当前位置:文档之家› 下肢外骨骼康复机器人的动力学建模及神经网络辨识仿真

下肢外骨骼康复机器人的动力学建模及神经网络辨识仿真

下肢外骨骼康复机器人的动力学建模及神经网络辨识仿真
下肢外骨骼康复机器人的动力学建模及神经网络辨识仿真

下肢外骨骼康复机器人的动力学建模及神经网络辨识仿真

作者:陈贵亮, 李长鹏, 赵月, 刘更谦, CHEN Gui-liang, LI Chang-peng, ZHAO Yue, LIU Geng-qian 作者单位:河北工业大学机械学院,天津,300130

刊名:

机械设计与制造

英文刊名:Machinery Design & Manufacture

年,卷(期):2013(11)

本文链接:https://www.doczj.com/doc/2016145899.html,/Periodical_jxsjyzz201311059.aspx

02-课件:5-4 机器人动力学建模(牛顿-欧拉法)

连杆动力学方程(牛顿-欧拉递推方法) 将机器人的连杆看成刚体,其质心加速度、总质量、角速度、 角加速度、惯性 张量与作用力矩满足如下关系: 牛顿第二定律 (力平衡方程) ()/ci i ci i ci d m dt m ==f v v 欧拉方程 (力矩平衡方程)()()/c c c ci i i i i d dt ==+?i i i n I ωI ω ωI ω

连杆动力学方程(牛顿-欧拉递推方法)

欧拉方程公式推导 v 为质心移动速度(移动时与惯性力相关)坐标系旋转时,惯性张量不是常量()()/c c c ci i i i i d dt ==+?i i i n I ωI ωωI ω ()() =[()] =[] =()c c c ci i i i c c i i i c c i i i c c i i i d d dt dt S ==+++?+?i i i i i i i i i n I ωI ωωI I ωωωI I ωωωI I ωωI ω ()()g d m dt =?+??+N I ωωI ωρ×v

力和力矩平衡方程 i i+1i-1iP i+1i fi i n i i f i+1i n i+1连杆i 在运动情况下,作用在上面 的合力为零,得力平衡方程式 (暂时不考虑重力): (将惯性力作为静力来考虑) 1 11f f R f +++=-i i i i ci i i i

力和力矩平衡方程 作用在连杆i 上的合力矩等于零,得力矩平衡方程式:1111111i i i i i i i i i ci i i i ci ci i i i +++++++=- -?-?n n R n r f P R f 将上式写成从末端连杆向内迭代的形式:111i i i i i i i ci +++=+f R f f 1111111i i i i i i i i i i i i ci ci ci i i i +++++++=++?+?n R n n r f P R f 利用这些公式可以从末端连杆n 开始,顺次向内递推直至到操作臂的基座。

工业机器人静力及动力学分析

注:1)2008年春季讲课用;2)带下划线的黑体字为板书内容;3)公式及带波浪线的部分为必讲内容第3章工业机器人静力学及动力学分析 3.1 引言 在第2章中,我们只讨论了工业机器人的位移关系,还未涉及到力、速度、加速度。由理论力学的知识我们知道,动力学研究的是物体的运动和受力之间的关系。要对工业机器人进行合理的设计与性能分析,在使用中实现动态性能良好的实时控制,就需要对工业机器人的动力学进行分析。在本章中,我们将介绍工业机器人在实际作业中遇到的静力学和动力学问题,为以后“工业机器人控制”等章的学习打下一个基础。 在后面的叙述中,我们所说的力或力矩都是“广义的”,包括力和力矩。 工业机器人作业时,在工业机器人与环境之间存在着相互作用力。外界对手部(或末端操作器)的作用力将导致各关节产生相应的作用力。假定工业机器人各关节“锁住”,关节的“锁定用”力与外界环境施加给手部的作用力取得静力学平衡。工业机器人静力学就是分析手部上的作用力与各关节“锁定用”力之间的平衡关系,从而根据外界环境在手部上的作用力求出各关节的“锁定用”力,或者根据已知的关节驱动力求解出手部的输出力。 关节的驱动力与手部施加的力之间的关系是工业机器人操作臂力控制的基础,也是利用达朗贝尔原理解决工业机器人动力学问题的基础。 工业机器人动力学问题有两类:(1)动力学正问题——已知关节的驱动力,求工业机器人系统相应的运动参数,包括关节位移、速度和加速度。(2)动力学逆问题——已知运动轨迹点上的关节位移、速度和加速度,求出相应的关节力矩。 研究工业机器人动力学的目的是多方面的。动力学正问题对工业机器人运动仿真是非常有用的。动力学逆问题对实现工业机器人实时控制是相当有用的。利用动力学模型,实现最优控制,以期达到良好的动态性能和最优指标。 工业机器人动力学模型主要用于工业机器人的设计和离线编程。在设计中需根据连杆质量、运动学和动力学参数,传动机构特征和负载大小进行动态仿真,对其性能进行分析,从而决定工业机器人的结构参数和传动方案,验算设计方案的合理性和可行性。在离线编程时,为了估计工业机器人高速运动引起的动载荷和路径偏差,要进行路径控制仿真和动态模型的仿真。这些都必须以工业机器人动力学模型为基础。 工业机器人是一个非线性的复杂的动力学系统。动力学问题的求解比较困难,而且需要较长的运算时间。因此,简化求解过程,最大限度地减少工业机器人动力学在线计算的时间是一个受到关注的研究课题。 在这一章里,我们将首先讨论与工业机器人速度和静力学有关的雅可比矩阵,然后介绍工业机器人的静力学问题和动力学问题。

