当前位置:文档之家› 异步牵引电机(3)

异步牵引电机(3)

定子叠频法在异步牵引电机型式试验中的应用参考文本

定子叠频法在异步牵引电机型式试验中的应用参考 文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

定子叠频法在异步牵引电机型式试验中 的应用参考文本 使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 采用定子叠频法进行异步牵引电机热试验,介绍了定 子叠频法的基本工作原理,研究了合成磁场与主副电源参 数之间的函数关系,明确了采用定子叠频法进行电机加热 的调节规律并阐述了具体的试验调试方法,较好地解决了 采用传统试验方法进行温升试验难以满足异步牵引电机超 速试验要求的难题。 异步牵引电机超速试验需要在热状态下进行,目前在 工厂试验条件下的电机加热方法主要有直接负载法加热, 烘焙加热,等效负载法。使用直接负载法由于能耗类负载 耗能大、经济性差等因素现在已很少使用,被普遍采用的 热试验方式是通过联轴器将被试电机与陪试电机机械连接

实现对拖升温,但是对于已压装或热套联轴器的电机来说,在加热稳定后难以在极短时间内迅速将其拆除并脱离陪试电机,此外受陪试电机型号,转轴系同轴度以及转动惯量的影响,也无法让陪试电机实现同步超速。对电机进行整体烘焙容易造成轴承内油脂迅速稀释流失,若将电机解体只烘焙定子部分,则加热后的电机在装配后又会冷却,均难以达到超速试验要求。本文采用定子叠频法进行异步牵引电机加热试验,以满足热态下的超速试验要求。 试验原理分析 定子叠频法热试验主接线图如图1所示,其核心思想是将两种不同频率的主电源和副电源串联后作为被试电机M的供电电源,在被试电机绕组上产生类似于直接负载法的损耗从而达到加热的效果。一般主电源选择频率为50Hz 的工频交流电源,为确保被试电机在额定电压下的运行,主电源电压等级与被试电机相同,副电源频率一般低于主

三相异步牵引电动机的效率计算

三相异步牵引电动机的效率计算 参照日本标准JEC-37-1979《感应电机》,以YQ-420型牵引电动机效率计算为例,介绍了三相异步牵引电动机的效率计算方法。 标签:三相异步牵引电动机;效率;计算。 0 引言 从节约能源,保护环境出发,高效异步电动机是目前国际发展的趋势。随着我国地铁和城市轻轨的快速发展,“绿色、节能、环保、安全”成为城轨车辆市场竞争的主题,而作为城轨车辆的心脏-电动机,也面临国际社会的巨大竞争压力和挑战。从国际和国内发展趋势来看,开发高性能异步电动机是必要的,而电动机的效率又是衡量电动机性能好坏的重要技术经济指标之一。效率计算作为电动机型式试验中重要试验之一,通常都是参照GB/T 1032-2005《三相异步电动机试验方法》中的方法进行计算,本文将以YQ-420型牵引电动机型式试验中效率计算为例,参照日本标准JEC-37-1979《感应电机》中的损耗分离法和圆线图法,介绍三相异步电动机的效率计算方法。 1 概述 YQ-420型异步牵引电动机是南车株洲电机有限公司生产的安装在动车组检测车上的4极鼠笼式三相感应电动机,它采用强迫通风冷却方式(28m3/min), 额定功率是420 kW。正弦波电源供电型式试验采用代用额定电压880V,代用额定电流130A,代用额定频率50 Hz,代用额定转速1457r/min进行试验。要进行效率计算,首先需测量牵引电动机定子绕组的冷态电阻,再进行负载试验和空载试验,测试出相应的参数后,根据相应的公式进行效率计算。 2 计算方法 2.1 冷态电阻的测量 将YQ-420型电动机放置在室内并在稳定的环境温度中持续24小时以上,当绕组温度与环境温度之差不超过2K时,测量电机定子绕组的三相直流线电阻 值R UV=0.1446Ω、R VW=0.1447Ω、R UW=0.1446Ω,环境温度θ1=16.6℃。按式(1)和式(2)计算相电阻值R0。 R0=R med-R vw(1)

