系统维护

华锐风电科技有限公司 风力发电机组培训教材 变桨部分 1.变桨控制系统简介

变桨控制系统包括三个主要部件,驱动装置-电机,齿轮箱和变桨轴承。从额定功率起,通过控制系统将叶片以精细的变桨角度向顺桨方向转动,实现风机的功率控制。如果一个驱动器发生故障,另两个驱动器可以安全地使风机停机。 变桨控制系统是通过改变叶片迎角,实现功率变化来进行调节的。通过在叶片和轮毂之间安装的变桨驱动电机带动回转轴承转动从而改变叶片迎角,由此控制叶片的升力,以达到控制作用在风轮叶片上的扭矩和功率的目的。在90度迎角时是叶片的工作位置。在风力发电机组正常运行时,叶片向小迎角方向变化而达到限制功率。一般变桨角度范围为0~86度。采用变桨矩调节,风机的启动性好、刹车机构简单,叶片顺桨后风轮转速可以逐渐下降、额定点以前的功率输出 饱满、额定点以的输出功率平滑、风轮叶根承受的动、静载荷小。变

桨系统作为基本制动系统,可以在额定功率范围内对风机速度进行控制。 变桨控制系统有四个主要任务: 1. 通过调整叶片角把风机的电力速度控制在规定风速之上的一个恒定速度。 2. 当安全链被打开时,使用转子作为空气动力制动装置把叶子转回到羽状位置(安全运行)。 3. 调整叶片角以规定的最低风速从风中获得适当的电力。 4. 通过衰减风转交互作用引起的震动使风机上的机械载荷极小化。 2.变桨轴承

2.1安装位置 变桨轴承安装在轮毂上,通过外圈螺栓把紧。其内齿圈与变桨驱动装置啮合运动,并与叶片联接 2.2工作原理 当风向发生变化时,通过变桨驱动电机带动变桨轴承转动从而改变叶片对风向地迎角,使叶片保持最佳的迎风状态,由此控制叶片的 升力,以达到控制作用在叶片上的扭矩和功率的目的。

汽轮机数字电液控制系统(DEH)复习要点(精编版)