机器人系统常用仿真软件介绍

1 主要介绍以下七种仿真平台(侧重移动机器人仿真而非机械臂等工业机器人仿真): 1.1 USARSim-Unified System for Automation and Robot Simulation USARSim是一个基于虚拟竞技场引擎设计高保真多机器人环境仿真平台。主要针对地面机器人,可以被用于研究和教学,除此之外,USARSim是RoboCup救援虚拟机器人竞赛和虚拟制造自动化竞赛的基础平台。使用开放动力学引擎ODE(Open Dynamics Engine),支持三维的渲染和物理模拟,较高可配置性和可扩展性,与Player兼容,采用分层控制系统,开放接口结构模拟功能和工具框架模块。机器人控制可以通过虚拟脚本编程或网络连接使用UDP协议实现。被广泛应用于机器人仿真、训练军队新兵、消防及搜寻和营救任务的研究。机器人和环境可以通过第三方软件进行生成。软件遵循免费GPL条款,多平台支持可以安装并运行在Linux、Windows和MacOS操作系统上。 1.2 Simbad Simbad是基于Java3D的用于科研和教育目的多机器人仿真平台。主要专注于研究人员和编程人员热衷的多机器人系统中人工智能、机器学习和更多通用的人工智能算法一些简单的基本问题。它拥有可编程机器人控制器,可定制环境和自定义配置传感器模块等功能,采用3D虚拟传感技术,支持单或多机器人仿真,提供神经网络和进化算法等工具箱。软件开发容易,开源,基于GNU协议,不支持物理计算,可以运行在任何支持包含Java3D库的Java客户端系统上。 1.3 Webots Webots是一个具备建模、编程和仿真移动机器人开发平台,主要用于地面机器人仿真。用户可以在一个共享的环境中设计多种复杂的异构机器人,可以自定义环境大小,环境中所有物体的属性包括形状、颜色、文字、质量、功能等也都可由用户来进行自由配置,它使用ODE检测物体碰撞和模拟刚性结构的动力学特性,可以精确的模拟物体速度、惯性和摩擦力等物理属性。每个机器人可以装配大量可供选择的仿真传感器和驱动器,机器人的控制器可以通过内部集成化开发环境或者第三方开发环境进行编程,控制器程序可以用C,C++等编写,机器人每个行为都可以在真实世界中测试。支持大量机器人模型如khepera、pioneer2、aibo等,也可以导入自己定义的机器人。全球有超过750个高校和研究中心使用该仿真软件,但需要付费,支持各主流操作系统包括Linux, Windows和MacOS。 1.4 MRDS-Microsoft Robotics Developer Studio MRDS是微软开发的一款基于Windows环境、网络化、基于服务框架结构的机器人控制仿真平台,使用PhysX物理引擎,是目前保真度最高的仿真引擎之一,主要针对学术、爱好者和商业开发,支持大量的机器人软硬件。MRDS是基于实时并发协调同步CCR(Concurrency and Coordination Runtime)和分布式软件服务DSS(Decentralized Software Services),进行异步并行任务管理并允许多种服务协调管理获得复杂的行为,提供可视化编程语言(VPL)和可视化仿真环境(VSE)。支持主流的商业机器人,主要编程语言为C#,非商业应用免费,但只支持在Windows操作系统下进行开发。 1.5 PSG-Player/Stage/Gazebo

外骨骼助力机器人研究

外骨骼助力机器人研究现状与关键技术 分析 王庆江 深圳第二高级技工学校广东深圳 518000 摘要:运用比较传统的运载方法以及在工具受到多方面因素的制约,在比较复杂的地形条件之下,传统运载工具不能够很好的工作,而外骨骼助力机器人有效地解决了这个问题,是一个非常明显的突破。因此,在当前世界各地,外骨骼助力机器人的研究有着非常好的前景。本文从不同方面分析外骨骼助力机器人的发展状况,主要分析了外骨骼助力机器人所涉及到的关键技术,并且作出深入的研究。 关键词:外骨骼助力机器人;研究现状;关键技术外骨骼助力机器人是一种全新的现代化装置,这种机器人融合多种信息,控制系统传感系统集于一身,并且为穿戴人员控制好功能和任务。外骨骼助力机器人是一种前沿技术装备,受到多方的关注并且取得了突出的效果。在我国,外骨骼助力机器人研究借鉴先进技术,并且不断地创新,主要研究外骨骼助力机器人在我国国内的发展现状以及其关键技术分析。 1.在国内外,外骨骼助力机器人的研究现状分析 随着时代的进步以及科技的不断发展,最新型的材料和技术充分应用在外骨骼助力机器人的发明上,促使外骨骼助

力机器人得到很好的发展。在一些发达国家,对外骨骼助力机器人进行改良,并且不断创新,经过努力,在我国国内对于外骨骼助力机器人的发明和创新也取得了很明显的成效。下面将归纳分析目前为止国内外外骨骼助力机器人的研究状况。 1.1国外对于外骨骼助力机器人的研究状况分析 表1 国外对于外骨骼助力机器人的研究表 1.2我国国内对于外骨骼助力机器人的研究状况分析 表2 国内对于外骨骼助力机器人的研究表 2.外骨骼助力机器人关键技术分析 2.1驱动技术 2.1.1液压驱动 通过运用液压驱动能够在很大程度上帮助外骨骼助力