第十一章 三相交流牵引电机

第十一章三相交流牵引电动机简介无换向器的三相交流电动机在制造成本、单位功率重量、运行维修等方面、比有换向器的直流电动机有一系列优点,特别是三相异步电动机结构最为简单、工作最为可靠以及具有优越的防空转性能。近30年来,由于电子技术特别是大功率晶闸管变流技术的迅速发展,研制出体积小、重量轻、功率大、效率高的变流装置——静止逆变器,作为三相交流电动机的变频电源,使三相交流牵引电动机在铁路电力牵引中的应用取得了突破性进展。 由三相交流电动机的优点和直流电动机在牵引运用方面长期积累的经验以及电力交流技术的成就三者完美结合,而研制出来的新型三相交流电传动机车具有更大的牵引能力、更好的牵引特性和更高的经济技术指标。因此,从发展远景来看,它将在未来牵引传动中占据主导地位。 本章结合机车牵引特点,对三相异步牵引电动机和晶闸管同步牵引电动机的运行原理及结构特点作一些介绍。 第一节三相异步牵引电动机 一、异步电动机变频运行的机械特性 由异步电机原理可知:在一定的电压和频率下,异步电动机的机械特性如图11-1所示。 图11-1 一定频率和电压下异步电动机的机械特性 当异步电机作为电动机运行时,电机在0<S<1范围内运行,图中S m为电动机最大转距太时的临界转差率。其中:S=0-S m。一段是电动机的稳定运行范围;当S>S m后,电动机的转矩将明显减少,使电动机转速越来越低,直到停转。所

以S=S m --1一段是电动机不稳定运行区。异步电动机在不同频率人下的机械特性 曲线形状都相似,但其机械特性稳定运行的调速范围和最大转矩值是不同的,这 种变化可用最大转矩和对应的临界转差率来表示。由第九章已推导出三相异步电动机最大转矩为: []22 1 2 1 1 1 2 1 ) ' ( 4 3 δ δ πx x r r f pU T m + + + =(11-1) 当 σ σ χ χ γ 2 1 1 + ππ时忽略 1 γ,则: ()σ σ χ χ π2/ 1 1 2 1 4 3 + = f pU T m (11-2)对于结构一定的电机,式(11-2)可写为: 2 1 1 T?? ? ? ? ? = f U K T m (11-3)由式(11-3)可见,异步电动机的最大转矩与 2 1 1 ?? ? ? ? ? f U 成正比。若变频调速是在U1为常数条件下进行,则T m随f12成反比例变化,其机械特性变化如图11-2所示。 图11-2 一定电压、不同频率时异步电动机的机械性能 图11-3 一定气隙磁通、不同频率时异步电动机的机械性能

交流牵引电动机

第四节、交流牵引电动机 三相交流牵引电动机(包括变频异步牵引电动机和自控同步牵引电动机)是随着现代大力率变流技术的迅速发展而发展起来的,除工业上应用以外,现已被成功地应用于铁道干线车和高速动车上。 异步牵引电动机转子上没有换向器及带绝缘的绕组,不存在换向火花和环火稳定性问题,因此,它结构简单、运行可靠,可以以更高的圆周速度运转,使机车具有很宽的调速范围。 1.交流牵引电动机的技术优越性 由于交流牵引电动机没有换向器工作面圆周速度的限制,因而可以选用高的转速和大的传动比,这样,能显著减轻电机的重量,以获得较大的单位重量功率。另外,交流电动机充分利用了原直流电机换向器所占的空间,热量能沿定子圆周均匀散发,改善了电机的冷却效果,明显地增长了电机的寿命。交流电机的优越性可由下表所示的德国电力机车用的两种电机参数比较中得到证实,也可由日本东洋电机公司制造的交流、直流牵引电机参数比较得到证明。 两种不同类型牵引电动机参数比较表1 电机种类 三相异步电动机 脉流电动机 型号 BQCA843 UZll6—64K 安装机车型号 BRl20 181.2 功率(kW) 1400 1360(5rnin) 持续功率(kW) 1400 810 电机电压(V) 2200