汽轮机数字电液控制系统(DEH)复习要点(精编版) 第一章 1、汽轮机调节系统经历的阶段:机械液压调节系统MHC、电气液压调节系统AHC、模拟电液调节系统AEH、数字电液控制系统DEH。 2、一个完善的汽轮机控制系统包括:监视系统、保护系统、控制系统、热应力在线监视系统、汽轮机自启停控制系统、液压伺服系统。 3、一次调频:在电网负荷变化以后,机组按其静态特性曲线改变自己的实发功率,以减小电网频率波动的幅度,从而达到新的平衡,并且将电网频率的变化限制在一定的限度之内。二次调频:在机组并网运行时,通过改变负荷目标值可以改变汽轮机的功率使各台机组承担给定负荷,调整电网频率以维持电网周波稳定。区别:①一次调频是按并列运行机组的静态特性自动分配负荷,快速,有差,存在于电网周波变动的动态过程之中。而二次调频要靠同步器人为地进行;手动,慢,无差,从时间上看是始终存在的。②并列运行的机组通常都参与一次调频,但一次调频通常不能保持电网周波不变而只能减小周波变化的程度。③一次调频可以认为是暂态的。即当电网负荷变化后,二次调频来不及立即保证电网有功功率的供求平衡,暂时由一次调频来维持电网周波不致有过大变化而造成严重后果,当二次调频使周波恢复正常后,一次调频作用便消失。 4、中间再热机组的调节特点:①中低压缸功率滞后:负荷变化时,由于中低压缸功率的滞后,降低了一次调频能力,可以采用高压气门动态过开来补偿;②甩负荷是超速:甩负荷时,为防止再热器蓄汽量使汽轮机超速,应同时关闭高中压汽门;③机炉动态特性不同,机快炉慢:采用协调控制;④只能单元制运行:旁路系统解决机炉流量不匹配的问题。 第二章 1、DEH系统运行方式:二级手动、一级手动、操作员自动、汽轮机自动。 2、根据再热汽轮机DEH系统的调节原理图说明①特点:转速回路:实现一次调频功能,切除转速回路后,限制一次调频的能力;功率回路:保证了输出严格等于给定值,细调。调节过程慢,具有对外扰迅速响应的能力;调压回路:促进控制过程的快速性,受扰时反应较快,不能使功率严格等于给定值,起粗调作用,具有对内外扰迅速响应的能力。②如何抗内扰:DEH在抗内扰是,例如主汽参数降低,则输出功率下降,由于功率给定与功率反馈输出正偏差,要求调节汽阀开大,使输出功率等于功率给定值,系统达到平衡,因此,系统具有很强的抗内扰能力。内外回路均具有抗内扰能力。③如何实现高调门动态过开:通过PI1调节器实现过调,当外界负荷变化时,由于中低压缸的功率滞后。调节器的输入偏差不为零,则不断地发出开阀信号,是高调门动态过开,直至偏差为零。 3、负荷控制阶段调节汽阀自动方式:操作员自动控制方式OA(在该方式下,系统接受操作员输入的目标负荷及其速率,并进行控制)、遥控方式REMOTE(在该方式下,系统接受协调控制CCS或负荷调度中心ADS输入的目标负荷及其速率,并进行控制)、自动汽轮机控制方式ATC(计算机按照预定程序自动给出转速和负荷目标值和其变化率)、电厂计算机控制方式PLANT COMP、电厂限制控制方式。 4主汽压力控制方式TPL:该方式在主汽压力下降时限制汽轮机的负荷,避免锅炉汽压急剧下降。外部负荷返回控制方式RB:该方式主要是考虑辅机故障。如:在给水泵和风机跳闸的情况下,系统将以一定的速率去关小调节汽阀,知道故障消除为止。 5、反调现象及消除:甩负荷时进汽阀在关闭过程中还有蒸汽进入汽轮机,这些剩余蒸汽的热能将全部变为动能,使机组仍有超速的危险。若功率给定未同时切除,在该情况下,转速

变桨系统

风力发电变桨系统 摘要:变桨系统是风力发电机的重要组成部分,本文围绕风力发电机变桨系统的构成、作用、控制逻辑、保护种类和常见故障分析等进行论述。 关键词:变桨系统;构成;作用;保护种类;故障分析 1 综述 变桨系统的所有部件都安装在轮毂上。风机正常运行时所有部件都随轮毂以一定的速度旋转。 变桨系统通过控制叶片的角度来控制风轮的转速,进而控制风机的输出功率,并能够通过空气动力制动的方式使风机安全停机。 风机的叶片(根部)通过变桨轴承与轮毂相连,每个叶片都要有自己的相对独立的电控同步的变桨驱动系统。变桨驱动系统通过一个小齿轮与变桨轴承内齿啮合联动。 风机正常运行期间,当风速超过机组额定风速时(风速在12m/s到25m/s之间时),为了控制功率输出变桨角度限定在0度到30度之间(变桨角度根据风速的变化进行自动调整),通过控制叶片的角度使风轮的转速保持恒定。任何情况引起的停机都会使叶片顺桨到90度位置(执行紧急顺桨命令时叶片会顺桨到91度限位位置)。 变桨系统有时需要由备用电池供电进行变桨操作(比如变桨系统的主电源供电失效后),因此变桨系统必须配备备用电池以确保机组发生严重故障或重大事故的情况下可以安全停机(叶片顺桨到91度限位位置)。此外还需要一个冗余限位开关(用于95度限位),在主限位开关(用于91度限位)失效时确保变桨电机的安全制动。 由于机组故障或其他原因而导致备用电源长期没有使用时,风机主控就需要检查备用电池的状态和备用电池供电变桨操作功能的正常性。 每个变桨驱动系统都配有一个绝对值编码器安装在电机的非驱动端(电机尾部),还配有一个冗余的绝对值编码器安装在叶片根部变桨轴承内齿旁,它通过一个小齿轮与变桨轴承内齿啮合联动记录变桨角度。 风机主控接收所有编码器的信号,而变桨系统只应用电机尾部编码器的信号,只有当电机尾部编码器失效时风机主控才会控制变桨系统应用冗余编码器的信号。 2 变浆系统的作用 根据风速的大小自动进行调整叶片与风向之间的夹角实现风轮对风力发电机有一个恒定转速;利用空气动力学原理可以使桨叶顺浆90°与风向平行,使风机停机。 3 主要部件组成