人体下肢外骨骼机器人的步态研究现状

人体下肢外骨骼机器人的步态研究现状 王楠,王建华,周民伟 外骨骼(exoskeleton )一词来源于生物学,是指为生物提供保护和支持的坚硬的外部结构[1],如甲壳类和昆虫等节肢动物的外骨骼系统。人体外 骨骼机器人是将人的智慧与机器的机械动力装置结合为一体的机器人[2]。美国于2000年开展了“增强人体机能的外骨骼”(Exoskeletons for Human Performance Augmentation ,EHPA )研究项目[3-4],自此,外骨骼机器人的开发与应用逐渐进入 人们的视线,成为关注的焦点。由于外骨骼机器人不仅为操作者提供了诸如保护、身体支撑等功能,还能在操作者的控制下完成一定的功能和任务,因此在下肢功能障碍患者的步行功能锻炼过程中的应用逐渐增多[5-7];此外,其在单兵作战装备 【摘要】外骨骼机器人是将人的智慧与机器的机械动力装置相结合的一种机器人,不仅可以为操作者提供保护、身体支撑等功能,还可以在操作者的控制下完成一定的功能和任务,应用前景巨大。文中阐述人体下肢外骨骼机器人下肢外骨骼实现行走应具备的关节及其活动度,介绍下肢外骨骼机器人步态控制的基础——正常步态分析,详细论述了目前控制下肢外骨骼机器人行走及步态稳定性的主要方法。 【关键词】下肢;机器人;外骨骼;步态 中图分类号:R-05,R336文献标识码:A 文章编号:1674-666X(2012)01-0062-06 Current researches of gait analysis on human lower extremity exoskeleton robotic device WANG Nan,WANG Jianhua,ZHOU Minwei.Department of Overseas Chinese,Guangzhou General Hospital of Guangzhou Military Command,Guangdong 510010,China 【Abstract 】Exoskeleton robotic device is a kind of robot that combines the intelligence of human with the mechanical power of machine,which can not only provide protection and support for operators but also accomplish certain functions and missions under the control of operators.In this paper,relative key factors of lower extremity exoskeleton robotic device techniques are introduced briefly such as the joints and the range of motion (ROM)which the lower extremity exoskeleton should be equipped,the normal gait analysis which is the basis of gait control of the exoskeleton robot,and then the major walking control methods and gait stability control methods for lower extremity exoskeleton robotic device which are discussed in detail. 【Key words 】Extremities;Robotics;Exoskeleton;Gait DOI :10.3969/j.issn.1674-666X.2012.01.010 基金项目:广东省科技计划项目(2010B010800006),广州市科技计划项目(2010J-E311) 作者单位:510010广州军区广州总医院华侨科(王楠);脊柱外科(王建华);医务部(周民伟)E-mail :115989930@https://www.doczj.com/doc/2016145899.html, 综述

简单串联机器人ADAMS仿真

机械系统动力学 简化串联机器人的运动学与动力学仿真分析 学院:机械工程学院 专业:机械设计制造 及其自动化 学生姓名: 学号: 指导教师: 完成日期: 2015.01.09

摘要 在机器人研究中,串联机器人研究得较为成熟,其具有结构简单、成本低、控制简单、运动空间大等优点,已成功应用于很多领域。本文在ADAMS 中用连杆模拟两自由度的串联机器人(机械臂),对其分别进行运动学分析、动力学分析。得出该机构在给出工作条件下的位移、速度、加速度曲线和关节末端的运动轨迹。 关键词:机器人;ADAMS;曲线;轨迹 一、ADAMS软件简介 ADAMS,即机械系统动力学自动分析(Automatic Dynamic Analysis of Mechanical Systems),该软件是美国MDI公司(Mechanical Dynamics Inc.) (现已并入美国MSC公司)开发的虚拟样机分析软件。目前,ADAMS已经被全世界各行各业的数百家主要制造商采用。ADAMS软件使用交互式图形环境和零件库、约束库、力库,创建完全参数化的机械系统几何模型,其求解器采用多刚体系统动力学理论中的拉格朗日方程方法,建立系统动力学方程,对虚拟机械系统进行静力学、运动学和动力学分析,输出位移、速度、加速度和反作用力曲线。ADAMS软件的仿真可用于预测机械系统的性能、运动范围、碰撞检测、峰值载荷以及计算有限元的输入载荷等。 二、简化串联机器人的运动学仿真 (1)启动ADAMS/View。 在欢迎对话框中选择新建模型,模型取名为robot,并将单位设置为MMKS,然后单击OK。 (2)打开坐标系窗口。 按下F4键,或者单击菜单【View】→【Coordinate Window】后,打开坐标系窗口。当鼠标在图形区移动时,在坐标窗口中显示了当前鼠标所在位置的坐标值。