360(相) 830 最大转速(r/min) 3600 1860 转子直径(mm) 930 950 重量(kg) 2380 3630 单位重量功率(kW/kg) 0.588 0.375 由上表可以看出,对于中小型容量的电机,在大致相同的重量和外型尺寸情况下牵引电动机的功率一般比直流电动机的功率大30%。中、小容量交、直流电机参数比较表2 电机类型 交流异步电动机 直流牵引电动机 型号 TDK6200-A TDK8270-A 小时功率(kW) 165 130 小时转速(r/min) 1565 L450 绝缘等级 C

牵引电机的常见故障与处理教学文案

牵引电机的常见故障 与处理

目录 前言…………………………………………………………一牵引电机的主要特点……………………………………二牵引电机的结构…………………………………… 1定子………………………… 2转子………………………… 3电刷装置………………………… 4电枢轴承………………………… 三牵引电机的传动和悬挂方式……………………… 1个别传动 2组合传动 四牵引电机的工作原理……………………… 五牵引电动机的维护保养……………………… 六牵引电机的故障分析与处理……………………………… 参考文献……………………………………………………后语………………………………………………………

摘要: 本设计简要主要介绍了牵引电机的工作原理、基本结构、主要特点及维护保养,对ZD114型牵引电机在运用中的常见故障进行了分析,并提出了相应处理方法。 关键词: 牵引电机故障检修措施

前言 牵引电机是驱动机车车辆动轮轴的主电机,是电传动机车、车辆的主要部件之一。是在机车或动车上用于驱动一根或几根动轮轴的电动机。牵引电动机有多种类型,如直流牵引电动机、交流异步牵引电动机和交流同步牵引电动机等。直流牵引电动机,尤其是直流串励电动机有较好调速性能和工作特性,适应机车牵引特性的需要,因此获得广泛应用。 ZD114型牵引电机是SS6B型电力机车的重要部件之一,由于牵引电机在运用中受振动、摩擦、高温和自然老化等原因使机车电机性能总处于自然磨损状态,超过一定限度就会发生故障,影响机车的正常运用,所以,要采取一系列的计划预防修理措施,在电机各零部件损坏以前得到修理,从而减少和防止机车出现先期损坏的可能性,达到保证行车安全和延长机车使用寿命的目的。 一牵引电机的工作特点 1 使用环境恶劣 由于牵引电机安装在车体下面,直接受到雨、雪、潮气的影响,机车运行中掀起的尘土也容易侵入电机内部。此外,由于季节和负载的变化,还经常受到温度和湿度变化的影响。因此,电机绝缘容易受潮、受污,对其性能和寿命产生极为不良的影响。所以,牵引电机的绝缘材料和绝缘结构应具有较好的防潮,防尘性能及良好的通风、散热条件。 2 外形尺寸受限制 牵引电动机悬挂在车体下面,其安装空间受到很大的限制,轴向尺寸受轨距限制,径向尺寸受动轮直径的限制。为了获得尽可能大的功率,要求牵引电机结构必须紧凑,并采用较高等级的绝缘材料和性能较好的导电、导磁材料。 3 动作力大 机车运行通过钢轨不平顺处,因撞击而产生的动力作用会传递给牵引电动机,使牵引电动机承受很大的冲击和振动。 4 换向困难 直、脉流牵引电机换向困难的原因除了受机械振动力方面的影响外,还有电器方面的原因,如牵引电动机经常启动、制动,此时电流可达额定电流的两倍;当机车在长大坡道上运行时,电动机将长时间处于过电流状态;当机车高