数字电液控制系统

临沂发电厂5#机组控制工程 数字电液控制系统(D E H)设计及操作使用说明 上海汽轮机有限公司 2003.1

临沂电厂5#机DEH设计及操作使用说明书 临沂电厂5#机DEH控制系统为纯电调系统,采用FOXBORO公司I/A 硬件,液压部分为高压抗燃油,调节汽阀直接由DEH通过电液转换器进行控制。 DEH控制系统具有下列功能: ·转速控制 ·超速保护控制 · ATC控制 ·自动同期控制 ·功率控制 ·遥控控制功能 ·阀位限制 ·主汽压力低限制 ·遥控主汽压力低限制 ·高负荷限制 ·抽汽控制 ·一次调频 ·手动控制 一. 工作原理 DEH控制系统主要由两部分组成 ·DEH控制柜 ·液压系统 DEH控制柜接受现场输入如OPS(转速),MW(功率),TP(主汽压力)等信号,及运行人员通过CRT发出的指令,经过内部计算,送出GVSPT1-4,IVSPT1-2(调门控制信号),OPCO(电超速信号)等信号去控制电液转换器,电磁阀等现场设备,再通过液压执行机构—油动机,去控制各蒸汽阀门。 DEH控制信号详见输入输出I/O清单,液压系统、DEH控制柜详见控制逻辑图及传递图。 二.DEH的控制方式: 1.操作画面简介

正常运行时可以不使用键盘,用鼠标直接对CRT画面上的按键进行操作,供操作员监视操作的画面共有十三幅: ·总画面显示图 ·主操作画面(主控画面) ·轴承回油温度和轴振显示画面 ·热力分布画面 ·手操画面 ·模拟量IO画面(3福) ·数字量IO画面(2幅) ·趋势图Trend ·画面可以通过画面主菜单调用,也可在画面之间相互切换。 另外还有其它的试验画面。 2.控制方式简介 DEH有四种控制方式: ·手动控制方式(TM) ·自动控制方式(OA) ·ATC控制方式(ATC) ·遥控控制方式(ADS) ·同期控制方式(AS) 在自动控制方式下,可投入如下几种限制模式: ·主汽压力限制(TPL) ·遥控主汽压力限制(RTPL) ·阀门限制(VPL) ·高负荷限制(HLL) 手动控制方式时运行人员通过手操面板上的手动增减按键直接改变DEH输出(转速或负荷),是一种开环的控制方式;自动控制方式则通过CRT画面操作,改变转速/负荷设定值,对DEH输出进行闭环控制。各个方式相互切换均无扰动出现。 三.DEH控制及操作说明 自动控制方式(OA) 运行人员通过按手操面板上的复位按钮,进行复位。汽机复置后,主控画面上会显示“已挂闸”。 点击主控画面左上方的控制方式按钮,会弹出控制方式子画面,这时可选择采用何种控制方式。点击自动按钮,并在3秒内点击投入