外骨骼机器人发展

外骨骼技术研制始于1960 年代的美国,最早的研究成果是美国通用公司研发的Hardiman 外骨骼系统,其主要采用电机驱动控制,可以轻易举起重物。 1978 年,美国麻省理工学院研究出“被动式外骨骼助力机器人”。MIT的外骨骼下肢助力机器人能够在负载36公斤的情况下行走1m/s,其中80%的负重被传递到地面上。它的关节自由度配置包括髋关节有3 个自由度,膝关节 1 个自由度。穿戴者与机器人在肩膀、腕关节、大腿和脚部连接,机器人总重量是11.7Kg。驱动方式不采用电力驱动,只利用弹簧储能和变阻尼器驱动关节驱动。髋关节伸/屈运动时,伸运动时弹簧释放能量,屈运动时弹簧储存能量,膝关节利用磁流变阻尼器,踝关节利用碳纤维弹簧缓冲脚后跟对地面的冲力。传感器系统是由安装在外骨骼下肢助力机器人外壳的应变桥式应变片传感器和安装在膝关

节的电位计组成。 2004年,伯克利分校研制出的下肢外骨骼机器人BLEEX是DARPA项目的第一台带移动电源和能够负重的下肢外骨骼机器人。BLEEX由--个用于负重的背包式外架、两条动力驱动的仿生金属腿及相应动力设备组成,使用背包中的液压传动系统和箱式微型空速传感仪作为液压泵的能量来源,以全面增强人体机能。BLEEX的每条腿具有7个自由度(髋关节3个,膝关节1个,踝关节3个),在该装置中总共有40多个传感器以及液压驱动器,它们组成了一个类似人类神经系统的局域网。BLEEX的负重量能达至75kg,并以0.9m/s的速度行走,在没有负重的情况下,能以1.3m/s的速度行走。

目前,洛克希德·马丁公司和伯克利分校共同研制了新一代外骨骼机器人HULC 。这款新型外骨骼继承了BLEEX 的优点,对一些液压传动装置和结构进行了优化设计,不但能够直立行进,还可完成下蹲和匍匐等多种相对复杂的动作,穿上HULC 后能够明显降低人体对氧气的消耗量。在一次充满电后,HULC 可保证穿着者以4.8km /h 的速度背负90kg 重物持续行进一个小时。而穿着HULC 的冲刺速度则可达到16km /h 。HULC 穿戴起来也非常方便,士兵只需将腿伸进靴子下方的足床,然后用皮带绑住腿部、腰部以及肩部即可,完全脱下需30秒的时间。

机器人机械臂运动学分析(仅供借鉴)

平面二自由度机械臂动力学分析 [摘要] 机器臂是一个非线性的复杂动力学系统。动力学问题的求解比较困难,而且需要较长的运算时间,因此,这里主要对平面二自由度机械臂进行动力学研究。本文采用拉格朗日方程在多刚体系统动力学的应用方法分析平面二自由度机械臂的正向动力学。经过研究得出平面二自由度机械臂的动力学方程,为后续更深入研究做铺垫。 [关键字] 平面二自由度 一、介绍 机器人是一个非线性的复杂动力学系统。动力学问题的求解比较困难,而且需要较长的运算时间,因此,简化解的过程,最大限度地减少工业机器人动力学在线计算的时间是一个受到关注的研究课题。 机器人动力学问题有两类: (1) 给出已知的轨迹点上的,即机器人关节位置、速度和加速度,求相应的关节力矩向量Q r。这对实现机器人动态控制是相当有用的。 (2) 已知关节驱动力矩,求机器人系统相应的各瞬时的运动。也就是说,给出关节力矩向量τ,求机器人所产生的运动。这对模拟机器人的运动是非常有用的。 二、二自由度机器臂动力学方程的推导过程 机器人是结构复杂的连杆系统,一般采用齐次变换的方法,用拉格朗日方程建立其系统动力学方程,对其位姿和运动状态进行描述。机器人动力学方程的具体推导过程如下: (1) 选取坐标系,选定完全而且独立的广义关节变量θr ,r=1, 2,…, n。 (2) 选定相应关节上的广义力F r:当θr是位移变量时,F r为力;当θr是角度变量时, F r为力矩。 (3) 求出机器人各构件的动能和势能,构造拉格朗日函数。 (4) 代入拉格朗日方程求得机器人系统的动力学方程。 下面以图1所示说明机器人二自由度机械臂动力学方程的推导过程。