异步牵引电动机工作原理

异步牵引电动机工作原理 1.牵引电机的主要运行原理 定子通上三相交流电后,在气隙中产生旋转的磁场,该磁场切割转子导条后在转子导条中产生感应电流,带电的转子导条处于气隙旋转磁场中就要产生电动力,使转子朝定子旋转磁场的同一方向旋转。由于转子导条中的电流是因转子导条切割由定子绕组产生的气隙磁场才感应产生的,所以转子的转速只能低于气隙旋转磁场的转速,永远不可能与其同步,否则转子导条与气隙磁场同步旋转,转子导条不再切割磁场产生感应电流和产生电动力了,转子也不可能旋转了,所以称按这种原理运行的电机为异步电动机。 2.牵引电机的调速原理 现在机车用异步牵引电机调速普遍采用变频变压调速技术。异步电机转速、电动势和电磁转矩公式如下: 转差率s=(n1-n)/n 转速n=60f/p(1-s) 电动势E1=4K1 f N s K dp1φ 电磁转矩T em=CφI r COS? n1:同步转速(旋转磁场)n:转子转速;f:定子频率;s:转差率;p:电机极对数;E1:电动势;K1:波形系数; N s:每相串联匝数;K dp1:绕组系数;φ:磁通;T em:电磁转矩;C:常数;I r:转子电流;COS?:功率因数。 改变定子频率即可改变电机转速,随着定子频率的增加,电机转速相应增加,如果电压不增加,将导致电机磁场减弱,电机转矩将降低,电机磁场降到很低时,电机不能输出足够的转矩,不能满足负载要求;另一方面,低频起动时,如果电压很高,将导致电机过分饱和。因此异步电机变频时,电压也应在一定范围内保持一定比例的变化,这种调速方式称之为变频变压调速。异步牵引电机变频调速主要采用了恒转矩变频调速(恒磁通变频调速的一个区段,磁通和电流不变)、恒磁通变频调速、恒功率变频调速等调速方式。 3. 异步电机牵引与再生制动原理: 在1>s>0的范围内,电磁转矩与转子转向相同,它拖动转子旋转,电机从逆变器吸收电能转换为机械能,克服机车阻力驱动机车运行,处于电动机运行状态。 s=1为起动运行状态(启动瞬间,转子转速n=0,s=1)。

城轨车辆用牵引电机分析概要

城轨车辆用牵引电机分析 学院:电气工程学院 班级:磁浮01 学号:20121485 姓名:孟振强

城轨车辆牵引—永磁同步电机 一.永磁同步电机的原理 在电动机的定子绕组中通入三相电流,在通入电流后就会在电动机的定子绕组中形成旋转磁场,由于在转子上安装了永磁体,永磁体的磁极是固定的,根据磁极的同性相吸异性相斥的原理,在定子中产生的旋转磁场会带动转子进行旋转,最终达到转子的旋转速度与定子中产生的旋转磁极的转速相等,所以可以把永磁同步电机的起动过程看成是由异步启动阶段和牵入同步阶段组成的。在异步启动的研究阶段中,电动机的转速是从零开始逐渐增大的,造成上诉的主要原因是其在异步转矩、永磁发电制动转矩起的磁阻转矩和单轴转子磁路不对称,等一系列的因素共同作用下而引起的,所以在这个过程中转速是振荡着上升的。在起动过程中,只有异步转矩是驱动性,电动机就是以这个转矩来得以加速的 , 其他的转矩大部分以制动性质为主。在电动机的转速由零增加到接近定子的磁场旋转转速时,在永磁体脉振转矩的影响下永磁同步电机的转速有可能会超过同步转速,进而出现转速的超调现象。但经过一段时间的转速振荡后,最终在同步转矩的作用下被牵入同步状态。 二.永磁同步电机的结构 永磁同步电机主要是由转子、端盖、及定子等各部件组成的。一般来说,永磁同步电机的最大的特点是它的定子结构与普通的感应电机的结构非常的相似,主要是区别是转子的独特的结构与其它电机形成了差别。和常用的异步电机的最大不同则是转子的独特的结构,

在转子上放有高质量的永磁体磁极。由于在转子上安放永磁体的位置有很多选择,所以永磁同步电机通常会被分为三大类:内嵌式、面贴式以及插入式,如图1.1所示。永磁同步电机的运行性能是最受关注的,影响其性能的因素有很多,但是最主要的则是永磁同步电机的结构。就面贴式、插入式和嵌入式而言,各种结构都各有其各自的优点。 面贴式的永磁同步电机在工业上是应用最广泛的,其最主要的原因是其拥有很多其他形式电机无法比拟的优点,例如其制造方便,转动惯性比较小以及结构很简单等。并且这种类型的永磁同步电机更加容易被设计师来进行对其的优化设计,其中最主要的方法是设计成近似正弦的分布把气隙磁链的分布结构,将其分布结构改成正弦分布后能够带来很多的优势,例如它所带来的负面效应,能减小磁场的谐波以及应用以上的方法能够很好的改善电机的运行性能。插入式结构的电机之所以能够跟面贴式的电机相比较有很大的改善是因为它充分的利 用了它设计出的磁链的结构有着不对称性所生成的独特的磁阻转矩 能大大的提高了电机的功率密度,并且在也能很方便的制造出来,所