变桨试题

GW1500风力机组变桨系统培训试题(2月份) 姓名:成绩: 一、填空题(每题3分,共30分) 1、变桨系统所具有的功能、、。 2、变桨控制方式有、、三种。 3、变桨电容单组的容量为F,单组电压为V,变桨柜中电容总容量为F,总存储 的能量为KJ,变桨柜中电容的连接方式为。 4、变桨电机的额定电压V,额定电流为A最大转矩为Nm。 5、变桨柜的开关电源的额定输入电压为V,额定输出电压为V,额定输出电 流为A。 6、变桨逆变器的输入电压为_ V,最大输出电流为A。 7、变桨系统包括、、、。 8、经过滑环的三组线分别为、、。 9、变桨系统的三个子站分别是、、子站 10、金风77-1500KW风机采用(电动、液压)变桨 二、判断题(每题2分,共10分) 1、变桨控制柜主电路采用交流--直流--交流回路。() 2、逆变器为变桨电机供电。() 3、当来自滑环的电网电压掉电时,备用电源直接给变桨控制系统供电,仍可保证整套变桨电控系统正常工作。() 4、机舱控制柜到变桨的系统的安全链的线是不带屏蔽层的。() 5、由机舱控制柜到变桨系统的电源线的电压为230伏直流。() 三、不定项选择题(每题4分,共40分) 1、变桨系统包括的机械结构有() A、皮带 B、皮带轮 C、变桨驱动 D、叶片 2、通过滑环的线路有() A、400伏电源线 B、dp通讯线 C、安全链的线 D、24伏电源线 3、变桨控制系统中超级电容的优点有() A、寿命长。 B、无须维护。 C、体积小,重量轻等优点。 D、充电时产生的热量少。 4、下列哪些是变桨电机的参数() A、额定电流:125A

B、额定功率因数:0.89 C、绝缘等级:F D、转动惯量:0.0148kgm2,防护等级:IP54 5、下列哪些元件属于变桨控制系统() A、开关电源(NG5) B、变桨变频器(AC2) C、BK3150 D、超级电容 6、下列哪些是开关电源NG5的优点() A、效率高; B、体积小; C、充电时间短; D、充电不受交流电源变化的约束 7、下面哪些操作属于变桨系统的控制方式() A、自动变桨 B、手动变桨 C、强制手动变桨 D、机舱维护手柄变桨 8、机舱维护手柄变桨的范围为() A、0--90 B、57--87 C、5--87 D、-2--95 9、手动变桨的范围为(C) A、0--90 B、57--87 C、5--87 D、-2--95 10、下列哪些故障是变桨系统的故障() A、叶片位置比较故障 B、频率超高 C、电网功率超限 D、变桨变频器OK信号丢失故障 四、简答题(每题10分,共20分) 1、简述变桨超级电容的优点。 2、简述变桨控制柜内主要的元器件(要求至少6种)。

1.5MW风力发电机组变浆系统培训教材

1.5MW风力发电机组 变浆系统培训教材

国电联合动力技术有限公司 (内部资料严禁外泄) 1.概述 风轮:风轮一般由叶片、轮毂、盖板、连接螺栓组件和导流罩组成。风轮是风力机最关键的部件,是它把空气动力能转变成机械能。大多数风力机的风轮由三个叶片组成。叶片材料有木质、铝合金、玻璃钢等。风轮在出厂前经过试装和静平衡试验,风轮的叶片不能互换,有的厂家叶片与轮毂之间有安装标记,组装时按标记固定叶片。组装风轮时要注意叶片的旋转方向,一般都是顺时针。固定扭矩要符合说明书的要求。 风轮的工作原理:风轮产生的功率与空气的密度成正比。风轮产生的功率与风轮直径的平方成正比;风轮产生的功率与风速的立方成正比;风轮产生的功率与风轮的效率成正比。风力发电机风轮的效率一般在0.35—0.45之间(理论上最大值为0.593)。贝兹(Betz)极限 风机四种不同的控制方式: 1.定速定浆距控制(Fixed speed stall regulated) 发电机直接连到恒定频率的电网,在发电时不进行空气动力学控制 2.定速变浆距控制(Fixed speed pitch regulated) 发电机直接连到恒定频率的电网,在大风时浆距控制用于调节功率 3.变速定浆距控制(Variable speed stall regulated) 变频器将发电机和电网去耦(decouples),允许转子速度通过控制发电机的反

力矩改变.在大风时,减慢转子直到空气动力学失速限制功率到期望的水平. 4.变速变浆距控制(Variable speed pitch regulated) 变频器将发电机和电网去耦(decouples), 允许通过控制发电机的反力矩改变转子速度.在大风时,保持力矩, 浆距控制用于调节功率. 双馈风机

相关主题
文本预览
相关文档 最新文档