下肢外骨骼康复机器人设计及运动学分析

下肢外骨骼康复机器人设计及运动学分析 发表时间:2017-03-16T14:57:02.420Z 来源:《科技中国》2017年1期作者:王子鸣[导读] 本文对该机构进行了运动学分析,并使用MATLAB对机构进行了轨迹规划仿真。 (宜昌市葛洲坝中学湖北宜昌 443002) 摘要:下肢运动功能障碍患者为数众多,常规的康复训练高度依赖理疗师,成本昂贵,常人难以承受。下肢外骨骼康复机器人能有效解决这一社会问题。本文设计了一个单腿两自由度主动驱动的下肢外骨骼康复机器人。采用两个直线驱动器分别驱动髋关节和膝关节的运动,直线驱动器末端安装有力传感器,通过时时检测人-机作用力实现机器人的柔顺控制。本文对该机构进行了运动学分析,并使用MATLAB对机构进行了轨迹规划仿真。仿真结果表明该下肢外骨骼康复机器人具备辅助病人的能力。关键词:下肢外骨骼,柔顺控制,轨迹规划 0 引言 随着人口老龄化的发展,脑卒中,骨关节炎等老龄化疾病患者数量逐渐增加。这类患者往往患有各种致残的疾病,丧失正常的运动能力[1]。在这样的时代背景下,未来社会对康复医疗的需求将越来越迫切。下肢外骨骼机器人将为解决这一社会问题发挥重要的作用。 近年来,国内外众多研究机构对康复机器人开展了深入的研究。在台架式下肢外骨骼康复机器人研究方面,瑞士HOCOMA公司和瑞士苏黎世联邦理工大学共同研制的Lokomat外骨骼康复机器人,它髋关节和膝关节各采用一个直线电机进行驱动,单腿具有两个自由度,双腿四个自由度。该机器人在轨迹控制的基础上采用了阻抗控制的方式,具有很好的实用性和用户体验[2-4]。哥伦比亚大学研发的ALEX,除了单腿的四个自由度之外,骨盆上还具有四个自由度,机器人总共具有十二个自由度,它将电机放在下肢外骨骼后方,采用带轮等实现电机远端驱动,有效地降低了机器人运动部件的惯量,该机器人采取将切向力和法向力作用在患者的踝关节的方式,切向力帮助患者按照轨迹移动,法向力用于调整踝关节轨迹的法向运动阻碍[5]。荷兰屯特大学研发的LOPES,该机器人采用绳驱动的方式,单腿有四个自由度,除了髋关节和膝关节在矢状面上的各一个旋转自由度外,还增加了骨盆的移动和髋关节的内收外展运动。该机器人同时具有两种不同的控制模式,分别为机器人主动和患者主动,充分考虑到了不同人的行走能力,能根据患者的实际需要提供必要的辅助[6]. 瑞士洛桑理工大学研制的WalkTrainer,它髋关节,膝关节,踝关节各一个自由度,单腿具有3个自由度,同时骨盆具有6个自由度,机器人总共有12个自由度。该机器人采用了肌肉电刺激的物理疗法,同时通过腿部外骨骼上的力传感器,实现了人-机的闭环控制[7]。国内上海璟和研制的Flexbot机器人实现了多体位的康复训练,病情严重的病人在康复训练初期可以躺着进行康复训练,待恢复得较好时,可以选择站立式训练[8]。 此外,在独立式下肢康复外骨骼方面,以色列的Rewalk[9], 美国的EKSO[10],日本的HAL[11]等都是下肢康复机器人中的杰出代表。国内的电子科技大学研制的外骨骼机器人[12],北航研制的“大艾’外骨骼机器人[13]也取得了可喜的成绩。 与传统的工业机器人相比,康复机器人的一个突出特点是与人的交互十分频繁。安全性,舒适性,以及适应各种不同的工作环境是康复机器人需要考虑的重要问题。相反,工业机器人所需的高精度,高速度等特性在这里要求并不高。因此,设计出具有柔顺性的下肢外骨骼康复机器人具有重要的意义。 本文将就设计出一套下肢外骨骼康复机器人展开论述。首先,将根据人体下肢结构进行机器人的机械机构设计,接着进行机构的运动学分析,并使用MATLAB软件对该机构进行仿真。仿真结果表明该机器人具有协助病人进行康复运动训练的能力。 1 机构模型 1.1机构模型设计 人体结构模型是设计下肢外骨骼康复机器人基础。因此,我们先对人体下肢进行分析。人体下肢主要有三个关节,分别是髋关节,膝关节,踝关节。髋关节主要有髋臼和股骨组成,在运动时,股骨绕着髋臼运动,是一个球窝关节。膝关节连接了股骨和胫骨,踝关节主要由胫骨和腓骨下端的关节面与距骨滑车构成[14]。人体行走过程中,矢状面上的运动占主导地位。为了机构的简化,我们仅考虑下肢在矢状面上的运动,并把髋、膝、踝关节都简化为铰链关节。 该下肢外骨骼康复机器人为台架式下肢外骨骼机器人,上方的支架与台架相连接。髋关节与膝关节之间的连杆与大腿绑定,膝关节与踝关节之间的连杆与小腿绑定。直线驱动器由直流电机,同步带,滚珠丝杠,以及末端的力传感器组成。同步带,滚珠丝杠等机构把直流电机的转动转化为直线运动。力传感器能够实时检测到直线驱动器的推力,当推力过大时,直线驱动器减慢速度或者停止运动甚至向反方向运动,力传感器的加入增加了康复机器人的柔顺性,避免了机器人对人的伤害。该机构中髋关节和膝关节由两个直线电机主动驱动,踝关节为被动运动。为了能够适应不同人的腿长,设计了长度调节机构。该调节机构为在调节机构上下部之间都加工出一系列出通孔,上下两部分通过螺栓连接。通过调节机构下部分与上部分在不同位置连接,可以改变机构的长度。 1.2机构参数 人体正常步行过程中,髋关节最大屈曲约30°,最大伸展约20°,膝关节最大屈曲约为65°、最大伸展为0°。踝关节最大背屈约为30°,最大跖屈约为50°[14].我们设计的该机构的适应人体身高为150mm-190mm.根据这个数据,经过运动学解算,我们选择直线驱动器的工作行程范围如表1所示。