YQ-190异步牵引电机电磁场有限元

YQ-190异步牵引电机电磁场有限元 分析 杨云峰李丽 (南车株洲电机有限公司湖南株洲 412001) 摘要:电机是一个由非线性、多变量、多物理场耦合关系构成的能量转换装置,铁路用异步牵引电机具有较复杂的运行特性,为了更好的分析异步牵引电机的运行特性以及不同环境下电机参数变化。本文借助Ansoft公司的Maxwell 2D模块,建立一种功率为190kW地铁车辆用异步牵引电机模型,通过电磁场有限元软件分析异步牵引电机在不同的运行状态下电机参数及磁密变化曲线,这就为异步牵引电机的优化设计提供了理论性依据。 关键词:牵引电机,运行特性,特性曲线,有限元 Finite Element Analysis on Electromagnetic Field of YQ-190 Traction Motor Yangyunfeng LiLi (CSR Zhuzhou Electric Locomotive Co, Ltd., Hunan Zhuzhou 412001) Abstract: Motor is a nonlinear, multivariate, multi-physics coupling between composition, Especially with the more complex asynchronous traction motor operating characteristics. In order to better analyze the performance characteristics of asynchronous traction motor and the motor parameters under different operating characteristics, the internal field distribution. With this module Ansoft's Maxwell 2D, The establishment of a subway car with a power of 190kW asynchronous traction motor model, By finite element software, Analysis of asynchronous traction motors running at different magnetic flux density of the motor parameters and the characteristic curve, This is the optimal design of asynchronous traction motors to provide a theoretical basis. Key words: traction motor; operating performance; characteristic curve; finite element analysis 0 引言 地铁车辆用异步牵引电机具有频繁起动、制动的特点。在两站之间运行包括牵引、惰性、制动三个阶段[1]。牵引工况包括三个阶段:恒转矩、恒功、自然特性;惰性运行是在停止牵引或制动,只在阻力作用下运行的状态;制动运行状态电机运行过程与牵引运行时相反。 本文采用Ansoft公司推出的Maxwell 2D软件进行有限元仿真,就牵引电机在牵引工况下三个运行阶段进行分析。本文分析的异步牵引电机在额定网压1500V时牵引特性如图1。通过对比分析电机在恒转矩起始点、恒功起始点、自然特性起始点、最高速度点的电机参数及电磁场分布图形,并与试验结果进行对比,说明仿真结果的合理性。为今后牵引电机的研发制造提供一种比较适用的分析方法[2]。 1电机模型的建立