基于动力学模型的轮式移动机器人运动控制_张洪宇

文章编号:1006-1576(2008)11-0079-04 基于动力学模型的轮式移动机器人运动控制 张洪宇,张鹏程,刘春明,宋金泽 (国防科技大学机电工程与自动化学院,湖南长沙 410073) 摘要:目前,对不确定非完整动力学系统进行设计的主要方法有自适应控制、预测控制、最优控制、智能控制等。结合WMR动力学建模理论的研究成果,对基于动力学模型的WMR运动控制器的设计和研究进展进行综述,并分析今后的重点研究方向。 关键词:轮式移动机器人;动力学模型;运动控制;非完整系统 中图分类号:TP242.6; TP273 文献标识码:A Move Control of Wheeled Mobile Robot Based on Dynamic Model ZHANG Hong-yu, ZHANG Peng-cheng, LIU Chun-ming, SONG Jin-ze (College of Electromechanical Engineering & Automation, National University of Defense Technology, Changsha 410073, China) Abstract: At present, methods of non-integrity dynamic systems design mainly include adaptive control, predictive control, optimal control, intelligence control and so on. Based on analyzing the recent results in modeling of WMR dynamics, a survey on motion control of WMR based on dynamic models was given. In addition, future research directions on related topics were also discussed. Keywords: Wheeled mobile robot; Dynamic model; Motion control; Non-integrity system 0 引言 随着生产的发展和科学技术的进步,移动机器人系统在工业、建筑、交通等实际领域具有越来越广泛的应用和需求。进入21世纪,随着移动机器人应用需求的扩大,其应用领域已从结构化的室内环境扩展到海洋、空间和极地、火山等环境。较之固定式机械手,移动机器人具有更广阔的运动空间,更强的灵活性。移动机器人的研究必须解决一系列问题,包括环境感知与建模、实时定位、路径规划、运动控制等,而其中运动控制又是移动机器人系统研究中的关键问题。故结合WMR动力学建模理论的研究成果,对基于动力学模型的WMR运动控制器设计理论和方法的研究进展进行研究。 1 WMR动力学建模 有关WMR早期的研究文献通常针对WMR的运动学模型。但对于高性能的WMR运动控制器设计,仅考虑运动学模型是不够的。文献[1]提出了带有动力小脚轮冗余驱动的移动机器人动力学建模方法,以及WMR接触稳定性问题和稳定接触条件。文献[2]提出一种新的WMR运动学建模的方法,这种方法是基于不平的地面,从每个轮子的雅可比矩阵中推出一个简洁的方程,在这新的方程中给出了车结构参数的物理概念,这样更容易写出从车到接触点的转换方程。文献[3]介绍了与机器人动作相关的每个轮子的雅可比矩阵,与旋转运动的等式合并得出每个轮子的运动方程。文献[4]基于LuGre干摩擦模型和轮胎动力学提出一种三维动力学轮胎/道路摩擦模型,不但考虑了轮胎的径向运动,同时也考虑了扰动和阻尼摩擦下动力学模型,模型不但可以应用在轮胎/道路情况下,也可应用在对车体控制中。在样例中校准模型参数和证实了模型,并用于广泛应用的“magic formula”中,这样更容易估计摩擦力。在文献[5]中同时考虑运动学和动力学约束,其中提出新的计算轮胎横向力方法,并证实了这种轮胎估计的方法比线性化的轮胎模型好,用非线性模型来模拟汽车和受力计算,建立差动驱动移动机器人模型,模型本身可以当作运动控制器。 2 WMR运动控制器设计的主要发展趋势 在WMR控制器设计中,文献[6]给出了全面的分析,WMR的反馈控制根据控制目标的不同,可以大致分为3类:轨迹跟踪(Trajectory tracking)、路径跟随(Path following)、点镇定(Point stabilization)。轨迹跟踪问题指在惯性坐标系中,机器人从给定的初始状态出发,到达并跟随给定的参考轨迹。路径跟随问题是指在惯性坐标系中,机器人从给定的初始状态出发,到达并跟随指定的几何 收稿日期:2008-05-19;修回日期:2008-07-16 作者简介:张洪宇(1978-)男,国防科学技术大学在读硕士生,从事模式识别与智能系统研究。 ,

一种自行车机器人动力学分析和仿真

一种自行车机器人的动力学分析与仿真 邹俊 (北京邮电大学自动化学院,北京100876) 摘要:自行车是一种高效而且环保的交通工具。但自行车动力学特征较为复杂,从控制学角度说,其本身就是一个欠驱动的不稳定系统。行驶中的自行车的动力学模型相对复杂,受外界因素干扰很大,如不同的地面情况和风速的影响,很难完全模拟。因此,自行车的自动控制的发展是一项具有挑战意义的主题。本文提出了一种自行车机器人的建模方法并设计了车把控制器,并用仿真实验验证了其正确性。 关键词:自行车机器人;自动控制;稳定性 中国图书分类号:TP273.5 Modeling and Simulation of Autonomous Bicycle Abstract: Bicycle is an efficient and environment-friendly transport. However, the dynamics of bicycle is complicated. From the control point of view, it is an under actuated nonholonomic system. The dynamics of bicycle is relatively complicated, and very susceptible to disturbance from outside, such as different ground conditions and wind speed, and it is difficult to fully simulate. Thus, the development of automatic control for driving a bicycle is a challenging theme. This paper presents a dynamic model of bicycle and designs a steer controller. Simulation is performed to prove the validity of this controller. Key words: Autonomous Bicycle; Automatic Control; Stability 0引言 自行车是一种高效而且环保的交通工具。自从1818年,德国人德莱斯(Baron Karivon Drais)在法国巴黎发明了带车把的木制两轮自行车以来,自行车给人类的生活带来了极大的便利,同时,人们也在对其进行不断的改进[1][2]。2006年,日本著名的机器人“村田顽童”更是向人们展示了行走坡道和S型平衡木、倒车行走,检测障碍物,进入车库,手机遥控操作,发声、播放音乐等功能。到目前为止,自行车机器人已经取得一定的研究成果,其研究内容主要围绕动力学建模和提出新的控制算法两方面内容展开的。 自行车与倒立摆有很大的相似性,然而前者动力学特性更加复杂,可以利用模糊神经网络控制、非线性控制等控制方法来建模和设计控制器。同时,自行车机器人还涉及到传感器技术、自适应控制、机械力学、无线通信等众多学科。因此,无论在理论和实践中都具有十分重要的意义。 1动力学分析及建模

外骨骼机器人研究发展综

外骨骼机器人研究发展综述 李罗川

摘要 外骨骼机器人又称可穿戴机器人,是一种结合了人的智能和机械动力装置的机械能量的机器人。外骨骼机器人融合了传感、控制、驱动、信息融合、移动计算等综合技术为作为操作者的人提供一种可穿戴的机械机构。本文介绍了外骨骼机器人的发展历史以及国内外研究现状,对外骨骼机器人的关键技术:机械结构设计,驱动单元,控制策略进行了研究,分析了其技术难点最后对其发展前景进行了说明。 关键词:外骨骼机器人关键技术

目录 引言 (4) 1.发展历史及现状 (5) 1.1国外发展历史现状 (5) 1.2国内发展历史现状 (9) 2.关键技术分析 (11) 2.1外骨骼机器人的结构设计 (11) 2.2外骨骼机器人驱动单元 (12) 2.3外骨骼机器人的控制策略 (13) 3.外骨骼机器人技术难点分析 (16) 4.前景展望 (18) 4.1 外骨骼机器人的研究方向 (18) 4.2外骨骼机器人技术的应用 (18)

引言 现代机器人所具有的机械动力装置使得机器人可以轻易地完成很多艰苦的任务,比如举起、搬运沉重的负载等。虽然现代机器人控制技术有了长足的发展,还远达不到人的智力水平,包括决策能力和对环境的感知能力。与此同时,人类所具有的智能是任何生物和机械装置所无法比拟的,人所能完成的任务不受人的智能的约束,而仅受人的体能的限制。因此,将人的智能与机器人所具有的强大的机械能量结合起来,综合为一个系统,将会带来前所未有的变化,这便是外骨骼机器人的设计思想。外骨骼机器人实质上是一种可穿戴机器人,穿戴在操作者的身体外部,为操作者提供了诸如保护、身体支撑等功能,同时又融合了传感、控制、驱动、信息融合等机器人技术,使得外骨骼能够在操作者的控制下完成一定的功能和任务。本文通过介绍外骨骼机器人的发展历史及研究现状进一步分析了外骨骼机器人的关键技术,并对其技术难点以及发展前景作了说明,以期在全面认识外骨骼机器人基础上对其开展进一步深入研究。

空间二连杆机器人的动力学建模及其动态过程仿真

空间二连杆机器人的动力学建 模 及其动态过程仿真 作者:td 一引言 1.机器人机械臂的运动学与动力学分析方法 目录 空间二连杆机器人的动力学建模 (1) 及其动态过程仿真 (1) 作者:td (1) 一引言 (1) 1.1用户界面模块(ADAMS/View) (4) 1.2求解器模块(ADAMS/Solver) (5) 1.3后处理模块(ADAMS/PostProcessor) (6) 二.空间二连杆机器人adams建模仿真 (6) 2.1空间二连杆串联机器人 (6) 在ADAMS中用长方形连杆模拟机械臂,对两自由度的机械臂分别进行运动学分析动力学分析。 (6) 2.1.1运动学分析 (6) 2.1.2运动学分析 (9)

机器人的运动学和动力学既包含有一般机械的运动学、动力学内容,又反映了机器人的独特内容。工业机器人的运动学主要讨论了运动学的正问题和逆问题。假设一个构型已知的机器人,即它的所有连杆长度和关节角度()1q t ,()2q t ,()3q t …()n q t ,…都是已知的,其中n 为自由度数,那么计算机器人末端执行器相对于参考坐标系的位姿就称为运动学的正问题分析。换言之,如果已知机器人所有的关节变量,用正运动学方程就能计算任一瞬间机器人的位姿。然而,如果希望机器人的末端执行器到达一个期望的位姿,就必须要知道机器人操作臂每一个连杆的几何参数和所有关节的角矢量()12,,T n q q q q =???利用操作臂连杆几何参数和末端执行器期望的位姿来求解关节角矢量是运动学逆问题。运动学正问题可以利用齐次变换法来求解。设i 杆坐标系相对于基座坐标系的位姿齐次变换矩阵是b i T ,则 1231b i n n T A A A A A -=?????? ()11- 式中i A 为i 杆坐标系相对于1i -杆坐标系的坐标变换矩阵。相对于正运动学方程,机器人逆运动学方程显得更为重要。由于按给定末端执行器的位姿求解关节变量是在关节空间中进行非线性方程的求解,其中涉及多值性和奇异现象,因此,这一逆问题成为机器人运动学中的一个重要内容。机器人的控制器将用这些方程来计算关节值,并以此来运行机器人到达期望的位姿。机器人逆问题可有多种解法,如逆变换法、旋量代数法、数值迭代法、几何法等,其中Jaeobian 矩阵的速算法占有重要的地位。机器人作为多自由度可编程的工作系统,在运动学中研究的内容还有末端操作器运动规划、工作空间确定、位姿精度分析与补偿等。目前,对于一般机器人运动学的逆问题大部分都得到了解决,但是,对于有任意结构和有冗余自由度机器人的运动学逆问题,研究得还不够充分。 机器人操作臂的动力学建模主要是研究各主动关节的驱动力与操作臂运动的关系。机器人操作臂是一个十分复杂的动力学系统。机器人动力学方程的非线性特点和强耦合性使得对它的研究十分困难和复杂。目前人们已经提出了许多种动力学建模方法,分别基于不同的力学方程和原理。C .T .Lin ,Calafiore 等对Newton —Euler 动力学建模方法和Lagrange 方法在简化递推过程及减少运算次数上做了不少有益的工作;有些学者从计算机符号代数方向推导并行算法来进行研究;T .R .Kane 等发展了利用偏速度和广义力建模的Kane 方程法;有些学者利用广义d ’Alembert 原理来进行建模;还有人研究用图论进行机器人动力学分析的方法。其中以Newton —Euler 动力学建模方法及d ’Alembert 建模方法(或以这两种方法为基础)应用最为普遍。Newton —Euler 方法具有递推的形式,非常适合于数值计算,与