铁路机车异步牵引电动机轴承结构

铁路机车异步牵引电动机的轴承结构 李进泽 (南车株洲电机有限公司,湖南 株洲 412001) 摘 要:对于结构简单、维护量少的铁路机车异步牵引电动机来说,作为其关键部件之一的轴承往往是其中一个薄弱点,其运转情况的好坏在很大程度上直接影响异步牵引电动机的运行可靠性,因此电机设计时,必须合理设计其轴承结构,包括选择合适的轴承、设计正确的润滑系统和可靠的密封结构。 关键词:铁路机车异步牵引电动机、轴承、轴承结构、润滑、密封 0 引言 三相交流传动机车首先必须满足的要求是,对于铁路重载货运机车,能连续产生较大的牵引力;对于铁路高速客运机车,一级齿轮传动装置能得到较高的机车速度,因此要求铁路机车异步牵引电动机转矩要大、转速要高。另一方面由于受到铁路机车车轮直径、两车轮内侧距离和机车下部限界的限制,要求异步牵引电动机体型相对地越来越小。同时,逆变器供电又会造成异步牵引电动机轴承强振动、高温升、轴承电蚀等不利影响。 因此,异步牵引电动机设计时,必须仔细分析其轴承常常需承受高转速、高负荷、高温升、强振动等苛刻运行条件的特殊性,有针对性地设计轴承结构,并采取相应措施。 1 轴承类型及其布置 为简化结构,降低成本,铁路机车牵引电机一般尽可能采用单侧传动,一般采用两轴承结构(如图1),传动端采用较大的NU 型圆柱滚子轴承,作为非定位轴承,仅承受径向负荷;而非传动端采用定位轴承,除承受径向负荷外,还承担电机轴的轴向定位和轴向负荷,一般采用NH 型、NUP 型、NUH 型圆柱滚子轴承,或向心球轴承,还可采用组合结构(如图2,TGV 异步牵引电机轴承结构)。 采用人字形小齿轮时,人字齿轮已轴向定位,两端轴承必须都为非定位轴承,如ICE 动车异步牵引电机BAZ7096。 图1 两轴承结构的异步牵引电动机 图2非传动端采用组合轴承结构 2 轴承转速 异步牵引电动机轴承选择除考虑轴承的受力负荷外,还要着重考虑高转速和轴承电蚀这两个不利因素。 异步牵引电动机转速的限制除取决于其自身(主要是转子)的强度和刚度外,在很大程度上取决于逆变器所能提供的最高频率以及轴承的许用速度。 一般异步牵引电动机的最高转速都比较高,不少都高于轴承样本中所列的极限转速(特别是传动端),如BR120机车异步牵引电机最高工作转速(4500r/min )为其传动端轴承(NU322)脂润滑的极限转速(轴承样本推荐2000r/min )的2倍多,超过该轴承油润滑的极限转速(2600r/min )的70%,也超过非传动端轴承(NJ318带角环HJ318)脂润滑时的极限转速(2800r/min )的60% [1]。 作者简介:李进泽( 1967—),男,1990年毕业于浙江大学电机专业,高级 工程师,首席设计师,主要从事轨道交通异步牵引电动机、石油钻机变频电机、风力发电电机的研究开发。

三相异步牵引电动机毕业设计

摘要 随着电机控制技术的不断发展,在实际中应用越来越多的交流调速系统已经取代了直流调速系统。由于异步电机是一种复杂的多变量的、强耦合的非线性系统,所以利用计算机仿真的办法构造一个实验系统进行异步电机的分析是一种很好的研究手段。 本文主要首先介绍三相异步牵引电动机结构和构造建立电机数学、物理模型,对比直流电机电磁转矩和异步电动机电磁转矩,结合矢量控制的基本思想和基本概念,完成了对三相交流异步牵引电动机在三相静止坐标和两相静止坐标系上的数学模型,经过坐标转换得到交流牵引电机的模型。然后通过Matlab/Simulink的模块简化搭建功能完成三相异步牵引电动机最终的仿真模型,并在Mutlab系统环境下实现对电动机的仿真,观察异步电机空载转矩和负载转矩过程中的电流、转速、转矩的变化,对结果与理论结果进行比对分析,证实了该方法的简便直观、高效快捷和真实准确性。 关键词:异步电机;建模;仿真;坐标变换;

Abstract With the development of motor control technology, AC drive system is used more and more in practice has replaced the DC speed regulating system. The asynchronous motor is a strongly coupled nonlinear system is a complex multivariable, using the way of constructing, analysis and computer simulation of an experimental system of asynchronous motor is a very good research tools. This paper first introduces the structure and the structure of three phase a synchronous traction motor mathematical, physical model of motor, compared with DC motor electromagnetic torque and asynchronous motor electro magnetic torque, combined with the basic theory of vector control and the basic concept,the mathematical model in the three-phase static coordinate and two-phase static coordinate system on the three phase asynchronous traction motor, the AC traction the motor model to get the coordinate conversion. Then through the Matlab/Simulink module to simplify the building function to finish the simulation model of the three-phase asynchronous traction motor end, and realize the simulation of the motor in the environment of Mutlab system, variable current,speed, torque of asynchronous motor load torque and load torque in the process, the results were compared with the theoretical results and analysis,confirmed this method simple and intuitive, fast and accurate. KeyWords: Induction motor, Modeling, Simulation, Coordinate transformation

相关主题
相关文档 最新文档