穿戴式下肢外骨骼康复机器人机械设计

穿戴式下肢外骨骼康复机器人机械设计 摘要:本文设计了一种用于下肢功能障碍患者康复治疗的外骨骼机器人。根据外骨骼机器人的功能与工作原理,分析了其结构组成与设计过程中的关键问题。并从仿生学角度为外骨骼机器人配置自由度,设定关节活动范围及连杆尺寸,对机械结构进行了初步分析与优化设计。为进一步的研究、分析、设计工作打下了基础。 关键词:外骨骼康复仿生机械结构 The Mechanical Design of Wearable Lower Extremity Exoskeleton Rehabilitation Robot Abstract:The exoskeleton robot, used for the lower extremity dysfunction in patients with rehabilitation, was designed. Based on its function and working principle, structure and composition and the key issues in design process were analyzed. And according to bionics, the degree of freedom, the range of motion and the link size were designed,the preliminary analysis and optimization design of mechanical structures were made. It is the foundation for research, the analysis, the design for the further. Key Words:Exoskeleton;Rehabilitation;Bionics;Mechanical structures

外骨骼机器人研究综述

外骨骼机器人研究综述 摘要 外骨骼机器人(Exoskeleton Robot)实质上是一种可穿戴机器人,即穿戴在操作者身体外部的一种机械机构,同时又融合了传感、控制、信息耦合、移动计算等机器人技术,在为操作者提供了诸如保护、身体支撑等功能的基础上,还能够在操作者的控制下完成一定的功能和任务。本文简要介绍外骨骼机器人的研究现状以及发展趋势。 需求分析 随着社会的发展,老龄化加重,已超过人口总数的10%。老年人普遍存在体力不支,行动不便,力量、耐力不足等情况,研发一种可穿戴舒适的外骨骼机器人,助老年人行走、上下楼梯、适当负重等十分必要,同时,可穿戴式外骨骼机器人也适用于残疾人或身体机能薄弱者,这将会大大减少照顾老弱病残者的人力资源,减轻社会与家庭的压力,具有社会与经济价值。 传统的交通工具是远行与负重的主要方式,但存在对路面要求高,不适应于军事、消防营救等领域,士兵与消防人员需长距离行走、背负重物、野外作业等,这些特殊活动交通工具都没法完成,且对运动者的身体素质要求非常高。研制一种可穿戴外骨骼机构,可以提供充足的能量和耐力来增强长时间行走和负重等能力,从而完成一些特殊任务。 可穿戴式外骨骼机器人由于自身的商用与军事应用价值,已经成为近年来国内外学者的一个重点研究方向。理想外骨骼机器人有能够在操作者需要的时候及时提供帮助但永远不妨碍其行动的自动化机器人装置替代他的手足,能承受货物背负任务且与人体完全结合,准确预判佩戴者的意图,具有防护并增强操作者负重和运动能力的作用。理想外骨骼机器人的研制困难可想而知。 研究现状 早期人类为减少人员伤亡所制作的盔甲其实已经属于外骨骼的雏形,提高了士兵的个人防护能力,但其存在自重与被动阻力,极大消耗了使用者的体力。 1960年,通用电气公司研制一种名为“哈曼迪1”的可佩戴单兵装备,采用液压驱动。该公司第一个提出并开展增强人体机能的主动助力型外骨骼机器研究。其外骨骼体积巨大且笨重,安全性能低,也只能取代单只手功能。 1978年,麻省理工学院研究了“增强人体机能的外骨骼”,负重问题有所改善,其驱动能源与便携式问题尚未解决,没有完整的成果。 1991年,日本神纳川理工学院开发了一套独立的可穿助力外套(如图1所示),使用肌肉压力传感器,分析佩戴者的运动情况,通过微型气泵、便携式镍镉电池及嵌入式微处理器,提供足够的助力。该开发产品是专为护士研制,可使人的力量增加0.5~1倍。

相关主题
相关文档 最新文档